
Data Validation Package

April 2009
Groundwater and Surface Water
Sampling at the Old and New Rifle,
Colorado, Processing Sites

June 2009

Contents

Sampling Event Summary	1
Old and New Rifle, Colorado, Processing Sites Sample Location Map	
Data Assessment Summary	
Water Sampling Field Activities Verification Checklist	
Laboratory Performance Assessment	
Sampling Quality Control Assessment	22
Certification	

Attachment 1—Assessment of Anomalous Data

Potential Outliers Report Anomalous Data Review Checksheet

Attachment 2—Data Presentation

Old Rifle Groundwater Quality Data
Old Rifle Surface Water Quality Data
New Rifle Groundwater Quality Data
New Rifle Surface Water Quality Data
Requipment Blank Data
Static Water Level Data
Old Rifle Hydrograph
New Rifle Hydrograph
Old Rifle Time-Concentration Graphs
New Rifle Time-Concentration Graphs

Attachment 3—Sampling and Analysis Work Order

Attachment 4—Trip Report

This page intentionally left blank

Sampling Event Summary

Site: Rifle, Colorado, Processing Sites

Sampling Period: April 13-17, 2009

This semiannual event includes sampling groundwater and surface water at the New Rifle and Old Rifle, Colorado, Processing Sites. Sampling and analysis were conducted as specified in the *Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites*. Duplicate samples were collected from New Rifle locations 0659 and CW33 and from Old Rifle location 0309. Two equipment blanks were collected during this sampling event.

Samples were collected at the Old Rifle site from eight monitor wells and four surface locations as specified in the *Ground Water Compliance Action Plan for the Old Rifle, Colorado, UMTRA Project Site.* Water levels were measured at each sampled well.

The contaminants of concern (COCs) at the Old Rifle site are selenium, uranium, and vanadium. Wells with sample concentrations that exceeded U.S. Environmental Protection Agency (EPA) groundwater standards are listed in Table 1.

Analyte	Standard ^a	ACL ^b	Location	Concentration			
Selenium	0.01	0.05	0305	0.025			
Geleriidiri	0.01	0.00	0658	0.015			
		0305					
Uranium	0.044	NA	0.22				
Oranium	0.044	INA	0655	0.12			
			0656	0.11			

Table 1. Old Rifle Locations that Exceed Standards

Time concentration graphs from the wells sampled are included with the analytical data. Data analysis indicates that the concentrations of the COCs are generally stable with fluctuations that may be partially attributable to a seasonal effect, particularly for wells at the low end of the concentration range. There is no indication of unexpected plume movement from this sampling event.

Analytical results for surface locations 0396 and 0741 that are adjacent to and downgradient of the site along the Colorado River are below the ACL at generally stable concentrations.

Samples were collected at the New Rifle site from 18 monitor wells, five culvert wells, and seven surface locations in compliance with the *Ground Water Compliance Action Plan for the New Rifle, Colorado, Processing Site*. Three monitor wells (0210, 0658, and 0670) were not sampled due to construction activities or insufficient water. Water levels were measured at each sampled well.

^a Standards are listed in 40 CFR 192.02 Table 1 to Subpart A; units are in milligrams per liter (mg/L).

b Alternate concentration limit (ACL) proposed in *Ground Water Compliance Action Plan for the Old Rifle, Colorado, UMTRA Project Site*; units are in mg/L.

The COCs at the New Rifle site are arsenic, molybdenum, nitrate + nitrite as nitrogen, selenium, uranium, and vanadium. All COCs have a remedial action goal of the EPA groundwater standard or background concentration except vanadium; an ACL of 50 mg/L has been proposed for vanadium. The groundwater monitor wells were sampled to monitor plume movement and natural flushing. Wells with sample concentrations that exceeded either the EPA groundwater standards or the maximum background value, which ever is greater, are listed in Table 2.

Table 2. New Rifle Locations that Exceed Standards

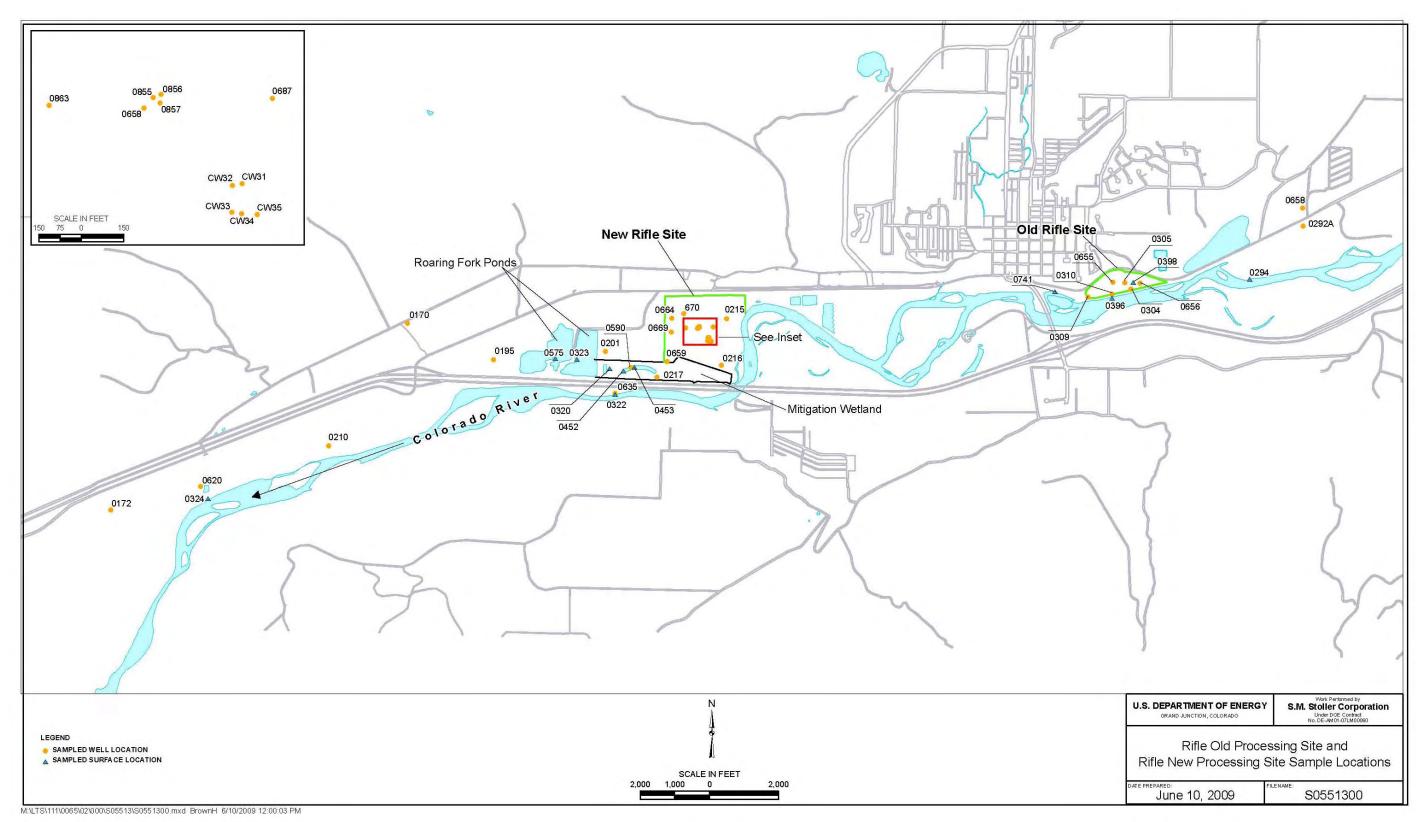
Analyte	Standard ^a	MBC ^b	Location	Concentration
Arsenic	0.05	0.03	0855	2.2
			0857	0.088
			CW31	0.12
			CW32	0.14
			CW33	0.28
Molybdenum	0.10	0.03	0201	1.9
			0216	0.15
			0217	1.6
			0590	1.5
			0635	0.38
			0659	2.2
			0664	0.4
			0669	1.5
			0687	0.1
			0855	18
			0856	0.17
			0857	0.51
			0863	1.6
			CW31	0.51
			CW32	0.48
			CW33	0.59
			CW34	0.36
			CW35	0.24
Nitrate as Nitrogen	10	5.22	0170	22
			0201	61
			0217	13
			0590	73
			0620	35
			0635	31
			0659	23
			0664	19
			0669	13
			0687	40
			0855	17
			0856	15
			CW31	16
			CW35	12

Table 2 (continued). New Rifle Locations that Exceed Standards

Analyte	Standarda	MBC ^b	Location	Concentration
Selenium	0.01	0.036	0201	0.065
		ľ	0216	0.045
			0217	0.039
			0590	0.056
			0659	0.12
			0664	0.041
			0687	0.3
'			0855	1.8
			0856	0.53
			0857	0.32
		1	CW31	0.42
			CW32	0.52
			CW33	0.23
			CW34	0.29
			CW35	0.16
Uranium	0.044	0.067	0201	0.077
			0217	0.12
			0635	0.1
			0659	0.11
			0664	0.082
			0669	0.069
			0856	0.089
			0857	0.09
			0863	0.094
Vanadium	Proposed ACL =	: 50 mg/L	0855	1000

^aStandards are listed in 40 CFR 192.02 Table 1 to Subpart A; units are in mg/L.

Time concentration graphs are included with the analytical data. These graphs include the historical results for locations 0210, 0658, and 0670, which could not be sampled during this event. Data analysis indicates that the concentrations of the COCs are stable or decreasing at most locations. A notable exception is location 0855 where several concentrations exceeded historical levels. De-watering activities southeast of this location are drawing water levels down in the area. The field notes described the water from this well as deep yellow in color. The well was classified as Category III, which indicates that the water level was within the screened interval during sampling.


The surface water locations were sampled to monitor the impact of groundwater discharge. No large variations in the data were noted.

Richard Dayvault

Site Lead, S. M. Stoller

^bMaximum background concentration listed in *Ground Water Compliance Action Plan for the New Rifle, Colorado, Processing Site*; units are in mg/L.

This page intentionally left blank

Old and New Rifle, Colorado, Processing Sites Sample Location Map

This page intentionally left blank

DVP—April 2009, Old and New Rifle, Colorado RIN 09032201 Page 6 U.S. Department of Energy June 2009 **Data Assessment Summary**

This page intentionally left blank

Water Sampling Field Activities Verification Checklist

	Project	Rifle, Colorado	Date(s) of Water	Sampling	April 13-17, 2009
	Date(s) of Verification	May 28, 2009	Name of Verifier		Gretchen Baer
			Response (Yes, No, NA)		Comments
1.	. Is the SAP the primary document	directing field procedures?	Yes		
	List other documents, SOPs, inst	ructions.		Work Order Lette	er dated March 19, 2009.
2.	. Were the sampling locations spec	cified in the planning documents sampled?	P No	by drilling equipm	0 was not found due to the area being covered nent. Well locations 0658 and 0670 were not nsufficient water.
3.	. Was a pre-trip calibration conduc documents?	ted as specified in the above-named	Yes	Pre-trip calibration	on was performed on April 13, 2009.
4	. Was an operational check of the	ield equipment conducted daily?	Yes		
	Did the operational checks meet	criteria?	Yes	4/17/09. All other	on that a sp cond reading was not recorded on rsp cond checks were acceptable.
5.	. Were the number and types (alka pH, turbidity, DO, ORP) of field m	linity, temperature, specific conductance, easurements taken as specified?	No	Sp Cond reading tubing to the flow to only partially fi	alk was not recorded at RFN 0324. g at RFO 0655 was very low. This suggests that v cell was attached incorrectly, causing the cell ill, which affects the sp cond measurement. The qualified as "R" (rejected).
6	. Was the category of the well docu	umented?	Yes		
7.	. Were the following conditions me	t when purging a Category I well:			
	Was one pump/tubing volume pu	rged prior to sampling?	Yes		
	Did the water level stabilize prior	to sampling?	Yes		
	Did pH, specific conductance, and sampling?	d turbidity measurements stabilize prior to	Yes	Turbidity was >10 are qualified as "	0 NTU at 0292A. Sample was filtered and data 'Q."
	Was the flow rate less than 500 n	nL/min?	Yes		
	If a portable pump was used, was installation and sampling?	there a 4-hour delay between pump	NA		

Water Sampling Field Activities Verification Checklist (continued)

		Response (Yes, No, NA)	Comments
8.	Were the following conditions met when purging a Category II well:		
	Was the flow rate less than 500 mL/min?	Yes	
	Was one pump/tubing volume removed prior to sampling?	Yes	
9.	Were duplicates taken at a frequency of one per 20 samples?	Yes	Three duplicate samples were collected.
10	Were equipment blanks taken at a frequency of one per 20 samples that were collected with nondedicated equipment?	Yes	Two equipment blank samples were collected.
11	. Were trip blanks prepared and included with each shipment of VOC samples?	NA	
12	Were QC samples assigned a fictitious site identification number?	Yes	
	Was the true identity of the samples recorded on the Quality Assurance Sample Log or in the Field Data Collection System (FDCS) report?	Yes	
13	B. Were samples collected in the containers specified?	Yes	
14	. Were samples filtered and preserved as specified?	Yes	Samples with turbidity >10 were filtered.
15	s. Were the number and types of samples collected as specified?	Yes	
16	i. Were chain of custody records completed and was sample custody maintained?	Yes	
17	7. Are field data sheets signed and dated by both team members (hardcopies) or are dates present for the "Date Signed" fields (FDCS)?	Yes	
18	B. Was all other pertinent information documented on the field data sheets?	Yes	
19	Was the presence or absence of ice in the cooler documented at every sample location?	Yes	
20	Were water levels measured at the locations specified in the planning documents?	Yes	

Laboratory Performance Assessment

General Information

Report Number (RIN): 09032201

Sample Event: April 13-17, 2009

Site(s): Rifle Processing Sites, Colorado

Laboratory: ALS Laboratory Group, Fort Collins, Colorado

Work Order No.: 0904159

Analysis: Metals and Wet Chemistry

Validator: Gretchen Baer Review Date: May 28, 2009

This validation was performed according to the *Environmental Procedures Catalog*, "Standard Practice for Validation of Laboratory Data," GT-9(P). The procedure was applied at Level 3, Data Validation. See attached Data Validation Worksheets for supporting documentation on the data review and validation. All analyses were successfully completed. The samples were prepared and analyzed using accepted procedures based on methods specified by line item code, which are listed in Table 3.

