

Department of Energy

Washington, DC 20585

July 19, 2019

U.S. Nuclear Regulatory Commission Attn: Control Desk Deputy Director Mail Stop T8-F5

Washington, DC 20555-0001

Subject: Gunnison, Colorado, Processing Site 2018 Verification Monitoring Report for

Surface Water and Groundwater (NRC Docket No. WM-0061)

To Whom it May Concern:

Enclosed are attachments presenting monitoring results from the 2018 surface water and groundwater sampling activity at the Gunnison, Colorado, Processing Site (Gunnison site). In accordance with the Groundwater Compliance Action Plan, 2010 (GCAP), samples were collected from 28 monitoring wells, six surface water locations, and five of the six domestic wells. Domestic wells 0477 and 0667 were collected in April and wells 0476, 0478, and 0683 were collected in July, in coordination with the homeowners. homeowner for domestic well 0479 has not granted permission to collect sample.

Results from the 2018 sampling event indicate no changes in interpretation from the 2016 VMR.

Enclosures include:

- Attachment 1: Site Figures and Time vs Concentration Plots
- Attachment 2: Groundwater Quality Data by Parameter for Domestic Wells
- Attachment 3: Surface Water Quality Data by Parameter
- Attachment 4: Groundwater Quality Data by Parameter for DOE Monitoring Wells
- Attachment 5: Water Level Data
- Attachment 6: Uranium Trend Assessment

Environmental monitoring results and the GCAP for the Gunnison site are publicly available on the U.S. Department of Energy Office of Legacy Management Gunnison site webpage, https://www.lm.doe.gov/Gunnison/Processing/Documents.aspx.

Environmental monitoring results can be directly accessed via the Geospatial Environmental Mapping System (GEMS) website at http://gems.lm.doe.gov/.

Please contact me at (970) 248-6016 or <u>Jalena.Dayvault@lm.doe.gov</u>, if you have any questions. Please address any correspondence to:

U.S. Department of Energy Office of Legacy Management 2597 Legacy Way Grand Junction, CO 81503

Sincerely,

Jalena Dayvault Site Manager

Enclosure

cc w/enclosures:

E. Striz, NRC

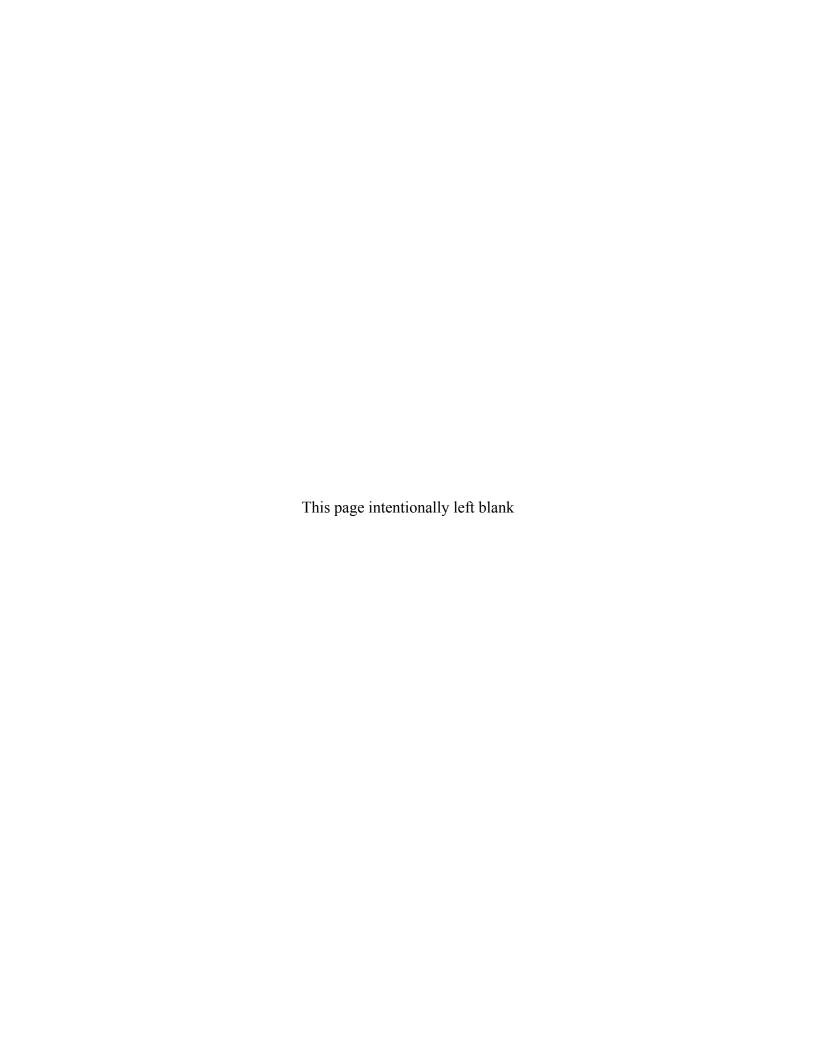
M. Cosby, CDPHE

M. Kautsky, DOE (e)

J. Lobato, Navarro (e)

D. Miller, Navarro (e)

DOE Read File

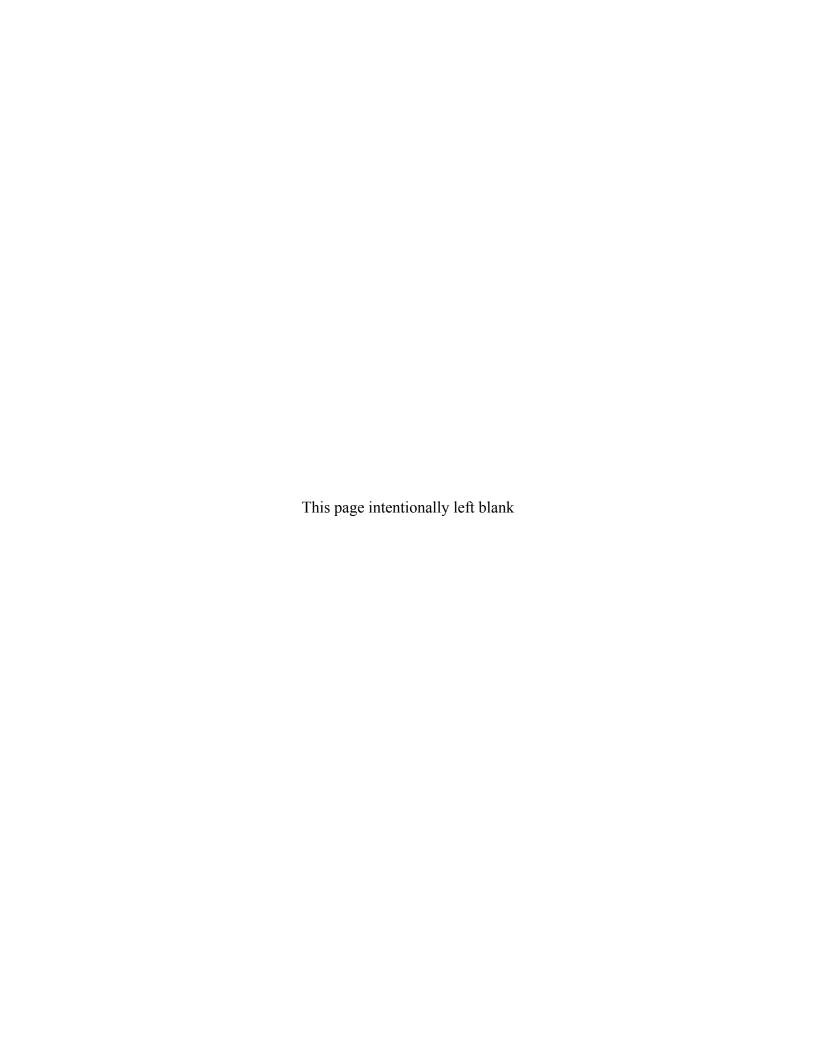

File: GUP 3500-04-04

2018 Annual Verification Monitoring Report Gunnison, Colorado, Processing Site

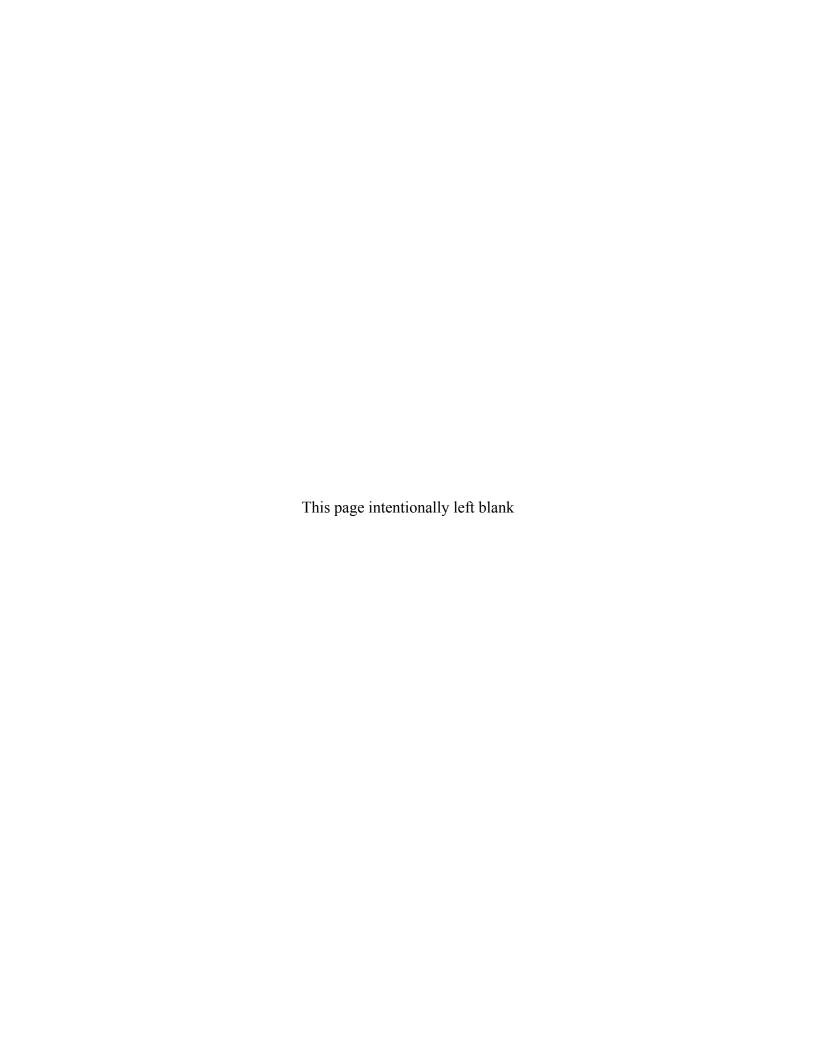
June 2019

2018 Annual Verification Monitoring Report Gunnison, Colorado, Processing Site

Attachment 1: Site Figures and Time versus Concentration Plots


Attachment 2: Groundwater Quality Data by Parameter for Domestic Wells

Attachment 3: Surface Water Quality Data by Parameter


Attachment 4: Groundwater Quality Data by Parameter for DOE Monitoring Wells

Attachment 5: Water Level Data.

