Data Validation Package

June 2008
Groundwater and Surface Water Sampling at the Durango, Colorado
Disposal and Processing Sites

August 2008

Contents

Sampling Event Summary	-
Durango, Colorado, Disposal Site Sample Location Map	
Durango, Colorado, Processing Site Sample Location Map	
Data Assessment Summary	
Water Sampling Field Activities Verification Checklist	
Laboratory Performance Assessment	
Sampling Quality Control Assessment	
Certification	

Attachment 1—Assessment of Anomalous Data

Potential Outliers

Attachment 2—Data Presentation

Groundwater Quality Data Surface Water Quality Data Equipment Blank Data Static Water Level Data Time-Concentration Graphs

Attachment 3—Sampling and Analysis Work Order

Attachment 4—Trip Report

End of current text

Sampling Event Summary

Site: Durango, Colorado, Disposal and Processing Sites

Sampling Period: June 2-4, 2008

The Long-Term Surveillance Plan (LTSP) for the Bodo Canyon Disposal Site, Durango, Colorado requires annual monitoring to verify the performance of the disposal cell. Point-of-compliance wells 0607, 0612, 0621, and monitor wells 0605, 0608, 0618, and 0623 were sampled as specified in the plan.

The *Preliminary Final Ground Water Compliance Action Plan for the Durango, Colorado, UMTRA Project Site* requires annual monitoring of groundwater and surface water from the Mill Tailings area to determine progress of the natural flushing process in meeting compliance standards. Groundwater and surface water samples were collected at the Raffinate Pond area as a best management practice to monitor selenium and uranium concentrations.

Sampling and analysis was conducted as specified in the *Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites*. Water levels were measured at each sampled well.

For the groundwater samples collected at the disposal site, the concentrations of the indicator parameters (molybdenum, selenium, and uranium) were below their respective U.S. Environmental Protection Agency (EPA) groundwater standard (40 CFR 192) with the following exception. The uranium concentration in well 0618 has been increasing since 2005 and is now 0.05 milligram per liter (mg/L); however, this level is below the proposed concentration limit of 0.077 mg/L.

For the groundwater samples collected at the processing site, EPA groundwater standards for cadmium, molybdenum, and uranium were exceeded in samples collected from monitor wells listed in Table 1 on the following page.

Results from this sampling event are generally consistent with values previously obtained. In reviewing the time-concentration graphs included in this report, it is noted that selenium concentrations at process site wells 0633 and 0617 increased where decreases were previously observed.

Surface water contaminant concentrations were compared to the values obtained at upgradient locations on the Animas River (0652) and South Creek (0588). The uranium concentration (0.016 mg/L) from location 0588 is an indicator of the quality of water entering the site. Surface water results from Animas River locations adjacent to and downstream of the processing site were compared to statistical benchmark values derived using historical data from location 0652. As shown in Table 2, no benchmark values were exceeded during this event, which indicates that the natural flushing strategy is not adversely affecting the water quality in the Animas River.

Table 1. Durango Processing Site Wells Exceeding EPA Standards in June 2008

Analyte	Standard ^a	Cleanup Goal ^c	Site Code ^b	Location	Concentration (mg/L)
Cadmium	0.01	Not applicable	DUR01	0612	0.042
Molybdenum	0.1	Not applicable	DUR01	0612	0.11
		0.05		0617	0.032
Selenium	0.01		DUR01	0630	0.025
]	0633	0.083
		0.05		0594	0.02
Selenium	0.04		DUR02	0598	0.23
	0.01		DUNUZ	0607	0.7
			1	0884	1.2
		Not applicable		0612	1.4
]	0617	0.15
Linomiumo	0.044		DUR01	0630	0.27
Uranium	0.044		DUNUI	0631	0.11
]	0633	0.58
]	0634	0.087
		Not applicable		0594	0.084
Uranium	0.044		DUR02	0598	0.13
				0884	0.15

^aStandards are listed in 40 CFR 192.02 Table 1 to Subpart A; concentrations are in milligrams per liter, mg/L.

bDUR01 = Mill Tailings Area; DUR02 = Raffinate Ponds Area.

Table 2. Comparison of Animas River Concentrations to Benchmarks

Analyte	Benchmark at 0652	0584	0691	0586	0656	0654
Cadmium	0.0020	0.00012	0.00011	0.00011	0.00013	0.00011
Molybdenum	0.010	0.00053	0.00048	0.00052	0.00047	0.00048
Selenium	0.0015 ^a	0.00016	0.00016	0.00015	0.00015	0.00063
Uranium	0.0018	0.00025	0.00024	0.00052	0.00024	0.00029

Concentrations are in milligrams per liter, mg/L.

^aValue of the highest historical detection limit.

Site Lead, S.M. Stoller Corporation

Cleanup goal for selenium, from the Preliminary Final Ground Water Compliance Action Plan for the Durango, Colorado, UMTRA Project Site (July 2003). Concentrations are in milligrams per liter, mg/L.

Durango, Colorado, Disposal Site Sample Location Map

Durango, Colorado, Processing Site Sample Location Map

Data Assessment Summary

This page intentionally left blank

Water Sampling Field Activities Verification Checklist

F	Project	Durango, Colorado	Date(s) of Water	Sampling	June 2-4, 2008
	Date(s) of Verification	August 8, 2008	Name of Verifier		Gretchen Baer
			Response (Yes, No, NA)		Comments
1.	Is the SAP the primary document of	directing field procedures?	Yes		
	List other documents, SOP's, instr	uctions.		Work Order Letter da	ated May 6, 2008.
2.	Were the sampling locations speci	fied in the planning documents sampled?	Yes	With the exception o	f well DUR02-0879 that was damaged.
3.	Was a pre-trip calibration conducted documents?	ed as specified in the above named	Yes	Pre-trip calibration w	as performed on June 2, 2008.
4.	Was an operational check of the fi	eld equipment conducted twice daily?			rities were performed in a half-day, one cted, which is acceptable.
	Did the operational checks meet co	riteria?	Yes		
5.	Were the number and types (alkali ORP) of field measurements taker	nity, temperature, Ec, pH, turbidity, DO, as specified?	Yes		
6.	Was the Category of the well docu	mented?	Yes		
7.	Were the following conditions met	when purging a Category I well:			
	Was one pump/tubing volume purg	ged prior to sampling?	Yes		
	Did the water level stabilize prior to	o sampling?	Yes	•	3-0608 and DUR01-0863 the water level requirements. Data are qualified as "Q."
	Did pH, specific conductance, and sampling?	turbidity measurements stabilize prior to	Yes	Exception: Turbidity qualified as "Q."	was >10 NTU at DUR03-0621. Data are
	Was the flow rate less than 500 m	L/min?	Yes		
	If a portable pump was used, was installation and sampling?	there a 4 hour delay between pump	NA		

Water Sampling Field Activities Verification Checklist (continued)

	Response (Yes, No, NA)	Comments
8. Were the following conditions met when purging a Category II well:		
Was the flow rate less than 500 mL/min?	Yes	
Was one pump/tubing volume removed prior to sampling?	Yes	
9. Were duplicates taken at a frequency of one per 20 samples?	Yes	Two duplicate samples were collected.
10. Were equipment blanks taken at a frequency of one per 20 samples that were collected with nondedicated equipment?	Yes	One equipment blank was collected.
11. Were trip blanks prepared and included with each shipment of VOC samples?	NA	
12. Were QC samples assigned a fictitious site identification number?	Yes	Location numbers 2626, 2627, and 2642 were used.
Was the true identity of the samples recorded on the Quality Assurance Sample Log?	Yes	
13. Were samples collected in the containers specified?	Yes	
14. Were samples filtered and preserved as specified?	Yes	
15. Were the number and types of samples collected as specified?	Yes	
16. Were chain of custody records completed and was sample custody maintained?	Yes	
17. Are field data sheets signed and dated by both team members?	Yes	
18. Was all other pertinent information documented on the field data sheets?	Yes	
19. Was the presence or absence of ice in the cooler documented at every sample location?	Yes	
20. Were water levels measured at the locations specified in the planning documents?	Yes	

Laboratory Performance Assessment

General Information

Report Number (RIN): 08051595
Sample Event: June 2-4, 2008
Site(s): Durango, Colorado
Laboratory: Paragon Analytics

Work Order No.: 0806059

Analysis: Metals and Wet Chemistry

Validator: Gretchen Baer Review Date: August 8, 2008

This validation was performed according to the *Environmental Procedures Catalog*, "Standard Practice for Validation of Laboratory Data," GT-9(P). The procedure was applied at Level 3, Data Validation. See attached Data Validation Worksheets for supporting documentation on the data review and validation. All analyses were successfully completed. The samples were prepared and analyzed using accepted procedures based on methods specified by line item code, which are listed in Table 3.

Table 3. Analytes and Methods

Analyte	Line Item Code	Prep Method	Analytical Method
Chloride	MIS-A-039	SW-846 9056	SW-846 9056
Metals, Ca, Fe, K, Mg, Mn, Na	LMM-01	SW-846 3005A	SW-846 6010B
Metals, Cd, Mo, Se, U	LMM-02	SW-846 3005A	SW-846 6020A
Sulfate	MIS-A-044	SW-846 9056	SW-846 9056
Total Dissolved Solids	WCH-B-033	MCAWW 160.1	MCAWW 160.1

Data Qualifier Summary

Analytical results were qualified as listed in Table 4. Refer to the sections below for an explanation of the data qualifiers applied.

Table 4. Data Qualifier Summary

Sample Number	Location	Analyte(s)	Flag	Reason
0806059-1	DUR03-0621 Dup (2642)	Iron	J	Serial dilution failure
0806059-1	DUR03-0621 Dup (2642)	Magnesium	J	Serial dilution failure
0806059-1	DUR03-0621 Dup (2642)	Molybdenum	U	Less than 5 times the calibration blank
0806059-1	DUR03-0621 Dup (2642)	Potassium	J	Serial dilution failure
0806059-1	DUR03-0621 Dup (2642)	Selenium	U	Less than 5 times the calibration blank
0806059-1	DUR03-0621 Dup (2642)	Sodium	J	Serial dilution failure
0806059-1	DUR03-0621 Dup (2642)	Uranium	U	Less than 5 times the calibration blank
0806059-2	DUR03-0608	Molybdenum	U	Less than 5 times the calibration blank
0806059-8	DUR01-0631	Potassium	J	Serial dilution failure
0806059-12	DUR01-0863	Molybdenum	U	Less than 5 times the calibration blank
0806059-12	DUR01-0863	Selenium	U	Less than 5 times the calibration blank
0806059-12	DUR01-0863	Uranium	U	Less than 5 times the calibration blank
0806059-13	DUR01-0691	Molybdenum	U	Less than 5 times the calibration blank
0806059-13	DUR01-0691	Uranium	U	Less than 5 times the calibration blank
0806059-14	DUR01-0584	Molybdenum	U	Less than 5 times the calibration blank
0806059-15	DUR01-0652	Molybdenum	U	Less than 5 times the calibration blank
0806059-16	DUR01-0586	Molybdenum	U	Less than 5 times the calibration blank
0806059-17	DUR02-0656	Molybdenum	U	Less than 5 times the calibration blank
0806059-20	DUR02-0654	Molybdenum	U	Less than 5 times the calibration blank
0806059-23	Equipment Blank (2627)	Molybdenum	U	Less than 5 times the calibration blank
0806059-23	Equipment Blank (2627)	Uranium	U	Less than 5 times the calibration blank
0806059-24	DUR03-0605	Molybdenum	U	Less than 5 times the calibration blank
0806059-24	DUR03-0605	Selenium	U	Less than 5 times the calibration blank
0806059-24	DUR03-0605	Uranium	U	Less than 5 times the calibration blank
0806059-25	DUR03-0607	Molybdenum	U	Less than 5 times the calibration blank
0806059-25	DUR03-0607	Selenium	U	Less than 5 times the calibration blank
0806059-25	DUR03-0607	Uranium	U	Less than 5 times the calibration blank
0806059-26	DUR03-0612	Molybdenum	J	Less than 5 times the calibration blank
0806059-26	DUR03-0612	Selenium	J	Less than 5 times the calibration blank
0806059-26	DUR03-0612	Uranium	J	Less than 5 times the calibration blank
0806059-27	DUR03-0605 Dup (2626)	Molybdenum	U	Less than 5 times the calibration blank
0806059-27	DUR03-0605 Dup (2626)	Selenium	U	Less than 5 times the calibration blank
0806059-27	DUR03-0605 Dup (2626)	Uranium	U	Less than 5 times the calibration blank
0806059-28	DUR03-0618	Molybdenum	U	Less than 5 times the calibration blank
0806059-29	DUR03-0621	Iron	J	Serial dilution failure
0806059-29	DUR03-0621	Magnesium	J	Serial dilution failure
0806059-29	DUR03-0621	Potassium	J	Serial dilution failure
0806059-29	DUR03-0621	Sodium	J	Serial dilution failure
0806059-29	DUR03-0621	Uranium	U	Less than 5 times the calibration blank

Sample Shipping/Receiving

Paragon Analytics in Fort Collins, Colorado, received 29 water samples on June 6, 2008, under air bill numbers 7927 1100 3738 and 7920 6755 1049 accompanied by a Chain of Custody (COC) form. The COC form was checked to confirm that all of the samples were listed with sample collection dates and times, and that signatures and dates were present indicating sample relinquishment and receipt. The sample submittal documents including the COC form and the sample tickets had no errors or omissions with the following exceptions. The site ID on ticket NFE 101 read "DUR01" instead of "DUR03." The COC form listed an incorrect filtration status at two locations, but this was corrected by the laboratory.