Table 3. Analytes and Methods

Analyte	Line Item Code	Prep Method	Analytical Method
Ammonia as N	WCH-A-005	MCAWW 350.1	MCAWW 350.1
Chloride	MIS-A-039	SW-846 9056	SW-846 9056
Calcium, Iron, Magnesium, Manganese, Potassium, Sodium	LMM-01	SW-846 3005A	SW-846 6010B
Arsenic, Molybdenum, Selenium, Uranium, Vanadium	LMM-02	SW-846 3005A	SW-846 6020A
Nitrate + Nitrite as N	WCH-A-022	MCAWW 353.2	MCAWW 353.2
Sulfate	MIS-A-044	SW-846 9056	SW-846 9056

Data Qualifier Summary

Analytical results were qualified as listed in Table 4. Refer to the sections below for an explanation of the data qualifiers applied.

Table 4. Data Qualifier Summary

Sample Number	Location	Analyte(s)	Flag	Reason
0904159-1	0170	Ammonia as N	J	Matrix spike failure
0904159-1	0170	Molybdenum	J	Interference check failure
0904159-1	0170	Vanadium	J	Reporting limit verification failure
0904159-2	0172	Molybdenum	J	Interference check failure
0904159-2	0172	Vanadium	J	Reporting limit verification failure
0904159-3	0195	Molybdenum	J	Interference check failure
0904159-3	0195	Selenium	U	Less than 5 times the calibration blank

Table 4 (continued). Data Qualifier Summary

Sample Number	Location	Analyte(s)	Flag	Reason
0904159-3	0195	Vanadium	J	Reporting limit verification failure
0904159-4	0201	Molybdenum	J	Interference check failure
0904159-5	0215	Molybdenum	J	Interference check failure
0904159-5	0215	Vanadium	J	Reporting limit verification failure
0904159-6	0216	Molybdenum	J	Interference check failure
0904159-7	0217	Molybdenum	J	Interference check failure
0904159-8	0320	Molybdenum	J	Interference check failure
0904159-9	0322	Molybdenum	J	Interference check failure
0904159-9	0322	Vanadium	J	Reporting limit verification failure
0904159-10	0323	Molybdenum	J	Interference check failure
0904159-11	0324	Molybdenum	J	Interference check failure
0904159-11	0324	Vanadium	J	Less than 5 times the equipment blank
0904159-12	0452	Molybdenum	J	Interference check failure
0904159-13	0453	Molybdenum	J	Interference check failure
0904159-14	0575	Molybdenum	J	Interference check failure
0904159-15	0590	Molybdenum	J	Interference check failure
0904159-16	0620	Molybdenum	J	Interference check failure
0904159-16	0620	Vanadium	J	Reporting limit verification failure
0904159-17	0635	Arsenic	U	Less than 5 times the calibration blank
0904159-17	0635	Molybdenum	J	Interference check failure
0904159-17	0635	Vanadium	J	Reporting limit verification failure
0904159-18	0659	Molybdenum	J	Interference check failure
0904159-19	0664	Iron	J	Negative calibration blank
0904159-19	0664	Molybdenum	J	Interference check failure
0904159-20	0669	Molybdenum	J	Interference check failure
0904159-26	0659 Duplicate	Iron	J	Negative calibration blank
0904159-28	Equip Blank, 2746	Molybdenum	U	Less than 5 times the calibration blank
0904159-28	Equip Blank, 2746	Uranium	U	Less than 5 times the calibration blank
0904159-34	0294	Vanadium	J	Reporting limit verification failure
0904159-37	0309	Selenium	U	Less than 5 times the calibration blank
0904159-37	0309	Vanadium	J	Reporting limit verification failure
0904159-38	0310	Selenium	U	Less than 5 times the calibration blank
0904159-44	0741	Vanadium	J	Reporting limit verification failure
0904159-45	0309 Duplicate	Selenium	U	Less than 5 times the calibration blank
0904159-45	0309 Duplicate	Vanadium	J	Reporting limit verification failure
0904159-46	Equip Blank, 2754	Selenium	U	Less than 5 times the calibration blank
0904159-46	Equip Blank, 2754	Uranium	U	Less than 5 times the calibration blank
0904159-46	Equip Blank, 2754	Vanadium	J	Reporting limit verification failure
0904159-47	0292A	Vanadium	J	Reporting limit verification failure
All	All	Potassium	J	MS & serial dilution failures

Sample Shipping/Receiving

ALS Laboratory Group in Fort Collins, Colorado, received 47 water samples on April 21, 2009, accompanied a Chain of Custody form. The Chain of Custody form was checked to confirm that

all of the samples were listed with sample collection dates and times, and that signatures and dates were present indicating sample relinquishment and receipt. Copies of the shipping labels were included in the receiving documentation. The Chain of Custody form was complete with no errors or omissions with the following exceptions. An incorrect sample date and time was written for location 2744; the laboratory used the correct date and time from the bottle labels. The filtration status for 2744 was written incorrectly; the laboratory repeated this error. The sample date and time and the filtration status was not entered for location 2745. The sample time was not entered for Old Rifle location 0292A.

Preservation and Holding Times

The sample shipments were received intact with the temperature inside the iced cooler at 0.6 °C, which complies with requirements. All samples were received in the correct container types and had been preserved correctly for the requested analyses with one exception. The laboratory noticed that two bottles for New Rifle location 0664 had pH values that contradicted the bottles' labels, which indicated that the labels had been switched. The laboratory corrected the error and proceeded with sample analysis. All analyses were performed within the applicable holding times.

Laboratory Instrument Calibration

Compliance requirements for instrument calibration are established to ensure that the instrument is capable of producing acceptable qualitative and quantitative data for all analytes. Initial calibration demonstrates that the instrument is capable of acceptable performance in the beginning of the analytical run and of producing a linear curve. Compliance requirements for continuing calibration checks are established to ensure that the instrument continues to be capable of producing acceptable qualitative and quantitative data. All laboratory instrument calibrations were performed in accordance with the cited methods.

Method MCAWW 350.1

Calibrations for ammonia as N were performed using six calibration standards on April 27, 2009. The calibration curve correlation coefficient values were greater than 0.995 and the absolute values of the intercepts were less than 3 times the method detection limit (MDL). Initial and continuing calibration verification checks were made at the required frequency resulting in nine verification checks. All calibration check results were within the acceptance criteria.

Method MCAWW 353.2

Calibrations for nitrate + nitrite as N were performed using seven calibration standards on April 28, 2009. The calibration curve correlation coefficient values were greater than 0.995 and the absolute values of the intercepts were less than 3 times the MDL. Calibration and laboratory spike standards were prepared from independent sources. Initial and continuing calibration verification checks were made at the required frequency resulting in nine verification checks. All calibration check results were within the acceptance criteria.

Method SW-846 6010B

Calibrations for calcium, iron, magnesium, manganese, potassium, and sodium were performed on April 27, 2009, using three calibration standards. The correlation coefficient values were greater than 0.995. The absolute values of the intercepts were less than 3 times the MDL, with the exception of the intercepts for calcium, potassium, and sodium. These intercepts were less than 3 times the reporting limits and all calcium, potassium, and sodium results were above the reporting limits. Calibration and laboratory spike standards were prepared from independent sources. Initial and continuing calibration verification checks were made at the required frequency resulting in 13 verification checks. All calibration checks met the acceptance criteria. Reporting limit verification checks were made at the required frequency to verify the linearity of the calibration curve near the practical quantitation limit (PQL) and all results were within the acceptance range, with the following exception. The vanadium check result was below the acceptance range. The affected results that were less than 5 times the PQL are qualified with a "J" flag (estimated).

Method SW-846 6020A

Calibrations were performed for arsenic, molybdenum, selenium, uranium, and vanadium April 27-29, 2009, using seven calibration standards. The calibration curve correlation coefficient values were greater than 0.995 and the absolute values of the intercepts were less than 3 times the MDL. Calibration and laboratory spike standards were prepared from independent sources. Initial and continuing calibration verification checks were made at the required frequency resulting in 33 verification checks. All calibration checks met the acceptance criteria. Reporting limit verification checks were made at the required frequency to verify the linearity of the calibration curve near the PQL and all results were within the acceptance range. Mass calibration and resolution verifications were performed at the beginning of each analytical run in accordance with the analytical procedure. Internal standard recoveries associated with requested analytes were stable and within acceptable ranges.

Method SW-846 9056

Calibrations for chloride and sulfate were performed using five calibration standards on April 27, 2009. The calibration curve correlation coefficient values were greater than 0.995 and the absolute values of the intercepts were less than 3 times the MDL. Calibration and laboratory spike standards were prepared from independent sources. Initial and continuing calibration verification checks were made at the required frequency resulting in four verification checks. All calibration checks met the acceptance criteria.

Method and Calibration Blanks

Method blanks are analyzed to assess any contamination that may have occurred during sample preparation. Calibration blanks are analyzed to assess instrument contamination prior to and during sample analysis. All method blank and calibration blank results associated with the samples were below the PQLs for all analytes with the exception of some sulfate blanks. All sulfate results were greater than 5 times the blank concentrations. In cases where a blank concentration exceeds the MDL, the associated sample results are qualified with a "U" flag (not

detected) when the sample result is greater than the MDL but less than 5 times the blank concentration. For calcium, iron, and magnesium, the blank results were negative and the absolute values were greater than the MDL but less than the PQL. All calcium and magnesium results were greater than 5 times the MDL, so no results are qualified. The associated iron results less than 5 times the MDL are flagged with a "J" as estimated values.

Inductively Coupled Plasma (ICP) Interference Check Sample (ICS) Analysis

ICP interference check samples ICSA and ICSAB were analyzed at the required frequency to verify the instrumental interelement and background correction factors. All check sample results were acceptable with the exception of the molybdenum ICSAB on April 27, 2009, which was above the acceptance range. The molybdenum results for samples that have calcium and magnesium concentrations in the diluted sample that are comparable to the ICSAB standard are qualified with a "J" flag (estimated).

Matrix Spike Analysis

Matrix spike and matrix spike duplicate (MS/MSD) samples are used to measure method performance in the sample matrix. The MS/MSD data are not evaluated when the concentration of the unspiked sample is greater than 4 times the spike concentration. The spikes met the recovery and precision criteria for all analytes evaluated with the following exceptions. The recovery for a potassium spike was above the acceptance range, which may indicate systematic matrix interference. All potassium results are qualified with a "J" flag (estimated). The MS/MSD ammonia as N recoveries were below the acceptance range. The affected result is qualified with a "J" flag.

Laboratory Replicate Analysis

Laboratory replicate sample results demonstrate acceptable laboratory precision. The relative percent difference values for the sample replicates and matrix spike replicates were less than 20 percent for results that are greater than 5 times the PQL, indicating acceptable precision.

Laboratory Control Sample

Laboratory control samples were analyzed at the correct frequency to provide information on the accuracy of the analytical method and the overall laboratory performance, including sample preparation. All control sample results were acceptable.

Metals Serial Dilution

Serial dilutions were prepared and analyzed for the metals analyses to monitor chemical or physical interferences in the sample matrix. Serial dilution data are evaluated when the concentration of the undiluted sample is greater than 100 times the PQL for ICP-MS or greater than 50 times the PQL for ICP. The relative percent difference for all potassium dilutions was above the acceptance range, which may indicate systematic matrix interference; the associated results are qualified with a "J" flag (estimated). All other serial dilution results were within the acceptance range.

Detection Limits/Dilutions

Samples were diluted in a consistent and acceptable manner when required. The samples were diluted prior to analysis of molybdenum, uranium, and vanadium to reduce interferences. The required detection limits were met for all analytes.

Completeness

Results were reported in the correct units for all analytes requested using contract-required laboratory qualifiers.

Chromatography Peak Integration

The integration of analyte peaks was reviewed for all ion chromatography data. There were no manual integrations performed and all peak integrations were satisfactory.

Electronic Data Deliverable (EDD) File

A revised EDD file arrived on May 1, 2009, that included corrections to a ticket number. The Sample Management System EDD validation module was used to verify that the EDD file was complete and in compliance with requirements. The module compares the contents of the file to the requested analyses to ensure that the requested data have been delivered. The contents of the EDD were manually examined to verify that the sample results accurately reflect the data contained in the sample data package. An error was detected in the EDD. The filtration status for all analytes reported for location 2744 should have been "Yes" (filtered). This EDD error was corrected in the SEEPro database. An error was detected in the original EDD file: the sample ticket number HFW 061 was erroneously entered as HEV 061. This error was repeated throughout the data package, but was corrected in the revised EDD.

SAMPLE MANAGEMENT SYSTEM

Project: Rife Disposal/Processing Ste (oldnew) Analysis Type: Metals General Chem Rad Organics **Analysis Type: Metals General Chem Rad Organics **Chain of Custody **Presert: OK Signed: OK Dated: OK Integrity: OK Preservation: OK Temperature: OK **Select Quality Parameters** **I Holding Times **Detection Limits **Preservation: OK Temperature: OK **The reported detection limits are equal to or below contract requirements. **There were 2 tip/equipment blanks evaluated. **There were 3 duplicates evaluated. **There were 3 du			ral Data Validation Report
# of Samples: 47 Matrix: WATER Requested Analysis Completed: Yes Chain of Custody Present: OK Signed: OK Dated: OK Integrity: OK Preservation: OK Temperature: OK Select Quality Parameters Holding Times Holding Times Detection Limits The reported detection limits are equal to or below contract requirements. There were 2 trip/equipment blanks evaluated.			
Chain of Custody Present: OK Signed: OK Dated: OK Integrity: OK Preservation: OK Temperature: OK Select Quality Parameters Holding Times All analyses were completed within the applicable holding times. Detection Limits The reported detection limits are equal to or below contract requirements. Field/Trip Blanks There were 2 trip/equipment blanks evaluated.	•		
Present: OK Signed: OK Dated: OK Integrity: OK Preservation: OK Temperature: OK Select Quality Parameters ✓ Holding Times All analyses were completed within the applicable holding times. ✓ Detection Limits The reported detection limits are equal to or below contract requirements. ✓ Field/Trip Blanks There were 2 trip/equipment blanks evaluated.	# of Gamples.	Madrix.	Requested Analysis Completed.
Select Quality Parameters ✓ Holding Times All analyses were completed within the applicable holding times. ✓ Detection Limits The reported detection limits are equal to or below contract requirements. ✓ Field/Trip Blanks There were 2 trip/equipment blanks evaluated.			
✓ Holding Times All analyses were completed within the applicable holding times. ✓ Detection Limits The reported detection limits are equal to or below contract requirements. ✓ Field/Trip Blanks There were 2 trip/equipment blanks evaluated.	Present: OK Sig	ned: OK Dated: OK	Integrity: OK Preservation: OK Temperature: OK
✓ Holding Times All analyses were completed within the applicable holding times. ✓ Detection Limits The reported detection limits are equal to or below contract requirements. ✓ Field/Trip Blanks There were 2 trip/equipment blanks evaluated.	—Select Quality Para	motors—	
✓ Detection Limits The reported detection limits are equal to or below contract requirements. ✓ Field/Trip Blanks There were 2 trip/equipment blanks evaluated.			were completed within the applicable holding times.
✓ Field/Trip Blanks There were 2 trip/equipment blanks evaluated.			
Trea depirences			
	ricid Duplicates	There were 3	, adplicates evaluated.