Attachment 6: Uranium Trend Assessment

Site Figures and Time Versus Concentration Plots

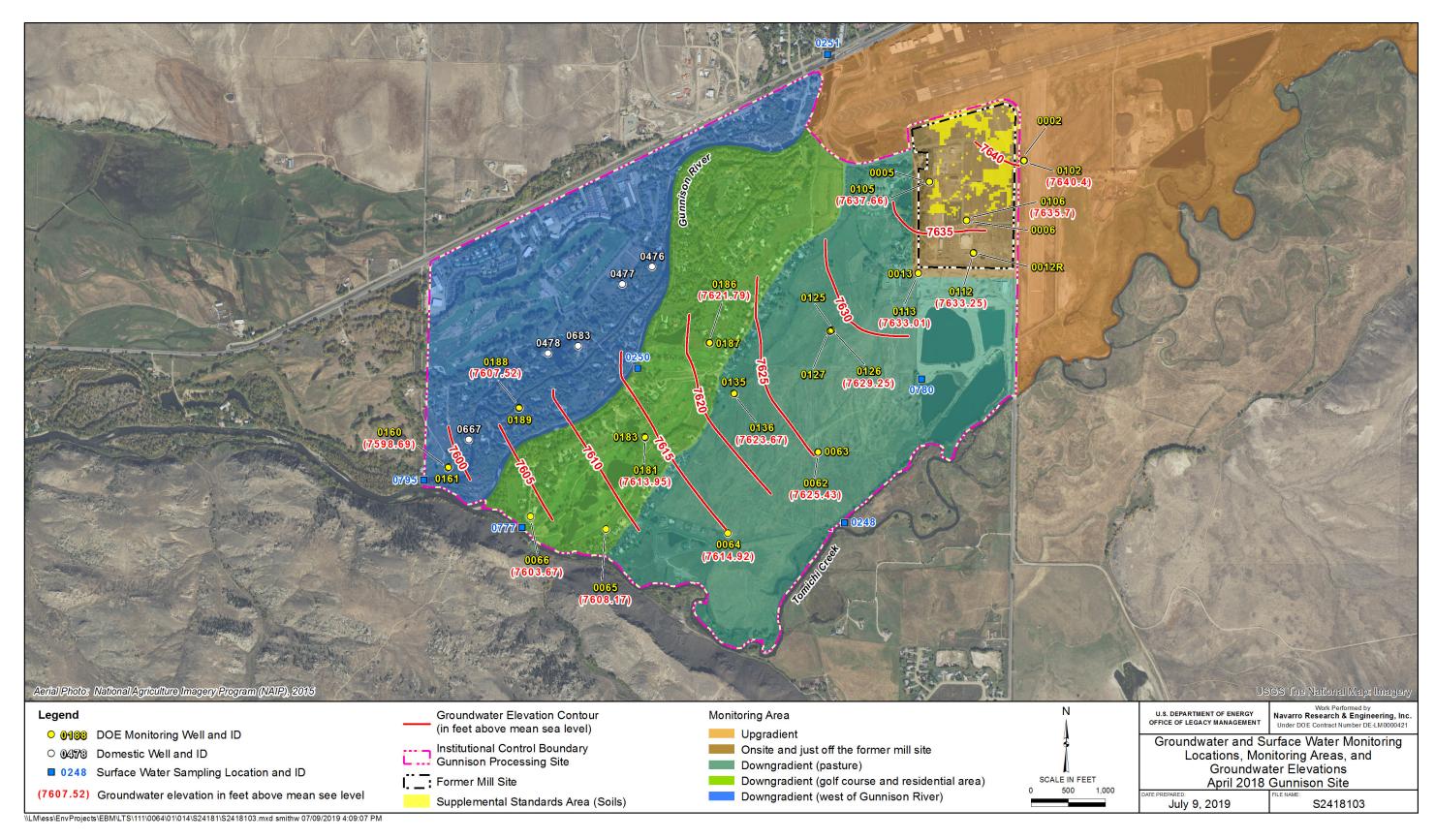
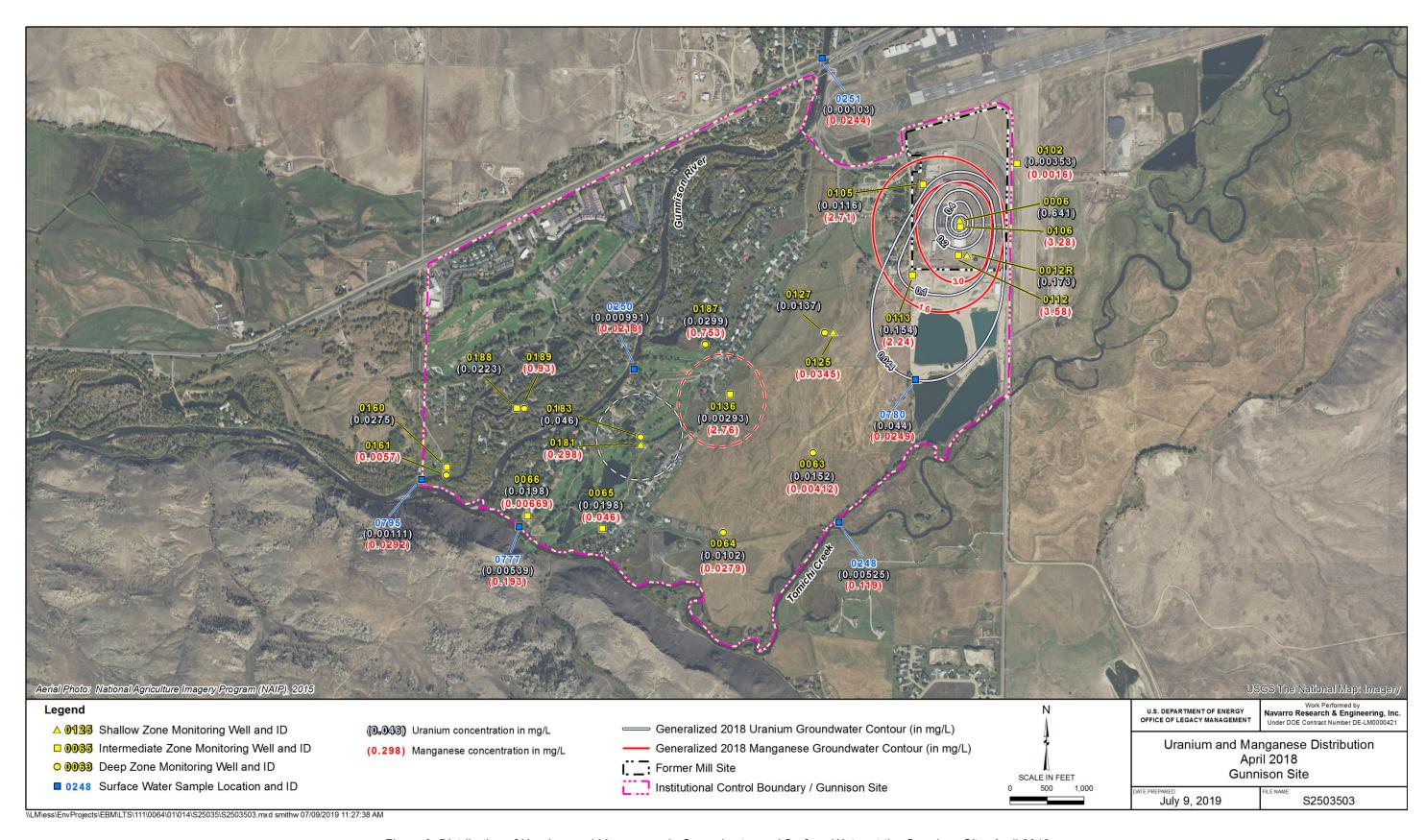
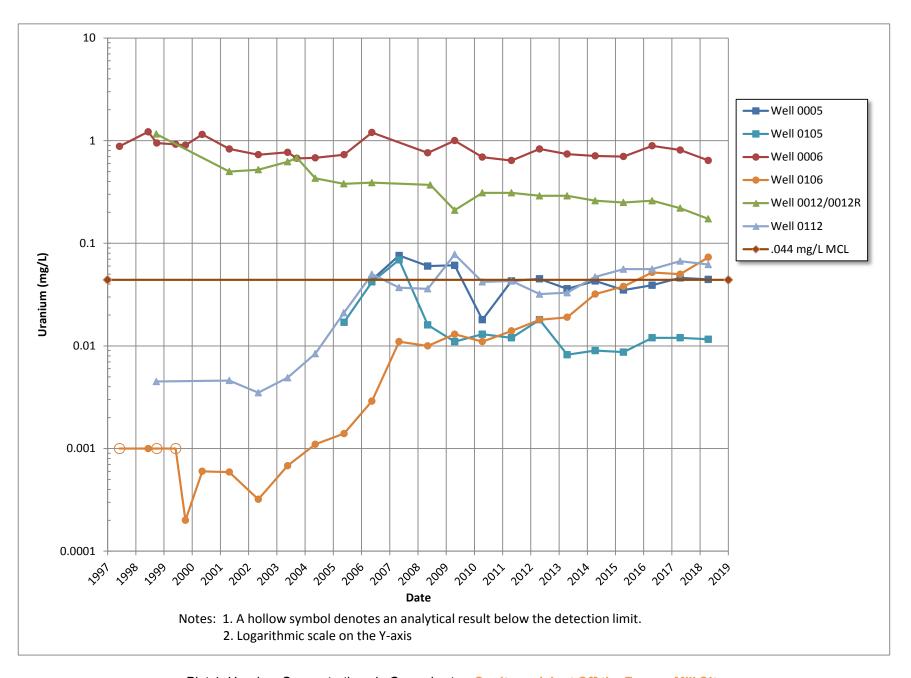
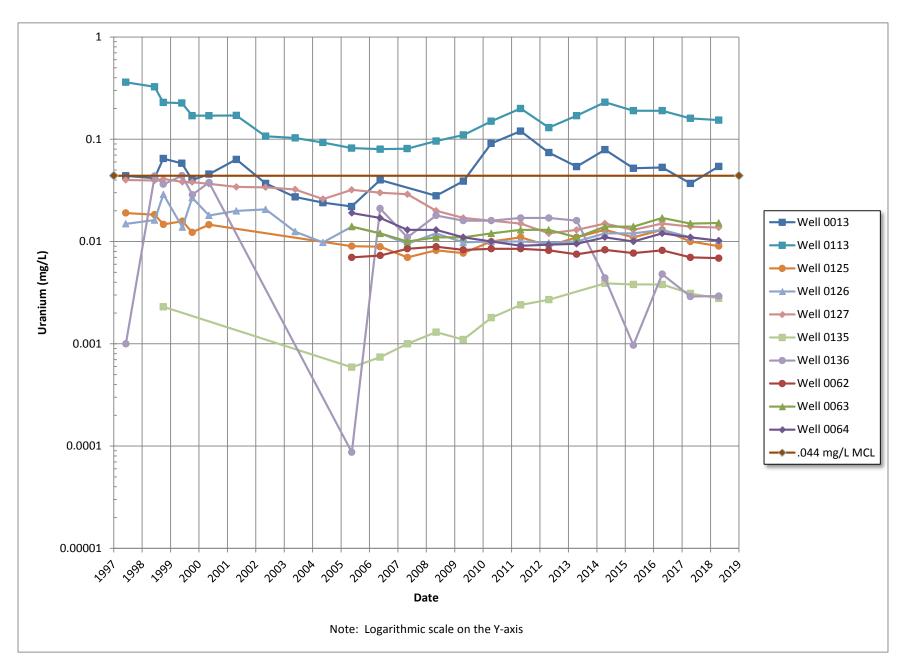
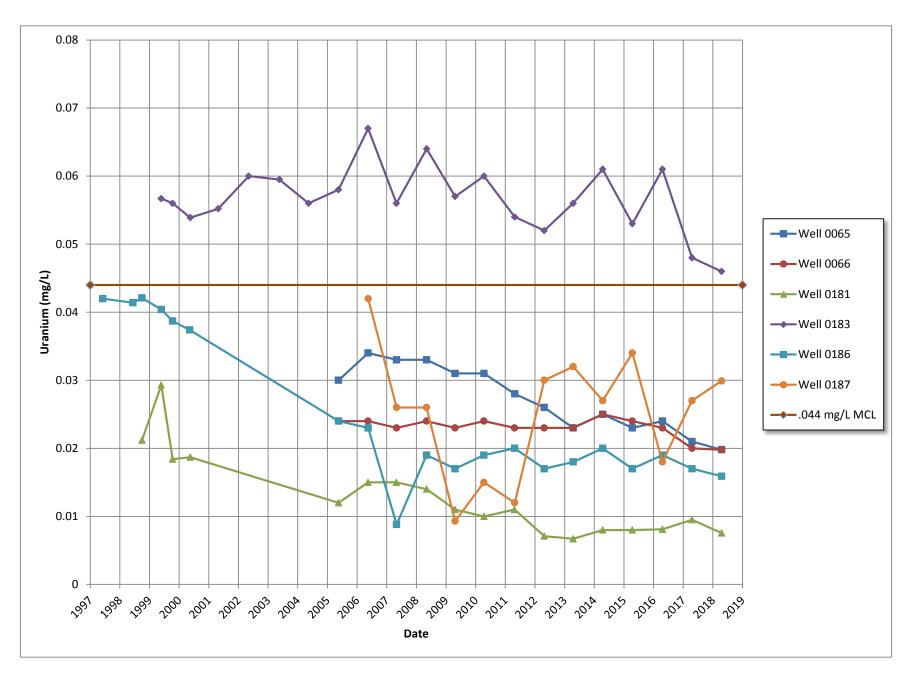
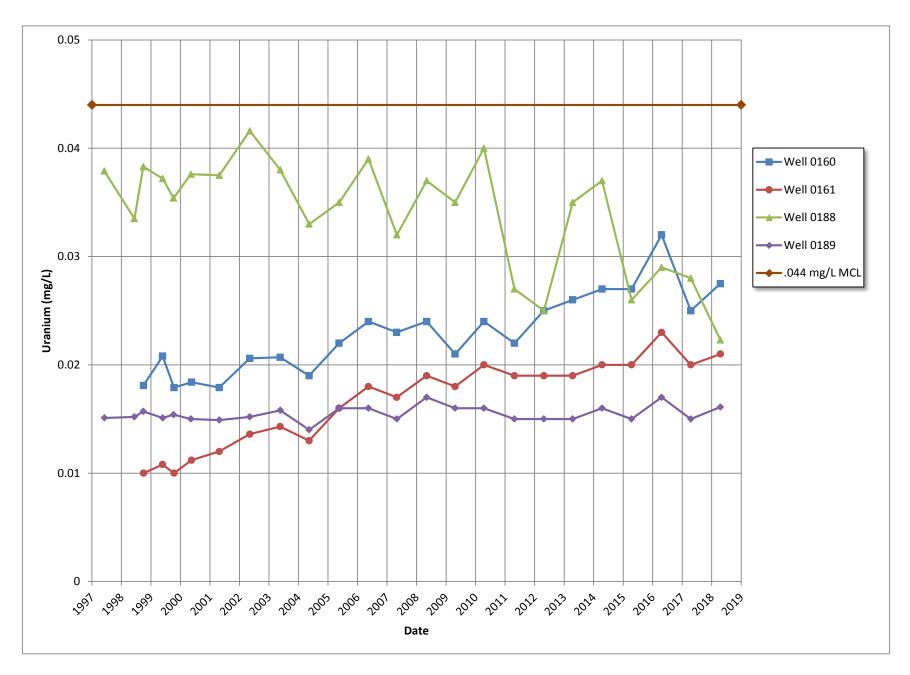
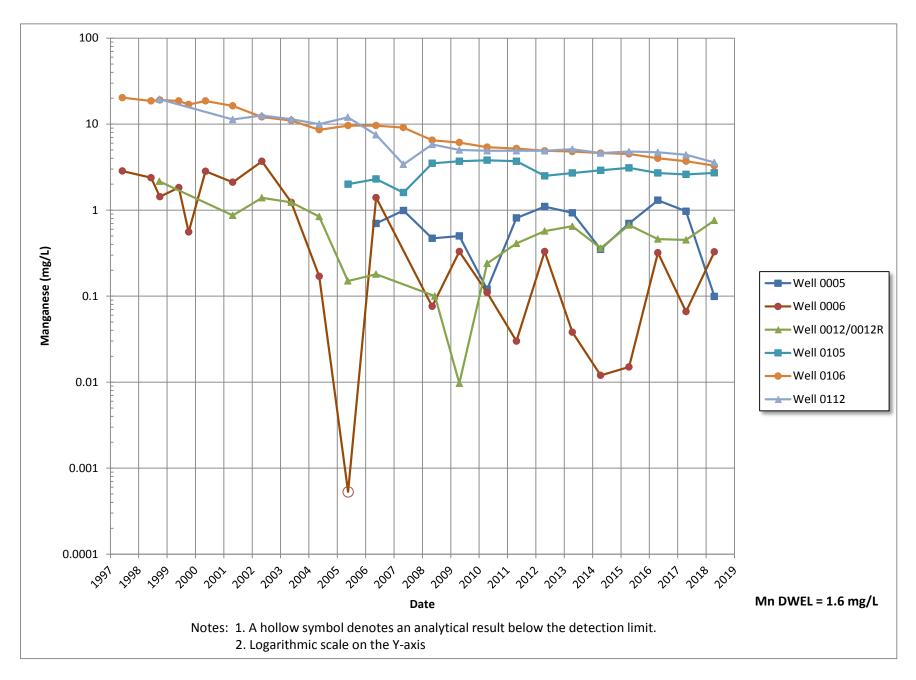