Preservation and Holding Times

The sample shipment was received cool and intact with temperatures inside the iced cooler at 1.4 °C, which complies with requirements. All samples were received in the correct container types and had been preserved correctly for the requested analyses. All samples were analyzed within the applicable holding times.

Laboratory Instrument Calibration

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing acceptable qualitative and quantitative data for all analytes. Initial calibration demonstrates that the instrument is capable of acceptable performance in the beginning of the analytical run and of producing a linear curve. Compliance requirements for continuing calibration checks are established to ensure that the instrument continues to be capable of producing acceptable qualitative and quantitative data. All laboratory instrument calibrations were performed correctly in accordance with the cited methods.

Method SW-846 6010B

Calibrations for calcium, iron, magnesium, manganese, potassium, and sodium were performed on June 10, 11, and 17, 2008, using three calibration standards. The calibration curve correlation coefficient values were greater than 0.995 and the absolute values of the intercepts were less than 3 times the reporting limits. Calibration and laboratory spike standards were prepared from independent sources. Initial and continuing calibration verification checks were made at the required frequency resulting in 39 verification checks. All calibration checks met the acceptance criteria. Reporting limit verification checks were made at the required frequency to verify the linearity of the calibration curve near the practical quantitation limit and all results were within the acceptance range.

Method SW-846 6020A

Calibrations for cadmium, molybdenum, selenium, and uranium were performed on June 17, 2008, and for selenium on June 16, 2008, using seven calibration standards. The calibration curve correlation coefficient values were greater than 0.995 and the absolute values of the intercepts were less than 3 times the method detection limits (MDLs). Calibration and laboratory spike standards were prepared from independent sources. Initial and continuing calibration verification checks were made at the required frequency resulting in 7 verification

checks for cadmium, molybdenum, and uranium, and 17 for selenium. All calibration checks met the acceptance criteria. Reporting limit verification checks were made at the required frequency to verify the linearity of the calibration curve near the practical quantitation limit and all results were within the acceptance range, with the following exception. The molybdenum check result was slightly above the acceptance range. All affected results have been previously qualified with a "U" flag (not detected), so no qualification is necessary. Mass calibration and resolution verifications were performed at the beginning of each analytical run in accordance with the analytical procedure. Internal standard recoveries associated with requested analytes were stable and within acceptable ranges.

Method SW-846 9056

Initial calibrations were performed for chloride and sulfate using five calibration standards on May 20, 2008. The calibration curve correlation coefficient values were greater than 0.995 and the absolute values of the intercepts were less than 3 times the MDL. Initial and continuing calibration verification checks were made at the required frequency resulting in eight verification checks. All calibration check results were within the acceptance criteria.

Method EPA 160.1

There are no calibration requirements associated with the determination of total dissolved solids.

Method and Calibration Blanks

Method blanks are analyzed to assess any contamination that may have occurred during sample preparation. Calibration blanks are analyzed to assess instrument contamination prior to and during sample analysis. All method blank and calibration blank results associated with the samples were below the practical quantitation limits for all analytes. In cases where a blank concentration exceeds the MDL, the associated sample results are qualified with a "U" flag (not detected) when the sample result is greater than the MDL but less than 5 times the blank concentration.

For calcium, iron, magnesium, and manganese, some blank results were negative and the absolute values were greater than the MDL but less than the practical quantitation limit. All associated results were greater than 5 times the MDL, so no results are qualified.

<u>Inductively Coupled Plasma (ICP) Interference Check Sample (ICS) Analysis</u>

ICP interference check samples ICSA and ICSAB were analyzed at the required frequency to verify the instrumental interelement and background correction factors. All check sample results met the acceptance criteria.

Matrix Spike Analysis

Matrix spike and matrix spike duplicate (MS/MSD) samples are used to measure method performance in the sample matrix. The MS/MSD data are not evaluated when the concentration of the unspiked sample is greater than 4 times the spike concentration. The spikes met the recovery and precision criteria for all analytes evaluated. Matrix spikes are not required for

sodium, potassium, magnesium, and calcium; these results were evaluated only for acceptable precision.

<u>Laboratory Replicate Analysis</u>

Laboratory replicate sample results demonstrate acceptable laboratory precision. The relative percent difference values for the sample replicates and matrix spike replicates were less than 20 percent for results that are greater than 5 times the practical quantitation limit, indicating acceptable precision.

<u>Laboratory Control Sample</u>

Laboratory control samples were analyzed at the correct frequency to provide information on the accuracy of the analytical method and the overall laboratory performance, including sample preparation. All control sample results were acceptable.

Metals Serial Dilution

Serial dilutions were prepared and analyzed for magnesium, manganese, potassium, sodium, and uranium to monitor chemical or physical interferences in the sample matrix. The serial dilution results met the acceptance criteria, with the exception of potassium at location DUR01-0631, and iron, magnesium, potassium, and sodium at location DUR03-0621. All associated results are qualified with a "J" flag as estimated values.

Detection Limits/Dilutions

Samples were diluted in a consistent and acceptable manner when required. The samples were diluted prior to analysis of molybdenum and uranium to reduce interferences. The required detection limits were met for all analytes.

Completeness

Results were reported in the correct units for all analytes requested using contract-required laboratory qualifiers. Cadmium, calcium, iron, magnesium, potassium, and sodium were reported for location DUR01-0631 although these analytes were not requested.

Chromatography Peak Integration

The integration of analyte peaks was reviewed for all ion chromatography data. There were no manual integrations performed and all peak integrations were satisfactory.

Electronic Data Deliverable (EDD) File

The EDD file arrived on June 23, 2008. The Sample Management System EDD validation module was used to verify that the EDD file was complete and in compliance with requirements. The module compares the contents of the file to the requested analyses to ensure all and only the requested data are delivered. The contents of the EDD were manually examined to verify that the sample results accurately reflect the data contained in the sample data package.

SAMPLE MANAGEMENT SYSTEM

EDD Non-Conformance Report

Report Date: 8/7/2008

EDD File: 08051595.xml EDD Errors: 0

Record	Table	Error Type	Field	Error Description	
		I		NO ERRORS DETECTED	

SAMPLE MANAGEMENT SYSTEM

Analysis Type: Metals General Chem Rad Organics Samples: 29 Matrix: WATER Requested Analysis Completed: Yes Chain of Custody Sample Present: OK Signed: OK Dated: OK Integrity: OK Preservation: OK Temperature: OK Select Quality Parameters Holding Times All analyses were completed within the applicable holding times. The reported detection limits are equal to or below contract requirements. There was 1 trip/equipment blank evaluated.		General Data Validation Report
Samples: 29 Matrix: WATER Requested Analysis Completed: Yes Chain of Custody Sample Present: OK Signed: OK Dated: OK Integrity: OK Preservation: OK Temperature: OK Select Quality Parameters Holding Times All analyses were completed within the applicable holding times. Detection Limits The reported detection limits are equal to or below contract requirements. Field/Trip Blanks There was 1 trip/equipment blank evaluated.		
Chain of Custody Present: OK Signed: OK Dated: OK Integrity: OK Preservation: OK Temperature: OK Select Quality Parameters Holding Times All analyses were completed within the applicable holding times. The reported detection limits are equal to or below contract requirements. Field/Trip Blanks There was 1 trip/equipment blank evaluated.	roject: Durango	
Present: OK Signed: OK Dated: OK Integrity: OK Preservation: OK Temperature: OK Select Quality Parameters Holding Times All analyses were completed within the applicable holding times. The reported detection limits are equal to or below contract requirements. Field/Trip Blanks There was 1 trip/equipment blank evaluated.	of Samples: 29 Matrix:	: WATER Requested Analysis Completed: Yes
Holding Times All analyses were completed within the applicable holding times. ✓ Detection Limits The reported detection limits are equal to or below contract requirements. ✓ Field/Trip Blanks There was 1 trip/equipment blank evaluated.	Chain of Custody	Sample
✓ Holding Times All analyses were completed within the applicable holding times. ✓ Detection Limits The reported detection limits are equal to or below contract requirements. ✓ Field/Trip Blanks There was 1 trip/equipment blank evaluated.	Present: OK Signed: OK	Dated: OK Integrity: OK Preservation: OK Temperature: OK
✓ Holding Times All analyses were completed within the applicable holding times. ✓ Detection Limits The reported detection limits are equal to or below contract requirements. ✓ Field/Trip Blanks There was 1 trip/equipment blank evaluated.	Select Quality Parameters	
✓ Field/Trip Blanks There was 1 trip/equipment blank evaluated.	✓ Holding Times	and the same of th
N 90 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	✓ Detection Limits	The reported detection limits are equal to or below contract requirements.
Field Duplicates There were 2 duplicates evaluated.	✓ Field/Trip Blanks	There was 1 trip/equipment blank evaluated.
	✓ Field Duplicates	There were 2 duplicates evaluated.

Page 1 of 1

SAMPLE MANAGEMENT SYSTEM

Wet Chemistry Data Validation Worksheet

RIN: 08051595 **Lab Code:** <u>PAR</u> **Date Due:** <u>7/4/2008</u>

Analyte	Date Analyzed		CAL	IBRA	TION			Method	LCS %R	MS %R	MSD %R	DUP	Serial Dil. %R
		Int.	R^2	ICV	ccv	ICB	ССВ	the second second second				in a territor	
CHLORIDE	06/10/2008	0.023	1.0000	OK	ОК	OK	OK	ОК	97.0	99.0	95.0	2.00	
SULFATE	06/10/2008	0.329	0.9999	OK	ОК	ОК	OK	ОК	95.0	98.0	98.0	0	
TOTAL DISSOLVED SOLIDS	06/10/2008			OK	ОК	OK	OK	ОК	97.0			0	
TOTAL DISSOLVED SOLIDS	06/10/2008			OK	ОК	ОК	OK	ОК	98.0				

Page 1 of 4

SAMPLE MANAGEMENT SYSTEM **Metals Data Validation Worksheet**

RIN: 08051595 Lab Code: PAR Date Due: 7/4/2008

Site Code: DUR Date Completed: 6/24/2008 Matrix: Water

Analyte	Date Analyzed		CAL	IBRA	TION			Method	LCS %R	MS %R	MSD %R	Dup. RPD	ICSAB %R	Serial Dil. %R	CRI %R
		Int.	R^2	ICV	ccv	ICB	ССВ	Blank							
CADMIUM	06/17/2008	-0.0020	1.0000	OK	ОК	ОК	ОК	ОК	102.0	101.0	101.0	1.0	99.0		81.0
CADMIUM	06/17/2008							Ì		104.0	104.0	0.0		Î Î	
icp CALCIUM	06/10/2008	36.9000	1.0000	OK	OK	ОК	ОК	ОК					103.0		101.0
icp CALCIUM	06/10/2008	ĺ					İ				Ì		103.0	ĺĺ	101.0
icp CALCIUM	06/11/2008	99.9900	1.0000	OK	OK	ОК	ОК	ОК	103.0		Ì	2.0	109.0	0.0	102.0
icp CALCIUM	06/11/2008	ĺ						Ì					104.0	ĺĺ	101.0
icp CALCIUM	06/11/2008	Ì						ĺ			Ì	1.0	105.0	ĺ	101.0
icp CALCIUM	06/17/2008							İ			İ		100.0	İ	95.0
icp CALCIUM	06/17/2008												98.0		98.0
icp CALCIUM	06/17/2008	32.6000	1.0000	OK	OK	ОК	OK	OK	N N		Ī	2.0	104.0	4.0	102.0
icp IRON	06/10/2008	-2.2900	1.0000	OK	OK	ОК	OK	OK			Ì		105.0	Î Î	98.0
icp IRON	06/10/2008	ĺ						ĺ					106.0	ĺ	98.0
icp IRON	06/11/2008	-6.1900	1.0000	OK	OK	ОК	OK	OK	97.0	94.0	93.0	1.0	112.0	ĺ	103.0
icp IRON	06/11/2008	Ì						ĺ					106.0	İ	105.0
icp IRON	06/11/2008												106.0		101.0
icp IRON	06/17/2008												103.0	İ	97.0
icp IRON	06/17/2008											to 1/2	101.0	İ	98.0

SAMPLE MANAGEMENT SYSTEM Metals Data Validation Worksheet

Page 2 of 4

Analyte	Date Analyzed		CAL	TION			Method	LCS %R	MS %R	MSD %R	Dup. RPD	ICSAB %R	Serial Dil. %R	CRI %R	
N.		Int.	R^2	ICV	ccv	ICB	ССВ	Blank							
icp IRON	06/17/2008	-2.9000	1.0000	OK	ОК	ОК	ОК	ОК				1.0	106.0	16.0	98.0
icp Magnesium	06/10/2008	-7.3400	1.0000	OK	OK	ОК	OK	OK					103.0		100.0
icp Magnesium	06/10/2008												103.0		101.0
icp Magnesium	06/11/2008	20.0000	1.0000	OK	OK	ОК	OK	OK	104.0			1.0	108.0	0.0	106.0
icp Magnesium	06/11/2008												98.0		109.0
icp Magnesium	06/11/2008											0.0	109.0		108.0
icp Magnesium	06/17/2008												96.0		101.0
icp Magnesium	06/17/2008												97.0		104.0
icp Magnesium	06/17/2008	-4.0600	1.0000	OK	OK	ОК	OK	OK				0.0	94.0	14.0	100.0
icp Manganese	06/10/2008	-0.0560	1.0000	OK	OK	ОК	ОК	ОК				· V	92.0		100.0
icp Manganese	06/10/2008												93.0		100.0
icp Manganese	06/11/2008	-0.0830	1.0000	OK	OK	ОК	OK	OK	99.0	97.0	96.0	1.0	98.0	5.0	105.0
icp Manganese	06/11/2008												98.0		108.0
icp Manganese	06/11/2008											1.0	97.0		107.0
icp Manganese	06/17/2008												96.0		99.0
icp Manganese	06/17/2008				į į							,	97.0		103.0
icp Manganese	06/17/2008	-0.6600	1.0000	OK	OK	ОК	ОК	ОК				0.0	94.0	3.0	100.0