SAMPLE MANAGEMENT SYSTEM Metals Data Validation Worksheet

Page 1 of 3

RIN: 09032201 Lab Code: PAR Date Due: 5/19/2009

Matrix: Water Site Code: RFL Date Completed: 5/1/2009

Analyte	Date Analyzed		CAL	IBRA	NOITA			Method	LCS %R	MS %R	MSD %R	Dup. RPD	ICSAB %R	Serial Dil. %R	CRI %R
		Int.	R^2	ICV	ccv	ICB	ССВ	Blank							
1Calcium	04/27/2009											2.0			
1Calcium	04/27/2009											1.0	101.0		103.0
1CALCIUM	04/27/2009							ОК	99.0			4.0	101.0	2.0	103.0
1CALCIUM	04/27/2009	52.0000	0.9999	OK	OK	ОК	ОК	OK	102.0	111.0	117.0	1.0	97.0	2.0	104.0
1IRON	04/27/2009	12.0000	1.0000	OK	ОК	ОК	ОК	OK	98.0	93.0	94.0	1.0	100.0	ĺ	97.0
1IRON	04/27/2009												97.0	ĺ	97.0
1IRON	04/27/2009	Ì		OK	ОК	ОК	ОК	OK	98.0	93.0	94.0	1.0	100.0	ĺ	96.0
1 Magnesium	04/27/2009											2.0	Ì		
1Magnesium	04/27/2009											1.0	102.0		103.0
1MAGNESIUM	04/27/2009	32.0000	0.9999	OK	ОК	ОК	ОК	OK	103.0	110.0	113.0	1.0	101.0	3.0	103.0
1MAGNESIUM	04/27/2009							ОК	101.0	92.0	99.0	3.0	99.0	1.0	104.0
1 Manganese	04/27/2009											1.0			
1 Manganese	04/27/2009											1.0	97.0		109.0
1MANGANESE	04/27/2009	1.1000	1.0000	OK	ОК	ОК	OK	ОК	102.0	97.0	98.0	1.0	95.0		107.0
1MANGANESE	04/27/2009							OK	99.0			3.0	93.0	4.0	108.0
1Potassium	04/27/2009											1.0		İ	
1Potassium	04/27/2009	Î									İ	1.0	Ì	i i	83.0

SAMPLE MANAGEMENT SYSTEM Metals Data Validation Worksheet

Page 2 of 3

RIN: 09032201 Lab Code: PAR Date Due: 5/19/2009

Matrix: Water Site Code: RFL Date Completed: 5/1/2009

Analyte	Date Analyzed		CAL	IBR/	NOITA			Method	LCS %R	MS %R	MSD %R	Dup. RPD	ICSAB %R	Serial Dil. %R	CRI %R
		Int.	R^2	ICV	ccv	ICB	ССВ	Blank							
1POTASSIUM	04/27/2009	99.9900	1.0000	ОК	ОК	ОК	ОК	ОК	98.0	142.0	142.0	0.0		13.0	82.0
1POTASSIUM	04/27/2009							OK	94.0	108.0	108.0	0.0	ĺ	18.0	83.0
1Sodium	04/27/2009											0.0			
1Sodium	04/27/2009					Î	Ì			Ì	Ì	1.0	Ì	Î	86.0
1SODIUM	04/27/2009	99.9900	1.0000	OK	OK	ОК	ОК	OK	99.0	117.0	110.0	1.0	ĺ	7.0	85.0
1SODIUM	04/27/2009							ОК	96.0	94.0	99.0	1.0	ĺ	9.0	86.0
2Arsenic	04/28/2009	Ì				Î					Ì	2.0	ĺ	İ	
2ARSENIC	04/28/2009	0.0140	1.0000					ОК	96.0	108.0	118.0	4.0	97.0	0.0	96.0
2ARSENIC	04/28/2009							OK	99.0	91.0	81.0	1.0	ĺ	6.0	
2Selenium	04/28/2009					Î					Ì	10.0	Ì	Î	
2Selenium	04/28/2009										Ì	5.0			
2SELENIUM	04/28/2009	-0.0160	1.0000					OK	95.0	107.0	107.0	0.0	94.0	5.0	100.0
2SELENIUM	04/28/2009							OK	92.0			3.0		0.0	
2SELENIUM	04/28/2009						Î	OK	93.0	89.0	90.0	0.0	Ì		
2Vanadium	04/28/2009											3.0			
2Vanadium	04/28/2009											0.0			
2VANADIUM	04/29/2009	0.0380	0.9999					ОК	102.0	104.0	107.0	3.0	99.0	1.0	64.0

SAMPLE MANAGEMENT SYSTEM Metals Data Validation Worksheet

Page 3 of 3

RIN: 09032201 Lab Code: PAR Date Due: 5/19/2009

Matrix: Water Site Code: RFL Date Completed: 5/1/2009

Analyte Date An	Date Analyzed					Method	LCS %R	MS %R	MSD %R	Dup. RPD	ICSAB %R	Serial Dil. %R	CRI %R		
		Int.	R^2	ICV	ccv	ICB	ССВ	Blank		70.1	7014		7013	,,,,,	
2VANADIUM	04/29/2009							ОК	102.0			7.0		6.0	
2VANADIUM	04/29/2009							OK	101.0			0.0			
Molybdenum	04/29/2009											5.0			
MOLYBDENUM	04/27/2009	-0.0010	1.0000					OK	100.0	109.0	109.0	0.0	270.0	9.0	75.0
MOLYBDENUM	04/29/2009	-0.0020	1.0000					OK	97.0		Ì	4.0	108.0		112.0
Uranium	04/27/2009											1.0		ĺ	
Uranium	04/28/2009										Ì	0.0	ĺ	İ	
Uranium	04/29/2009										İ	4.0			
URANIUM	04/27/2009	0.0010	1.0000					OK	98.0	104.0	109.0	1.0	105.0	1.0	81.0
URANIUM	04/29/2009	0.0020	1.0000					OK	98.0	123.0	112.0	3.0	106.0	6.0	85.0
URANIUM	04/29/2009							ОК	100.0	93.0	89.0	0.0	ĺ	ΪΪ	

Page 1 of 1

SAMPLE MANAGEMENT SYSTEM

Wet Chemistry Data Validation Worksheet

RIN: 09032201

Lab Code: PAR

Date Due: 5/19/2009

Matrix: Water

Site Code: RFL

Date Completed: 5/1/2009

Analyte	Date Analyzed		CAL	TION			Method	LCS %R	MS %R	MSD %R	DUP	Serial Dil.	
,		Int.	R^2	ICV	ccv	ICB	ССВ	Blank	1.00		70.1		1.00
AMMONIA AS N	04/27/2009	-0.029	1.0000	OK	ОК	OK	OK	ОК	97.00	70.0	69.0	0	
AMMONIA AS N	04/27/2009							OK	96.00				1
CHLORIDE	04/27/2009	0.036	0.9998	ОК	ОК	OK	OK	ОК	95.00	99.0	100.0	1.00	
CHLORIDE	04/27/2009							OK	95.00				
CHLORIDE	04/28/2009									98.0	99.0	0	
CHLORIDE	04/28/2009									87.0			
NITRATE/NITRITE AS N	04/28/2009	-0.005	0.9998	ОК	ОК	OK	OK	ОК	101.00	103.0	100.0	1.00	
NITRATE/NITRITE AS N	04/28/2009							ОК	100.00	84.0	79.0	1.00	
SULFATE	04/27/2009	0.507	0.9999	ОК	ОК	OK	OK	ОК	96.00	101.0	100.0	0	
SULFATE	04/27/2009							ОК	97.00				
SULFATE	04/28/2009									99.0	100.0	0	
SULFATE	04/28/2009									101.0			

Sampling Quality Control Assessment

The following information summarizes and assesses quality control for this sampling event.

Sampling Protocol

Sample results for all monitor wells were qualified with an "F" flag in the database, indicating the wells were purged and sampled using the low-flow sampling method. All wells met the Category I criteria with the following exceptions:

- New Rifle well CW32 was classified as Category II.
- New Rifle wells 0664, 0669, and 0855 were classified as Category III.
- Turbidity requirements were not met for Old Rifle well 0292A.

The sample results for these five wells were qualified with a "Q" flag, indicating the data are qualitative because of the sampling technique.

Equipment Blank Assessment

Equipment blanks were collected after completion of decontamination and prior to collection of environmental samples. These blanks are useful in documenting adequate decontamination of sampling equipment. Vanadium was detected in an equipment blank. The associated result that was less than 5 times the equipment blank concentration is qualified with a "J" flag (estimated). Molybdenum, selenium, and uranium were detected in one or both equipment blanks by the laboratory, but these analytes were qualified during data validation with a "U" flag as not detected. The equipment blank results indicate adequate decontamination of the sampling equipment.

Field Duplicate Assessment

Field duplicate samples are collected and analyzed as an indication of overall precision of the measurement process. The precision observed includes both field and laboratory precision and has more variability than laboratory duplicates, which measure only laboratory performance. Duplicate samples were collected as described in Table 5.

Field Sample	Filtration Status	Field Duplicate	Filtration Status
0309	Not Filtered	2747	Filtered
0659	Not Filtered	2744	Filtered
CW33	Not Filtered	2745	Not Filtered

Table 5. Field Duplicates

With one exception, the duplicate results were acceptable, meeting the EPA recommended laboratory duplicate criteria of less than 20 percent relative difference for results that are greater than 5 times the PQL. The difference in iron results at New Rifle location 0659 between the unfiltered field sample and the filtered field duplicate (2744) is outside acceptance limits. There were no analytical errors identified during the review of the data; the high variability in results was caused by the difference in filtration status.

Page 1 of 2

SAMPLE MANAGEMENT SYSTEM Validation Report: Field Duplicates

RIN: 09032201 Lab Code: PAR Project: Rifle Disposal/Processing Site (old/new) Validation Date: 5/28/2009

Duplicate: 2744	Sample: 0	659							
	Sample			Duplicate					
Analyte	Result	Flag	Error	Result	Flag	Error	RPD	RER	Units
AMMONIA AS N	53			51			3.85	7	MG/L
ARSENIC	9.5			9.3			2.13		UG/L
CALCIUM	600000			600000			0		UG/L
CHLORIDE	140			140			0		MG/L
IRON	120			1.3	U				UG/L
MAGNESIUM	19000			19000			0		UG/L
MANGANESE	2400			2400			0		UG/L
MOLYBDENUM	2300			2200			4.44		UG/L
NITRATE/NITRITE AS N	22			23			4.44		MG/L
POTASSIUM	13000			13000			0		UG/L
SELENIUM	120			120			0		UG/L
SODIUM	150000			150000			0		UG/L
SULFATE	1600			1500			6.45		MG/L
URANIUM	110			110			0		UG/L
VANADIUM	760			710			6.80		UG/L
Duplicate: 2745	Sample: 0	W33							
	Sample			Duplicate					
Analyte	Result	Flag	Error	Result	Flag	Error	RPD	RER	Units
	Result 12	Flag	Error	Result	Flag	Error	RPD 0	RER	_
AMMONIA AS N		Flag	Error		Flag	Error		RER	MG/l
AMMONIA AS N ARSENIC	12	Flag	Error	12	Flag	Error	0	RER	MG/L
AMMONIA AS N ARSENIC CALCIUM	12 280	Flag	Error	12 280	Flag	Error	0	RER	MG/L UG/L
AMMONIA AS N ARSENIC CALCIUM CHLORIDE	12 280 290000	Flag	Error	12 280 300000	Flag	Error	0 0 3.39	RER	MG/L UG/L UG/L
AMMONIA AS N ARSENIC CALCIUM CHLORIDE IRON	12 280 290000 120		Error	12 280 300000 130		Error	0 0 3.39 8.00	RER	MG/L UG/L UG/L MG/L
AMMONIA AS N ARSENIC CALCIUM CHLORIDE IRON MAGNESIUM	12 280 290000 120 11		Error	12 280 300000 130 12		Error	0 0 3.39 8.00 8.70	RER	MG/L UG/L UG/L UG/L UG/L
AMMONIA AS N ARSENIC CALCIUM CHLORIDE IRON MAGNESIUM MANGANESE	12 280 290000 120 11 25000		Error	12 280 300000 130 12 26000		Error	0 0 3.39 8.00 8.70 3.92	RER	MG/L UG/L MG/L UG/L UG/L UG/L
AMMONIA AS N ARSENIC CALCIUM CHLORIDE IRON MAGNESIUM MANGANESE MOLYBDENUM	12 280 290000 120 11 25000		Error	12 280 300000 130 12 26000 1200		Error	0 0 3.39 8.00 8.70 3.92 0	RER	MG/L UG/L MG/L UG/L UG/L UG/L
AMMONIA AS N ARSENIC CALCIUM CHLORIDE IRON MAGNESIUM MANGANESE MOLYBDENUM NITRATE/NITRITE AS N	12 280 290000 120 11 25000 1200 590		Error	12 280 300000 130 12 26000 1200 570		Error	0 0 3.39 8.00 8.70 3.92 0 3.45	RER	MG/L UG/L UG/L UG/L UG/L UG/L UG/L
AMMONIA AS N ARSENIC CALCIUM CHLORIDE IRON MAGNESIUM MANGANESE MOLYBDENUM NITRATE/NITRITE AS N POTASSIUM	12 280 290000 120 11 25000 1200 590		Error	12 280 300000 130 12 26000 1200 570 5		Error	0 0 3.39 8.00 8.70 3.92 0 3.45	RER	MG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L U
AMMONIA AS N ARSENIC CALCIUM CHLORIDE IRON MAGNESIUM MANGANESE MOLYBDENUM NITRATE/NITRITE AS N POTASSIUM SELENIUM	12 280 290000 120 11 25000 1200 590 5		Error	12 280 300000 130 12 26000 1200 570 5		Error	0 0 3.39 8.00 8.70 3.92 0 3.45 0	RER	MG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L U
AMMONIA AS N ARSENIC CALCIUM CHLORIDE IRON MAGNESIUM MANGANESE MOLYBDENUM NITRATE/NITRITE AS N POTASSIUM SELENIUM SODIUM	12 280 290000 120 11 25000 1200 590 5 8800 230		Error	12 280 300000 130 12 26000 1200 570 5 8900 220		Error	0 0 3.39 8.00 8.70 3.92 0 3.45 0 1.13	RER	MG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L U
Analyte AMMONIA AS N ARSENIC CALCIUM CHLORIDE IRON MAGNESIUM MANGANESE MOLYBDENUM NITRATE/NITRITE AS N POTASSIUM SELENIUM SODIUM SULFATE URANIUM	12 280 290000 120 11 25000 1200 590 5 8800 230 110000		Error	12 280 300000 130 12 26000 1200 570 5 8900 220 110000		Error	0 0 3.39 8.00 8.70 3.92 0 3.45 0 1.13 4.44	RER	MG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L U