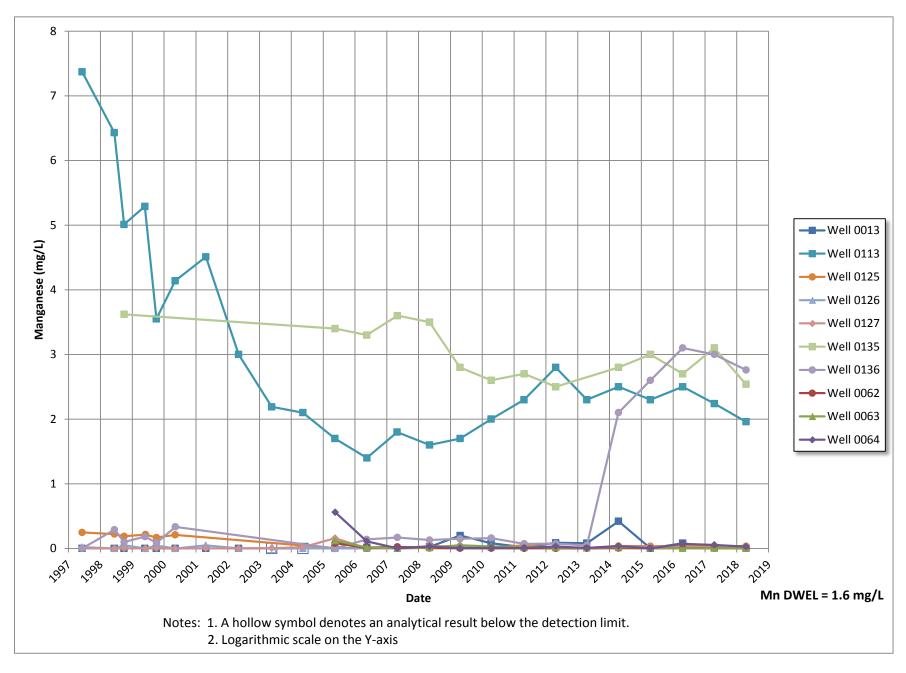
Figure 1. Groundwater and Surface Water Monitoring Locations, Monitoring Areas, and Groundwater Elevations at the Gunnison Site

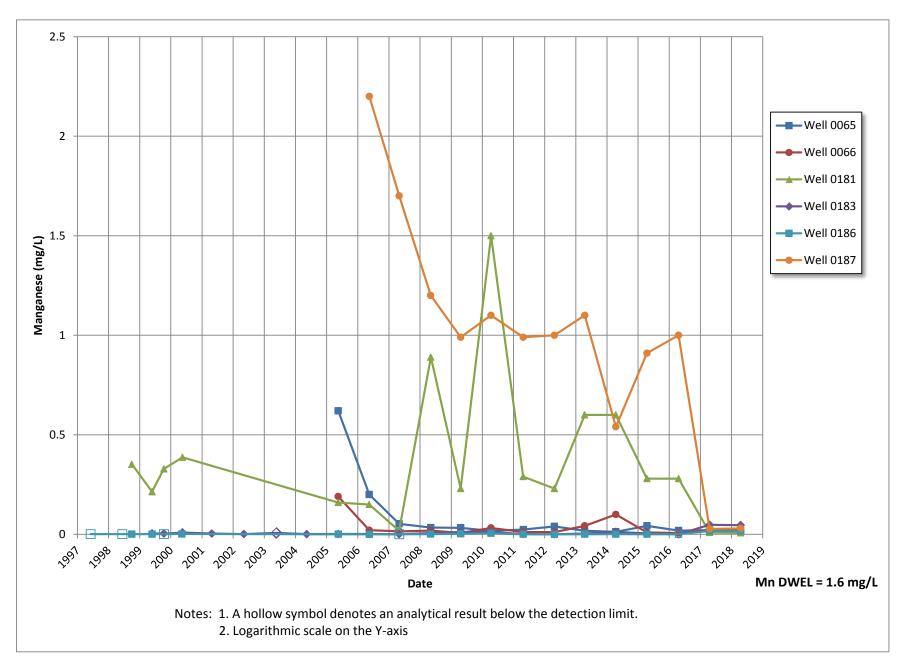




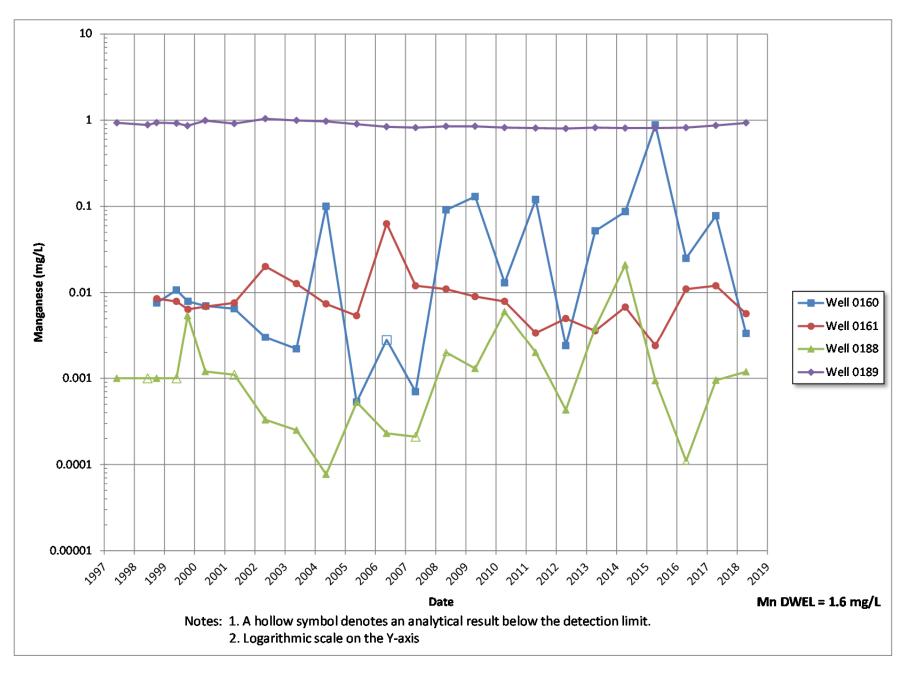

Figure 2. Distribution of Uranium and Manganese in Groundwater and Surface Water at the Gunnison Site, April 2018

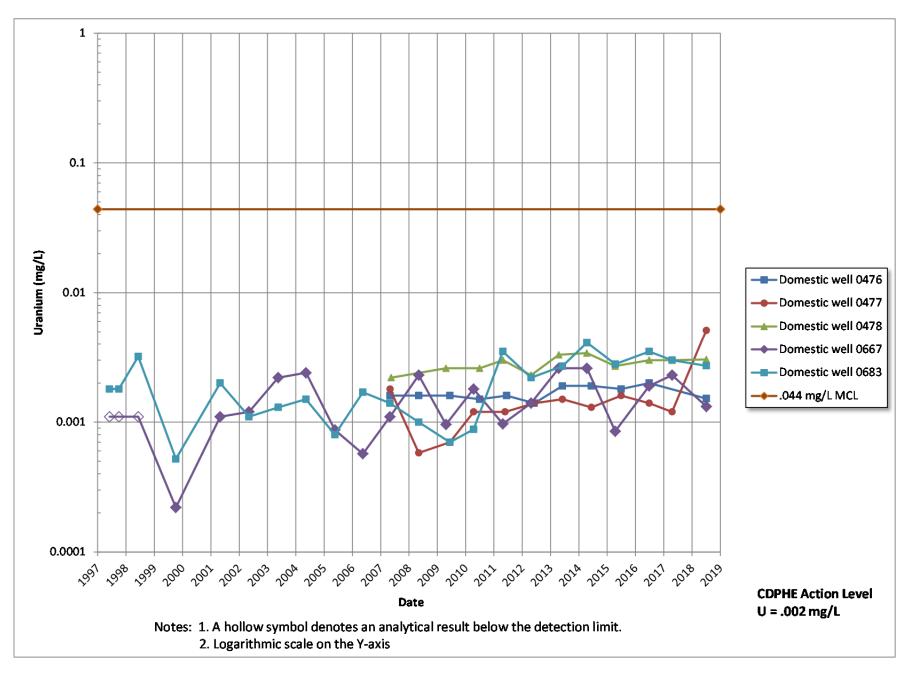

Plot 1. Uranium Concentrations in Groundwater, Onsite and Just Off the Former Mill Site

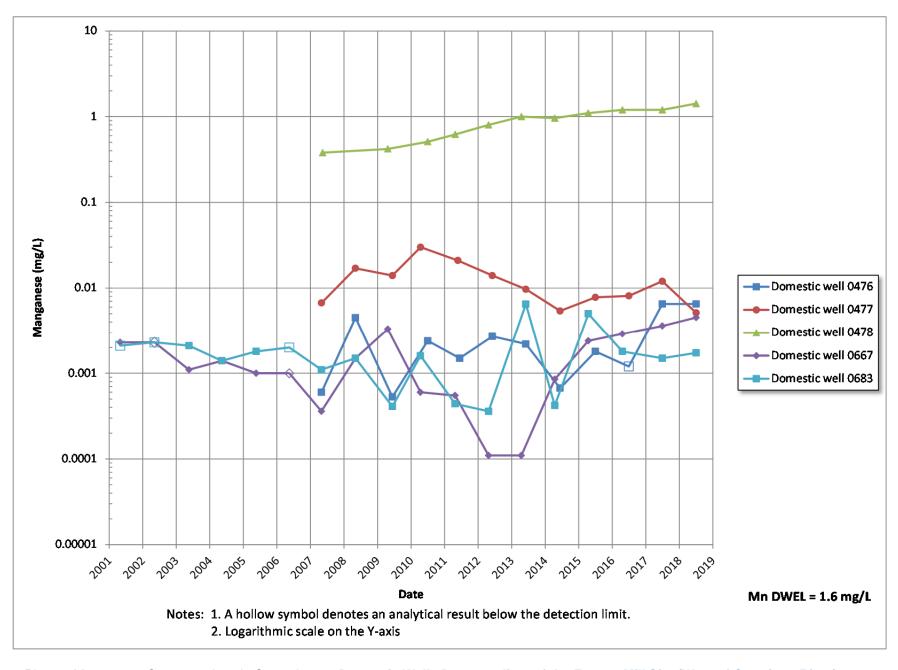

Plot 2. Uranium Concentrations in Groundwater, **Downgradient of the Former Mill Site (Pasture)**

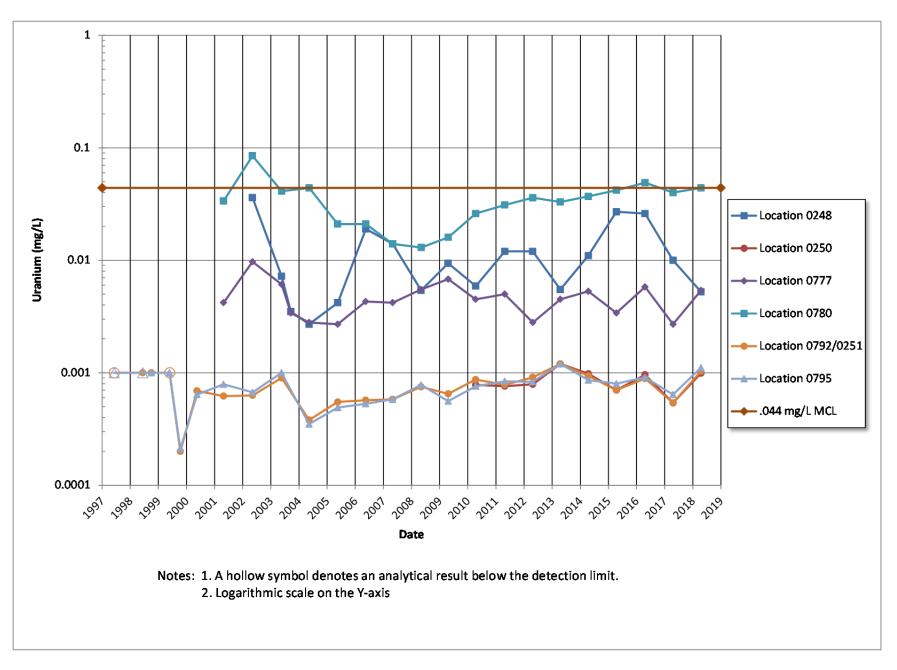

Plot 3. Uranium Concentrations in Groundwater, Downgradient of the Former Mill Site (Golf Course and Residential Areas)