SAMPLE MANAGEMENT SYSTEM Metals Data Validation Worksheet

Page 3 of 4

Analyte	Date Analyzed		CAL	IBRA	TION			Method	LCS %R	MS %R	MSD %R	Dup. RPD	ICSAB %R	Serial Dil. %R	CRI %R
		Int.	R^2	ICV	ccv	ICB	ССВ	Blank				- 4			
icp POTASSIUM	06/10/2008	99.9900	1.0000	OK	ОК	ОК	ОК	ОК							88.0
icp POTASSIUM	06/10/2008														88.0
icp POTASSIUM	06/11/2008	99.9900	1.0000	OK	OK	ОК	ОК	OK	98.0			1.0		11.0	91.0
icp POTASSIUM	06/11/2008										Ì		ĺ	Î	90.0
icp POTASSIUM	06/11/2008							ĺ			Ì	0.0	ĺ	ĺ	91.0
icp POTASSIUM	06/17/2008														84.0
icp POTASSIUM	06/17/2008														85.0
icp POTASSIUM	06/17/2008	99.9900	1.0000	OK	OK	OK	ОК	OK				1.0		29.0	85.0
icp SODIUM	06/10/2008	89.3000	1.0000	OK	OK	OK	ОК	OK							90.0
icp SODIUM	06/10/2008								1			· V			89.0
icp SODIUM	06/11/2008	87.1000	1.0000	OK	OK	ОК	ОК	OK	98.0		Ì	1.0		4.0	93.0
icp SODIUM	06/11/2008														95.0
icp SODIUM	06/11/2008											0.0			94.0
icp SODIUM	06/17/2008										İ		ĺ		88.0
icp SODIUM	06/17/2008								0						89.0
icp SODIUM	06/17/2008	99.9900	1.0000	OK	OK	ОК	ОК	OK				0.0		12.0	88.0
MOLYBDENUM	06/17/2008	-0.0030	1.0000	OK	ОК	ОК	ОК	ОК	103.0	103.0	105.0	1.0	114.0		133.0

SAMPLE MANAGEMENT SYSTEM Metals Data Validation Worksheet

Page 4 of 4

Analyte	Date Analyzed							Method	LCS %R	MS %R	MSD %R	Dup. RPD	ICSAB %R	Serial Dil. %R	CRI %R
7 maryte		Int.	R^2	ICV	ccv	ICB	ССВ	Blank	7011	7014	/611	5	/613	7611	.011
MOLYBDENUM	06/17/2008									104.0	107.0	2.0			
SELENIUM	06/16/2008	-0.0470	1.0000	OK	OK	ОК	OK	ОК	84.0	78.0	82.0	5.0	91.0		104.0
SELENIUM	06/17/2008	-0.0630	1.0000	OK	ОК	ОК	OK	ОК	88.0	104.0	103.0	1.0	100.0	Î	87.0
URANIUM	06/17/2008				İ		Ì	Ì		Ì	Ì	0.0	Î	Î	
URANIUM	06/17/2008	0.0000	1.0000	OK	ОК	ОК	OK	ОК	106.0	101.0	108.0	1.0	109.0	1.0	97.0
URANIUM	06/17/2008	Ì					İ	Î		110.0	109.0	0.0	Î	2.0	

Sampling Quality Control Assessment

The following information summarizes and assesses quality control for this sampling event.

Sampling Protocol

Sample results for all monitor wells met the Category I or II low-flow sampling criteria and were qualified with an "F" flag in the database, indicating the wells were purged and sampled using the low-flow sampling method.

All wells met the Category I criteria and were sampled with dedicated tubing using the low-flow purge procedure, with the following exceptions:

- Wells DUR01-0634, DUR01-0635, DUR02-0594, DUR02-0607, DUR03-0612, and DUR03-0623 were classified as Category II due to water level drawdown.
- Turbidity requirements were not met for well DUR03-0621.
- The water level drawdown exceeded the Category I criterion for wells DUR03-0608 and DUR01-0863.

The sample results for these nine wells were qualified with a "Q" flag, indicating the data are qualitative because of the sampling technique.

Surface water locations were sampled using a peristaltic pump. Monitor wells were sampled using either a peristaltic pump and dedicated tubing or a dedicated bladder pump.

Equipment Blank Assessment

An equipment blank (field ID 2627) was collected after decontamination of the hose reel used to collect the surface water samples. Molybdenum and uranium were detected in the blank by the laboratory, but these analytes were qualified during data validation with a "U" flag as not detected. The equipment blank results indicate adequate decontamination of the sampling equipment.

Field Duplicate Assessment

Field duplicate samples are collected and analyzed as an indication of overall precision of the measurement process. The precision observed includes both field and laboratory precision and has more variability than laboratory duplicates which measure only laboratory performance. Duplicate samples were collected from wells DUR03-0605 and DUR03-0621. The duplicate results met the EPA recommended laboratory duplicate criteria of less than 20 percent relative difference for results that are greater than 5 times the practical quantitation limit, indicating acceptable overall precision.

SAMPLE MANAGEMENT SYSTEM

Page 1 of 1

Validation Report: Field Duplicates

RIN:	08051595	Lab Code:	PAR	Project:	Durango	Validation Date:	8/7/2008

Duplicate: 2626	Sample: 0	0605							
	Sample			Duplicate					
Analyte	Result	Flag	Error	Result	Flag	Error	RPD	RER	Units
CALCIUM	140000			130000			7.41		UG/L
CHLORIDE	30			33			9.52		MG/L
IRON	45	В		43	В		4.55		UG/L
MAGNESIUM	120000			120000			0		UG/L
MANGANESE	35			35			0		UG/L
MOLYBDENUM	0.11	В		0.15	В				UG/L
POTASSIUM	11000			11000			0		UG/L
SELENIUM	0.054	В		0.06	В				UG/L
SODIUM	260000			260000			0		UG/L
SULFATE	740			730			1.36		MG/L
TOTAL DISSOLVED SOLIDS	1800			1800			0		MG/L
URANIUM	0.058	В		0.072	В				UG/L

Duplicate: 2642

Sample: 0621 Sample

	Sample			Duplicate					
Analyte	Result	Flag	Error	Result	Flag	Error	RPD	RER	Units
ALCIUM	440000			470000			6.59		UG/L
HLORIDE	10			11			9.52		MG/L
ON	150000	E		150000			0		UG/L
AGNESIUM	400000	E		370000			7.79		UG/L
ANGANESE	2900			2700			7.14		UG/L
OLYBDENUM	0.51	В		0.4	В				UG/L
DTASSIUM	19000	EN		17000			11.11		UG/L
ELENIUM	0.082	В		0.076	В				UG/L
DDIUM	200000	E		180000			10.53		UG/L
JLFATE	3200			3100			3.17		MG/L
OTAL DISSOLVED SOLIDS	4700			4700			0		MG/L
RANIUM	0.13			0.11					UG/L

Certification

All laboratory analytical quality control criteria were met except as qualified in this report. The data qualifiers listed on the SEEPro database reports are defined on the last page of each report. All data in this package are considered validated and available for use.

Laboratory Coordinator:

Stea Vom

8-8

Steve Donivan

Date

Data Validation Lead:

Gretchen Baer

Date

This page intentionally left blank

Attachment 1 Assessment of Anomalous Data

This page intentionally left blank

Potential Outliers

This page intentionally left blank

Outliers Report

Potential outliers are measurements that are extremely large or small relative to the rest of the data and, therefore, are suspected of misrepresenting the population from which they were collected. Potential outliers may result from transcription errors, data-coding errors, or measurement system problems. However, outliers may also represent true extreme values of a distribution and indicate more variability in the population than was expected.

Statistical outlier tests give probabilistic evidence that an extreme value does not "fit" with the distribution of the remainder of the data and is therefore a statistical outlier. These tests should only be used to identify data points that require further investigation. The tests alone cannot determine whether a statistical outlier should be discarded or corrected within a data set.

There are three steps involved in identifying extreme values or outliers:

- 1. Identify extreme values that may be potential outliers by generating the Outliers Report using the Sample Management System from data in the SEEPro database. The application compares the new data set with historical data and lists all new data that fall outside the historical data range. Data listed in the report are highlighted if the concentration detected is not within 50 percent of historical minimum or maximum values. A determination is also made if the data are normally distributed using the Shapiro-Wilk Test.
- 2. Apply the appropriate statistical test. Dixon's Extreme Value test is used to test for statistical outliers when the sample size is less than or equal to 25. This test considers both extreme values that are much smaller than the rest of the data (case 1) and extreme values that are much larger than the rest of the data (case 2). This test is valid only if the data without the suspected outlier are normally distributed. Rosner's Test is a parametric test that is used to detect outliers for sample sizes of 25 or more. This test also assumes that the data without the suspected outliers are normally distributed.
- 3. Scientifically review statistical outliers and decide on their disposition.

Two values from this sampling event were identified as potential outliers. The iron result for DUR01-0631 was below the historical minimum, and the uranium result for DUR03-0618 was slightly above the historical maximum. There were no analytical errors identified during the review of the data. The data for this RIN are acceptable as qualified.

This page intentionally left blank

Data Validation Outliers Report - No Field Parameters Laboratory: PARAGON (Fort Collins, CO) RIN: 08051595

Comparison: All Historical Data Report Date: 8/8/2008

				Cı	ırrent Qua	lifiers	Historic		num lifiers	Historic		num lifiers		Count	Normally Distributed	Statistical Outlier
Site Code	Location Code	Sample Date	Analyte	Result	Lab	Data	Result	Lab	Data	Result	Lab	Data	N	N Below Detect	210ti ibuteu	Outiloi
DUR01	0584	06/03/2008	Cadmium	0.00012	В		0.00087	В	U	0.00016	В	U	13	7	No	No
DUR01	0586	06/03/2008	Cadmium	0.00011	В		0.001		U	0.00014	В	U	13	9	No	No
DUR01	0630	06/03/2008	Total Dissolved Solids	3100		F	4370			3110		F	15	0	No	No
DUR01	0631	06/03/2008	Iron	0.041	В	F	0.51			0.0501		F	10	0	Yes (log)	Yes
DUR01	0631	06/03/2008	Magnesium	43		F	189			60.7			13	0	Yes	No
DUR01	0631	06/03/2008	Potassium	6.4	Е	FJ	17.8			8.45			14	0	Yes	No
DUR01	0631	06/03/2008	Sodium	63		F	407			95.1		F	15	0	Yes	No
DUR01	0631	06/03/2008	Uranium	0.11		F	0.63			0.12		F	21	0	Yes	No
DUR01	0633	06/02/2008	Total Dissolved Solids	4200		F	6500		F	4940		F	16	0	Yes	No
DUR01	0633	06/02/2008	Uranium	0.58		F	1.59			0.65		F	21	0	Yes	No
DUR01	0634	06/02/2008	Sulfate	2500		FQ	2400		Q	585		QF	18	0	No	No
DUR01	0634	06/02/2008	Total Dissolved Solids	4300		FQ	4180			3500			14	0	Yes	No
DUR01	0652	06/03/2008	Cadmium	0.00013	В		0.002	S		0.00015	В	U	22	13	No	No
DUR01	0691	06/03/2008	Cadmium	0.00011	В		0.005	U		0.00017	В	U	32	24	No	No
DUR01	0863	06/03/2008	Cadmium	0.000066	В	FQ	0.00067	В	U	0.00006 7	В	UF	11	10	Yes	No
DUR01	0863	06/03/2008	Sulfate	690		FQ	680		F	544			11	0	Yes	No
DUR02	0588	06/03/2008	Cadmium	0.000059	В		0.0013		U	0.00011	В	U	15	11	No	No
DUR02	0654	06/03/2008	Cadmium	0.00011	В		0.001	U	RX	0.00015	В	U	19	13	No	No
DUR02	0656	06/03/2008	Cadmium	0.00013	В		0.001	U	RX	0.00014	В	U	18	15	No	No
DUR03	0612	06/03/2008	Manganese	0.0055		FQ	0.13		F	0.0066	В	F	27	3	Yes (log)	No
DUR03	0612	06/03/2008	Total Dissolved Solids	2900		FQ	2870		F	2090		L	23	0	Yes	No
-						n	2aga 31									

Data Validation Outliers Report - No Field Parameters

Laboratory: PARAGON (Fort Collins, CO)

RIN: 08051595

Comparison: All Historical Data

Report Date: 8/8/2008

				Cı	Current Qualifiers		Historical Maximum Qualifiers			Historical Minimum Qualifiers			(Count	Normally Distributed	Statistical Outlier
Site Code	Location Code	Sample Date	Analyte	Result	Lab	Data	Result	Lab	Data	Result	Lab	Data	N	N Below Detect		
DUR03	0618	06/04/2008	Uranium	0.05		F	0.047		F	0.001			10	0	Yes (log)	Yes
DUR03	0621	06/04/2008	Manganese	2.7		FQ	6.04		F	2.9		F	23	0	Yes	No
DUR03	0621	06/04/2008	Potassium	19	EN	FQJ	17		F	7			22	0	No	No
DUR03	0621	06/04/2008	Sodium	200	Е	FQJ	199		F	89		F	22	0	No	No

SAMPLE ID CODES: 000X = Filtered sample (0.45 μm). N00X = Unfiltered sample. X = replicate number.