SAMPLE MANAGEMENT SYSTEM

Page 2 of 2

Validation Report: Field Duplicates

RIN: 09032201 Lab Code: PAR Project: Rifle Disposal/Processing Site (old/new) Validation Date: 5/28/2009

Duplicate: 2747

Sample: 0309

	Sample			Duplicate					
Analyte	Result	Flag	Error	Result	Flag	Error	RPD	RER	Units
SELENIUM	0.19			0.14			30.30		UG/L
URANIUM	16			16			0		UG/L
VANADIUM	0.14	U		0.14	U				UG/L

SAMPLE MANAGEMENT SYSTEM

Page 1 of 1

Validation Report: Equipment/Trip Blanks

RIN: 09032201	Lab Code: PAR	Project:	Rifle Disposal/Processing Site	e (old/new)	Validation	Date: 5/2	8/2009
Blank Data							
Blank Type	Lab Sample ID	Lab Method	Analyte Name	Resul	t Qualifier	MDL	Units
Equipment Blank	0904159-28	SW6020	VANADIUM	3.6		0.14	UG/L
Sample ID	Sample Ticket	Location	Result	Dilution Factor	Lab Qualifier	Validati	on Qualifier
0904159-11	HEV 044	0324	2.6	3			J

Certification

All laboratory analytical quality control criteria were met except as qualified in this report. The data qualifiers listed on the SEEPro database reports are defined on the last page of each report. All data in this package are considered validated and available for use.

Laboratory Coordinator:

Steve Donivan

Date

Data Validation Lead:

Gretchen Baer

Date

Attachment 1 Assessment of Anomalous Data

This page intentionally left blank

Potential Outliers Report

This page intentionally left blank

Potential Outliers Report

Potential outliers are measurements that are extremely large or small relative to the rest of the data and, therefore, are suspected of misrepresenting the population from which they were collected. Potential outliers may result from transcription errors, data-coding errors, or measurement system problems. However, outliers may also represent true extreme values of a distribution and indicate more variability in the population than was expected.

Statistical outlier tests give probabilistic evidence that an extreme value does not "fit" with the distribution of the remainder of the data and is therefore a statistical outlier. These tests should only be used to identify data points that require further investigation. The tests alone cannot determine whether a statistical outlier should be discarded or corrected within a data set.

There are three steps involved in identifying extreme values or outliers:

- 1. Identify extreme values that may be potential outliers by generating the Outliers Report using the Sample Management System from data in the SEEPro database. The application compares the new data set with historical data and lists the new data that fall outside the historical data range. A determination is also made if the data are normally distributed using the Shapiro-Wilk Test.
- 2. Apply the appropriate statistical test. Dixon's Extreme Value test is used to test for statistical outliers when the sample size is less than or equal to 25. This test considers both extreme values that are much smaller than the rest of the data (case 1) and extreme values that are much larger than the rest of the data (case 2). This test is valid only if the data without the suspected outlier are normally distributed. Rosner's Test is a parametric test that is used to detect outliers for sample sizes of 25 or more. This test also assumes that the data without the suspected outliers are normally distributed.
- 3. Scientifically review statistical outliers and decide on their disposition.

Eleven results were identified as potentially anomalous. All other sample results meet these criteria and are acceptable for use as qualified. Two outliers were the result of definitive downward or upward trending in the data. Nine results are listed on the Anomalous Data Review Checksheet for further review. At this time, all data from this sampling event may be treated as validated results.

Three of the anomalies appeared in analytes that have not been tested since 1999 (calcium or sodium at New Rifle locations 0590, 0635, and 0659). Because the gap between the April 2009 data and the previous data is ten years for these locations, high or low points do not necessarily indicate errors in the data. Future measurements will be closely examined. The high result for nitrate + nitrite as N at New Rifle location 0664 was confirmed by the ion chromatography raw data.

Several results at New Rifle location 0855 exceeded historical levels. De-watering activities southeast of this location are drawing water levels down in the area. The field notes described the water from this well as deep yellow in color. The well was classified as Category III, which indicates that the water level was within the screened interval during sampling and all results for

this location have been qualified with a "Q" flag, indicating the data are qualitative because of the sampling technique.

Table 6 summarizes the anomalies identified in a previous report (April 2008). The right-hand column describes the result for this sampling event (April 2009).

Table 6. Comparison of April 2008 Anomalies with April 2009 Results

Loc. No.	Analyte	Type of Anomaly in April 2008	April 2009 Measurement
RFN 0215	Uranium	High	Measurement is higher; apparent upward trend
RFN 0216	Uranium	High	Measurement is lower but still elevated; possible upward trend
RFN 0216	Vanadium	High	Measurement is lower but still elevated
RFO 0305	Selenium	Low	Measurement is higher but still low; apparent downward trend
RFO 0305	Uranium	High	Measurement is higher; apparent upward trend
RFO 0656	Uranium	High	Measurement is lower but still elevated; apparent upward trend

Data Validation Outliers Report - No Field Parameters Laboratory: PARAGON (Fort Collins, CO) RIN: 09032201

Comparison: All Historical Data Report Date: 6/18/2009

						lifiers	Historio	Qua	lifiers	Historic	Qua	alifiers	Dat	mber of a Points	Normally Distributed	Statistical Outlier
Site Code	Location Code	Sample Date	Analyte	Result	Lab	Data	Result	Lab	Data	Result	Lab	Data	N	N Below Detect		
RFN01	0170	04/17/2009	Manganese	0.028	E	F	1.24			0.039		F	12	1	Yes (log)	No
RFN01	0170	04/17/2009	Selenium	0.0058		F	0.0054			0.0029	В		12	0	Yes	No
RFN01	0195	04/16/2009	Ammonia Total as N	1.6		F	46		F	6.2		FQ	6	0	Yes	No
RFN01	0195	04/16/2009	Arsenic	0.0014		F	0.001	U		0.00013		UFQ	14	7	Yes	Yes
RFN01	0195	04/16/2009	Manganese	0.56		F	2.5			0.74		F	14	0	No	No
RFN01	0195	04/16/2009	Molybdenum	0.054		JF	0.6		FJ	0.097		FQ	15	0	Yes (log)	Yes
RFN01	0195	04/16/2009	Selenium	0.00017		UF	0.0012		F	0.0004	В		14	1	Yes	No
RFN01	0195	04/16/2009	Uranium	0.029		F	0.177			0.086		FQ	15	0	Yes	No
RFN01	0201	04/16/2009	Ammonia Total as N	93		F	130		F	97		F	7	0	Yes	No
RFN01	0215	04/16/2009	Ammonia Total as N	3.2		F	13		F	4.7		F	11	0	Yes	No
RFN01	0215	04/16/2009	Calcium	98		F	72		F	43.5			6	0	Yes	No
RFN01	0215	04/16/2009	Magnesium	42		F	36			29.1			6	0	Yes	No
RFN01	0215	04/16/2009	Nitrate + Nitrite as Nitrogen	0.047		F	0.045		F	0.01	U	F	10	4	No	Yes
RFN01	0215	04/16/2009	Selenium	0.0018		F	0.0017	В		0.00002	U	F	22	8	Yes (log)	No
RFN01	0215	04/16/2009	Sulfate	210		F	204			122	N	J	6	0	No	No
RFN01	0216	04/16/2009	Ammonia Total as N	8.7		F	8.6		F	4.9		F	8	0	Yes	No
RFN01	0216	04/16/2009	Arsenic	0.041		F	0.0354			0.019		F	19	0	Yes	No
RFN01	0216	04/16/2009	Selenium	0.045		F	0.031		F	0.00005 1	В	UF	19	4	Yes (log)	No

Data Validation Outliers Report - No Field Parameters Laboratory: PARAGON (Fort Collins, CO) RIN: 09032201

Comparison: All Historical Data Report Date: 6/18/2009

Site Code	Location Code	Sample Date	Analyte	Result	Current Quali Lab	ifiers Data	Historic Result	al Maxim Quali Lab		Historic Result		num lifiers Data		mber of a Points N Below Detect	Normally Distributed	Statistical Outlier
RFN01	0217	04/15/2009	Ammonia Total as N	61		F	110		F	69		F	8	0	Yes	No
RFN01	0320	04/16/2009	Ammonia Total as N	15			110			45			5	0	Yes	No
RFN01	0320	04/16/2009	Molybdenum	2.7		J	2.6			1.09			9	0	Yes	No
RFN01	0323	04/16/2009	Ammonia Total as N	26			44			36			8	0	Yes	Yes
RFN01	0323	04/16/2009	Molybdenum	2.2		J	2.1			1.1		J	9	0	Yes	No
RFN01	0324	04/17/2009	Vanadium	0.0026		J	0.0012			0.00006	В		8	0	Yes	Yes
RFN01	0453	04/15/2009	Ammonia Total as N	51			120			65			5	0	Yes	No
RFN01	0575	04/16/2009	Nitrate + Nitrite as Nitrogen	0.01	U		42			0.016			9	0	No	No
RFN01	0575	04/16/2009	Uranium	0.017			0.435			0.023			38	0	No	No
RFN01	0590	04/15/2009	Calcium	520		F	439			342			14	0	Yes	Yes
RFN01	0590	04/15/2009	Magnesium	54		F	192			57.9			14	0	No	No
RFN01	0590	04/15/2009	Potassium	28		JF	141			47.2			8	0	Yes (log)	No
RFN01	0590	04/15/2009	Sodium	420		F	11300			1040			14	0	No	No
RFN01	0620	04/17/2009	Chloride	550		F	838	I		565			15	0	Yes	No
RFN01	0620	04/17/2009	Iron	0.012	В	F	3.95			0.35			15	0	Yes	No
RFN01	0620	04/17/2009	Sodium	770		F	1270			976			15	0	No	Yes
RFN01	0635	04/16/2009	Calcium	550		F	369			274			10	0	Yes	Yes
RFN01	0635	04/16/2009	Iron	0.041	В	F	0.03	U		0.003	U		10	10	No	No

Data Validation Outliers Report - No Field Parameters Laboratory: PARAGON (Fort Collins, CO) RIN: 09032201

Comparison: All Historical Data Report Date: 6/18/2009

Site	Location	Sample Date	Analyte	Cu Result	urrent Qualifiers Lab Data	Historic Result	cal Maxir Qual Lab	num lifiers Data	Historic Result		num lifiers Data		mber of a Points N Below	Normally Distributed	Statistical Outlier
Code	Code	·	,						<u> </u>				Detect		
RFN01	0635	04/16/2009	Magnesium	33	F	132			47.4			10	0	Yes	No
RFN01	0635	04/16/2009	Potassium	56	JF	167			107			5	0	Yes	No
RFN01	0635	04/16/2009	Selenium	0.0018	F	0.057	+	J	0.002		F	24	2	No	No
RFN01	0635	04/16/2009	Sodium	270	F	3790			875			10	0	Yes	No
RFN01	0635	04/16/2009	Sulfate	1800	F	11000			2930			9	0	Yes	No
RFN01	0659	04/15/2009	Arsenic	0.0093	F	0.195		L	0.0191			25	0	No	Yes
RFN01	0659	04/15/2009	Arsenic	0.0095	F	0.195		L	0.0191			25	0	No	Yes
RFN01	0659	04/15/2009	Iron	0.12	F	0.03	U	L	0.0024	U	F	9	9	Yes (log)	No
RFN01	0659	04/15/2009	Magnesium	19	F	94.5		RX	50.1			8	0	Yes	No
RFN01	0659	04/15/2009	Sodium	150	F	477			336			8	0	Yes	Yes
RFN01	0659	04/15/2009	Sulfate	1600	F	2500			1900		F	9	0	Yes	No
RFN01	0659	04/15/2009	Sulfate	1500	F	2500			1900		F	9	0	Yes	No
RFN01	0659	04/15/2009	Vanadium	0.71	F	13.8			1.3		F	29	0	Yes (log)	No
RFN01	0659	04/15/2009	Vanadium	0.76	F	13.8			1.3		F	29	0	Yes (log)	No
RFN01	0664	04/15/2009	Ammonia Total as N	34	FQ	57		F	40		F	9	0	Yes	No
RFN01	0664	04/15/2009	Nitrate + Nitrite as Nitrogen	19	FQ	3.7		F	1.6		F	9	0	Yes	Yes
RFN01	0687	04/16/2009	Uranium	0.06	F	0.05			0.0173			5	0	Yes	No
RFN01	0855	04/15/2009	Arsenic	2.2	FQ	0.46		FJ	0.164			14	0	No	Yes

Data Validation Outliers Report - No Field Parameters

Laboratory: PARAGON (Fort Collins, CO)

RIN: 09032201

Comparison: All Historical Data

Report Date: 6/18/2009

Site Code	Location Code	Sample Date	Analyte	C u Result	urrent Qualifiers Lab Dai		cal Maxim ı Qualifi Lab		Historio Result	cal Minin Qua Lab	num lifiers Data		mber of ta Points N Below Detect	Normally Distributed	Statistical Outlier
RFN01	0855	04/15/2009	Manganese	1.7	FC	1.44			0.83		F	13	0	Yes	No
RFN01	0855	04/15/2009	Molybdenum	18	FG	4.32		F	1.2		F	14	0	No	Yes
RFN01	0855	04/15/2009	Selenium	1.8	FG	1.3		F	0.3		F	13	0	Yes	Yes
RFN01	0857	04/15/2009	Uranium	0.09	F	0.069			0.0022			81	0	No	No
RFN01	0857	04/15/2009	Vanadium	33	F	28			0.78			82	0	No	No
RFN01	0863	04/15/2009	Uranium	0.094	F	0.32			0.13			6	0	Yes	No
RFN01	CW31	04/17/2009	Vanadium	4.1	F	3			1.52			5	0	Yes	No
RFN01	CW32	04/16/2009	Uranium	0.035	FC	0.032			0.024			5	0	Yes	No
RFN01	CW32	04/16/2009	Vanadium	7.5	FC	6.7			2.5			5	0	Yes	No
RFO01	0304	04/14/2009	Vanadium	0.11	F	0.097		FJ	0.0285			21	0	Yes	Yes
RFO01	0305	04/13/2009	Uranium	0.11	F	0.093		F	0.0315		F	21	0	Yes	Yes
RFO01	0655	04/13/2009	Selenium	0.0088	F	0.061			0.013		F	23	0	Yes	No

SAMPLE ID CODES: 000X = Filtered sample (0.45 µm). N00X = Unfiltered sample. X = replicate number.