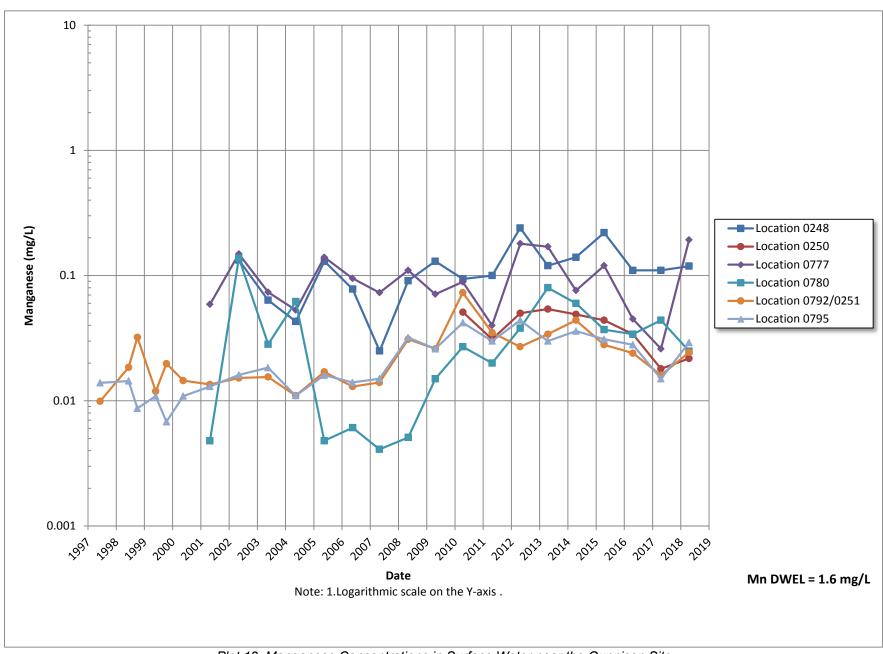

Plot 4. Uranium Concentrations in Groundwater, Downgradient of the Former Mill Site (West of Gunnison River)


Plot 5. Manganese Concentrations in Groundwater, Onsite and Just Off the Former Mill Site

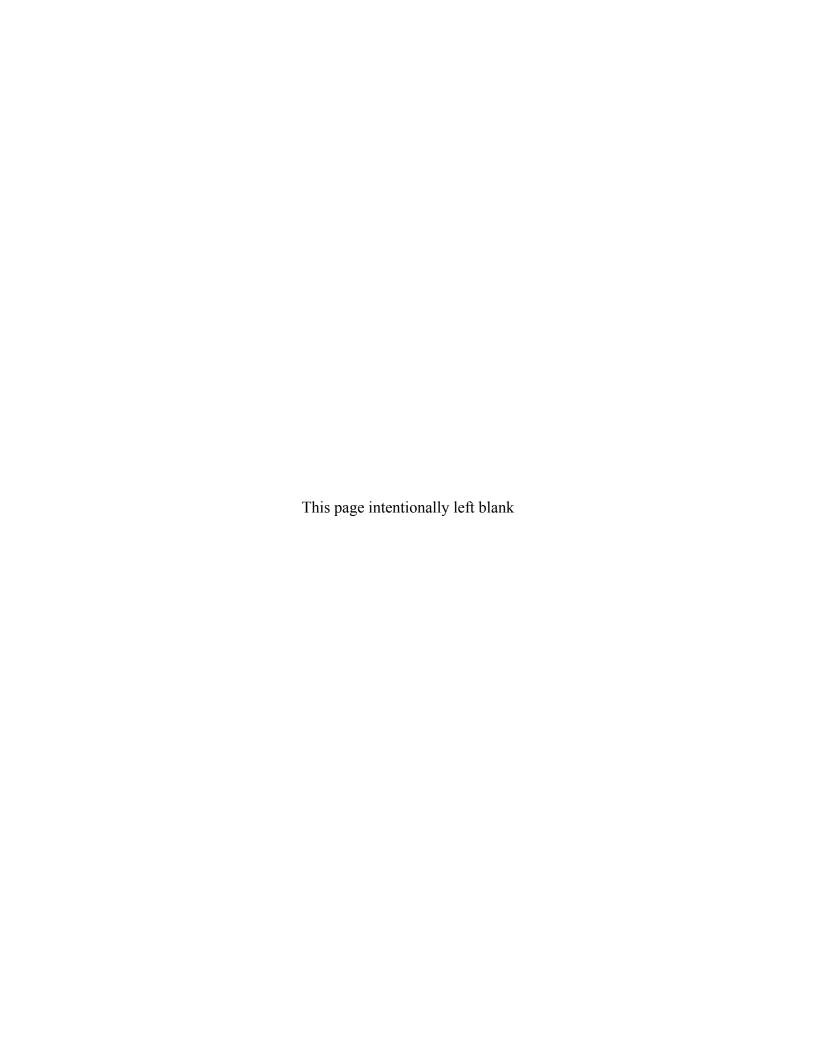

Plot 6. Manganese Concentrations in Groundwater, **Downgradient of the Former Mill Site (Pasture)**


Plot 7. Manganese Concentrations in Groundwater, Downgradient of the Former Mill Site (Golf Course and Residential Areas)


Plot 8. Manganese Concentrations in Groundwater, Downgradient of the Former Mill Site (West of Gunnison River)


Plot 9. Uranium Concentrations in Groundwater, Domestic Wells Downgradient of the Former Mill Site (West of Gunnison River)

Plot 10. Manganese Concentrations in Groundwater, Domestic Wells Downgradient of the Former Mill Site (West of Gunnison River)



Plot 11. Uranium Concentrations in Surface Water near the Gunnison Site

Plot 12. Manganese Concentrations in Surface Water near the Gunnison Site

Groundwater Quality Data by Parameter for Domestic Wells

GENERAL WATER QUALITY DATA BY PARAMETER (EQuIS205) FOR SITE GUN01, Gunnison Processing Site

REPORT DATE: 10/4/2018 4:21:14 PM

PARAMETER	LOCATION CODE/TYPE/SUBTYPE		SAMPLE DATE	SAMPLE DEPTH RANGE TYPE (FT BLS)		RESULT	UNITS QUALIFIE LAB/DA			QA	DETECTION LIMIT	UNCERTAINTY		
Manganese														
Manganese	0476	WL	DOM	7/3/2018	(T)F			0.00652	mg/L			#	0.0005	-
Manganese	0477	WL	DOM	7/3/2018	(T)F			0.00509	mg/L			#	0.0005	-
Manganese	0477	WL	DOM	7/3/2018	(T)D			0.00513	mg/L			#	0.0005	-
Manganese	0478	WL	DOM	4/18/2018	(N)F			1.42	mg/L	D			0.001	-
Manganese	0478	WL	DOM	4/18/2018	(N)D			1.42	mg/L	D			0.001	-
Manganese	0667	WL	DOM	4/18/2018	(N)F			0.00452	mg/L				0.0001	-
Manganese	0683	WL	DOM	7/3/2018	(T)F			0.00173	mg/L			#	0.0005	-
Oxidation Reduction Pot	ential							<u>'</u>					<u> </u>	
Oxidation Reduction Potential	0476	WL	DOM	7/3/2018	(N)F			218	mV			#	-	-
Oxidation Reduction Potential	0477	WL	DOM	7/3/2018	(N)F			244	mV			#	-	-
Oxidation Reduction Potential	0478	WL	DOM	4/18/2018	(N)F			181	mV			#	-	-
Oxidation Reduction Potential	0667	WL	DOM	4/18/2018	(N)F			205.3	mV			#	-	-
Oxidation Reduction Potential	0683	WL	DOM	7/3/2018	(N)F			201	mV			#	-	-
рН														
рН	0476	WL	DOM	7/3/2018	(N)F			7.27	s.u.			#	-	-
рН	0477	WL	DOM	7/3/2018	(N)F			6.92	s.u.			#	-	-
pH	0478	WL	DOM	4/18/2018	(N)F			7.59	s.u.			#	-	-
pH	0667	WL	DOM	4/18/2018	(N)F			6.94	s.u.			#	-	-
pH	0683	WL	DOM	7/3/2018	(N)F			7.75	s.u.			#	-	-
Specific Conductance								•						
Specific Conductance	0476	WL	DOM	7/3/2018	(N)F			233	umhos/cm			#	-	-
Specific Conductance	0477	WL	DOM	7/3/2018	(N)F			249	umhos/cm			#	-	-

GENERAL WATER QUALITY DATA BY PARAMETER (EQuIS205) FOR SITE GUN01, Gunnison Processing Site

REPORT DATE: 10/4/2018 4:21:15 PM

PARAMETER		LOCATION SAMPLE ODE/TYPE/SUBTYPE DATE		SAMPLE DEPTH RANGE TYPE (FT BLS)		RESULT UNITS		QUALIFIERS LAB/DATA		QA	DETECTION LIMIT	UNCERTAINTY		
Specific Conductance	0478	WL	DOM	4/18/2018	(N)F			286	umhos/cm			#	-	-
Specific Conductance	0667	WL	DOM	4/18/2018	(N)F			226	umhos/cm			#	-	-
Specific Conductance	0683	WL	DOM	7/3/2018	(N)F			270	umhos/cm			#	-	-
Temperature								<u>'</u>						
Temperature	0476	WL	DOM	7/3/2018	(N)F			16.3	С			#	-	-
Temperature	0477	WL	DOM	7/3/2018	(N)F			17.95	С			#	-	-
Temperature	0478	WL	DOM	4/18/2018	(N)F			13.06	С			#	-	-
Temperature	0667	WL	DOM	4/18/2018	(N)F			10.62	С			#	-	-
Temperature	0683	WL	DOM	7/3/2018	(N)F			11.3	С			#	-	-
Turbidity								•					<u>'</u>	
Turbidity	0476	WL	DOM	7/3/2018	(N)F			8.66	NTU			#	-	-
Turbidity	0477	WL	DOM	7/3/2018	(N)F			2.42	NTU			#	-	-
Turbidity	0478	WL	DOM	4/18/2018	(N)F			0.4	NTU			#	-	-
Turbidity	0667	WL	DOM	4/18/2018	(N)F			3	NTU			#	-	-
Turbidity	0683	WL	DOM	7/3/2018	(N)F			1.99	NTU			#	-	-
Uranium	_							•						
Uranium	0476	WL	DOM	7/3/2018	(T)F			0.00152	mg/L			#	0.00005	-
Uranium	0477	WL	DOM	7/3/2018	(T)F			0.00153	mg/L			#	0.00005	-
Uranium	0477	WL	DOM	7/3/2018	(T)D			0.00155	mg/L			#	0.00005	-
Uranium	0478	WL	DOM	4/18/2018	(N)F			0.00279	mg/L				0.00003	-
Uranium	0478	WL	DOM	4/18/2018	(N)D			0.00304	mg/L				0.00003	-
Uranium	0667	WL	DOM	4/18/2018	(N)F			0.00132	mg/L				0.00003	-
Uranium	0683	WL	DOM	7/3/2018	(T)F			0.00272	mg/L			#	0.00005	-

LOCATION TYPE:

WL WELL

GENERAL WATER QUALITY DATA BY PARAMETER (EQUIS205) FOR SITE GUN01, Gunnison Processing Site

REPORT DATE: 10/4/2018 4:21:15 PM

LOCATION SUBTYPES:

DOM Domestic Well

DATA QUALIFIERS:

F Low flow sampling method used.

G Possible grout contamination, pH > 9.

J Estimated Value.

L Less than 3 bore volumes purged prior to sampling.

N Tentatively identified compund (TIC).

Q Qualitative result due to sampling technique

R Unusable result.

U Parameter analyzed for but was not detected.

X Location is undefined.

LAB QUALIFIERS:

- * Replicate analysis not within control limits.
- + Correlation coefficient for MSA < 0.995.
- > Result above upper detection limit.
- A TIC is a suspected aldol-condensation product.
- B Inorganic: Result is between the IDL and CRDL. Organic & Radiochemistry: Analyte also found in method blank.
- C Pesticide result confirmed by GC-MS.
- D Analyte determined in diluted sample.
- E Inorganic: Estimate value because of interference, see case narrative. Organic: Analyte exceeded calibration range of the GC-MS.
- H Holding time expired, value suspect.
- I Increased detection limit due to required dilution.
- J Estimated Value.
- M GFAA duplicate injection precision not met.
- N Inorganic or radiochemical: Spike sample recovery not within control limits. Organic: Tentatively identified compund (TIC).
- P > 25% difference in detected pesticide or Aroclor concentrations between 2 columns.

GENERAL WATER QUALITY DATA BY PARAMETER (EQuIS205) FOR SITE GUN01, Gunnison Processing Site

REPORT DATE: 10/4/2018 4:21:15 PM

S Result determined by method of standard addition (MSA).