LAB QUALIFIERS:

- Replicate analysis not within control limits.
- Result above upper detection limit. >
- TIC is a suspected aldol-condensation product. Α
- В Inorganic: Result is between the IDL and CRDL. Organic: Analyte also found in method blank.
- С Pesticide result confirmed by GC-MS.
- D Analyte determined in diluted sample.
- Е Inorganic: Estimate value because of interference, see case narrative. Organic: Analyte exceeded calibration range of the GC-MS.
- Н Holding time expired, value suspect.
- Increased detection limit due to required dilution.
- J
- Inorganic or radiochemical: Spike sample recovery not within control limits. Organic: Tentatively identified compound (TIC). Ν
- > 25% difference in detected pesticide or Aroclor concentrations between 2 columns.
- U Analytical result below detection limit.
- W Post-digestion spike outside control limits while sample absorbance < 50% of analytical spike absorbance.
- Laboratory defined qualifier, see case narrative. X.Y.Z

DATA QUALIFIERS:

F	Low flow sampling method used.	G	Possible grout contamination, pH > 9.	J	Estimated value.
L	Less than 3 bore volumes purged prior to sampling.	Q	Qualitative result due to sampling technique.	R	Unusable result.
U	Parameter analyzed for but was not detected.	Χ	Location is undefined.		

Parameter analyzed for but was not detected. X Location is undefined.

STATISTICAL TESTS:

The distribution of the data is tested for normality or lognormality using the Shapiro-Wilk Test

Outliers are identified using Dixon's Test when there are 25 or fewer data points.

Outliers are identified using Rosner's Test when there are 26 or more data points.

See Data Quality Assessment: Statistical Methods for Practitioners, EPA QC/G-9S, February 2006.

Attachment 2 Data Presentation

This page intentionally left blank

Groundwater Quality Data

This page intentionally left blank

Location: 0612 WELL

Parameter	Units	Sam Date	ple ID	Dept (F	th Ra		Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Alkalinity, Total (As CaCO3)	mg/L	06/03/2008	N001	37.41	-	57.41	434		F	#		
Cadmium	mg/L	06/03/2008	N001	37.41	-	57.41	0.042		F	#	0.006	
Manganese	mg/L	06/03/2008	N001	37.41	-	57.41	4.5		F	#	0.00013	
Molybdenum	mg/L	06/03/2008	N001	37.41	-	57.41	0.11		F	#	0.02	
Oxidation Reduction Potential	mV	06/03/2008	N001	37.41	-	57.41	-13		F	#		
рН	s.u.	06/03/2008	N001	37.41	-	57.41	6.83		F	#		
Selenium	mg/L	06/03/2008	N001	37.41	-	57.41	0.00061		F	#	0.00004	
Specific Conductance	umhos /cm	06/03/2008	N001	37.41	-	57.41	3961		F	#		
Sulfate	mg/L	06/03/2008	N001	37.41	-	57.41	1800		F	#	25	
Temperature	С	06/03/2008	N001	37.41	-	57.41	11.92		F	#		
Total Dissolved Solids	mg/L	06/03/2008	N001	37.41	-	57.41	3400		F	#	80	
Turbidity	NTU	06/03/2008	N001	37.41	-	57.41	3		F	#		
Uranium	mg/L	06/03/2008	N001	37.41	-	57.41	1.4		F	#	0.002	

Location: 0617 WELL

Parameter	Units	Sam Date	ple ID		oth Rang Ft BLS)		Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Alkalinity, Total (As CaCO3)	mg/L	06/03/2008	N001	14	-	29	436		F	#		
Manganese	mg/L	06/03/2008	N001	14	-	29	0.0087		F	#	0.00013	
Molybdenum	mg/L	06/03/2008	N001	14	-	29	0.0016		F	#	0.001	
Oxidation Reduction Potential	mV	06/03/2008	N001	14	-	29	72		F	#		
рН	s.u.	06/03/2008	N001	14	-	29	6.94		F	#		
Selenium	mg/L	06/03/2008	N001	14	-	29	0.032		F	#	0.0002	
Specific Conductance	umhos /cm	06/03/2008	N001	14	-	29	3657		F	#		
Sulfate	mg/L	06/03/2008	N001	14	-	29	2000		F	#	25	
Temperature	С	06/03/2008	N001	14	-	29	10.99		F	#		
Total Dissolved Solids	mg/L	06/03/2008	N001	14	-	29	3600		F	#	80	
Turbidity	NTU	06/03/2008	N001	14	-	29	1.4		F	#		
Uranium	mg/L	06/03/2008	N001	14	-	29	0.15		F	#	0.0002	

Location: 0630 WELL

Parameter	Units	Sam Date	ple ID		th Rar		Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Alkalinity, Total (As CaCO3)	mg/L	06/03/2008	N001	28.3	-	38.3	234		F	#		
Manganese	mg/L	06/03/2008	N001	28.3	-	38.3	0.57		F	#	0.00013	
Molybdenum	mg/L	06/03/2008	N001	28.3	-	38.3	0.0046		F	#	0.001	
Oxidation Reduction Potential	mV	06/03/2008	N001	28.3	-	38.3	11		F	#		
рН	s.u.	06/03/2008	N001	28.3	-	38.3	6.95		F	#		
Selenium	mg/L	06/03/2008	N001	28.3	-	38.3	0.025		F	#	0.0002	
Specific Conductance	umhos /cm	06/03/2008	N001	28.3	-	38.3	3311		F	#		
Sulfate	mg/L	06/03/2008	N001	28.3	-	38.3	1800		F	#	25	
Temperature	С	06/03/2008	N001	28.3	-	38.3	12.57		F	#		
Total Dissolved Solids	mg/L	06/03/2008	N001	28.3	-	38.3	3100		F	#	80	
Turbidity	NTU	06/03/2008	N001	28.3	-	38.3	8.37		F	#		
Uranium	mg/L	06/03/2008	N001	28.3	-	38.3	0.27		F	#	0.0005	

Location: 0631 WELL

Parameter	Units	Sam Date	ple ID	Dep (I	th Rar	nge)	Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Alkalinity, Total (As CaCO3)	mg/L	06/03/2008	N001	6	-	16	412		F	#		
Cadmium	mg/L	06/03/2008	N001	6	-	16	0.0001713	В	F	#	0.0006	
Calcium	mg/L	06/03/2008	N001	6	-	16	94		F	#	1	
Iron	mg/L	06/03/2008	N001	6	-	16	0.041	В	F	#	0.0029	
Magnesium	mg/L	06/03/2008	N001	6	-	16	43		F	#	1	
Manganese	mg/L	06/03/2008	N001	6	-	16	0.19		F	#	0.00013	
Molybdenum	mg/L	06/03/2008	N001	6	-	16	0.007	Е	F	#	0.002	
Oxidation Reduction Potential	mV	06/03/2008	N001	6	-	16	45		F	#		
рН	s.u.	06/03/2008	N001	6	-	16	7.32		F	#		
Potassium	mg/L	06/03/2008	N001	6	-	16	6.4	Е	FJ	#	1	
Selenium	mg/L	06/03/2008	N001	6	-	16	0.00046		F	#	0.00004	
Sodium	mg/L	06/03/2008	N001	6	-	16	63		F	#	1	
Specific Conductance	umhos /cm	06/03/2008	N001	6	-	16	969		F	#		
Sulfate	mg/L	06/03/2008	N001	6	-	16	150		F	#	5	
Temperature	С	06/03/2008	N001	6	-	16	10.22		F	#		
Total Dissolved Solids	mg/L	06/03/2008	N001	6	-	16	600		F	#	40	
Turbidity	NTU	06/03/2008	N001	6	-	16	0.67		F	#		
Uranium	mg/L	06/03/2008	N001	6	-	16	0.11		F	#	0.0002	

Location: 0633 WELL

Parameter	Units	Sam Date	ple ID		oth Rai		Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Alkalinity, Total (As CaCO3)	mg/L	06/02/2008	N001	4	-	14	360		F	#		
Manganese	mg/L	06/02/2008	N001	4	-	14	0.025		F	#	0.00013	
Molybdenum	mg/L	06/02/2008	N001	4	-	14	0.0064		F	#	0.001	
Oxidation Reduction Potential	mV	06/02/2008	N001	4	-	14	-41		F	#		
рН	s.u.	06/02/2008	N001	4	-	14	7.25		F	#		
Selenium	mg/L	06/02/2008	N001	4	-	14	0.083		F	#	0.0004	
Specific Conductance	umhos /cm	06/02/2008	N001	4	-	14	4288		F	#		
Sulfate	mg/L	06/02/2008	N001	4	-	14	2300		F	#	25	
Temperature	С	06/02/2008	N001	4	-	14	12.84		F	#		
Total Dissolved Solids	mg/L	06/02/2008	N001	4	-	14	4200		F	#	80	
Turbidity	NTU	06/02/2008	N001	4	-	14	1.01		F	#		
Uranium	mg/L	06/02/2008	N001	4	-	14	0.58		F	#	0.001	

Location: 0634 WELL

Parameter	Units	Sam Date	ple ID		oth Ra Ft BLS		Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Alkalinity, Total (As CaCO3)	mg/L	06/02/2008	N001	8	-	18	477		FQ	#		
Manganese	mg/L	06/02/2008	N001	8	-	18	0.23		FQ	#	0.00013	
Molybdenum	mg/L	06/02/2008	N001	8	-	18	0.0023		FQ	#	0.001	
Oxidation Reduction Potential	mV	06/02/2008	N001	8	-	18	108		FQ	#		
рН	s.u.	06/02/2008	N001	8	-	18	7.03		FQ	#		
Selenium	mg/L	06/02/2008	N001	8	-	18	0.00035		FQ	#	0.00004	
Specific Conductance	umhos /cm	06/02/2008	N001	8	-	18	4707		FQ	#		
Sulfate	mg/L	06/02/2008	N001	8	-	18	2500		FQ	#	25	
Temperature	С	06/02/2008	N001	8	-	18	10.66		FQ	#		
Total Dissolved Solids	mg/L	06/02/2008	N001	8	-	18	4300		FQ	#	80	
Turbidity	NTU	06/02/2008	N001	8	-	18	10.3		FQ	#		
Uranium	mg/L	06/02/2008	N001	8	-	18	0.087		FQ	#	0.0001	

Location: 0635 WELL

Parameter	Units	Sam Date	ple ID		th Rang t BLS)	е	Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Alkalinity, Total (As CaCO3)	mg/L	06/02/2008	N001	5.5	- ′	15.5	468		FQ	#		
Manganese	mg/L	06/02/2008	N001	5.5	- <i>'</i>	15.5	0.49		FQ	#	0.00013	
Molybdenum	mg/L	06/02/2008	N001	5.5	- ′	15.5	0.0015		FQ	#	0.001	
Oxidation Reduction Potential	mV	06/02/2008	N001	5.5	- ′	15.5	-14.3		FQ	#		
рН	s.u.	06/02/2008	N001	5.5	- ′	15.5	6.91		FQ	#		
Selenium	mg/L	06/02/2008	N001	5.5	- ′	15.5	0.00082		FQ	#	0.00004	
Specific Conductance	umhos /cm	06/02/2008	N001	5.5	- ′	15.5	2708		FQ	#		
Sulfate	mg/L	06/02/2008	N001	5.5	- ′	15.5	1300		FQ	#	25	
Temperature	С	06/02/2008	N001	5.5	- ′	15.5	11.4		FQ	#		
Total Dissolved Solids	mg/L	06/02/2008	N001	5.5	- ′	15.5	2400		FQ	#	40	
Turbidity	NTU	06/02/2008	N001	5.5	- ′	15.5	7.65		FQ	#		
Uranium	mg/L	06/02/2008	N001	5.5	- ′	15.5	0.01		FQ	#	0.0001	

Location: 0863 WELL

Parameter	Units	Sam Date	ple ID		th Ra		Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Alkalinity, Total (As CaCO3)	mg/L	06/03/2008	N001	58	-	67.5	568		FQ	#		
Cadmium	mg/L	06/03/2008	N001	58	-	67.5	0.000066	В	FQ	#	0.0003	
Manganese	mg/L	06/03/2008	N001	58	-	67.5	0.11		FQ	#	0.00013	
Molybdenum	mg/L	06/03/2008	N001	58	-	67.5	0.00071	В	UFQ	#	0.001	
Oxidation Reduction Potential	mV	06/03/2008	N001	58	-	67.5	-34		FQ	#		
рН	s.u.	06/03/2008	N001	58	-	67.5	7.11		FQ	#		
Selenium	mg/L	06/03/2008	N001	58	-	67.5	0.00012		UFQ	#	0.00004	
Specific Conductance	umhos /cm	06/03/2008	N001	58	-	67.5	2251		FQ	#		
Sulfate	mg/L	06/03/2008	N001	58	-	67.5	690		FQ	#	10	
Temperature	С	06/03/2008	N001	58	-	67.5	12.21		FQ	#		
Total Dissolved Solids	mg/L	06/03/2008	N001	58	-	67.5	1600		FQ	#	40	
Turbidity	NTU	06/03/2008	N001	58	-	67.5	1.75		FQ	#		
Uranium	mg/L	06/03/2008	N001	58	-	67.5	0.00015		UFQ	#	0.0001	

Location: 0594 WELL Original location DH-116.