LAB QUALIFIERS:

- Replicate analysis not within control limits.
- Α
- Result above upper detection limit.

 TIC is a suspected aldol-condensation product.

 Inorganic: Result is between the IDL and CRDL. Organic: Analyte also found in method blank.

 Pesticide result confirmed by GC-MS. В
- C
- Analyte determined in diluted sample. D
- Е Inorganic: Estimate value because of interference, see case narrative. Organic: Analyte exceeded calibration range of the GC-MS.
- Holding time expired, value suspect. Н

- I Increased detection limit due to required dilution.
- J Estimated
- N Inorganic or radiochemical: Spike sample recovery not within control limits. Organic: Tentatively identified compound (TIC).
- P > 25% difference in detected pesticide or Aroclor concentrations between 2 columns.
- U Analytical result below detection limit.
- W Post-digestion spike outside control limits while sample absorbance < 50% of analytical spike absorbance.
- X,Y,Z Laboratory defined qualifier, see case narrative.

DATA QUALIFIERS:

F	Low flow sampling method used.	G Possible grout contami	nation, pH > 9. J Estimated	value.
L	Less than 3 bore volumes purged prior to sampling.	Q Qualitative result due to	sampling technique. R Unusable	result.

Parameter analyzed for but was not detected. X Location is undefined.

STATISTICAL TESTS:

The distribution of the data is tested for normality or lognormality using the Shapiro-Wilk Test

Outliers are identified using Dixon's Test when there are 25 or fewer data points.

Outliers are identified using Rosner's Test when there are 26 or more data points.

See Data Quality Assessment: Statistical Methods for Practitioners, EPA QC/G-9S, February 2006.

Anomalous Data Review Checksheet

Anomalous Data Review Checksheet

Site: New a	and Old Rifle Processing Site	Sampling Data:	Groundwater and Surface Water
Reviewer:	Gretchen Baer	Luphr	PB 7/1/09
	Name (print)	Signature	Daté
Site Hydrologist:	Richard Dayvault Name (print)	Signature	Date Date
			/
Date of Review:	June 17, 2009		
Loc. No.	Analista	Time of Aurania	
	Analyte	Type of Anomaly	Disposition
RFN 0195	Arsenic	High	Compare to future results.
RFN 0195	Molybdenum	Low	Apparent downward trend. Does not require further review.
RFN 0323	Ammonia Total as N	Low	May be trending downward. Compare to future results.
RFN 0324	Vanadium	High	Compare to future results.
RFN 0590	Calcium	High	10-year gap in data; compare to future results.
RFN 0635	Calcium	High	10-year gap in data; compare to future results.
RFN 0659	Sodium	Low	10-year gap in data; compare to future results.
RFN 0664	Nitrate + Nitrite as Nitrogen	High	Compare to future results.
RFN 0855	Arsenic Molybdenum Selenium	High	Compare to future results.

High

High

Compare to future results.

Apparent upward trend. Does not require further review.

Vanadium

Vanadium

Uranium

RFO 0304

RFO 0305

Attachment 2 Data Presentation

Old Rifle Groundwater Quality Data

Location: 0292A WELL

Parameter	Units	Sam Date	ple ID	Depth Range (Ft BLS)	Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
			'	(FLDLO)		Lab			LIIIIII	
Alkalinity, Total (As CaCO3)	mg/L	04/14/2009	0001	-	518		FQ	#		
Oxidation Reduction Potential	mV	04/14/2009	N001	-	88.3		FQ	#		
рН	s.u.	04/14/2009	N001	-	6.99		FQ	#		
Selenium	mg/L	04/14/2009	0001	-	0.0022		FQ	#	0.000018	
Specific Conductance	umhos /cm	04/14/2009	N001	-	2856		FQ	#		
Temperature	С	04/14/2009	N001	-	11.2		FQ	#		
Turbidity	NTU	04/14/2009	N001	-	114		FQ	#		
Uranium	mg/L	04/14/2009	0001	-	0.036		FQ	#	0.0000045	
Vanadium	mg/L	04/14/2009	0001	-	0.00014	U	JFQ	#	0.00014	

Location: 0304 WELL

Parameter	Units	Sam Date	ple ID	•	h Ran t BLS)	_	Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Alkalinity, Total (As CaCO3)	mg/L	04/14/2009	N001	13.2	-	18.2	290		F	#		
Oxidation Reduction Potential	mV	04/14/2009	N001	13.2	-	18.2	181		F	#		
рН	s.u.	04/14/2009	N001	13.2	-	18.2	7.22		F	#		
Selenium	mg/L	04/14/2009	N001	13.2	-	18.2	0.0094		F	#	0.000018	
Specific Conductance	umhos /cm	04/14/2009	N001	13.2	-	18.2	1450		F	#		
Temperature	С	04/14/2009	N001	13.2	-	18.2	9.9		F	#		
Turbidity	NTU	04/14/2009	N001	13.2	-	18.2	5.47		F	#		
Uranium	mg/L	04/14/2009	N001	13.2	-	18.2	0.036		F	#	0.0000045	
Vanadium	mg/L	04/14/2009	N001	13.2	-	18.2	0.11		F	#	0.0023	

Location: 0305 WELL

Parameter	Units	Sam Date	ple ID	Depth R (Ft BL	-	Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Alkalinity, Total (As CaCO3)	mg/L	04/13/2009	N001	13.76 -	18.76	380		F	#		
Oxidation Reduction Potential	mV	04/13/2009	N001	13.76 -	18.76	90.3		F	#		
рН	s.u.	04/13/2009	N001	13.76 -	18.76	7.27		F	#		
Selenium	mg/L	04/13/2009	N001	13.76 -	18.76	0.025		F	#	0.000036	
Specific Conductance	umhos /cm	04/13/2009	N001	13.76 -	18.76	1933		F	#		
Temperature	С	04/13/2009	N001	13.76 -	18.76	11.17		F	#		
Turbidity	NTU	04/13/2009	N001	13.76 -	18.76	1.68		F	#		
Uranium	mg/L	04/13/2009	N001	13.76 -	18.76	0.11		F	#	0.000022	
Vanadium	mg/L	04/13/2009	N001	13.76 -	18.76	0.52		F	#	0.0045	

Location: 0309 WELL

Parameter	Units	Sam _l Date	ple ID		Range BLS)	Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Alkalinity, Total (As CaCO3)	mg/L	04/13/2009	N001	16.93	- 21.93	360		F	#		
Oxidation Reduction Potential	mV	04/13/2009	N001	16.93	- 21.93	39.3		F	#		_
рН	s.u.	04/13/2009	N001	16.93	- 21.93	7.07		F	#		
Selenium	mg/L	04/13/2009	0002	16.93	- 21.93	0.00014		UF	#	0.000018	
Selenium	mg/L	04/13/2009	N001	16.93	- 21.93	0.00019		UF	#	0.000018	
Specific Conductance	umhos /cm	04/13/2009	N001	16.93	- 21.93	2335		F	#		
Temperature	С	04/13/2009	N001	16.93	- 21.93	12.79		F	#		
Turbidity	NTU	04/13/2009	N001	16.93	- 21.93	8.45		F	#		
Uranium	mg/L	04/13/2009	0002	16.93	- 21.93	0.016		F	#	0.0000045	
Uranium	mg/L	04/13/2009	N001	16.93	- 21.93	0.016		F	#	0.0000045	
Vanadium	mg/L	04/13/2009	0002	16.93	- 21.93	0.00014	U	JF	#	0.00014	
Vanadium	mg/L	04/13/2009	N001	16.93	- 21.93	0.00014	U	JF	#	0.00014	

Location: 0310 WELL

Parameter	Units	Sam Date	ple ID	Depth R (Ft Bl	_	Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Alkalinity, Total (As CaCO3)	mg/L	04/13/2009	N001	17.93 -	22.93	440		F	#		
Oxidation Reduction Potential	mV	04/13/2009	N001	17.93 -	22.93	23.1		F	#		
рН	s.u.	04/13/2009	N001	17.93 -	22.93	7.08		F	#		
Selenium	mg/L	04/13/2009	N001	17.93 -	22.93	0.00016		UF	#	0.000018	
Specific Conductance	umhos /cm	04/13/2009	N001	17.93 -	22.93	2785		F	#		
Temperature	С	04/13/2009	N001	17.93 -	22.93	12.29		F	#		
Turbidity	NTU	04/13/2009	N001	17.93 -	22.93	7.25		F	#		
Uranium	mg/L	04/13/2009	N001	17.93 -	22.93	0.22		F	#	0.000022	
Vanadium	mg/L	04/13/2009	N001	17.93 -	22.93	0.011		F	#	0.00014	

Location: 0655 WELL

Parameter	Units	Sam Date	ple ID	•	Range BLS)	Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Alkalinity, Total (As CaCO3)	mg/L	04/13/2009	N001	13.6	- 23.6	474		F	#		
Oxidation Reduction Potential	mV	04/13/2009	N001	13.6	- 23.6	85.1		F	#		
рН	s.u.	04/13/2009	N001	13.6	- 23.6	7.83		F	#		
Selenium	mg/L	04/13/2009	N001	13.6	- 23.6	0.0088		F	#	0.000018	
Specific Conductance	umhos /cm	04/13/2009	N001	13.6	- 23.6	17		RF	#		
Temperature	С	04/13/2009	N001	13.6	- 23.6	16.84		F	#		
Turbidity	NTU	04/13/2009	N001	13.6	- 23.6	0.62		F	#		
Uranium	mg/L	04/13/2009	N001	13.6	- 23.6	0.12		F	#	0.000022	
Vanadium	mg/L	04/13/2009	N001	13.6	- 23.6	0.33		F	#	0.0023	

Location: 0656 WELL

Parameter	Units	Sam Date	ple ID	•	Range BLS)	Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Alkalinity, Total (As CaCO3)	mg/L	04/14/2009	N001	6.35	- 21.35	358		F	#		
Oxidation Reduction Potential	mV	04/14/2009	N001	6.35	- 21.35	150		F	#		
рН	s.u.	04/14/2009	N001	6.35	- 21.35	7.09		F	#		
Selenium	mg/L	04/14/2009	N001	6.35	- 21.35	0.0017		F	#	0.000018	
Specific Conductance	umhos /cm	04/14/2009	N001	6.35	- 21.35	1635		F	#		
Temperature	С	04/14/2009	N001	6.35	- 21.35	12.2		F	#		
Turbidity	NTU	04/14/2009	N001	6.35	- 21.35	2.71		F	#		
Uranium	mg/L	04/14/2009	N001	6.35	- 21.35	0.11		F	#	0.000022	
Vanadium	mg/L	04/14/2009	N001	6.35	- 21.35	0.027		F	#	0.00023	

REPORT DATE: 6/17/2009 Location: 0658 WELL

Parameter	Units	Sam Date	ple ID		th Ra		Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Alkalinity, Total (As CaCO3)	mg/L	04/14/2009	N001	2.3	-	17.3	530		F	#		
Oxidation Reduction Potential	mV	04/14/2009	N001	2.3	-	17.3	165		F	#		
рН	s.u.	04/14/2009	N001	2.3	-	17.3	7.02		F	#		
Selenium	mg/L	04/14/2009	N001	2.3	-	17.3	0.015		F	#	0.000018	
Specific Conductance	umhos /cm	04/14/2009	N001	2.3	-	17.3	2090		F	#		
Temperature	С	04/14/2009	N001	2.3	-	17.3	7.4		F	#		
Turbidity	NTU	04/14/2009	N001	2.3	-	17.3	3.96		F	#		
Uranium	mg/L	04/14/2009	N001	2.3	-	17.3	0.031		F	#	0.0000045	
Vanadium	mg/L	04/14/2009	N001	2.3	-	17.3	0.0018		F	#	0.00014	

SAMPLE ID CODES: 000X = Filtered sample (0.45 µm). N00X = Unfiltered sample. X = replicate number.

LAB QUALIFIERS:

- * Replicate analysis not within control limits.
- > Result above upper detection limit.
- A TIC is a suspected aldol-condensation product.
- B Inorganic: Result is between the IDL and CRDL. Organic: Analyte also found in method blank.
- C Pesticide result confirmed by GC-MS.
- D Analyte determined in diluted sample.
- E Inorganic: Estimate value because of interference, see case narrative. Organic: Analyte exceeded calibration range of the GC-MS.
- H Holding time expired, value suspect.
- I Increased detection limit due to required dilution.
- J Estimated
- N Inorganic or radiochemical: Spike sample recovery not within control limits. Organic: Tentatively identified compound (TIC).
- P > 25% difference in detected pesticide or Aroclor concentrations between 2 columns.
- U Analytical result below detection limit.