U Parameter analyzed for but was not detected.

W Post-digestion spike outside control limits while sample absorbance < 50% of analytical spike absorbance.

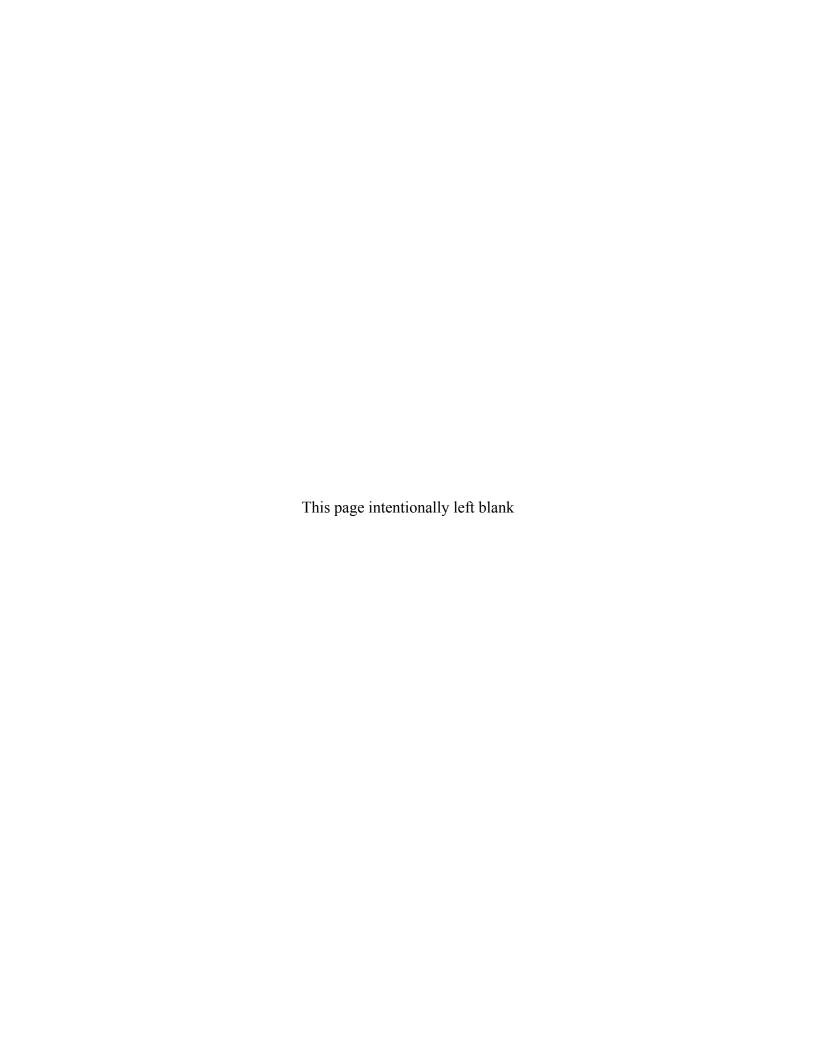
X Laboratory defined qualifier, see case narrative.

Laboratory defined qualifier, see case narrative.

Z Laboratory defined qualifier, see case narrative.

SAMPLE TYPES:

Fraction: Type Codes:


(T) Total (for metal concentrations)(D) Dissolved (for dissolved or filtered metal concentrations)

F-Field Sample R-Replicate FR-Field Sample with Replicates
D-Duplicate N-Not Known S-Split Sample

(N) Organic (or other) constituents for which neither total nor dissolved is applicable

QA QUALIFIER: # = validated according to Quality Assurance guidelines.

Surface Water Quality Data by Parameter

PARAMETER	LOCATION CODE	SAMPLE DATE	SAMPLE TYPE	RESULT	UNITS	QUALIFIERS LAB/DATA		QA	DETECT. LIMIT	UNCERTAINTY
Manganese										
Manganese	0248	4/17/2018	(T)F	0.119	mg/L			#	0.0001	-
Manganese	0250	4/18/2018	(T)F	0.0218	mg/L			#	0.0001	-
Manganese	0251	4/16/2018	(T)F	0.0244	mg/L			#	0.0001	-
Manganese	0777	4/18/2018	(T)F	0.193	mg/L	П		#	0.0001	-
Manganese	0780	4/17/2018	(T)F	0.0249	mg/L			#	0.0001	-
Manganese	0795	4/18/2018	(T)F	0.0292	mg/L			#	0.0001	-
Oxidation Reduction	on Potential									
Oxidation Reduction Potential	0248	4/17/2018	(N)F	132	mV			#	-	-
Oxidation Reduction Potential	0250	4/18/2018	(N)F	68.2	mV			#	-	-
Oxidation Reduction Potential	0251	4/16/2018	(N)F	108	mV			#	-	-
Oxidation Reduction Potential	0777	4/18/2018	(N)F	94	mV			#	-	-
Oxidation Reduction Potential	0780	4/17/2018	(N)F	76.3	mV			#	-	-
Oxidation Reduction Potential	0795	4/18/2018	(N)F	90.3	mV			#	-	-
pH										
рН	0248	4/17/2018	(N)F	8.28	s.u.			#	-	-
pH	0250	4/18/2018	(N)F	8.46	s.u.			#	-	-
рH	0251	4/16/2018	(N)F	8.86	s.u.			#	-	-
pН	0777	4/18/2018	(N)F	8.35	s.u.			#	-	-
рН	0780	4/17/2018	(N)F	8.42	s.u.			#	-	-
pН	0795	4/18/2018	(N)F	8.5	s.u.			#	-	-
Specific Conductar	nce									
Specific Conductance	0248	4/17/2018	(N)F	314	umhos/cm			#	-	-
Specific Conductance	0250	4/18/2018	(N)F	217	umhos/cm			#	-	-
Specific Conductance	0251	4/16/2018	(N)F	233	umhos/cm			#	-	-
Specific Conductance	0777	4/18/2018	(N)F	308	umhos/cm			#	-	-
Specific Conductance	0780	4/17/2018	(N)F		umhos/cm			#	-	-
Specific Conductance	0795	4/18/2018	(N)F	215	umhos/cm			#	-	-
Temperature										
Temperature	0248	4/17/2018	(N)F	6.13	С			#	-	-
Temperature	0250	4/18/2018	(N)F	4.3	С			#	-	-

SURFACE WATER QUALITY DATA BY PARAMETER (EQUIS800) FOR SITE GUN01, Gunnison Processing Site

REPORT DATE: 9/20/2018 10:25:38 AM

PARAMETER	LOCATION CODE	SAMPLE DATE	SAMPLE TYPE	RESULT	UNITS	QUALIFIERS LAB/DATA		QA	DETECT. LIMIT	UNCERTAINTY
Temperature	0251	4/16/2018	(N)F	10	С			#	-	-
Temperature	0777	4/18/2018	(N)F	9.23	С			#	-	-
Temperature	0780	4/17/2018	(N)F	10.29	С			#	-	-
Temperature	0795	4/18/2018	(N)F	5.69	С				-	-
Turbidity										
Turbidity	0248	4/17/2018	(N)F	9.21	NTU			#	-	-
Turbidity	0250	4/18/2018	(N)F	2.34	NTU			#	-	-
Turbidity	0251	4/16/2018	(N)F	4.11	NTU			#	-	-
Turbidity	0777	4/18/2018	(N)F	7.17	NTU			#	-	-
Turbidity	0780	4/17/2018	(N)F	6.69	NTU			#	-	-
Turbidity	0795	4/18/2018	(N)F	5.82	NTU			#	-	-
Uranium										
Uranium	0248	4/17/2018	(T)F	0.00525	mg/L			#	0.000025	-
Uranium	0250	4/18/2018	(T)F	0.000991	mg/L			#	0.000025	-
Uranium	0251	4/16/2018	(T)F	0.00103	mg/L			#	0.000025	-
Uranium	0777	4/18/2018	(T)F	0.00539	mg/L			#	0.000025	-
Uranium	0780	4/17/2018	(T)F	0.044	mg/L			#	0.000025	-
Uranium	0795	4/18/2018	(T)F	0.00111	mg/L			#	0.000025	-

DATA QUALIFIERS:

- F Low flow sampling method used.
- G Possible grout contamination, pH > 9.
- J Estimated Value.
- L Less than 3 bore volumes purged prior to sampling.
- N Tentatively identified compund (TIC).
- Q Qualitative result due to sampling technique
- R Unusable result.
- U Parameter analyzed for but was not detected.
- X Location is undefined.

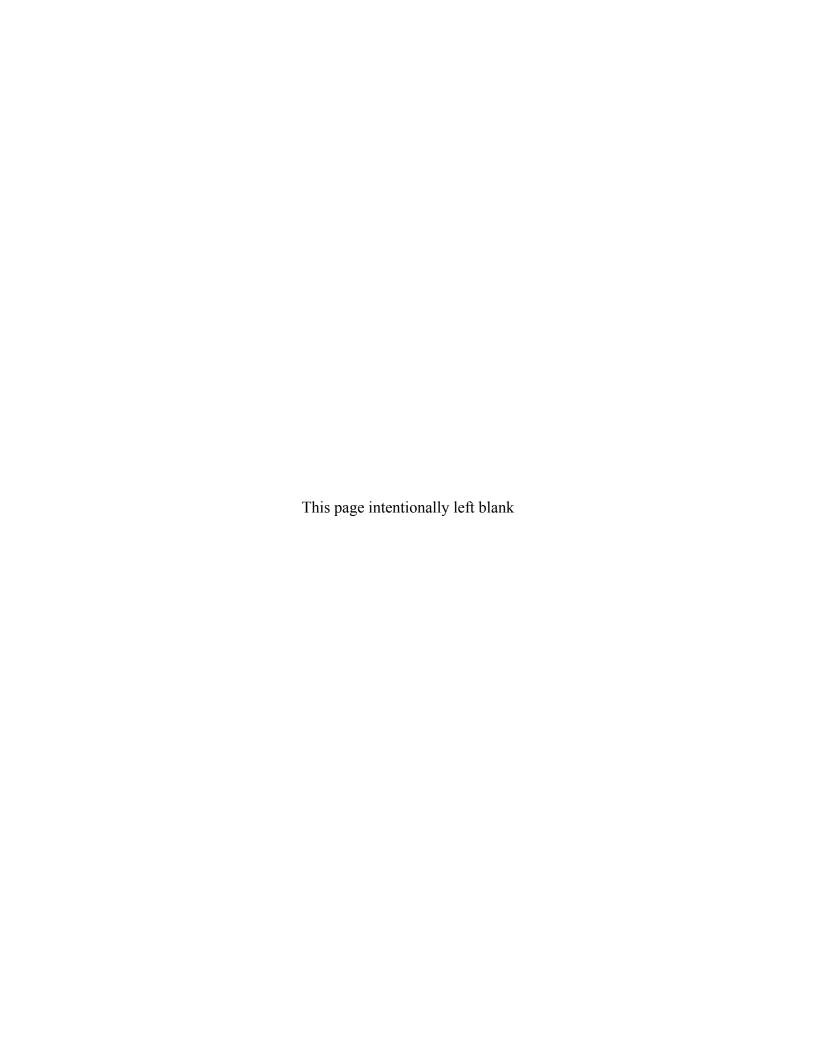
LAB QUALIFIERS:

- * Replicate analysis not within control limits.
- + Correlation coefficient for MSA < 0.995.
- > Result above upper detection limit.
- A TIC is a suspected aldol-condensation product.
- B Inorganic: Result is between the IDL and CRDL. Organic & Radiochemistry: Analyte also found in method blank.
- C Pesticide result confirmed by GC-MS.
- D Analyte determined in diluted sample.
- E Inorganic: Estimate value because of interference, see case narrative. Organic: Analyte exceeded calibration range of the GC-MS.
- H Holding time expired, value suspect.
- I Increased detection limit due to required dilution.
- J Estimated Value.