Parameter	Units	Sam Date	ple ID		Range BLS)	Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Alkalinity, Total (As CaCO3)	mg/L	06/03/2008	N001	8.5	- 38.5	380		FQ	#		
Oxidation Reduction Potential	mV	06/03/2008	N001	8.5	- 38.5	-17		FQ	#		
рН	s.u.	06/03/2008	N001	8.5	- 38.5	6.91		FQ	#		
Selenium	mg/L	06/03/2008	N001	8.5	- 38.5	0.02		FQ	#	0.0002	
Specific Conductance	umhos /cm	06/03/2008	N001	8.5	- 38.5	4739		FQ	#		
Temperature	С	06/03/2008	N001	8.5	- 38.5	13.11		FQ	#		
Total Dissolved Solids	mg/L	06/03/2008	N001	8.5	- 38.5	4000		FQ	#	80	
Turbidity	NTU	06/03/2008	N001	8.5	- 38.5	3.4		FQ	#		
Uranium	mg/L	06/03/2008	N001	8.5	- 38.5	0.084		FQ	#	0.0005	

Ground Water Quality Data by Location (USEE100) FOR SITE DUR02, Durango Raffinate Pond Process Site

REPORT DATE: 8/8/2008

Location: 0598 WELL Original location Bureau of Rec well DH-110.

Parameter	Units	Sam Date	ple ID	Depth I (Ft B	•	Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Alkalinity, Total (As CaCO3)	mg/L	06/04/2008	N001	66.2 -	96.2	364		F	#		
Oxidation Reduction Potential	mV	06/04/2008	N001	66.2 -	96.2	-1		F	#		
рН	s.u.	06/04/2008	N001	66.2 -	96.2	7.08		F	#		
Selenium	mg/L	06/04/2008	N001	66.2 -	96.2	0.23		F	#	0.004	
Specific Conductance	umhos /cm	06/04/2008	N001	66.2 -	96.2	7897		F	#		
Temperature	С	06/04/2008	N001	66.2 -	96.2	12.28		F	#		
Total Dissolved Solids	mg/L	06/04/2008	N001	66.2 -	96.2	7500		F	#	200	
Turbidity	NTU	06/04/2008	N001	66.2 -	96.2	4.9		F	#		
Uranium	mg/L	06/04/2008	N001	66.2 -	96.2	0.13		F	#	0.0005	

Location: 0607 WELL

Parameter	Units	Sam Date	ple ID		th Ran t BLS)		Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Alkalinity, Total (As CaCO3)	mg/L	06/03/2008	N001	35	-	55	356		FQ	#		
Oxidation Reduction Potential	mV	06/03/2008	N001	35	-	55	42.6		FQ	#		
рН	s.u.	06/03/2008	N001	35	-	55	7.12		FQ	#		
Selenium	mg/L	06/03/2008	N001	35	-	55	0.7		FQ	#	0.004	
Specific Conductance	umhos /cm	06/03/2008	N001	35	-	55	2816		FQ	#		
Temperature	С	06/03/2008	N001	35	-	55	14.35		FQ	#		
Total Dissolved Solids	mg/L	06/03/2008	N001	35	-	55	2300		FQ	#	40	
Turbidity	NTU	06/03/2008	N001	35	-	55	4.02		FQ	#		
Uranium	mg/L	06/03/2008	N001	35	-	55	0.0044		FQ	#	0.0001	

Location: 0884 WELL

Parameter	Units	Sam Date	ple ID	Depth F (Ft B		Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Alkalinity, Total (As CaCO3)	mg/L	06/03/2008	N001	36.5 -	46.5	380		F	#		
Oxidation Reduction Potential	mV	06/03/2008	N001	36.5 -	46.5	37.3		F	#		
рН	s.u.	06/03/2008	N001	36.5 -	46.5	7.17		F	#		
Selenium	mg/L	06/03/2008	N001	36.5 -	46.5	1.2		F	#	0.0079	
Specific Conductance	umhos /cm	06/03/2008	N001	36.5 -	46.5	4807		F	#		
Temperature	С	06/03/2008	N001	36.5 -	46.5	14.28		F	#		
Total Dissolved Solids	mg/L	06/03/2008	N001	36.5 -	46.5	4400		F	#	80	
Turbidity	NTU	06/03/2008	N001	36.5 -	46.5	7.47		F	#		
Uranium	mg/L	06/03/2008	N001	36.5 -	46.5	0.15		F	#	0.0005	

Location: 0605 WELL

Parameter	Units	Sam Date	ple ID		Range BLS)	Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Alkalinity, Total (As CaCO3)	mg/L	06/03/2008	N001	36	- 56	720		F	#		
Calcium	mg/L	06/03/2008	N001	36	- 56	140		F	#	1	
Calcium	mg/L	06/03/2008	N002	36	- 56	130		F	#	1	
Chloride	mg/L	06/03/2008	N001	36	- 56	30		F	#	4	
Chloride	mg/L	06/03/2008	N002	36	- 56	33		F	#	4	
Iron	mg/L	06/03/2008	N001	36	- 56	0.045	В	F	#	0.0029	
Iron	mg/L	06/03/2008	N002	36	- 56	0.043	В	F	#	0.0029	
Magnesium	mg/L	06/03/2008	N001	36	- 56	120		F	#	1	
Magnesium	mg/L	06/03/2008	N002	36	- 56	120		F	#	1	
Manganese	mg/L	06/03/2008	N001	36	- 56	0.035		F	#	0.00013	
Manganese	mg/L	06/03/2008	N002	36	- 56	0.035		F	#	0.00013	
Molybdenum	mg/L	06/03/2008	N001	36	- 56	0.00011	В	UF	#	0.001	
Molybdenum	mg/L	06/03/2008	N002	36	- 56	0.00015	В	UF	#	0.001	
Oxidation Reduction Potential	mV	06/03/2008	N001	36	- 56	-71		F	#		
pH	s.u.	06/03/2008	N001	36	- 56	6.96		F	#		
Potassium	mg/L	06/03/2008	N001	36	- 56	11		F	#	1	
Potassium	mg/L	06/03/2008	N002	36	- 56	11		F	#	1	
Selenium	mg/L	06/03/2008	N001	36	- 56	0.000054	В	UF	#	0.00004	
Selenium	mg/L	06/03/2008	N002	36	- 56	0.00006	В	UF	#	0.00004	

Location: 0605 WELL

Parameter	Units	Sam Date	ple ID		th Ran t BLS)		Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Sodium	mg/L	06/03/2008	N001	36	-	56	260		F	#	10	
Sodium	mg/L	06/03/2008	N002	36	-	56	260		F	#	10	
Specific Conductance	umhos /cm	06/03/2008	N001	36	-	56	2420		F	#		
Sulfate	mg/L	06/03/2008	N001	36	-	56	740		F	#	10	
Sulfate	mg/L	06/03/2008	N002	36	-	56	730		F	#	10	
Temperature	С	06/03/2008	N001	36	-	56	15.1		F	#		
Total Dissolved Solids	mg/L	06/03/2008	N001	36	-	56	1800		F	#	40	
Total Dissolved Solids	mg/L	06/03/2008	N002	36	-	56	1800		F	#	40	
Turbidity	NTU	06/03/2008	N001	36	-	56	0.65		F	#		
Uranium	mg/L	06/03/2008	N001	36	-	56	0.000058	В	UF	#	0.0001	
Uranium	mg/L	06/03/2008	N002	36	-	56	0.000072	В	UF	#	0.0001	

Location: 0607 WELL

Parameter	Units	Sam Date	ple ID	Depth (Ft E		Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Alkalinity, Total (As CaCO3)	mg/L	06/03/2008	N001	36.7	56.7	422		F	#		
Calcium	mg/L	06/03/2008	N001	36.7 -	56.7	290		F	#	1	
Chloride	mg/L	06/03/2008	N001	36.7 -	56.7	14		F	#	1	
Iron	mg/L	06/03/2008	N001	36.7 -	56.7	0.12		F	#	0.0029	
Magnesium	mg/L	06/03/2008	N001	36.7 -	56.7	200		F	#	1	
Manganese	mg/L	06/03/2008	N001	36.7 -	56.7	0.085		F	#	0.00013	
Molybdenum	mg/L	06/03/2008	N001	36.7 -	56.7	0.00014	В	UF	#	0.001	
Oxidation Reduction Potential	mV	06/03/2008	N001	36.7 -	56.7	-83		F	#		
рН	s.u.	06/03/2008	N001	36.7 -	56.7	6.94		F	#		
Potassium	mg/L	06/03/2008	N001	36.7 -	56.7	10		F	#	1	
Selenium	mg/L	06/03/2008	N001	36.7 -	56.7	0.000081	В	UF	#	0.00004	
Sodium	mg/L	06/03/2008	N001	36.7 -	56.7	290		F	#	10	
Specific Conductance	umhos /cm	06/03/2008	N001	36.7 -	56.7	3350		F	#		
Sulfate	mg/L	06/03/2008	N001	36.7 -	56.7	1700		F	#	25	
Temperature	С	06/03/2008	N001	36.7	56.7	11.66		F	#		
Total Dissolved Solids	mg/L	06/03/2008	N001	36.7	56.7	3100		F	#	80	
Turbidity	NTU	06/03/2008	N001	36.7 -	56.7	0.85		F	#		
Uranium	mg/L	06/03/2008	N001	36.7 -	56.7	0.00011		UF	#	0.0001	

Location: 0608 WELL

Parameter	Units	Sam Date	ple ID		th Rang t BLS)	je	Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Alkalinity, Total (As CaCO3)	mg/L	06/04/2008	N001	29	-	39	388		FQ	#		
Calcium	mg/L	06/04/2008	N001	29	-	39	210		FQ	#	1	
Chloride	mg/L	06/04/2008	N001	29	-	39	23		FQ	#	4	
Iron	mg/L	06/04/2008	N001	29	-	39	0.082		FQ	#	0.0029	
Magnesium	mg/L	06/04/2008	N001	29	-	39	140		FQ	#	1	
Manganese	mg/L	06/04/2008	N001	29	-	39	0.0025	В	FQ	#	0.00013	
Molybdenum	mg/L	06/04/2008	N001	29	-	39	0.0011		UFQ	#	0.001	
Oxidation Reduction Potential	mV	06/04/2008	N001	29	-	39	58		FQ	#		
рН	s.u.	06/04/2008	N001	29	-	39	7.06		FQ	#		
Potassium	mg/L	06/04/2008	N001	29	-	39	5.1		FQ	#	1	
Selenium	mg/L	06/04/2008	N001	29	-	39	0.0042		FQ	#	0.00004	
Sodium	mg/L	06/04/2008	N001	29	-	39	73		FQ	#	1	
Specific Conductance	umhos /cm	06/04/2008	N001	29	-	39	1845		FQ	#		
Sulfate	mg/L	06/04/2008	N001	29	-	39	730		FQ	#	10	
Temperature	С	06/04/2008	N001	29	-	39	8.93		FQ	#		
Total Dissolved Solids	mg/L	06/04/2008	N001	29	-	39	1500		FQ	#	40	
Turbidity	NTU	06/04/2008	N001	29	-	39	5.58		FQ	#		
Uranium	mg/L	06/04/2008	N001	29	-	39	0.0061		FQ	#	0.0001	

Location: 0612 WELL

Parameter	Units	Sam Date	iple ID	Depth Range (Ft BLS)	Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Alkalinity, Total (As CaCO3)	mg/L	06/03/2008	N001	98.09 - 108.0	9 2254		FQ	#		
Calcium	mg/L	06/03/2008	N001	98.09 - 108.0	9 5.4		FQ	#	1	
Chloride	mg/L	06/03/2008	N001	98.09 - 108.0	09 54		FQ	#	1	
Iron	mg/L	06/03/2008	N001	98.09 - 108.0	0.047	В	FQ	#	0.0029	
Magnesium	mg/L	06/03/2008	N001	98.09 - 108.0	9 3.8		FQ	#	1	
Manganese	mg/L	06/03/2008	N001	98.09 - 108.0	0.0055		FQ	#	0.00013	
Molybdenum	mg/L	06/03/2008	N001	98.09 - 108.0	0.00021	В	UFQ	#	0.001	
Oxidation Reduction Potential	mV	06/03/2008	N001	98.09 - 108.0	9 -267		FQ	#		
pH	s.u.	06/03/2008	N001	98.09 - 108.0	9 8		FQ	#		
Potassium	mg/L	06/03/2008	N001	98.09 - 108.0	09 12		FQ	#	1	
Selenium	mg/L	06/03/2008	N001	98.09 - 108.0	0.000046	В	UFQ	#	0.00004	
Sodium	mg/L	06/03/2008	N001	98.09 - 108.0	9 880		FQ	#	100	
Specific Conductance	umhos /cm	06/03/2008	N001	98.09 - 108.0	9 3875		FQ	#		
Sulfate	mg/L	06/03/2008	N001	98.09 - 108.0	09 31		FQ	#	2.5	
Temperature	С	06/03/2008	N001	98.09 - 108.0	9 74.81		FQ	#		
Total Dissolved Solids	mg/L	06/03/2008	N001	98.09 - 108.0	9 2900		FQ	#	80	
Turbidity	NTU	06/03/2008	N001	98.09 - 108.0	9 3.12		FQ	#		
Uranium	mg/L	06/03/2008	N001	98.09 - 108.0	0.000097	В	UFQ	#	0.0001	