Post-digestion spike outside control limits while sample absorbance < 50% of analytical spike absorbance. W

X,Y,Z Laboratory defined qualifier, see case narrative.

DATA QUALIFIERS:

Low flow sampling method used.
Less than 3 bore volumes purged prior to sampling.
Parameter analyzed for but was not detected. L U

X Location is undefined.

QA QUALIFIER:

Validated according to quality assurance guidelines.

Old Rifle Surface Water Quality Data

Location: 0294 SURFACE LOCATION

Parameter	Units	Samp Date	le ID	Result	Qualific Lab Data		Detection Limit	Uncertainty
Alkalinity, Total (As CaCO3)	mg/L	04/14/2009	N001	124		#		
Oxidation Reduction Potential	mV	04/14/2009	N001	119.31		#		
рН	s.u.	04/14/2009	N001	8.21		#		
Selenium	mg/L	04/14/2009	0001	0.00038		#	0.000018	
Specific Conductance	umhos/cm	04/14/2009	N001	902		#		
Temperature	С	04/14/2009	N001	10.21		#		
Turbidity	NTU	04/14/2009	N001	86.9		#		
Uranium	mg/L	04/14/2009	0001	0.002		#	0.0000045	
Vanadium	mg/L	04/14/2009	0001	0.00043	J	#	0.00014	

Location: 0396 SURFACE LOCATION

Parameter	Units	Samp Date	le ID	Result	Qualifiers Lab Data QA	Detection Limit	Uncertainty
Alkalinity, Total (As CaCO3)	mg/L	04/13/2009	0001	156	#		
Oxidation Reduction Potential	mV	04/13/2009	N001	70.1	#		
рН	s.u.	04/13/2009	N001	8.27	#		
Selenium	mg/L	04/13/2009	0001	0.00045	#	0.000018	
Specific Conductance	umhos/cm	04/13/2009	N001	946	#		
Temperature	С	04/13/2009	N001	15.72	#		
Turbidity	NTU	04/13/2009	N001	36.9	#		
Uranium	mg/L	04/13/2009	0001	0.0021	#	0.0000045	
Vanadium	mg/L	04/13/2009	0001	0.0015	#	0.00014	

Location: 0398 SURFACE LOCATION

Parameter	Units	Samp Date	ole ID	Result	Qualifiers Lab Data QA	Detection Limit	Uncertainty
Alkalinity, Total (As CaCO3)	mg/L	04/14/2009	N001	327	#		
Oxidation Reduction Potential	mV	04/14/2009	N001	172	#		
рН	s.u.	04/14/2009	N001	8.03	#		
Selenium	mg/L	04/14/2009	N001	0.0056	#	0.000018	
Specific Conductance	umhos/cm	04/14/2009	N001	1885	#		
Temperature	С	04/14/2009	N001	10.1	#		
Turbidity	NTU	04/14/2009	N001	2.7	#		
Uranium	mg/L	04/14/2009	N001	0.03	#	0.0000045	
Vanadium	mg/L	04/14/2009	N001	0.0067	#	0.00014	

Surface Water Quality Data by Location (USEE102) FOR SITE RF001, Rifle Old Processing Site

REPORT DATE: 6/17/2009

Location: 0741 SURFACE LOCATION

Parameter	Units	Samp Date	le ID	Result	Qualifiers Lab Data QA		Detection Limit	Uncertainty
Alkalinity, Total (As CaCO3)	mg/L	04/13/2009	0001	133		#		
Oxidation Reduction Potential	mV	04/13/2009	N001	56.1		#		
рН	s.u.	04/13/2009	N001	8.23		#		
Selenium	mg/L	04/13/2009	0001	0.00038		#	0.000018	
Specific Conductance	umhos/cm	04/13/2009	N001	949		#		
Temperature	С	04/13/2009	N001	12.85		#		
Turbidity	NTU	04/13/2009	N001	36.8		#		
Uranium	mg/L	04/13/2009	0001	0.002		#	0.0000045	
Vanadium	mg/L	04/13/2009	0001	0.00039	J	#	0.00014	

SAMPLE ID CODES: 000X = Filtered sample (0.45 µm). N00X = Unfiltered sample. X = replicate number.

LAB QUALIFIERS:

- * Replicate analysis not within control limits.
- > Result above upper detection limit.
- A TIC is a suspected aldol-condensation product.
- B Inorganic: Result is between the IDL and CRDL. Organic: Analyte also found in method blank.
- C Pesticide result confirmed by GC-MS.
- D Analyte determined in diluted sample.
- E Inorganic: Estimate value because of interference, see case narrative. Organic: Analyte exceeded calibration range of the GC-MS.
- H Holding time expired, value suspect.
- Increased detection limit due to required dilution.
- J Estimated
- N Inorganic or radiochemical: Spike sample recovery not within control limits. Organic: Tentatively identified compound (TIC).
- P > 25% difference in detected pesticide or Aroclor concentrations between 2 columns.
- U Analytical result below detection limit.
- W Post-digestion spike outside control limits while sample absorbance < 50% of analytical spike absorbance.
- X,Y,Z Laboratory defined qualifier, see case narrative.

DATA QUALIFIERS:

- F
- Low flow sampling method used. Less than 3 bore volumes purged prior to sampling. Parameter analyzed for but was not detected.
- L U

QA QUALIFIER:

- Validated according to quality assurance guidelines. #

- G Possible grout contamination, pH > 9.
 Q Qualitative result due to sampling technique.
 X Location is undefined.
 J Estimated value.
 R Unusable result.

New Rifle Groundwater Quality Data

Groundwater Quality Data by Location (USEE100) FOR SITE RFN01, Rifle New Processing Site

REPORT DATE: 6/17/2009

Location: 0170 WELL Ground elevation was calculated as surveyed TOC elevation minus stick up height reported in the Borehole Summary

Parameter	Units	Samր Date	ole ID	Depth Range (Ft BLS)	Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Alkalinity, Total (As CaCO3)	mg/L	04/17/2009	N001	92.23 - 112.23	492		F	#		
Ammonia Total as N	mg/L	04/17/2009	N001	92.23 - 112.23	0.11	N	JF	#	0.1	
Arsenic	mg/L	04/17/2009	N001	92.23 - 112.23	0.0002		F	#	0.00001	
Calcium	mg/L	04/17/2009	N001	92.23 - 112.23	160		F	#	0.0031	
Chloride	mg/L	04/17/2009	N001	92.23 - 112.23	150		F	#	10	
Dissolved Oxygen	mg/L	04/17/2009	N001	92.23 - 112.23	1.67		F	#		
Field Ferrous Iron	mg/L	04/17/2009	N001	92.23 - 112.23	0.03		F	#		
Iron	mg/L	04/17/2009	N001	92.23 - 112.23	0.047	В	F	#	0.0013	
Magnesium	mg/L	04/17/2009	N001	92.23 - 112.23	99		F	#	0.0075	
Manganese	mg/L	04/17/2009	N001	92.23 - 112.23	0.028	E	F	#	0.00012	
Molybdenum	mg/L	04/17/2009	N001	92.23 - 112.23	0.0036	E	JF	#	0.00007	
Nitrate + Nitrite as Nitrogen	mg/L	04/17/2009	N001	92.23 - 112.23	22		F	#	0.5	
Oxidation Reduction Potential	mV	04/17/2009	N001	92.23 - 112.23	53.2		F	#		
рН	s.u.	04/17/2009	N001	92.23 - 112.23	7.18		F	#		
Potassium	mg/L	04/17/2009	N001	92.23 - 112.23	8.6	EN	JF	#	0.11	
Selenium	mg/L	04/17/2009	N001	92.23 - 112.23	0.0058		F	#	0.000018	
Sodium	mg/L	04/17/2009	N001	92.23 - 112.23	460		F	#	0.047	

Groundwater Quality Data by Location (USEE100) FOR SITE RFN01, Rifle New Processing Site

REPORT DATE: 6/17/2009

Location: 0170 WELL Ground elevation was calculated as surveyed TOC elevation minus stick up height reported in the Borehole Summary

Parameter	Units	Sam Date	ple ID	Depth Range (Ft BLS)	Result		ualifiers Data C	Detection QA Limit	Uncertainty
Specific Conductance	umhos /cm	04/17/2009	N001	92.23 - 112.	23 3482		F	#	
Sulfate	mg/L	04/17/2009	N001	92.23 - 112.	23 1200		F	# 25	
Temperature	С	04/17/2009	N001	92.23 - 112.	23 13.7		F	#	
Turbidity	NTU	04/17/2009	N001	92.23 - 112.	23 5.31		F	#	
Uranium	mg/L	04/17/2009	N001	92.23 - 112.	23 0.06		F	# 0.0000045	
Vanadium	mg/L	04/17/2009	N001	92.23 - 112.	23 0.00075	5	JF	# 0.00014	

Location: 0172 WELL

Parameter	Units	Sam Date	ple ID	Depth F (Ft B		Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Alkalinity, Total (As CaCO3)	mg/L	04/17/2009	N001	6.98 -	31.98	952		F	#		
Ammonia Total as N	mg/L	04/17/2009	N001	6.98 -	31.98	0.1	U	F	#	0.1	
Arsenic	mg/L	04/17/2009	N001	6.98 -	31.98	0.0053		F	#	0.00001	
Calcium	mg/L	04/17/2009	N001	6.98 -	31.98	460		F	#	0.0031	
Chloride	mg/L	04/17/2009	N001	6.98 -	31.98	2900		F	#	40	
Dissolved Oxygen	mg/L	04/17/2009	N001	6.98 -	31.98	0.03		F	#		
Field Ferrous Iron	mg/L	04/17/2009	N001	6.98 -	31.98	1.81		F	#		
Iron	mg/L	04/17/2009	N001	6.98 -	31.98	7.2		F	#	0.0013	
Magnesium	mg/L	04/17/2009	N001	6.98 -	31.98	710		F	#	0.38	
Manganese	mg/L	04/17/2009	N001	6.98 -	31.98	1.1		F	#	0.00012	
Molybdenum	mg/L	04/17/2009	N001	6.98 -	31.98	0.011		JF	#	0.00007	
Nitrate + Nitrite as Nitrogen	mg/L	04/17/2009	N001	6.98 -	31.98	0.018		F	#	0.01	
Oxidation Reduction Potential	mV	04/17/2009	N001	6.98 -	31.98	-99		F	#		
рН	s.u.	04/17/2009	N001	6.98 -	31.98	7.11		F	#		
Potassium	mg/L	04/17/2009	N001	6.98 -	31.98	31		JF	#	0.11	
Selenium	mg/L	04/17/2009	N001	6.98 -	31.98	0.00031		F	#	0.000018	
Sodium	mg/L	04/17/2009	N001	6.98 -	31.98	3500		F	#	0.23	

Location: 0172 WELL

Parameter	Units	Sam Date	ple ID	Depth Range (Ft BLS)		Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Specific Conductance	umhos /cm	04/17/2009	N001	6.98 -	31.98	18323		F	#		
Sulfate	mg/L	04/17/2009	N001	6.98 -	31.98	6700		F	#	100	
Temperature	С	04/17/2009	N001	6.98 -	31.98	12.75		F	#		
Turbidity	NTU	04/17/2009	N001	6.98 -	31.98	4.55		F	#		
Uranium	mg/L	04/17/2009	N001	6.98 -	31.98	0.057		F	#	0.0000045	
Vanadium	mg/L	04/17/2009	N001	6.98 -	31.98	0.00014	U	JF	#	0.00014	

REPORT DATE: 6/17/2009

Location: 0195 WELL Ground elevation was calculated as surveyed TOC elevation minus stick up height reported in the Borehole Summary

Parameter	Units	Sam Date	ple ID	Depth Range (Ft BLS)			Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Alkalinity, Total (As CaCO3)	mg/L	04/16/2009	N001	5.29	-	25.29	430		F	#		
Ammonia Total as N	mg/L	04/16/2009	N001	5.29	-	25.29	1.6		F	#	0.1	
Arsenic	mg/L	04/16/2009	N001	5.29	-	25.29	0.0014		F	#	0.00001	
Calcium	mg/L	04/16/2009	N001	5.29	-	25.29	100		F	#	0.0031	
Chloride	mg/L	04/16/2009	N001	5.29	-	25.29	39		F	#	4	
Dissolved Oxygen	mg/L	04/16/2009	N001	5.29	-	25.29	0.1		F	#		
Field Ferrous Iron	mg/L	04/16/2009	N001	5.29	-	25.29	0.35		F	#		
Iron	mg/L	04/16/2009	N001	5.29	-	25.29	1.4		F	#	0.0013	
Magnesium	mg/L	04/16/2009	N001	5.29	-	25.29	48		F	#	0.0075	
Manganese	mg/L	04/16/2009	N001	5.29	-	25.29	0.56		F	#	0.00012	
Molybdenum	mg/L	04/16/2009	N001	5.29	-	25.29	0.054		JF	#	0.00007	
Nitrate + Nitrite as Nitrogen	mg/L	04/16/2009	N001	5.29	-	25.29	0.01	U	F	#	0.01	
Oxidation Reduction Potential	mV	04/16/2009	N001	5.29	-	25.29	14.4		F	#		
рН	s.u.	04/16/2009	N001	5.29	-	25.29	7.29		F	#		
Potassium	mg/L	04/16/2009	N001	5.29	-	25.29	11		JF	#	0.11	
Selenium	mg/L	04/16/2009	N001	5.29	-	25.29	0.00017		UF	#	0.000018	
Sodium	mg/L	04/16/2009	N001	5.29	-	25.29	130		F	#	0.0047	

REPORT DATE: 6/17/2009

Location: 0195 WELL Ground elevation was calculated as surveyed TOC elevation minus stick up height reported in the Borehole Summary

Parameter	Units	Sam Date	ple ID	Depth Range (Ft BLS)		Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Specific Conductance	umhos /cm	04/16/2009	N001	5.29 -	- 25.29	1403		F	#		
Sulfate	mg/L	04/16/2009	N001	5.29 -	- 25.29	240		F	#	10	
Temperature	С	04/16/2009	N001	5.29 -	- 25.29	8.52		F	#		
Turbidity	NTU	04/16/2009	N001	5.29 -	- 25.29	9.7		F	#		
Uranium	mg/L	04/16/2009	N001	5.29 -	- 25.29	0.029		F	#	0.0000045	
Vanadium	mg/L	04/16/2009	N001	5.29 -	- 25.29	0.0003		JF	#	0.00014	