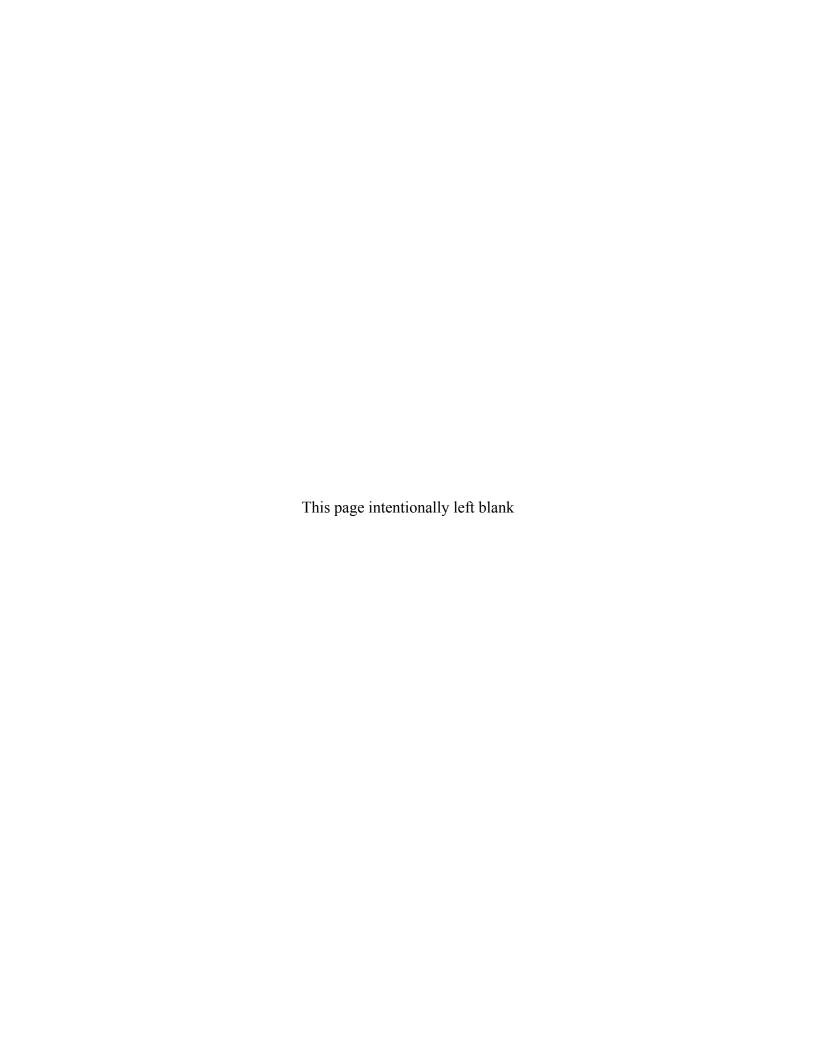
SURFACE WATER QUALITY DATA BY PARAMETER (EQUIS800) FOR SITE GUN01, Gunnison Processing Site

REPORT DATE: 9/20/2018 10:25:38 AM

- M GFAA duplicate injection precision not met.
- N Inorganic or radiochemical: Spike sample recovery not within control limits. Organic: Tentatively identified compund (TIC).
- P > 25% difference in detected pesticide or Aroclor concentrations between 2 columns.
- S Result determined by method of standard addition (MSA).
- U Parameter analyzed for but was not detected.
- W Post-digestion spike outside control limits while sample absorbance < 50% of analytical spike absorbance.
- X Laboratory defined qualifier, see case narrative.
- Y Laboratory defined qualifier, see case narrative.
- Z Laboratory defined qualifier, see case narrative.


SAMPLE TYPES:

- (T) Total (for metal concentrations)
- (D) Dissolved (for dissolved or filtered metal concentrations)
- (N) Organic (or other) constituents for which neither total nor dissolved is applicable


Type Codes: F-Field Sample R-Replicate FR-Field Sample with Replicates

D-Duplicate N-Not Known S-Split Sample

QA QUALIFIER: # = validated according to Quality Assurance guidelines.

Groundwater Quality Data by Parameter for DOE Monitoring Wells

REPORT DATE: 10/4/2018 4:15:10 PM

PARAMETER		CATION YPE/SUBTYPE	SAMPLE DATE	SAMPLE TYPE	DEPTH RANGE (FT BLS)	RESULT	UNITS	QUALIF LAB/D	QA	DETECTION LIMIT	UNCERTAINTY
Manganese											
Manganese	0002	WL	4/18/2018	(N)F		0.000171	mg/L	J		0.0001	-
Manganese	0005	WL	4/17/2018	(N)F		0.992	mg/L	D		0.001	-
Manganese	0006	WL	4/16/2018	(N)F		0.327	mg/L			0.0001	-
Manganese	0012R	WL	4/17/2018	(N)F		0.758	mg/L	D		0.001	-
Manganese	0013	WL	4/17/2018	(N)F		0.00252	mg/L			0.0001	-
Manganese	0062	WL	4/17/2018	(N)F		0.00168	mg/L			0.0001	-
Manganese	0063	WL	4/17/2018	(N)F		0.00412	mg/L			0.0001	-
Manganese	0064	WL	4/17/2018	(N)F		0.0279	mg/L			0.0001	-
Manganese	0065	WL	4/18/2018	(N)F		0.046	mg/L			0.0001	-
Manganese	0066	WL	4/18/2018	(N)F		0.00669	mg/L			0.0001	-
Manganese	0102	WL	4/18/2018	(N)F		0.0016	mg/L			0.0001	-
Manganese	0105	WL	4/17/2018	(N)F		2.71	mg/L	D		0.001	-
Manganese	0106	WL	4/16/2018	(N)F		3.28	mg/L	D		0.001	-
Manganese	0112	WL	4/17/2018	(N)F		3.58	mg/L	D		0.001	-
Manganese	0113	WL	4/17/2018	(N)F		1.96	mg/L	D		0.001	-
Manganese	0113	WL	4/17/2018	(N)D		2.24	mg/L	D		0.001	-
Manganese	0125	WL	4/17/2018	(N)F		0.0345	mg/L			0.0001	-
Manganese	0126	WL	4/17/2018	(N)F		0.00765	mg/L			0.0001	-
Manganese	0127	WL	4/17/2018	(N)F		0.0303	mg/L			0.0001	-
Manganese	0135	WL	4/16/2018	(N)F		2.54	mg/L	D		0.001	-
Manganese	0136	WL	4/16/2018	(N)F		2.76	mg/L	D		0.001	-
Manganese	0160	WL	4/18/2018	(N)F		0.00336	mg/L			0.0001	-
Manganese	0161	WL	4/18/2018	(N)F		0.0057	mg/L			0.0001	-
Manganese	0181	WL	4/16/2018	(N)F		0.298	mg/L			0.0001	-

REPORT DATE: 10/4/2018 4:15:10 PM

PARAMETER		CATION YPE/SUB	TYPE	SAMPLE DATE	SAMPLE TYPE	DEPTH I (FT B	RESULT	UNITS		IFIERS DATA	QA	DETECTION LIMIT	UNCERTAINTY
Manganese	0183	WL		4/16/2018	(N)F		0.000794	mg/L	J			0.0001	-
Manganese	0186	WL		4/17/2018	(N)F		0.000268	mg/L	J			0.0001	-
Manganese	0187	WL		4/17/2018	(N)F		0.753	mg/L	D			0.001	-
Manganese	0188	WL		4/18/2018	(N)F		0.00119	mg/L				0.0001	-
Manganese	0189	WL		4/18/2018	(N)F		0.93	mg/L	D			0.001	-
Oxidation Reduction Po	tential											·	
Oxidation Reduction Potential	0002	WL		4/18/2018	(N)F		176.3	mV		F	#	-	-
Oxidation Reduction Potential	0005	WL		4/17/2018	(N)F		85.2	mV		F	#	-	-
Oxidation Reduction Potential	0006	WL		4/16/2018	(N)F		124	mV		F	#	-	-
Oxidation Reduction Potential	0012R	WL		4/17/2018	(N)F		80.1	mV		F	#	-	-
Oxidation Reduction Potential	0013	WL		4/17/2018	(N)F		77.3	mV		F	#	-	-
Oxidation Reduction Potential	0062	WL		4/17/2018	(N)F		139.3	mV		F	#	-	-
Oxidation Reduction Potential	0063	WL		4/17/2018	(N)F		149.4	mV		F	#	-	-
Oxidation Reduction Potential	0064	WL		4/17/2018	(N)F		126.4	mV		F	#	-	-
Oxidation Reduction Potential	0065	WL		4/18/2018	(N)F		94.1	mV		F	#	-	-
Oxidation Reduction Potential	0066	WL		4/18/2018	(N)F		96.6	mV		F	#	-	-
Oxidation Reduction Potential	0102	WL		4/18/2018	(N)F		162	mV		F	#	-	-
Oxidation Reduction Potential	0105	WL		4/17/2018	(N)F		76.7	mV		F	#	-	-
Oxidation Reduction Potential	0106	WL		4/16/2018	(N)F		106	mV		F	#	-	-
Oxidation Reduction Potential	0112	WL		4/17/2018	(N)F		81.3	mV		F	#	-	-

REPORT DATE: 10/4/2018 4:15:11 PM

PARAMETER		OCATION TYPE/SUBT	YPE	SAMPLE DATE	SAMPLE TYPE	DEPTH I	RESULT	UNITS	IFIERS DATA	QA	DETECTION LIMIT	UNCERTAINTY
Oxidation Reduction Potential	0113	WL		4/17/2018	(N)F	-	75.1	mV	F	#	-	-
Oxidation Reduction Potential	0125	WL		4/17/2018	(N)F		69.2	mV	F	#	-	-
Oxidation Reduction Potential	0126	WL		4/17/2018	(N)F		70.9	mV	F	#	-	-
Oxidation Reduction Potential	0127	WL		4/17/2018	(N)F		64.3	mV	F	#	-	-
Oxidation Reduction Potential	0135	WL		4/16/2018	(N)F		143	mV	F	#	-	-
Oxidation Reduction Potential	0136	WL		4/16/2018	(N)F		103	mV	F	#	-	-
Oxidation Reduction Potential	0160	WL		4/18/2018	(N)F		91.1	mV	F	#	-	-
Oxidation Reduction Potential	0161	WL		4/18/2018	(N)F		91	mV	F	#	-	-
Oxidation Reduction Potential	0181	WL		4/16/2018	(N)F		171	mV	F	#	-	-
Oxidation Reduction Potential	0183	WL		4/16/2018	(N)F		185	mV	F	#	-	-
Oxidation Reduction Potential	0186	WL		4/17/2018	(N)F		66.4	mV	F	#	-	-
Oxidation Reduction Potential	0187	WL		4/17/2018	(N)F		64	mV	F	#	-	-
Oxidation Reduction Potential	0188	WL		4/18/2018	(N)F		142.3	mV	F	#	-	-
Oxidation Reduction Potential	0189	WL		4/18/2018	(N)F		103.3	mV	FQ	#	-	-
Percent Dissolved Oxyge	n											
Percent Dissolved Oxygen	0063	WL		4/17/2018	(N)F		41.8	%		#	-	-
рН												
рН	0002	WL		4/18/2018	(N)F		7.41	s.u.	F	#	-	-
рН	0005	WL		4/17/2018	(N)F		7.14	s.u.	F	#	-	-
рН	0006	WL		4/16/2018	(N)F		6.91	s.u.	F	#	-	-

REPORT DATE: 10/4/2018 4:15:11 PM

PARAMETER		CATION YPE/SUBTYI	SAMPLE PE DATE	SAMPLE TYPE	DEPTH RANGE (FT BLS)	RESULT	UNITS	QUALI LAB/	IFIERS DATA	QA	DETECTION LIMIT	UNCERTAINTY
рН	0012R	WL	4/17/2018	(N)F		7.04	s.u.		F	#	-	-
рН	0013	WL	4/17/2018	(N)F		7.25	s.u.		F	#	-	-
pH	0062	WL	4/17/2018	(N)F		7.59	s.u.		F	#	-	-
рН	0063	WL	4/17/2018	(N)F		7.51	s.u.		F	#	-	-
рН	0064	WL	4/17/2018	(N)F		7.4	s.u.		F	#	-	-
рН	0065	WL	4/18/2018	(N)F		7.52	s.u.		F	#	-	-
рН	0066	WL	4/18/2018	(N)F		7.37	s.u.		F	#	-	-
рН	0102	WL	4/18/2018	(N)F		7.51	s.u.		F	#	-	-
рH	0105	WL	4/17/2018	(N)F		6.93	s.u.		F	#	-	-
рН	0106	WL	4/16/2018	(N)F		6.08	s.u.		F	#	-	-
рН	0112	WL	4/17/2018	(N)F		6.24	s.u.		F	#	-	-
pH	0113	WL	4/17/2018	(N)F		7.05	s.u.		F	#	-	-
рН	0125	WL	4/17/2018	(N)F		7.34	s.u.		F	#	-	-
рН	0126	WL	4/17/2018	(N)F		7.27	s.u.		F	#	-	-
рH	0127	WL	4/17/2018	(N)F		7.53	s.u.		F	#	-	-
рН	0135	WL	4/16/2018	(N)F		6.82	s.u.		F	#	-	-
рH	0136	WL	4/16/2018	(N)F		6.8	s.u.		F	#	-	-
pH	0160	WL	4/18/2018	(N)F		6.72	s.u.		F	#	-	-
pH	0161	WL	4/18/2018	(N)F		6.77	s.u.		F	#	-	-
рH	0181	WL	4/16/2018	(N)F		6.9	s.u.		F	#	-	-
рН	0183	WL	4/16/2018	(N)F		6.68	s.u.		F	#	-	-
рН	0186	WL	4/17/2018	(N)F		7.62	s.u.		F	#	-	-
рН	0187	WL	4/17/2018	(N)F		6.54	s.u.		F	#	-	-
рН	0188	WL	4/18/2018	(N)F		7.3	s.u.		F	#	-	-
рН	0189	WL	4/18/2018	(N)F		6.44	s.u.		FQ	#	-	-