Location: 0618 WELL

Parameter	Units	Sam Date	ple ID	Depth Range (Ft BLS)	Re	sult Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Alkalinity, Total (As CaCO3)	mg/L	06/04/2008	N001	29.77 - 49	.77 40	04	F	#		
Calcium	mg/L	06/04/2008	N001	29.77 - 49	.77 29	90	F	#	1	
Chloride	mg/L	06/04/2008	N001	29.77 - 49	.77 4	1	F	#	4	
Iron	mg/L	06/04/2008	N001	29.77 - 49	.77 0.0	066	F	#	0.0029	
Magnesium	mg/L	06/04/2008	N001	29.77 - 49	.77 17	70	F	#	1	
Manganese	mg/L	06/04/2008	N001	29.77 - 49	.77 0.00	0044 B	F	#	0.00013	
Molybdenum	mg/L	06/04/2008	N001	29.77 - 49	.77 0.00	0078 B	UF	#	0.001	
Oxidation Reduction Potential	mV	06/04/2008	N001	29.77 - 49	.77 3	1	F	#		
рН	s.u.	06/04/2008	N001	29.77 - 49	.77 7.	03	F	#		
Potassium	mg/L	06/04/2008	N001	29.77 - 49	.77 3	.5	F	#	1	
Selenium	mg/L	06/04/2008	N001	29.77 - 49	.77 0.0	063	F	#	0.00004	
Sodium	mg/L	06/04/2008	N001	29.77 - 49	.77 1′	10	F	#	1	
Specific Conductance	umhos /cm	06/04/2008	N001	29.77 - 49	.77 23	54	F	#		
Sulfate	mg/L	06/04/2008	N001	29.77 - 49	.77 11	00	F	#	10	
Temperature	С	06/04/2008	N001	29.77 - 49	.77 9.	54	F	#		
Total Dissolved Solids	mg/L	06/04/2008	N001	29.77 - 49	.77 20	00	F	#	40	
Turbidity	NTU	06/04/2008	N001	29.77 - 49	.77 0.	68	F	#		
Uranium	mg/L	06/04/2008	N001	29.77 - 49	.77 0.	05	F	#	0.0001	

Location: 0621 WELL

Units	Sam Date	ple ID			Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
mg/L	06/04/2008	0001	78.46 -	88.46	0		FQ	#		
mg/L	06/04/2008	0001	78.46 -	88.46	440		FQ	#	5	
mg/L	06/04/2008	N002	78.46 -	88.46	470		FQ	#	1	
mg/L	06/04/2008	0001	78.46 -	88.46	10		FQ	#	1	
mg/L	06/04/2008	N002	78.46 -	88.46	11		FQ	#	1	
mg/L	06/04/2008	0001	78.46 -	88.46	150	E	FQJ	#	0.0029	
mg/L	06/04/2008	N002	78.46 -	88.46	150		FQJ	#	0.0029	
mg/L	06/04/2008	0001	78.46 -	88.46	400	Е	FQJ	#	1	
mg/L	06/04/2008	N002	78.46 -	88.46	370		FQJ	#	1	
mg/L	06/04/2008	0001	78.46 -	88.46	2.9		FQ	#	0.00013	
mg/L	06/04/2008	N002	78.46 -	88.46	2.7		FQ	#	0.00013	
mg/L	06/04/2008	0001	78.46 -	88.46	0.00051	В	FQ	#	0.001	
mg/L	06/04/2008	N002	78.46 -	88.46	0.0004	В	UFQ	#	0.001	
mV	06/04/2008	N001	78.46 -	88.46	172		FQ	#		
s.u.	06/04/2008	N001	78.46 -	88.46	4.97		FQ	#		
mg/L	06/04/2008	0001	78.46 -	88.46	19	EN	FQJ	#	1	
mg/L	06/04/2008	N002	78.46 -	88.46	17		FQJ	#	1	
mg/L	06/04/2008	0001	78.46 -	88.46	0.000082	В	FQ	#	0.00004	
mg/L	06/04/2008	N002	78.46 -	88.46	0.000076	В	UFQ	#	0.00004	
	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	mg/L 06/04/2008 mg/L 06/04/2008 mg/L 06/04/2008 mg/L 06/04/2008 mg/L 06/04/2008 mg/L 06/04/2008 mg/L 06/04/2008 mg/L 06/04/2008 mg/L 06/04/2008 mg/L 06/04/2008 mg/L 06/04/2008 mg/L 06/04/2008 mg/L 06/04/2008 mg/L 06/04/2008 mg/L 06/04/2008 mg/L 06/04/2008 mg/L 06/04/2008 mg/L 06/04/2008 mg/L 06/04/2008 mg/L 06/04/2008	mg/L 06/04/2008 0001 mg/L 06/04/2008 0001 mg/L 06/04/2008 0001 mg/L 06/04/2008 0001 mg/L 06/04/2008 0001 mg/L 06/04/2008 0001 mg/L 06/04/2008 0001 mg/L 06/04/2008 0001 mg/L 06/04/2008 0001 mg/L 06/04/2008 0001 mg/L 06/04/2008 0001 mg/L 06/04/2008 0001 mg/L 06/04/2008 N002 mV 06/04/2008 N001 s.u. 06/04/2008 N001 mg/L 06/04/2008 N001 mg/L 06/04/2008 N001 mg/L 06/04/2008 N001 mg/L 06/04/2008 N001 mg/L 06/04/2008 N001	May Date ID (Ft BI mg/L 06/04/2008 0001 78.46 - mg/L 06/04/2008 0001 78.46 - mg/L 06/04/2008 N002 78.46 - mg/L 06/04/2008 N002 78.46 - mg/L 06/04/2008 N002 78.46 - mg/L 06/04/2008 N002 78.46 - mg/L 06/04/2008 N002 78.46 - mg/L 06/04/2008 N002 78.46 - mg/L 06/04/2008 N002 78.46 - mg/L 06/04/2008 N002 78.46 - mg/L 06/04/2008 N001 78.46 - mg/L 06/04/2008 N001 78.46 - s.u. 06/04/2008 N001 78.46 - mg/L 06/04/2008 N001 78.46 - mg/L 06/04/2008 N001<	mg/L Date ID (Ft BLS) mg/L 06/04/2008 0001 78.46 - 88.46 mg/L 06/04/2008 0001 78.46 - 88.46 mg/L 06/04/2008 N002 78.46 - 88.46 mg/L 06/04/2008 0001 78.46 - 88.46 mg/L 06/04/2008 N002 78.46 - 88.46 mg/L 06/04/2008 0001 78.46 - 88.46 mg/L 06/04/2008 N002 78.46 - 88.46 mg/L 06/04/2008 0001 78.46 - 88.46 mg/L 06/04/2008 N002 78.46 - 88.46 mg/L 06/04/2008 N002 78.46 - 88.46 mg/L 06/04/2008 N002 78.46 - 88.46 mg/L 06/04/2008 N002 78.46 - 88.46 mV 06/04/2008 N001 78.46 - 88.46 mg/L 06/04/2008 N001 78.46 - 88.46	mg/L 06/04/2008 0001 78.46 - 88.46 0 mg/L 06/04/2008 0001 78.46 - 88.46 0 mg/L 06/04/2008 0001 78.46 - 88.46 440 mg/L 06/04/2008 N002 78.46 - 88.46 10 mg/L 06/04/2008 N002 78.46 - 88.46 11 mg/L 06/04/2008 N002 78.46 - 88.46 150 mg/L 06/04/2008 N002 78.46 - 88.46 150 mg/L 06/04/2008 N002 78.46 - 88.46 150 mg/L 06/04/2008 N002 78.46 - 88.46 370 mg/L 06/04/2008 N002 78.46 - 88.46 2.9 mg/L 06/04/2008 N002 78.46 - 88.46 0.00051 mg/L 06/04/2008 N001 78.46<	mg/L 06/04/2008 0001 78.46 - 88.46 0 mg/L 06/04/2008 0001 78.46 - 88.46 0 mg/L 06/04/2008 0001 78.46 - 88.46 440 mg/L 06/04/2008 N002 78.46 - 88.46 470 mg/L 06/04/2008 0001 78.46 - 88.46 10 mg/L 06/04/2008 N002 78.46 - 88.46 11 mg/L 06/04/2008 0001 78.46 - 88.46 150 E mg/L 06/04/2008 N002 78.46 - 88.46 150 E mg/L 06/04/2008 0001 78.46 - 88.46 400 E mg/L 06/04/2008 N002 78.46 - 88.46 2.9 mg/L 06/04/2008 N002 78.46 - 88.46 2.7 mg/L 06/04/2008 N001 78.46 - 88.46 0.00051 B mV 06/04/200	mg/L Date ID (Ft BLS)* Result Lab Data mg/L 06/04/2008 0001 78.46 - 88.46 0 FQ mg/L 06/04/2008 0001 78.46 - 88.46 440 FQ mg/L 06/04/2008 N002 78.46 - 88.46 470 FQ mg/L 06/04/2008 0001 78.46 - 88.46 10 FQ mg/L 06/04/2008 N002 78.46 - 88.46 11 FQ mg/L 06/04/2008 N002 78.46 - 88.46 150 E FQJ mg/L 06/04/2008 N001 78.46 - 88.46 150 E FQJ mg/L 06/04/2008 N001 78.46 - 88.46 400 E FQJ mg/L 06/04/2008 N001 78.46 - 88.46 370 FQJ mg/L 06/04/2008 N001 78.46 - 88.46 2.7 FQ	mg/L O6/04/2008 0001 78.46 - 88.46 0 FQ # mg/L 06/04/2008 0001 78.46 - 88.46 0 FQ # mg/L 06/04/2008 0001 78.46 - 88.46 440 FQ # mg/L 06/04/2008 N002 78.46 - 88.46 470 FQ # mg/L 06/04/2008 0001 78.46 - 88.46 10 FQ # mg/L 06/04/2008 N002 78.46 - 88.46 11 FQ # mg/L 06/04/2008 N002 78.46 - 88.46 150 E FQJ # mg/L 06/04/2008 N002 78.46 - 88.46 150 E FQJ # mg/L 06/04/2008 N001 78.46 - 88.46 370 FQJ # mg/L 06/04/2008 N002 78.46 - 88.46 2.9 FQ # <t< td=""><td>May Date ID (FLBLS) Result Lab Data QA Limit mg/L 06/04/2008 0001 78.46 - 88.46 0 FQ # - mg/L 06/04/2008 0001 78.46 - 88.46 440 FQ # 5 mg/L 06/04/2008 N002 78.46 - 88.46 10 FQ # 1 mg/L 06/04/2008 N002 78.46 - 88.46 11 FQ # 1 mg/L 06/04/2008 N002 78.46 - 88.46 150 E FQJ # 0.0029 mg/L 06/04/2008 N002 78.46 - 88.46 150 E FQJ # 0.0029 mg/L 06/04/2008 N002 78.46 - 88.46 370 FQJ # 0.00013 mg/L 06/04/2008 N001 78.46 -</td></t<>	May Date ID (FLBLS) Result Lab Data QA Limit mg/L 06/04/2008 0001 78.46 - 88.46 0 FQ # - mg/L 06/04/2008 0001 78.46 - 88.46 440 FQ # 5 mg/L 06/04/2008 N002 78.46 - 88.46 10 FQ # 1 mg/L 06/04/2008 N002 78.46 - 88.46 11 FQ # 1 mg/L 06/04/2008 N002 78.46 - 88.46 150 E FQJ # 0.0029 mg/L 06/04/2008 N002 78.46 - 88.46 150 E FQJ # 0.0029 mg/L 06/04/2008 N002 78.46 - 88.46 370 FQJ # 0.00013 mg/L 06/04/2008 N001 78.46 -

Location: 0621 WELL

Parameter	Units	Sam Date	ple ID	Depth R (Ft BL		Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Sodium	mg/L	06/04/2008	0001	78.46 -	88.46	200	Е	FQJ	#	1	
Sodium	mg/L	06/04/2008	N002	78.46 -	88.46	180		FQJ	#	1	
Specific Conductance	umhos /cm	06/04/2008	N001	78.46 -	88.46	4214		FQ	#		
Sulfate	mg/L	06/04/2008	0001	78.46 -	88.46	3200		FQ	#	25	
Sulfate	mg/L	06/04/2008	N002	78.46 -	88.46	3100		FQ	#	25	
Temperature	С	06/04/2008	N001	78.46 -	88.46	10.31		FQ	#		
Total Dissolved Solids	mg/L	06/04/2008	0001	78.46 -	88.46	4700		FQ	#	80	
Total Dissolved Solids	mg/L	06/04/2008	N002	78.46 -	88.46	4700		FQ	#	80	
Turbidity	NTU	06/04/2008	N001	78.46 -	88.46	37.2		FQ	#		
Uranium	mg/L	06/04/2008	0001	78.46 -	88.46	0.00013		UFQ	#	0.0001	
Uranium	mg/L	06/04/2008	N002	78.46 -	88.46	0.00011		UFQ	#	0.0001	