REPORT DATE: 6/17/2009

Location: 0201 WELL Ground elevation was calculated as surveyed TOC elevation minus stick up height reported in the Borehole Summary

Parameter	Units	Sam Date	ple ID		th Ra t BL	ange S)	Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Alkalinity, Total (As CaCO3)	mg/L	04/16/2009	N001	7.35	-	22.35	262		F	#		
Ammonia Total as N	mg/L	04/16/2009	N001	7.35	-	22.35	93		F	#	5	
Arsenic	mg/L	04/16/2009	N001	7.35	-	22.35	0.00038		F	#	0.00001	
Calcium	mg/L	04/16/2009	N001	7.35	-	22.35	550		F	#	0.031	
Chloride	mg/L	04/16/2009	N001	7.35	-	22.35	150		F	#	10	
Dissolved Oxygen	mg/L	04/16/2009	N001	7.35	-	22.35	1.88		F	#		
Field Ferrous Iron	mg/L	04/16/2009	N001	7.35	-	22.35	0.01		F	#		
Iron	mg/L	04/16/2009	N001	7.35	-	22.35	0.014	В	F	#	0.0013	
Magnesium	mg/L	04/16/2009	N001	7.35	-	22.35	62		F	#	0.0075	
Manganese	mg/L	04/16/2009	N001	7.35	-	22.35	3.2		F	#	0.00012	
Molybdenum	mg/L	04/16/2009	N001	7.35	-	22.35	1.9		JF	#	0.0014	
Nitrate + Nitrite as Nitrogen	mg/L	04/16/2009	N001	7.35	-	22.35	61		F	#	0.5	
Oxidation Reduction Potential	mV	04/16/2009	N001	7.35	-	22.35	191.3		F	#		
pH	s.u.	04/16/2009	N001	7.35	-	22.35	7		F	#		
Potassium	mg/L	04/16/2009	N001	7.35	-	22.35	19		JF	#	0.11	
Selenium	mg/L	04/16/2009	N001	7.35	-	22.35	0.065		F	#	0.00018	
Sodium	mg/L	04/16/2009	N001	7.35	-	22.35	360		F	#	0.047	

REPORT DATE: 6/17/2009

Location: 0201 WELL Ground elevation was calculated as surveyed TOC elevation minus stick up height reported in the Borehole Summary

Parameter	Units	Sam Date	ple ID	Depth Range (Ft BLS)		Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Specific Conductance	umhos /cm	04/16/2009	N001	7.35 -	22.35	4792		F	#		
Sulfate	mg/L	04/16/2009	N001	7.35 -	22.35	2100		F	#	25	
Temperature	С	04/16/2009	N001	7.35 -	22.35	10.24		F	#		
Turbidity	NTU	04/16/2009	N001	7.35 -	22.35	1.88		F	#		
Uranium	mg/L	04/16/2009	N001	7.35 -	22.35	0.077		F	#	0.00009	
Vanadium	mg/L	04/16/2009	N001	7.35 -	22.35	0.0028		F	#	0.00014	

REPORT DATE: 6/17/2009

Location: 0215 WELL Ground elevation was calculated as surveyed TOC elevation minus stick up height reported in the Borehole Summary

Parameter	Units	Sam _l Date	ple ID	Depth Range (Ft BLS)		Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Alkalinity, Total (As CaCO3)	mg/L	04/16/2009	N001	6.84 -	21.84	189		F	#		
Ammonia Total as N	mg/L	04/16/2009	N001	6.84 -	21.84	3.2		F	#	0.1	
Arsenic	mg/L	04/16/2009	N001	6.84 -	21.84	0.00027		F	#	0.00001	
Calcium	mg/L	04/16/2009	N001	6.84 -	21.84	98		F	#	0.0031	
Chloride	mg/L	04/16/2009	N001	6.84 -	21.84	150		F	#	2	
Dissolved Oxygen	mg/L	04/16/2009	N001	6.84 -	21.84	1.07		F	#		
Field Ferrous Iron	mg/L	04/16/2009	N001	6.84 -	21.84	0.01		F	#		
Iron	mg/L	04/16/2009	N001	6.84 -	21.84	0.025	В	F	#	0.0013	
Magnesium	mg/L	04/16/2009	N001	6.84 -	21.84	42		F	#	0.0075	
Manganese	mg/L	04/16/2009	N001	6.84 -	21.84	0.65		F	#	0.00012	
Molybdenum	mg/L	04/16/2009	N001	6.84 -	21.84	0.019		JF	#	0.00007	
Nitrate + Nitrite as Nitrogen	mg/L	04/16/2009	N001	6.84 -	21.84	0.047		F	#	0.01	
Oxidation Reduction Potential	mV	04/16/2009	N001	6.84 -	21.84	22.2		F	#		
рН	s.u.	04/16/2009	N001	6.84 -	21.84	7.65		F	#		
Potassium	mg/L	04/16/2009	N001	6.84 -	21.84	5.7		JF	#	0.11	
Selenium	mg/L	04/16/2009	N001	6.84 -	21.84	0.0018		F	#	0.000018	
Sodium	mg/L	04/16/2009	N001	6.84 -	21.84	89		F	#	0.0047	

REPORT DATE: 6/17/2009

Location: 0215 WELL Ground elevation was calculated as surveyed TOC elevation minus stick up height reported in the Borehole Summary

Parameter	Units	Sam Date	ple ID	Depth Range (Ft BLS)		Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Specific Conductance	umhos /cm	04/16/2009	N001	6.84 -	21.84	1310		F	#		
Sulfate	mg/L	04/16/2009	N001	6.84 -	21.84	210		F	#	5	
Temperature	С	04/16/2009	N001	6.84 -	21.84	10.8		F	#		
Turbidity	NTU	04/16/2009	N001	6.84 -	21.84	1.95		F	#		
Uranium	mg/L	04/16/2009	N001	6.84 -	21.84	0.023		F	#	0.0000045	
Vanadium	mg/L	04/16/2009	N001	6.84 -	21.84	0.00069		JF	#	0.00014	

Location: 0216 WELL

Parameter	Units	Sam Date	ple ID		th Rang t BLS)	ge	Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Alkalinity, Total (As CaCO3)	mg/L	04/16/2009	N001	5.5	-	20.5	203		F	#		
Ammonia Total as N	mg/L	04/16/2009	N001	5.5	-	20.5	8.7		F	#	0.5	
Arsenic	mg/L	04/16/2009	N001	5.5	-	20.5	0.041		F	#	0.0001	
Calcium	mg/L	04/16/2009	N001	5.5	-	20.5	70		F	#	0.0031	
Chloride	mg/L	04/16/2009	N001	5.5	-	20.5	160		F	#	2	
Dissolved Oxygen	mg/L	04/16/2009	N001	5.5	-	20.5	0.85		F	#		
Field Ferrous Iron	mg/L	04/16/2009	N001	5.5	-	20.5	0.01		F	#		
Iron	mg/L	04/16/2009	N001	5.5	-	20.5	0.26		F	#	0.0013	
Magnesium	mg/L	04/16/2009	N001	5.5	-	20.5	20		F	#	0.0075	
Manganese	mg/L	04/16/2009	N001	5.5	-	20.5	0.7		F	#	0.00012	
Molybdenum	mg/L	04/16/2009	N001	5.5	-	20.5	0.15		JF	#	0.00014	
Nitrate + Nitrite as Nitrogen	mg/L	04/16/2009	N001	5.5	-	20.5	0.77		F	#	0.01	
Oxidation Reduction Potential	mV	04/16/2009	N001	5.5	-	20.5	96.1		F	#		
рН	s.u.	04/16/2009	N001	5.5	-	20.5	7.69		F	#		
Potassium	mg/L	04/16/2009	N001	5.5	-	20.5	8.9		JF	#	0.11	
Selenium	mg/L	04/16/2009	N001	5.5	-	20.5	0.045		F	#	0.00018	
Sodium	mg/L	04/16/2009	N001	5.5	-	20.5	130		F	#	0.0047	

Location: 0216 WELL

Parameter	Units	Sam Date	ple ID	Depth Range (Ft BLS)		Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Specific Conductance	umhos /cm	04/16/2009	N001	5.5 -	20.5	2527		F	#		
Sulfate	mg/L	04/16/2009	N001	5.5 -	20.5	210		F	#	5	
Temperature	С	04/16/2009	N001	5.5 -	20.5	9.01		F	#		
Turbidity	NTU	04/16/2009	N001	5.5 -	20.5	2.64		F	#		
Uranium	mg/L	04/16/2009	N001	5.5 -	20.5	0.052		F	#	0.000009	
Vanadium	mg/L	04/16/2009	N001	5.5 -	20.5	0.64		F	#	0.0045	

REPORT DATE: 6/17/2009

Location: 0217 WELL Ground elevation was calculated as surveyed TOC elevation minus stick up height reported in the Borehole Summary

Parameter	Units	Sam Date	ple ID		th Ra		Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Alkalinity, Total (As CaCO3)	mg/L	04/15/2009	N001	7.4	-	22.4	199		F	#		
Ammonia Total as N	mg/L	04/15/2009	N001	7.4	-	22.4	61		F	#	5	
Arsenic	mg/L	04/15/2009	N001	7.4	-	22.4	0.00081		F	#	0.00001	
Calcium	mg/L	04/15/2009	N001	7.4	-	22.4	590		F	#	0.031	
Chloride	mg/L	04/15/2009	N001	7.4	-	22.4	240		F	#	10	
Dissolved Oxygen	mg/L	04/15/2009	N001	7.4	-	22.4	0.25		F	#		
Field Ferrous Iron	mg/L	04/15/2009	N001	7.4	-	22.4	0.01		F	#		
Iron	mg/L	04/15/2009	N001	7.4	-	22.4	0.044	В	F	#	0.0013	
Magnesium	mg/L	04/15/2009	N001	7.4	-	22.4	20		F	#	0.0075	
Manganese	mg/L	04/15/2009	N001	7.4	-	22.4	5.3		F	#	0.00012	
Molybdenum	mg/L	04/15/2009	N001	7.4	-	22.4	1.6		JF	#	0.0014	
Nitrate + Nitrite as Nitrogen	mg/L	04/15/2009	N001	7.4	-	22.4	13		F	#	0.1	
Oxidation Reduction Potential	mV	04/15/2009	N001	7.4	-	22.4	146		F	#		
рН	s.u.	04/15/2009	N001	7.4	-	22.4	6.97		F	#		
Potassium	mg/L	04/15/2009	N001	7.4	-	22.4	22		JF	#	0.11	
Selenium	mg/L	04/15/2009	N001	7.4	-	22.4	0.039		F	#	0.000091	
Sodium	mg/L	04/15/2009	N001	7.4	-	22.4	180		F	#	0.0047	

REPORT DATE: 6/17/2009

Location: 0217 WELL Ground elevation was calculated as surveyed TOC elevation minus stick up height reported in the Borehole Summary

Parameter	Units	Sam Date	ple ID	Depth Range (Ft BLS)			Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Specific Conductance	umhos /cm	04/15/2009	N001	7.4	-	22.4	3650		F	#		
Sulfate	mg/L	04/15/2009	N001	7.4	-	22.4	1500		F	#	25	
Temperature	С	04/15/2009	N001	7.4	-	22.4	9.1		F	#		
Turbidity	NTU	04/15/2009	N001	7.4	-	22.4	3		F	#		
Uranium	mg/L	04/15/2009	N001	7.4	-	22.4	0.12		F	#	0.00009	
Vanadium	mg/L	04/15/2009	N001	7.4	-	22.4	1.9		F	#	0.023	

Location: 0590 WELL

Parameter	Units	Sam Date	ple ID	Deptl (Ft	h Rar t BLS		Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Alkalinity, Total (As CaCO3)	mg/L	04/15/2009	N001	5.21	-	19.21	332		F	#		
Ammonia Total as N	mg/L	04/15/2009	N001	5.21	-	19.21	170		F	#	10	
Arsenic	mg/L	04/15/2009	N001	5.21	-	19.21	0.00062		F	#	0.00001	
Calcium	mg/L	04/15/2009	N001	5.21	-	19.21	520		F	#	0.031	
Chloride	mg/L	04/15/2009	N001	5.21	-	19.21	300		F	#	10	
Dissolved Oxygen	mg/L	04/15/2009	N001	5.21	-	19.21	0.27		F	#		
Field Ferrous Iron	mg/L	04/15/2009	N001	5.21	-	19.21	0.01		F	#		
Iron	mg/L	04/15/2009	N001	5.21	-	19.21	0.02	В	F	#	0.0013	
Magnesium	mg/L	04/15/2009	N001	5.21	-	19.21	54		F	#	0.0075	
Manganese	mg/L	04/15/2009	N001	5.21	-	19.21	11		F	#	0.0012	
Molybdenum	mg/L	04/15/2009	N001	5.21	-	19.21	1.5		JF	#	0.0014	
Nitrate + Nitrite as Nitrogen	mg/L	04/15/2009	N001	5.21	-	19.21	73		F	#	0.5	
Oxidation Reduction Potential	mV	04/15/2009	N001	5.21	-	19.21	161		F	#		
рН	s.u.	04/15/2009	N001	5.21	-	19.21	6.84		F	#		
Potassium	mg/L	04/15/2009	N001	5.21	-	19.21	28		JF	#	0.11	
Selenium	mg/L	04/15/2009	N001	5.21	-	19.21	0.056		F	#	0.00018	
Sodium	mg/L	04/15/2009	N001	5.21	-	19.21	420		F	#	0.047	

Location: 0590 WELL

Parameter	Units	Sam Date	ple ID	Depth R (Ft Bl		Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Specific Conductance	umhos /cm	04/15/2009	N001	5.21 -	19.21	5680		F	#		
Sulfate	mg/L	04/15/2009	N001	5.21 -	19.21	2200		F	#	25	
Temperature	С	04/15/2009	N001	5.21 -	19.21	9.4		F	#		
Turbidity	NTU	04/15/2009	N001	5.21 -	19.21	1.31		F	#		
Uranium	mg/L	04/15/2009	N001	5.21 -	19.21	0.057		F	#	0.00009	
Vanadium	mg/L	04/15/2009	N001	5.21 -	19.21	0.35		F	#	0.0023	