REPORT DATE: 10/4/2018 4:15:12 PM

PARAMETER		CATION YPE/SUBTYPE	SAMPLE DATE	SAMPLE TYPE	DEPTH RANGE (FT BLS)	RESULT	UNITS	QUALIFIERS LAB/DATA	QA	DETECTION LIMIT	UNCERTAINTY
Specific Conductance											
Specific Conductance	0002	WL	4/18/2018	(N)F		572	umhos/cm	F	#	-	-
Specific Conductance	0005	WL	4/17/2018	(N)F		582	umhos/cm	F	#	-	-
Specific Conductance	0006	WL	4/16/2018	(N)F		2272	umhos/cm	F	#	-	-
Specific Conductance	0012R	WL	4/17/2018	(N)F		905	umhos/cm	F	#	-	-
Specific Conductance	0013	WL	4/17/2018	(N)F		657	umhos/cm	F	#	-	-
Specific Conductance	0062	WL	4/17/2018	(N)F		518	umhos/cm	F	#	-	-
Specific Conductance	0063	WL	4/17/2018	(N)F		572	umhos/cm	F	#	-	-
Specific Conductance	0064	WL	4/17/2018	(N)F		498	umhos/cm	F	#	-	-
Specific Conductance	0065	WL	4/18/2018	(N)F		647	umhos/cm	F	#	-	-
Specific Conductance	0066	WL	4/18/2018	(N)F		655	umhos/cm	F	#	-	-
Specific Conductance	0102	WL	4/18/2018	(N)F		558	umhos/cm	F	#	-	-
Specific Conductance	0105	WL	4/17/2018	(N)F		505	umhos/cm	F	#	-	-
Specific Conductance	0106	WL	4/16/2018	(N)F		1709	umhos/cm	F	#	-	-
Specific Conductance	0112	WL	4/17/2018	(N)F		880	umhos/cm	F	#	-	-
Specific Conductance	0113	WL	4/17/2018	(N)F		701	umhos/cm	F	#	-	-
Specific Conductance	0125	WL	4/17/2018	(N)F		508	umhos/cm	F	#	-	-
Specific Conductance	0126	WL	4/17/2018	(N)F		659	umhos/cm	F	#	-	-
Specific Conductance	0127	WL	4/17/2018	(N)F		775	umhos/cm	F	#	-	-
Specific Conductance	0135	WL	4/16/2018	(N)F		485	umhos/cm	F	#	-	-
Specific Conductance	0136	WL	4/16/2018	(N)F		492	umhos/cm	F	#	-	-
Specific Conductance	0160	WL	4/18/2018	(N)F		911	umhos/cm	F	#	-	-
Specific Conductance	0161	WL	4/18/2018	(N)F		877	umhos/cm	F	#	-	-
Specific Conductance	0181	WL	4/16/2018	(N)F		510	umhos/cm	F	#	-	-
Specific Conductance	0183	WL	4/16/2018	(N)F		1111	umhos/cm	F	#		-

REPORT DATE: 10/4/2018 4:15:12 PM

PARAMETER		CATION TYPE/SUB	TYPE	SAMPLE DATE	SAMPLE TYPE	DEPTH I	RESULT	UNITS	IFIERS 'DATA	QA	DETECTION LIMIT	UNCERTAINTY
Specific Conductance	0186	WL		4/17/2018	(N)F		692	umhos/cm	F	#	-	-
Specific Conductance	0187	WL		4/17/2018	(N)F		1254	umhos/cm	F	#	-	-
Specific Conductance	0188	WL		4/18/2018	(N)F		666	umhos/cm	F	#	-	-
Specific Conductance	0189	WL		4/18/2018	(N)F		2150	umhos/cm	FQ	#	-	-
Temperature											·	
Temperature	0002	WL		4/18/2018	(N)F		6.59	С	F	#	-	-
Temperature	0005	WL		4/17/2018	(N)F		5.18	С	F	#	-	-
Temperature	0006	WL		4/16/2018	(N)F		6.68	С	F	#	-	-
Temperature	0012R	WL		4/17/2018	(N)F		8.09	С	F	#	-	-
Temperature	0013	WL		4/17/2018	(N)F		6.85	С	F	#	-	-
Temperature	0062	WL		4/17/2018	(N)F		7.11	С	F	#	-	-
Temperature	0063	WL		4/17/2018	(N)F		7.35	С	F	#	-	-
Temperature	0064	WL		4/17/2018	(N)F		7.15	С	F	#	-	-
Temperature	0065	WL		4/18/2018	(N)F		8.38	С	F	#	-	-
Temperature	0066	WL		4/18/2018	(N)F		8.44	С	F	#	-	-
Temperature	0102	WL		4/18/2018	(N)F		8.13	С	F	#	-	-
Temperature	0105	WL		4/17/2018	(N)F		6.96	С	F	#	-	-
Temperature	0106	WL		4/16/2018	(N)F		8.86	С	F	#	-	-
Temperature	0112	WL		4/17/2018	(N)F		9.23	С	F	#	-	-
Temperature	0113	WL		4/17/2018	(N)F		8.81	С	F	#	-	-
Temperature	0125	WL		4/17/2018	(N)F		6.71	С	F	#	-	-
Temperature	0126	WL		4/17/2018	(N)F		7.58	С	F	#	-	-
Temperature	0127	WL		4/17/2018	(N)F		7.51	С	F	#	-	-
Temperature	0135	WL		4/16/2018	(N)F		5.8	С	F	#	-	-
Temperature	0136	WL		4/16/2018	(N)F		5.04	С	F	#	-	-

REPORT DATE: 10/4/2018 4:15:13 PM

PARAMETER		CATION YPE/SUB	TYPE	SAMPLE DATE	SAMPLE TYPE	DEPTH I	RESULT	UNITS	IFIERS DATA	QA	DETECTION LIMIT	UNCERTAINTY
Temperature	0160	WL		4/18/2018	(N)F		6.82	С	F	#	-	-
Temperature	0161	WL		4/18/2018	(N)F		7.3	С	F	#	-	-
Temperature	0181	WL		4/16/2018	(N)F		6.18	С	F	#	-	-
Temperature	0183	WL		4/16/2018	(N)F		8.03	С	F	#	-	-
Temperature	0186	WL		4/17/2018	(N)F		6.47	С	F	#	-	-
Temperature	0187	WL		4/17/2018	(N)F		6.7	С	F	#	-	-
Temperature	0188	WL		4/18/2018	(N)F		5.86	С	F	#	-	-
Temperature	0189	WL		4/18/2018	(N)F		4.67	С	FQ	#	-	-
Turbidity							<u> </u>				·	
Turbidity	0002	WL		4/18/2018	(N)F		0.56	NTU	F	#	-	-
Turbidity	0005	WL		4/17/2018	(N)F		8.21	NTU	F	#	-	-
Turbidity	0006	WL		4/16/2018	(N)F		3.46	NTU	F	#	-	-
Turbidity	0012R	WL		4/17/2018	(N)F		9.94	NTU	F	#	-	-
Turbidity	0013	WL		4/17/2018	(N)F		2.08	NTU	F	#	-	-
Turbidity	0062	WL		4/17/2018	(N)F		2.93	NTU	F	#	-	-
Turbidity	0063	WL		4/17/2018	(N)F		1.56	NTU	F	#	-	-
Turbidity	0064	WL		4/17/2018	(N)F		5.38	NTU	F	#	-	-
Turbidity	0065	WL		4/18/2018	(N)F		2.45	NTU	F	#	-	-
Turbidity	0066	WL		4/18/2018	(N)F		0.87	NTU	F	#	-	-
Turbidity	0102	WL		4/18/2018	(N)F		0.44	NTU	F	#	-	-
Turbidity	0105	WL		4/17/2018	(N)F		2.22	NTU	F	#	-	-
Turbidity	0106	WL		4/16/2018	(N)F		2.52	NTU	F	#	-	-
Turbidity	0112	WL		4/17/2018	(N)F		6.63	NTU	F	#	-	-
Turbidity	0113	WL		4/17/2018	(N)F		2.07	NTU	F	#	-	-
Turbidity	0125	WL		4/17/2018	(N)F		1.36	NTU	F	#	-	-

REPORT DATE: 10/4/2018 4:15:13 PM

PARAMETER		CATION YPE/SUB	ГҮРЕ	SAMPLE DATE	SAMPLE TYPE	DEPTH R (FT BL	RESULT	UNITS		IFIERS DATA	QA	DETECTION LIMIT	UNCERTAINTY
Turbidity	0126	WL		4/17/2018	(N)F		1.02	NTU		F	#	-	-
Turbidity	0127	WL		4/17/2018	(N)F		1.94	NTU		F	#	-	-
Turbidity	0135	WL		4/16/2018	(N)F		9.28	NTU		F	#	-	-
Turbidity	0136	WL		4/16/2018	(N)F		3.03	NTU		F	#	-	-
Turbidity	0160	WL		4/18/2018	(N)F		1.56	NTU		F	#	-	-
Turbidity	0161	WL		4/18/2018	(N)F		7.83	NTU		F	#	-	-
Turbidity	0181	WL		4/16/2018	(N)F		1.28	NTU		F	#	-	-
Turbidity	0183	WL		4/16/2018	(N)F		1.91	NTU		F	#	-	-
Turbidity	0186	WL		4/17/2018	(N)F		1.81	NTU		F	#	-	-
Turbidity	0187	WL		4/17/2018	(N)F		1.31	NTU		F	#	-	-
Turbidity	0188	WL		4/18/2018	(N)F		0.38	NTU		F	#	-	-
Turbidity	0189	WL		4/18/2018	(N)F		4.19	NTU		FQ	#	-	-
Uranium							•						
Uranium	0002	WL		4/18/2018	(N)F		0.00258	mg/L				0.00003	-
Uranium	0005	WL		4/17/2018	(N)F		0.0445	mg/L	D			0.00025	-
Uranium	0006	WL		4/16/2018	(N)F		0.641	mg/L	D			0.00025	-
Uranium	0012R	WL		4/17/2018	(N)F		0.173	mg/L	D			0.00025	-
Uranium	0013	WL		4/17/2018	(N)F		0.0542	mg/L				0.00003	-
Uranium	0062	WL		4/17/2018	(N)F		0.00688	mg/L				0.00003	-
Uranium	0063	WL		4/17/2018	(N)F		0.0152	mg/L				0.00003	-
Uranium	0064	WL		4/17/2018	(N)F		0.0102	mg/L				0.00003	-
Uranium	0065	WL		4/18/2018	(N)F		0.0198	mg/L				0.00003	-
Uranium	0066	WL		4/18/2018	(N)F		0.0198	mg/L		\Box		0.00003	-
Uranium	0102	WL		4/18/2018	(N)F		0.00353	mg/L		\Box		0.00003	-
Uranium	0105	WL		4/17/2018	(N)F		0.0116	mg/L		\Box		0.00003	-

REPORT DATE: 10/4/2018 4:15:13 PM

PARAMETER	LOC CODE/TY	CATION PE/SUB	TYPE	SAMPLE DATE	SAMPLE TYPE	DEPTH I	RESULT	UNITS	QUALI LAB/	FIERS DATA	QA	DETECTION LIMIT	UNCERTAINTY
Uranium	0106	WL		4/16/2018	(N)F		0.073	mg/L	D			0.00025	-
Uranium	0112	WL		4/17/2018	(N)F		0.062	mg/L				0.00003	-
Uranium	0113	WL		4/17/2018	(N)F		0.137	mg/L	D			0.00025	-
Uranium	0113	WL		4/17/2018	(N)D		0.154	mg/L	D			0.00025	-
Uranium	0125	WL		4/17/2018	(N)F		0.00901	mg/L				0.00003	-
Uranium	0126	WL		4/17/2018	(N)F		0.0102	mg/L				0.00003	-
Uranium	0127	WL		4/17/2018	(N)F		0.0137	mg/L				0.00003	-
Uranium	0135	WL		4/16/2018	(N)F		0.00278	mg/L				0.00003	-
Uranium	0136	WL		4/16/2018	(N)F		0.00293	mg/L				0.00003	-
Uranium	0160	WL		4/18/2018	(N)F		0.0275	mg/L				0.00003	-
Uranium	0161	WL		4/18/2018	(N)F		0.021	mg/L				0.00003	-
Uranium	0181	WL		4/16/2018	(N)F		0.00756	mg/L				0.00003	-
Uranium	0183	WL		4/16/2018	(N)F		0.046	mg/L				0.00003	-
Uranium	0186	WL		4/17/2018	(N)F		0.0159	mg/L				0.00003	-
Uranium	0187	WL		4/17/2018	(N)F		0.0299	mg/L				0.00003	-
Uranium	0188	WL		4/18/2018	(N)F		0.0223	mg/L				0.00003	-
Uranium	0189	WL		4/18/2018	(N)F		0.0161	mg/L				0.00003	-

LOCATION TYPE:

WL WELL

LOCATION SUBTYPES:

DATA QUALIFIERS:

F Low flow sampling method used.

G Possible grout contamination, pH > 9.

J Estimated Value.

Less than 3 bore volumes purged prior to sampling.