Location: 0623 WELL

Parameter	Units	Sam Date	ple ID	Depth Ra (Ft BLS		Result	(Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Alkalinity, Total (As CaCO3)	mg/L	06/04/2008	0001	19.35 -	39.35	420		FQ	#		
Calcium	mg/L	06/04/2008	0001	19.35 -	39.35	210		FQ	#	1	
Chloride	mg/L	06/04/2008	0001	19.35 -	39.35	19		FQ	#	4	
Iron	mg/L	06/04/2008	0001	19.35 -	39.35	1.6		FQ	#	0.0029	
Magnesium	mg/L	06/04/2008	0001	19.35 -	39.35	190		FQ	#	1	
Manganese	mg/L	06/04/2008	0001	19.35 -	39.35	0.064		FQ	#	0.00013	
Molybdenum	mg/L	06/04/2008	0001	19.35 -	39.35	0.0011		FQ	#	0.001	
Oxidation Reduction Potential	mV	06/04/2008	N001	19.35 -	39.35	-81		FQ	#		
рН	s.u.	06/04/2008	N001	19.35 -	39.35	7.2		FQ	#		
Potassium	mg/L	06/04/2008	0001	19.35 -	39.35	3.6		FQ	#	1	
Selenium	mg/L	06/04/2008	0001	19.35 -	39.35	0.0038		FQ	#	0.00004	
Sodium	mg/L	06/04/2008	0001	19.35 -	39.35	120		FQ	#	1	
Specific Conductance	umhos /cm	06/04/2008	N001	19.35 -	39.35	2451		FQ	#		
Sulfate	mg/L	06/04/2008	0001	19.35 -	39.35	1000		FQ	#	10	
Temperature	С	06/04/2008	N001	19.35 -	39.35	9.1		FQ	#		
Total Dissolved Solids	mg/L	06/04/2008	0001	19.35 -	39.35	1900		FQ	#	40	
Turbidity	NTU	06/04/2008	N001	19.35 -	39.35	23.4		FQ	#		
Uranium	mg/L	06/04/2008	0001	19.35 -	39.35	0.0034		FQ	#	0.0001	

This page intentionally left blank

Surface Water Quality Data

This page intentionally left blank

Surface Water Quality Data by Location (USEE102) FOR SITE DUR01, Durango Mill Tailings Process Site

REPORT DATE: 8/8/2008

Location: 0584 SURFACE LOCATION

Parameter	Units	Samp		Result		Qualifiers		Detection	Uncertainty
	C 1 c	Date	ID		Lab	Data	QA	Limit	
Alkalinity, Total (As CaCO3)	mg/L	06/03/2008	0001	40			#		
Cadmium	mg/L	06/03/2008	0001	0.00012	В		#	0.0003	
Molybdenum	mg/L	06/03/2008	0001	0.00053	В	U	#	0.001	
Oxidation Reduction Potential	mV	06/03/2008	N001	-17			#		
pH	s.u.	06/03/2008	N001	7.93			#		
Selenium	mg/L	06/03/2008	0001	0.00016			#	0.00004	
Specific Conductance	umhos/cm	06/03/2008	N001	151			#		
Temperature	С	06/03/2008	N001	7.9			#		
Uranium	mg/L	06/03/2008	0001	0.00025			#	0.0001	

Location: 0586 SURFACE LOCATION

Parameter	Units	Samp	le	Result		Qualifiers	;	Detection	I In containts
Parameter	Units	Date	ID	Result	Lab	Data	QA	Limit	Uncertainty
Alkalinity, Total (As CaCO3)	mg/L	06/03/2008	0001	63			#		
Cadmium	mg/L	06/03/2008	0001	0.00011	В		#	0.0003	
Molybdenum	mg/L	06/03/2008	0001	0.00052	В	U	#	0.001	
Oxidation Reduction Potential	mV	06/03/2008	N001	14			#		
pН	s.u.	06/03/2008	N001	7.87			#		
Selenium	mg/L	06/03/2008	0001	0.00015			#	0.00004	
Specific Conductance	umhos/cm	06/03/2008	N001	153			#		
Temperature	С	06/03/2008	N001	7.93			#		
Uranium	mg/L	06/03/2008	0001	0.00052			#	0.0001	

Location: 0652 SURFACE LOCATION SURFACE WATER AND SED.

Parameter	Units	Samp	le	Result	•	Qualifiers		Detection	Uncertainty
Farameter	Ullits	Date	ID	Resuit	Lab	Data	QA	Limit	Uncertainty
Alkalinity, Total (As CaCO3)	mg/L	06/03/2008	0001	38			#		
Cadmium	mg/L	06/03/2008	0001	0.00013	В		#	0.0003	
Molybdenum	mg/L	06/03/2008	0001	0.00046	В	U	#	0.001	
Oxidation Reduction Potential	mV	06/03/2008	N001	-3			#		
pH	s.u.	06/03/2008	N001	7.88			#		
Selenium	mg/L	06/03/2008	0001	0.00015			#	0.00004	
Specific Conductance	umhos/cm	06/03/2008	N001	143			#		
Temperature	С	06/03/2008	N001	7.55			#		
Uranium	mg/L	06/03/2008	0001	0.00023			#	0.0001	

Location: 0691 SURFACE LOCATION

Parameter	Units	Sample		Result	-	Qualifiers		Detection	I In containts
i aiailletei	Units	Date	ID	Result	Lab	Data	QA	Limit	Uncertainty
Alkalinity, Total (As CaCO3)	mg/L	06/03/2008	0001	50			#		
Cadmium	mg/L	06/03/2008	0001	0.00011	В		#	0.0003	
Molybdenum	mg/L	06/03/2008	0001	0.00048	В	U	#	0.001	
Oxidation Reduction Potential	mV	06/03/2008	N001	-45			#		
pН	s.u.	06/03/2008	N001	8.01			#		
Selenium	mg/L	06/03/2008	0001	0.00016			#	0.00004	
Specific Conductance	umhos/cm	06/03/2008	N001	155			#		
Temperature	С	06/03/2008	N001	8.1			#		
Uranium	mg/L	06/03/2008	0001	0.00024		U	#	0.0001	

Surface Water Quality Data by Location (USEE102) FOR SITE DUR02, Durango Raffinate Pond Process Site

REPORT DATE: 8/8/2008

Location: 0588 SURFACE LOCATION

Parameter	Units	Sample		Result		Qualifiers		Detection	Uncertainty
		Date	ID		Lab	Data	QA	Limit	•
Alkalinity, Total (As CaCO3)	mg/L	06/03/2008	0001	279			#		
Cadmium	mg/L	06/03/2008	0001	0.000059	В		#	0.0003	
Molybdenum	mg/L	06/03/2008	0001	0.0014			#	0.001	
Oxidation Reduction Potential	mV	06/03/2008	N001	23.8			#		
рН	s.u.	06/03/2008	N001	8.37			#		
Selenium	mg/L	06/03/2008	0001	0.0011			#	0.000079	
Specific Conductance	umhos/cm	06/03/2008	N001	1397			#		
Temperature	С	06/03/2008	N001	24.11			#		
Uranium	mg/L	06/03/2008	0001	0.016			#	0.0001	

Surface Water Quality Data by Location (USEE102) FOR SITE DUR02, Durango Raffinate Pond Process Site REPORT DATE: 8/8/2008

Location: 0654 SURFACE LOCATION RESERVED FOR CDAY

Parameter	Units	Sample		Result	•	Qualifiers	;	Detection	Uncertainty
i didiffeter	Offics	Date	ID	Result	Lab	Data	QA	Limit	Uncertainty
Alkalinity, Total (As CaCO3)	mg/L	06/03/2008	0001	38			#		
Cadmium	mg/L	06/03/2008	0001	0.00011	В		#	0.0003	
Molybdenum	mg/L	06/03/2008	0001	0.00048	В	U	#	0.001	
Oxidation Reduction Potential	mV	06/03/2008	N001	1.3			#		
pH	s.u.	06/03/2008	N001	7.81			#		
Selenium	mg/L	06/03/2008	0001	0.00063			#	0.00004	
Specific Conductance	umhos/cm	06/03/2008	N001	172			#		
Temperature	С	06/03/2008	N001	8.47			#		
Uranium	mg/L	06/03/2008	0001	0.00029			#	0.0001	

Surface Water Quality Data by Location (USEE102) FOR SITE DUR02, Durango Raffinate Pond Process Site

REPORT DATE: 8/8/2008

Location: 0656 SURFACE LOCATION RESERVED FOR CDAY

Parameter	Units	Samp Date	le ID	Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Alkalinity, Total (As CaCO3)	mg/L	06/03/2008	0001	36			#		
Cadmium	mg/L	06/03/2008	0001	0.00013	В		#	0.0003	
Molybdenum	mg/L	06/03/2008	0001	0.00047	В	U	#	0.001	
Oxidation Reduction Potential	mV	06/03/2008	N001	31			#		
рН	s.u.	06/03/2008	N001	7.86			#		
Selenium	mg/L	06/03/2008	0001	0.00015			#	0.00004	
Specific Conductance	umhos/cm	06/03/2008	N001	146			#		
Temperature	С	06/03/2008	N001	9			#		
Uranium	mg/L	06/03/2008	0001	0.00024			#	0.0001	

SAMPLE ID CODES: 000X = Filtered sample (0.45 µm). N00X = Unfiltered sample. X = replicate number.

LAB QUALIFIERS:

- * Replicate analysis not within control limits.
- > Result above upper detection limit.
- A TIC is a suspected aldol-condensation product.
- B Inorganic: Result is between the IDL and CRDL. Organic: Analyte also found in method blank.
- C Pesticide result confirmed by GC-MS.
- D Analyte determined in diluted sample.
- E Inorganic: Estimate value because of interference, see case narrative. Organic: Analyte exceeded calibration range of the GC-MS.
- H Holding time expired, value suspect.
- I Increased detection limit due to required dilution.
- J Estimated
- N Inorganic or radiochemical: Spike sample recovery not within control limits. Organic: Tentatively identified compound (TIC).
- P > 25% difference in detected pesticide or Aroclor concentrations between 2 columns.
- U Analytical result below detection limit.
- W Post-digestion spike outside control limits while sample absorbance < 50% of analytical spike absorbance.
- X,Y,Z Laboratory defined qualifier, see case narrative.

DATA QUALIFIERS:

- F Low flow sampling method used.
- L Less than 3 bore volumes purged prior to sampling.
- U Parameter analyzed for but was not detected.
- G Possible grout contamination, pH > 9. J Estimated value.
- Q Qualitative result due to sampling technique. R Unusable result.
- X Location is undefined.

QA QUALIFIER:

Validated according to quality assurance guidelines.

This page intentionally left blank

Equipment Blank Data

BLANKS REPORT

LAB: PARAGON (Fort Collins, CO)

RIN: 08051595 Report Date: 8/8/2008

Parameter	Site Code	Location ID	Sample Date	e ID	Units	Result	Qua Lab	lifiers Data	Detection Limit	Uncertainty	Sample Type
Cadmium	DUR03	0999	06/03/2008	N001	mg/L	0.0003	U		0.0003		E
Molybdenum	DUR03	0999	06/03/2008	N001	mg/L	0.000085	В	U	0.001		E
Selenium	DUR03	0999	06/03/2008	N001	mg/L	0.00004	U		0.00004		E
Uranium	DUR03	0999	06/03/2008	N001	mg/L	0.00013		U	0.0001		E

SAMPLE ID CODES: 000X = Filtered sample (0.45 µm). N00X = Unfiltered sample. X = replicate number.

LAB QUALIFIERS:

* Replicate analysis not within control limits.

> Result above upper detection limit.

A TIC is a suspected aldol-condensation product.

B Inorganic: Result is between the IDL and CRDL. Organic: Analyte also found in method blank.

C Pesticide result confirmed by GC-MS.

D Analyte determined in diluted sample.

E Inorganic: Estimate value because of interference, see case narrative. Organic: Analyte exceeded calibration range of the GC-MS.

H Holding time expired, value suspect.

I Increased detection limit due to required dilution.

JEstimated

N Inorganic or radiochemical: Spike sample recovery not within control limits. Organic: Tentatively identified compound (TIC).

P > 25% difference in detected pesticide or Aroclor concentrations between 2 columns.

U Analytical result below detection limit.

W Post-digestion spike outside control limits while sample absorbance < 50% of analytical spike absorbance.

X,Y,Z Laboratory defined qualifier, see case narrative.

DATA QUALIFIERS:

F Low flow sampling method used.

LLess than 3 bore volumes purged prior to sampling.

G Possible grout contamination, pH > 9. J Estimated value. Q Qualitative result due to sampling technique. R Unusable result.

Parameter analyzed for but was not detected. X Location is undefined.

SAMPLE TYPES:

E Equipment Blank.

Static Water Level Data

STA	STATIC WATER LEVELS (USEE700) FOR SITE DUR01, Durango Mill Tailings Process Site REPORT DATE: 8/8/2008										
Location Code	Flow Code	Top of Casing Elevation (Ft)	Measurement Date Time	Depth From Top of Casing (Ft)	Water Elevation (Ft)	Water Level Flag					
0612	D	6500.94	06/03/2008	39.52	6461.42						
0617	D	6498.11	06/03/2008	27.01	6471.1						
0630	D	6494.44	06/03/2008	31.89	6462.55						
0631	D	6477.91	06/03/2008	5.53	6472.38						
0633	D	6481.81	06/02/2008	6.29	6475.52						
0634	D	6491.75	06/02/2008	12.99	6478.76						

STATIC WATER LEVELS (USEE700) FOR SITE DUR02, Durango Raffinate Pond Process Site REPORT DATE: 8/8/2008

12.35

54.82

6485.33

6458.5

06/02/2008

06/03/2008

Location Code	Flow Code	Top of Casing Elevation (Ft)	Measurement Date Time	Depth From Top of Casing (Ft)	Water Elevation (Ft)	Water Level Flag
0594	0	6472.49	06/03/2008	18.04	6454.45	
0598	0	6479.09	06/04/2008	20.85	6458.24	_
0607	U	6527.95	06/03/2008	49.79	6478.16	_
0884		6476.37	06/03/2008	15.62	6460.75	

STATIC WATER LEVELS (USEE700) FOR SITE DUR03, Durango Disposal Site REPORT DATE: 8/8/2008

Location Code	Flow Code	Top of Casing Elevation (Ft)	Measurement Date Time	Depth From Top of Casing (Ft)	Water Elevation (Ft)	Water Level Flag
0605	U	7189.6	06/03/2008	38.41	7151.19	
0607	D	7099.1	06/03/2008	39.81	7059.29	
0608	D	7035	06/04/2008	27.24	7007.76	
0612	D	7109.8	06/03/2008	74.33	7035.47	
0618	D	7036.41	06/04/2008	29.33	7007.08	
0621	U	7035.77	06/04/2008	44.35	6991.42	
0623	U	7048.67	06/04/2008	21.12	7027.55	

FLOW CODES: B BACKGROUND

0635

0863

D

6497.68

6513.32

N UNKNOWN

C CROSS GRADIENT O ON SITE D DOWN GRADIENT U UPGRADIENT F OFF SITE

WATER LEVEL FLAGS: D Dry

F FLOWING

Time-Concentration Graphs

Durango Mill Tailings Process Site Cadmium Concentration Maximum Contaminant Level = 0.01 mg/L

Durango Mill Tailings Process Site Molybdenum Concentration Maximum Contaminant Level = 0.1 mg/L

Durango Mill Tailings Process Site Selenium Concentration

Maximum Contaminant Level = 0.01 mg/L Cleanup Goal = 0.05 mg/L

Durango Mill Tailings Process Site Uranium Concentration Maximum Contaminant Level = 0.044 mg/L

Durango Raffinate Pond Process Site Selenium Concentration

Maximum Contaminant Level = 0.01 mg/L Cleanup Goal = 0.05 mg/L

-

Durango Raffinate Pond Process Site Selenium Concentration

Maximum Contaminant Level = 0.01 mg/L Cleanup Goal = 0.05 mg/L

Durango Raffinate Pond Process Site Uranium Concentration

Durango Disposal Site Molybdenum Concentration

Maximum Contaminant Level = 0.1 mg/L Proposed Concentration Limit = 0.22 mg/L

-

Durango Disposal Site Selenium Concentration

Maximum Contaminant Level = 0.01 mg/L Proposed Concentration Limit = 0.042 mg/L

_

Durango Disposal Site Uranium Concentration

Maximum Contaminant Level = 0.044 mg/L Proposed Concentration Limit = 0.077 mg/L

Attachment 3 Sampling and Analysis Work Order

Task Order LM00-501 Control Number: 08-0242

May 6, 2008

U.S. Department of Energy Office of Legacy Management ATTN: Joseph Desormeau Site Manager 2597 B ¼ Road Grand Junction, CO 81503

SUBJECT:

Contract No. DE-AM01-07LM00060, Stoller

June 2008 Environmental Sampling at Durango, Colorado

REFERENCE: Task Order LM00-501-02-104-402, Durango, Colorado, Site

Dear Mr. Desormeau:

The purpose of this letter is to inform you of the upcoming sampling at Durango, Colorado. Enclosed are the maps and tables specifying sample locations and analytes for monitoring at the Durango, Colorado, processing and disposal sites. Water quality data will be collected from monitor wells and surface water locations at these sites as part of the routine environmental sampling currently scheduled to begin the week of June 2, 2008.

The following lists show the monitor wells (with zone of completion) and surface locations scheduled to be sampled during this event.

Monitor Wells*

DUROI Mill .	Site					
612 Al/Km 617 Al	630 Al/Km	631 Al/Km	633 Km	634 Km	635 Km	863 Al
DUR02 Raffii 594 Mf	nate Pond 598 Mf/Pl	607 Al	879 Mf	884 Al		
<i>DUR03 Bodo</i> 605 Cf	Canyon 607 Cf	608 Al	612 Km	618 Al	621 Cf	623 Al

*NOTE: Al = Alluvium; Cf = Cliff House Formation; Km = Mancos Shale; Mf = Menefee Formation; Pl = Point Lookout Formation

The S.M. Stoller Corporation

2597 B 1/4 Road

Grand Junction, CO 81503

(970) 248-6000

Fax: (970) 248-6040

Joe Desormeau Control Number 08-0242 Page 2

Surface Locations

DUR01

584

586

652

DUR02

588

654

656

All samples will be collected as directed in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites. Access agreements are being reviewed and are expected to be complete by the beginning of fieldwork.

691

If you have any questions, please call me at extension 6652.

Sincerely,

David Miller

Site Lead

DM/lcg/hc

Enclosures (3)

cc:

Cheri Bahrke, Stoller Steve Donivan, Stoller (e) Bev Gallagher, Stoller (e) Lauren Goodknight, Stoller (e) David Miller, Stoller (e) EDD Delivery (e)

cc w/o enclosures:

Correspondence Control File (Thru Dee Dee Crawford/Christi Weston) Records DUR 410.02 (rc-grand.junction)

\\Condor\home\L40048\My Documents\Ground Water\DUR\0806dur-ltr.doc

Constituent Sampling Breakdown

Site	Durango				
Analyte	Ground Water	Surface Water	Required Detection Limit (mg/L)	Analytical Method	Line Item Code
Approx. No. Samples/yr	20	7			
Field Measurements		-			
Alkalinity	X	Х			
Dissolved Oxygen	,	,,			
Redox Potential	X	Х			
pH	X	X			
Specific Conductance	X	X			
Turbidity	X	,,			
Temperature	X	Х			
Laboratory		7.			
Measurements					
Aluminum					
Beryllium					
Bromide					
Cadmium	0612 & 0863 only	Х	0.001	SW-846 6020	LMM-02
Calcium	DUR03 only		5	SW-846 6010	LMM-01
Chloride	DUR03 only		0.5	SW-846 9056	MIS-A- 039
Chromium					
Cobalt					
Copper					
Fluoride					
Iron	DUR03 only		0.1	SW-846 6020	LMM-01
Lead			-		
Lead-210					
Magnesium	DUR03 only		5	SW-846 6010	LMM-01
Manganese	All Mill Tailings Areas Canyon locatio		0.005	SW-846 6010	LMM-01
Molybdenum	All Mill Tailings Areas and Bodo Canyon locations	X	0.003	SW-846 6020	LMM-02
Nickel					
Nickel-63					
Nitrate + N	itrite as N (NO3+NO2)-N				
Potassium	DUR03 only		1	SW-846 6010	LMM-01
Radium-226					
Radium-228					
Selenium	X	Х	0.0001	SW-846 6020	LMM-02
Silica					
Sodium	DUR03 only		1	SW-846 6010	LMM-01
Strontium					
Sulfate	All Mill Tailings Areas Canyon locatio		0.5	SW-846 9056	MIS-A- 044
Sulfide					
Thallium					
Total Dissolved Solids	X		10	SM2540 C	WCH-A- 033
Total Organic Carbon					

Constituent Sampling Breakdown

Site	Durango	_			
Analyte	Ground Water	Surface Water	Required Detection Limit (mg/L)	Analytical Method	Line Item Code
Uranium	Х	Х	0.0001	SW-846 6020	LMM-02
Vanadium					
Zinc					
Total No. of Analytes	13	4			

Note: All analyte samples are considered unfiltered unless stated otherwise. All private well samples are to be unfiltered. The total number of analytes does not include field parameters.

Attachment 4 Trip Report

Memorandum

Control Number N/A

DATE: June 18, 2008

TO: David E. Miller

FROM: Gretchen R. Baer

SUBJECT: Sampling Trip Report

Site: Durango, Colorado, Processing and Disposal Sites

Date of Sampling Event: June 2-4, 2008

Team Members: Gretchen Baer and Joe Trevino

Number of Locations Sampled: 19 well locations, 7 surface water locations, 2 duplicate

samples, and 1 equipment blank for a total of 29 samples.

Locations Not Sampled/Reason: Well 0879 (DUR02) could not be sampled because it had

been damaged by construction activities.

Location Specific Information:

Ticket Number	Sample Date	Project Location	Location	Comments	Water Level (ft)
NFE 126	6/2/08	DUR01	0634	Cat II Peristaltic	12.99
NFE 127	6/2/08	DUR01	0635	Cat II Peristaltic	12.35
NFE 128	6/2/08	DUR01	0633	Cat I Peristaltic; black specks in water; cleared up before sampling.	6.29
NFE 129	6/3/08	DUR01	0631	Cat I Peristaltic	5.53
NFE 130	6/3/08	DUR01	0617	Cat I Bladder	27.01
NFE 131	6/3/08	DUR01	0630	Cat I Bladder	31.89
NFE 132	6/3/08	DUR01	0612	Cat I Bladder	39.52
NFE 133	6/3/08	DUR01	0863	Cat I Bladder	54.82
NFE 134	6/3/08	DUR01	0691	Surface water	N/A
NFE 135	6/3/08	DUR01	0584	Surface water	N/A
NFE 136	6/3/08	DUR01	0652	Surface water	N/A
NFE 137	6/3/08	DUR01	0586	Surface water Sample taken from east bank, upstream from the sewage treatment plant	N/A
NFE 138	6/3/08	DUR02	0656	Surface water	N/A
NFE 139	6/3/08	DUR02	0594	Cat II Peristaltic	18.04
NFE 140	6/3/08	DUR02	0884	Cat I Bladder	15.62
NFE 141	6/3/08	DUR02	0654	Surface water	N/A

Ticket Number	Sample Date	Project Location	Location		Comments	Water Level (ft)
NFE 142	6/3/08	DUR02	0607	Cat II Bladde	er	49.79
NFE 143	6/3/08	DUR02	0588	Surface water		N/A
NFE 145	6/3/08	DUR03	0605	Cat I Bladde	er	38.41
NFE 146	6/3/08	DUR03	0607	Cat I Bladde	er	39.81
NFE 147	6/3/08	DUR03	0612	Cat II Bladde	er	74.33
NFE 149	6/4/08	DUR03	0618	Cat I Bladde	er	29.33
NFE 150	6/4/08	DUR03	0621	to mee	er Rusty specks in purge water; difficult et pH stabilization criteria: pH changed .0 to 5.6 to 5.0 during purge.	44.35
NFE 102	6/4/08	DUR03	0608	Cat I Bladde	er	27.24
NFE 103	6/4/08	DUR03	0623	Cat II Bladde	er	21.12
NFE 104	6/4/08	DUR02	0598	Cat I Bladde	er	20.85

NOTE: Ticket for NFE 101 has DUR01 on it; it should be DUR03

Field Variance: None.

Quality Control Sample Cross Reference: The following are the false identifications assigned to the quality control samples:

False ID	True ID	Sample Type	Associated Matrix	Ticket Number
2627	N/A	Equipment Blank for tubing used to collect all surface water samples	DI Water	NFE 144
2626	0605	Field Duplicate	Groundwater	NFE 148
2642	0621	Field Duplicate	Groundwater	NFE 101

RIN Number Assigned: All samples were assigned to RIN 08051595.

Sample Shipment: All samples were shipped overnight to Paragon Analytics, Inc. from Grand Junction on June 5, 2008.

Well Inspection Summary: Well inspections were conducted at all sampled wells.

- Well 0607 (DUR02) is in a mound of dirt that was left around the well after the surface was excavated. It is above the current surface level (~6 ft).
- Well 0879 (DUR02) has been severely damaged: the exterior casing and cover were missing, several inches of tubing were exposed, and several inches of the interior PVC casing were broken off. This well is located in a gravel parking area and is near a large pile of dirt that suggests that the damage was caused by construction activities.

All other wells were in good condition.

Equipment: All wells have dedicated tubing and were sampled using the low-flow procedure. Dedicated bladder pumps were used to collect groundwater at 14 well locations and a peristaltic pump was used to collect groundwater at five well locations. Surface water samples were collected using a hose-reel that was decontaminated before and after each use. An equipment blank was collected to monitor the decontamination

David E. Miller June 25, 2007 Page 99

Water Level Measurements: Water level measurements were collected in all sampled wells.

Institutional Controls: All gates were appropriately closed and locked during the sampling event. Employees of Pride Weed Control were observed to be working at the Disposal site on June 4, 2008, and have keys to the two vehicle gates at the site.

Fences, Gates, Locks: All were in good condition.

Signs: No missing signs.

Trespassing/Site Disturbances: None observed.

Site Issues:

Disposal Cell/Drainage Structure Integrity: N/A

Vegetation/Noxious Weed Concerns: Several employees from Pride Weed Control were on the Bodo Canyon site (Disposal site) to spray for weeds.

Maintenance Requirements:

- Well 0607 (DUR02) may need to be secured and modified to the current surface level.
- Well 0879 (DUR02) needs to be repaired. Jeff Price was sent to the site (on June 10-12, 2008) to repair the well.

Corrective Action Taken: None.

(GRB/lcg)

cc: Joe Desormeau, DOE (e) Cheri Bahrke, Stoller (e) Steve Donivan, Stoller (e) EDD Delivery (e)

M:\08051595\RIN 08051595 DocProd.doc