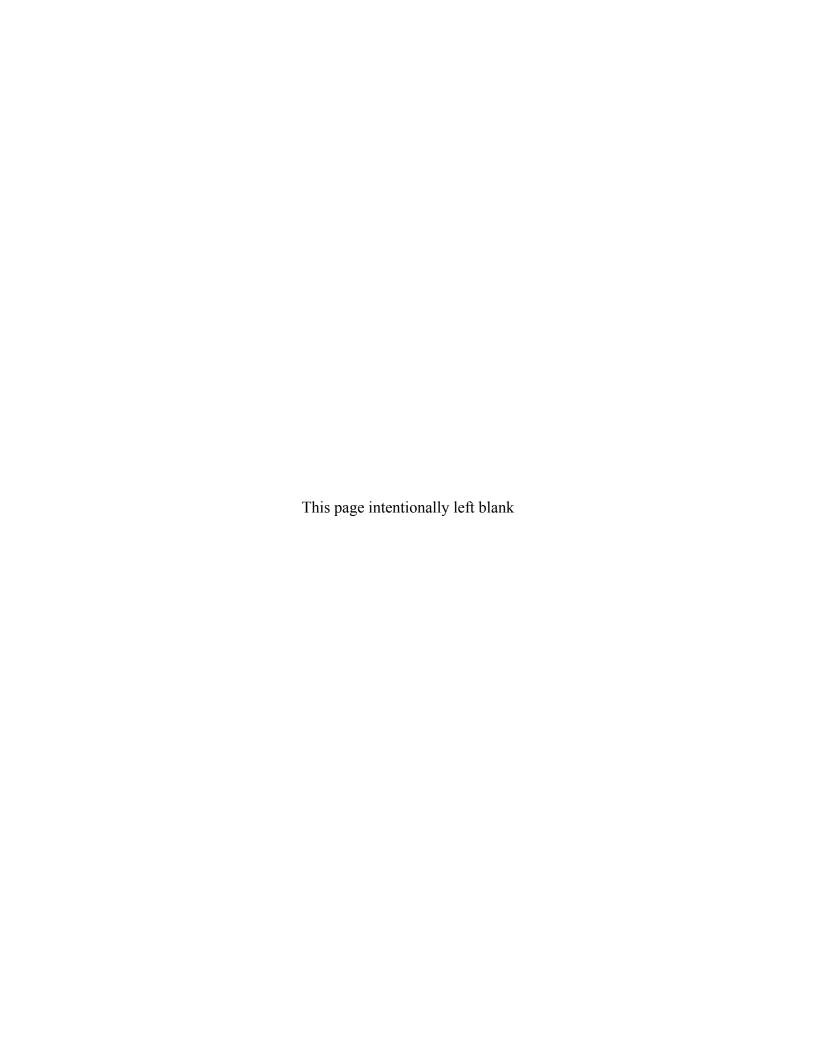
REPORT DATE: 10/4/2018 4:15:13 PM

N	Tentatively identified compand (TIC)
	Tentatively identified compund (TIC).
Q	Qualitative result due to sampling technique
R	Unusable result.
U	Parameter analyzed for but was not detected.
X	Location is undefined.
LAB QUALIFIERS:	
*	Replicate analysis not within control limits.
+	Correlation coefficient for MSA < 0.995.
>	Result above upper detection limit.
Α	TIC is a suspected aldol-condensation product.
В	Inorganic: Result is between the IDL and CRDL. Organic & Radiochemistry: Analyte also found in method blank.
С	Pesticide result confirmed by GC-MS.
D	Analyte determined in diluted sample.
Е	Inorganic: Estimate value because of interference, see case narrative. Organic: Analyte exceeded calibration range of the GC-MS.
Н	Holding time expired, value suspect.
I	Increased detection limit due to required dilution.
J	Estimated Value.
М	GFAA duplicate injection precision not met.
N	Inorganic or radiochemical: Spike sample recovery not within control limits. Organic: Tentatively identified compund (TIC).
Р	> 25% difference in detected pesticide or Aroclor concentrations between 2 columns.
S	Result determined by method of standard addition (MSA).
U	Parameter analyzed for but was not detected.
W	Post-digestion spike outside control limits while sample absorbance < 50% of analytical spike absorbance.
X	Laboratory defined qualifier, see case narrative.
Υ	Laboratory defined qualifier, see case narrative.
Z	Laboratory defined qualifier, see case narrative.

REPORT DATE: 10/4/2018 4:15:13 PM

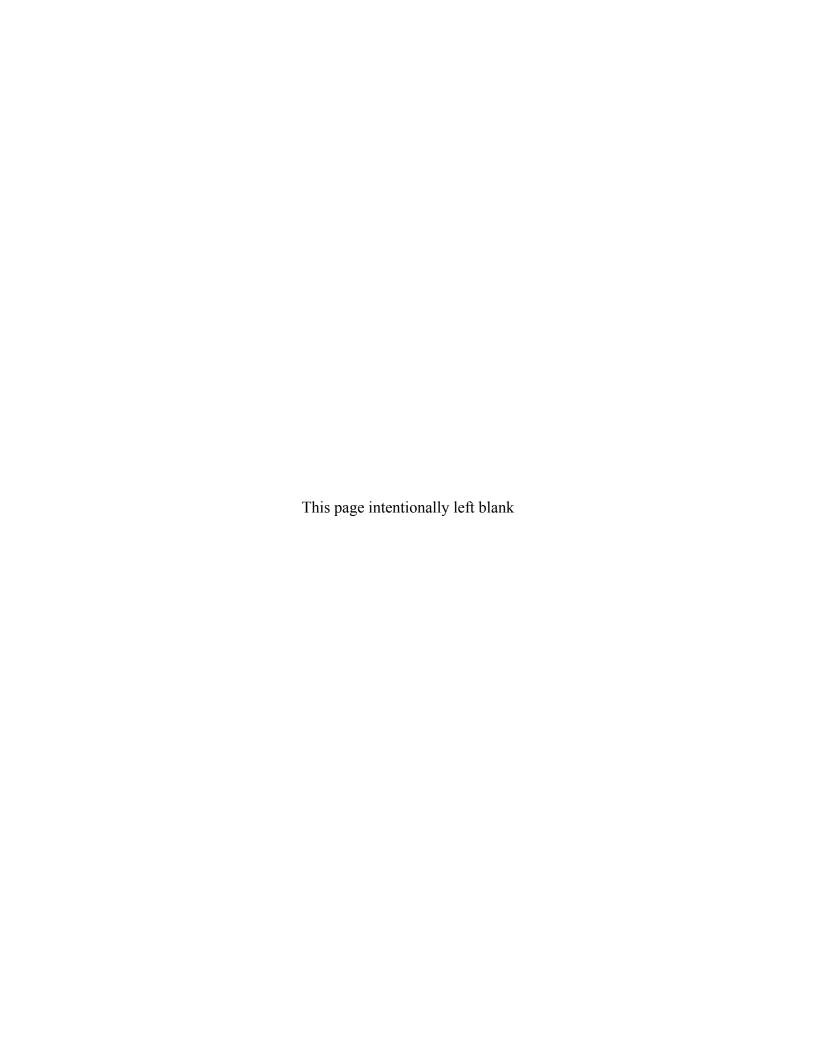
SAMPLE TYPES:

Fraction:


(T) Total (for metal concentrations)(D) Dissolved (for dissolved or filtered metal concentrations)

(N) Organic (or other) constituents for which neither total nor dissolved is applicable

Type Codes:


F-Field Sample R-Replicate FR-Field Sample D-Duplicate N-Not Known S-Split Sample FR-Field Sample with Replicates

QA QUALIFIER: # = validated according to Quality Assurance guidelines.

Attachment 5

Water Level Data

STATIC WATER LEVELS (EQuIS700) FOR SITE GUN01, Gunnison Processing Site

REPORT DATE: 9/20/2018 10:43:14 AM

LOCATION CODE	MEASUREMENT	TOP OF CASING ELEVATION	DEPTH FROM TOP OF CASING	WATER ELEVATION	WATER LEVEL
	DATE/TIME	(FT)	(FT)	(FT)	FLAG
0002	2018-04-18 08:20:00	7646.75	6.36	7640.39	
0005	2018-04-17 15:30:00	7644.66	6.22	7638.44	
0006	2018-04-16 16:45:00	7647.23	11.45	7635.78	
0012R	2018-04-17 14:10:00	7645.95	12.2	7633.75	
0013	2018-04-17 13:17:00	7643.75	10.49	7633.26	
0062	2018-04-17 08:20:00	7630.61	5.18	7625.43	
0063	2018-04-17 07:55:00	7630.34	6.59	7623.75	
0064	2018-04-17 09:15:00	7620.76	5.84	7614.92	
0065	2018-04-18 13:44:00	7610.27	2.1	7608.17	
0066	2018-04-18 12:48:00	7606.22	2.55	7603.67	
0102	2018-04-18 08:40:00	7647.3	6.9	7640.4	
0105	2018-04-17 15:45:00	7646.11	8.45	7637.66	
0106	2018-04-16 17:20:00	7647.22	11.52	7635.7	
0112	2018-04-17 14:46:00	7645.74	12.49	7633.25	
0113	2018-04-17 12:55:00	7643.83	10.82	7633.01	
0125	2018-04-17 10:30:00	7633.52	2.92	7630.6	
0126	2018-04-17 10:10:00	7634.14	4.89	7629.25	
0127	2018-04-17 09:50:00	7634.64	6.2	7628.44	
0135	2018-04-16 15:25:00	7627.03	3.46	7623.57	
0136	2018-04-16 15:50:00	7626.24	2.57	7623.67	
0160	2018-04-18 11:41:00	7604.39	5.7	7598.69	
0161	2018-04-18 11:48:00	7605.63	7.12	7598.51	
0181	2018-04-16 14:40:00	7616.38	2.43	7613.95	
0183	2018-04-16 14:35:00	7616.27	4	7612.27	
0186	2018-04-17 14:19:00	7627.21	5.42	7621.79	
0187	2018-04-17 16:55:00	7625.91	4.7	7621.21	
0188	2018-04-18 10:15:00	7613.65	6.13	7607.52	
0189	2018-04-18 10:20:00	7613.56	6.41	7607.15	

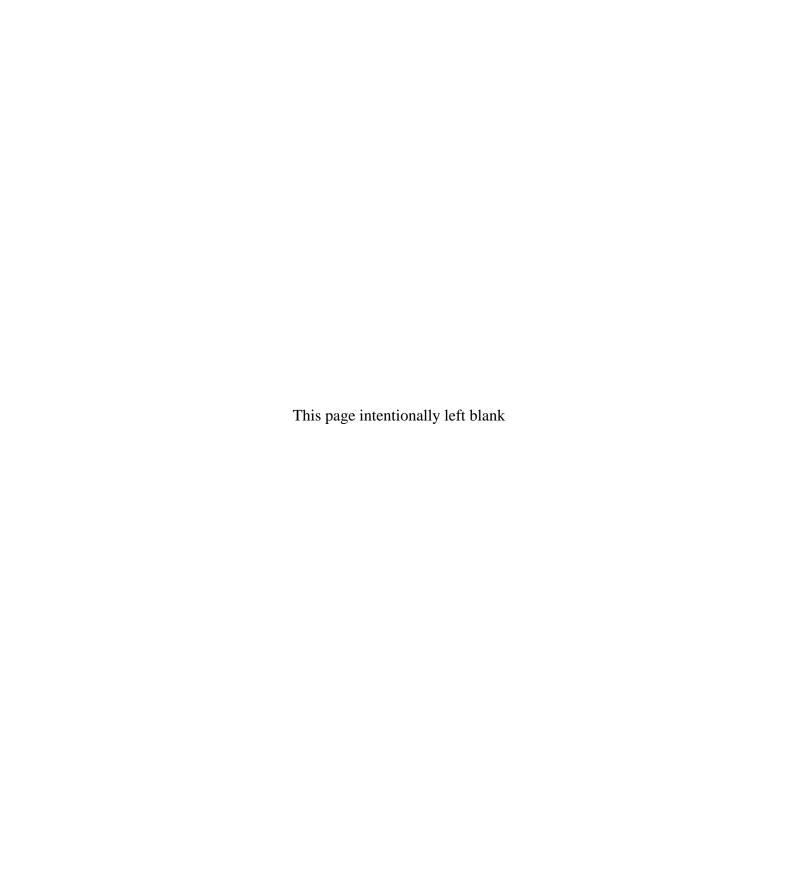
FLOW CODES:	В	BACKGROUND	С	CROSS GRADIENT	D	DOWN GRADIENT
	F	OFF-SITE	N	UNKNOWN	0	ON-SITE

U UPGRADIENT

WATER LEVEL FLAGS: B Water level is below the D Dry

top of the pump

STATIC WATER LEVELS (EQuIS700) FOR SITE GUN01, Gunnison Processing Site


REPORT DATE: 9/20/2018 10:43:14 AM

E Water elevation may not F Flowing be comparable to other water elevations at this site

I Inaccessible

Attachment 6

Uranium Trend Assessment

Uranium Trend Assessment (Mann-Kendall trend analysis)

Location	Number of Samples	p Value	2018 Result ^a (mg/L)	Natural Flushing Trends ^b
0005	13	0.0667	0.0045	○ →
0105	14	0.0318	0.0116	○ ↓
0006	24	0.0172	0.641	○ ↓
0106	24	0.0000	0.073	◆
0012/0012R	19	0.0000	0.173	○ ↓
0112	19	0.0001	0.062	◆
0013	23	0.5971	0.0542	○ →
0113	24	0.3581	0.154	○ →
0125	20	0.0906	0.0090	O →
0126	24	0.0049	0.0102	○ ↓
0127	24	0.0000	0.0137	○ ↓
0135	14	0.0018	0.0028	○
0136	20	0.0047	0.0029	○ ↓
0064	14	0.0870	0.0102	○ →
0062	14	0.1505	0.0069	○ →
0063	14	0.0077	0.0152	○
0181	18	0.0000	0.0076	○
0183	21	0.3469	0.046	○ →
0065	14	0.0001	0.0198	○
0066	14	0.0681	0.0198	O →
0186	20	0.0001	0.0159	•
0187	13	0.5815	0.0299	O →
0188	24	0.0043	0.0223	○ ↓
0189	24	0.3491	0.0161	→
0160	22	0.0000	0.0275	○ ↑
0161	22	0.0000	0.021	○ ↑

^a The MCL value of 0.044 mg/L is from 40 CFR 192 ^a **Bold Italic** = MCL value exceeded

Data from 1997 to 2018 using Mann-Kendall trend analysis

→ = upward trend or standard was exceeded in 2018

→ = no trend

p Value = Denotes the strength (statistical significance) of the trend (the closer to 0, the stronger the trend)

- Progressing: Uranium concentrations are below the MCL with a downward or no trend or uranium concentrations are above the MCL but less than 0.2 mg/L with a downward trend.
- Neutral: Current uranium concentrations are greater than 0.2 mg/L with a downward trend or current uranium concentrations are below the MCL with an upward trend.
- Regressing: Current uranium concentrations are above the standard with an upward or no trend.