Location: 0620 WELL

Parameter	Units	Sam Date	ple ID		th Ra		Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Alkalinity, Total (As CaCO3)	mg/L	04/17/2009	N001	6.7	-	10.7	548		F	#		
Ammonia Total as N	mg/L	04/17/2009	N001	6.7	-	10.7	0.1	U	F	#	0.1	
Arsenic	mg/L	04/17/2009	N001	6.7	-	10.7	0.00044		F	#	0.00001	
Calcium	mg/L	04/17/2009	N001	6.7	-	10.7	340		F	#	0.0031	
Chloride	mg/L	04/17/2009	N001	6.7	-	10.7	550		F	#	10	
Dissolved Oxygen	mg/L	04/17/2009	N001	6.7	-	10.7	2.17		F	#		
Field Ferrous Iron	mg/L	04/17/2009	N001	6.7	-	10.7	0.08		F	#		
Iron	mg/L	04/17/2009	N001	6.7	-	10.7	0.012	В	F	#	0.0013	
Magnesium	mg/L	04/17/2009	N001	6.7	-	10.7	210		F	#	0.0075	
Manganese	mg/L	04/17/2009	N001	6.7	-	10.7	1		F	#	0.00012	
Molybdenum	mg/L	04/17/2009	N001	6.7	-	10.7	0.0099		JF	#	0.00007	
Nitrate + Nitrite as Nitrogen	mg/L	04/17/2009	N001	6.7	-	10.7	35		F	#	0.2	
Oxidation Reduction Potential	mV	04/17/2009	N001	6.7	-	10.7	76.3		F	#		
рН	s.u.	04/17/2009	N001	6.7	-	10.7	7.45		F	#		
Potassium	mg/L	04/17/2009	N001	6.7	-	10.7	13		JF	#	0.11	
Selenium	mg/L	04/17/2009	N001	6.7	-	10.7	0.011		F	#	0.000018	
Sodium	mg/L	04/17/2009	N001	6.7	-	10.7	770		F	#	0.23	

Location: 0620 WELL

Parameter	Units	Sam Date	ple ID		n Range BLS)	Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Specific Conductance	umhos /cm	04/17/2009	N001	6.7	- 10.7	6269		F	#		
Sulfate	mg/L	04/17/2009	N001	6.7	- 10.7	2200		F	#	25	
Temperature	С	04/17/2009	N001	6.7	- 10.7	10.4		F	#		
Turbidity	NTU	04/17/2009	N001	6.7	- 10.7	1.72		F	#		
Uranium	mg/L	04/17/2009	N001	6.7	- 10.7	0.06		F	#	0.0000045	
Vanadium	mg/L	04/17/2009	N001	6.7	- 10.7	0.0011		JF	#	0.00014	

Location: 0635 WELL

Parameter	Units	Sam Date	ple ID		oth Ra Ft BLS		Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Alkalinity, Total (As CaCO3)	mg/L	04/16/2009	N001	12	-	17	337		F	#		
Ammonia Total as N	mg/L	04/16/2009	N001	12	-	17	120		F	#	5	
Arsenic	mg/L	04/16/2009	N001	12	-	17	0.00014		UF	#	0.00001	
Calcium	mg/L	04/16/2009	N001	12	-	17	550		F	#	0.031	
Chloride	mg/L	04/16/2009	N001	12	-	17	240		F	#	10	
Dissolved Oxygen	mg/L	04/16/2009	N001	12	-	17	0.22		F	#		
Field Ferrous Iron	mg/L	04/16/2009	N001	12	-	17	0.08		F	#		
Iron	mg/L	04/16/2009	N001	12	-	17	0.041	В	F	#	0.0013	
Magnesium	mg/L	04/16/2009	N001	12	-	17	33		F	#	0.0075	
Manganese	mg/L	04/16/2009	N001	12	-	17	6.2		F	#	0.00012	
Molybdenum	mg/L	04/16/2009	N001	12	-	17	0.38		JF	#	0.00035	
Nitrate + Nitrite as Nitrogen	mg/L	04/16/2009	N001	12	-	17	31		F	#	0.2	
Oxidation Reduction Potential	mV	04/16/2009	N001	12	-	17	117.7		F	#		
рН	s.u.	04/16/2009	N001	12	-	17	6.94		F	#		
Potassium	mg/L	04/16/2009	N001	12	-	17	56		JF	#	0.11	
Selenium	mg/L	04/16/2009	N001	12	-	17	0.0018		F	#	0.000018	
Sodium	mg/L	04/16/2009	N001	12	-	17	270		F	#	0.047	

Location: 0635 WELL

Parameter	Units	Sam Date	ple ID		oth Ra Ft BLS		Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Specific Conductance	umhos /cm	04/16/2009	N001	12	-	17	4592		F	#		
Sulfate	mg/L	04/16/2009	N001	12	-	17	1800		F	#	25	
Temperature	С	04/16/2009	N001	12	-	17	10.85		F	#		
Turbidity	NTU	04/16/2009	N001	12	-	17	3.12		F	#		
Uranium	mg/L	04/16/2009	N001	12	-	17	0.1		F	#	0.000022	
Vanadium	mg/L	04/16/2009	N001	12	-	17	0.00039		JF	#	0.00014	

Location: 0659 WELL

Parameter	Units	Sam Date	ple ID		oth Ra Ft BLS		Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Alkalinity, Total (As CaCO3)	mg/L	04/15/2009	N001	.5	-	10.5	190		F	#		
Ammonia Total as N	mg/L	04/15/2009	0002	.5	-	10.5	51		F	#	5	
Ammonia Total as N	mg/L	04/15/2009	N001	.5	-	10.5	53		F	#	5	
Arsenic	mg/L	04/15/2009	0002	.5	-	10.5	0.0093		F	#	0.0001	
Arsenic	mg/L	04/15/2009	N001	.5	-	10.5	0.0095		F	#	0.0001	
Calcium	mg/L	04/15/2009	0002	.5	-	10.5	600		F	#	0.031	
Calcium	mg/L	04/15/2009	N001	.5	-	10.5	600		F	#	0.031	
Chloride	mg/L	04/15/2009	0002	.5	-	10.5	140		F	#	10	
Chloride	mg/L	04/15/2009	N001	.5	-	10.5	140		F	#	10	
Dissolved Oxygen	mg/L	04/15/2009	N001	.5	-	10.5	1.33		F	#		
Field Ferrous Iron	mg/L	04/15/2009	N001	.5	-	10.5	0.01		F	#		
Iron	mg/L	04/15/2009	0002	.5	-	10.5	0.0013	U	JF	#	0.0013	
Iron	mg/L	04/15/2009	N001	.5	-	10.5	0.12		F	#	0.0013	
Magnesium	mg/L	04/15/2009	0002	.5	-	10.5	19		F	#	0.0075	
Magnesium	mg/L	04/15/2009	N001	.5	-	10.5	19		F	#	0.0075	
Manganese	mg/L	04/15/2009	0002	.5	-	10.5	2.4		F	#	0.00012	
Manganese	mg/L	04/15/2009	N001	.5	-	10.5	2.4		F	#	0.00012	

Location: 0659 WELL

Parameter	Units	Sam Date	ple ID		th Ra		Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Molybdenum	mg/L	04/15/2009	0002	.5	-	10.5	2.2		F	#	0.0035	
Molybdenum	mg/L	04/15/2009	N001	.5	-	10.5	2.3		JF	#	0.0035	
Nitrate + Nitrite as Nitrogen	mg/L	04/15/2009	0002	.5	-	10.5	23		F	#	0.2	
Nitrate + Nitrite as Nitrogen	mg/L	04/15/2009	N001	.5	-	10.5	22		F	#	0.2	
Oxidation Reduction Potential	mV	04/15/2009	N001	.5	-	10.5	150		F	#		
рН	s.u.	04/15/2009	N001	.5	-	10.5	7.14		F	#		
Potassium	mg/L	04/15/2009	0002	.5	-	10.5	13		JF	#	0.11	
Potassium	mg/L	04/15/2009	N001	.5	-	10.5	13		JF	#	0.11	
Selenium	mg/L	04/15/2009	0002	.5	-	10.5	0.12		F	#	0.00018	
Selenium	mg/L	04/15/2009	N001	.5	-	10.5	0.12		F	#	0.00018	
Sodium	mg/L	04/15/2009	0002	.5	-	10.5	150		F	#	0.0047	
Sodium	mg/L	04/15/2009	N001	.5	-	10.5	150		F	#	0.0047	
Specific Conductance	umhos /cm	04/15/2009	N001	.5	-	10.5	3400		F	#		
Sulfate	mg/L	04/15/2009	0002	.5	-	10.5	1500		F	#	25	
Sulfate	mg/L	04/15/2009	N001	.5	-	10.5	1600		F	#	25	
Temperature	С	04/15/2009	N001	.5	-	10.5	10.4		F	#		
Turbidity	NTU	04/15/2009	N001	.5	-	10.5	6.07		F	#		

Location: 0659 WELL

Parameter	Units	Sam _l Date	ple ID		oth Ra Ft BLS	_	Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Uranium	mg/L	04/15/2009	0002	.5	-	10.5	0.11		F	#	0.00022	
Uranium	mg/L	04/15/2009	N001	.5	-	10.5	0.11		F	#	0.00022	
Vanadium	mg/L	04/15/2009	0002	.5	-	10.5	0.71		F	#	0.0045	
Vanadium	mg/L	04/15/2009	N001	.5	-	10.5	0.76		F	#	0.0091	

Location: 0664 WELL

Parameter	Units	Sam Date	ple ID		th Ra		Result	Lab	Qualifiers Data	, QA	Detection Limit	Uncertainty
Alkalinity, Total (As CaCO3)	mg/L	04/15/2009	0001	7.7	-	14.7	529		FQ	#		
Ammonia Total as N	mg/L	04/15/2009	N001	7.7	-	14.7	34		FQ	#	5	
Arsenic	mg/L	04/15/2009	N001	7.7	-	14.7	0.0026		FQ	#	0.000052	
Calcium	mg/L	04/15/2009	N001	7.7	-	14.7	280		FQ	#	0.0031	
Chloride	mg/L	04/15/2009	N001	7.7	-	14.7	70		FQ	#	10	
Dissolved Oxygen	mg/L	04/15/2009	N001	7.7	-	14.7	2.53		FQ	#		
Field Ferrous Iron	mg/L	04/15/2009	N001	7.7	-	14.7	0.01		FQ	#		
Iron	mg/L	04/15/2009	N001	7.7	-	14.7	0.0022	В	JFQ	#	0.0013	
Magnesium	mg/L	04/15/2009	N001	7.7	-	14.7	68		FQ	#	0.0075	
Manganese	mg/L	04/15/2009	N001	7.7	-	14.7	1.7		FQ	#	0.00012	
Molybdenum	mg/L	04/15/2009	N001	7.7	-	14.7	0.4		JFQ	#	0.00035	
Nitrate + Nitrite as Nitrogen	mg/L	04/15/2009	N001	7.7	-	14.7	19		FQ	#	0.1	
Oxidation Reduction Potential	mV	04/15/2009	N001	7.7	-	14.7	143		FQ	#		
рН	s.u.	04/15/2009	N001	7.7	-	14.7	7.04		FQ	#		
Potassium	mg/L	04/15/2009	N001	7.7	-	14.7	14		JFQ	#	0.11	
Selenium	mg/L	04/15/2009	N001	7.7	-	14.7	0.041		FQ	#	0.000091	
Sodium	mg/L	04/15/2009	N001	7.7	-	14.7	210		FQ	#	0.0047	

Location: 0664 WELL

Parameter	Units	Sam Date	ple ID	Depth Range (Ft BLS)			Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Specific Conductance	umhos /cm	04/15/2009	N001	7.7	-	14.7	2855		FQ	#		
Sulfate	mg/L	04/15/2009	N001	7.7	-	14.7	870		FQ	#	25	
Temperature	С	04/15/2009	N001	7.7	-	14.7	16.8		FQ	#		
Turbidity	NTU	04/15/2009	N001	7.7	-	14.7	44.9		FQ	#		
Uranium	mg/L	04/15/2009	N001	7.7	-	14.7	0.082		FQ	#	0.000022	
Vanadium	mg/L	04/15/2009	N001	7.7	-	14.7	1.8		FQ	#	0.023	

Location: 0669 WELL

Parameter	Units	Sam Date	ple ID		oth Ra Ft BLS		Result	Lab	Qualifiers Data	, QA	Detection Limit	Uncertainty
Alkalinity, Total (As CaCO3)	mg/L	04/15/2009	0001	4	-	10.6	274		FQ	#		
Ammonia Total as N	mg/L	04/15/2009	N001	4	-	10.6	85		FQ	#	5	
Arsenic	mg/L	04/15/2009	N001	4	-	10.6	0.0056		FQ	#	0.000052	
Calcium	mg/L	04/15/2009	N001	4	-	10.6	530		FQ	#	0.031	
Chloride	mg/L	04/15/2009	N001	4	-	10.6	120		FQ	#	10	
Dissolved Oxygen	mg/L	04/15/2009	N001	4	-	10.6	4.48		FQ	#		
Field Ferrous Iron	mg/L	04/15/2009	N001	4	-	10.6	0.15		FQ	#		
Iron	mg/L	04/15/2009	N001	4	-	10.6	0.021	В	FQ	#	0.0013	
Magnesium	mg/L	04/15/2009	N001	4	-	10.6	41		FQ	#	0.0075	
Manganese	mg/L	04/15/2009	N001	4	-	10.6	2.6		FQ	#	0.00012	
Molybdenum	mg/L	04/15/2009	N001	4	-	10.6	1.5		JFQ	#	0.0014	
Nitrate + Nitrite as Nitrogen	mg/L	04/15/2009	N001	4	-	10.6	13		FQ	#	0.1	
Oxidation Reduction Potential	mV	04/15/2009	N001	4	-	10.6	81		FQ	#		
рН	s.u.	04/15/2009	N001	4	-	10.6	6.92		FQ	#		
Potassium	mg/L	04/15/2009	N001	4	-	10.6	13		JFQ	#	0.11	
Selenium	mg/L	04/15/2009	N001	4	-	10.6	0.016		FQ	#	0.000091	
Sodium	mg/L	04/15/2009	N001	4	-	10.6	220		FQ	#	0.0047	

Location: 0669 WELL

Parameter	Units	Sam Date	ple ID		oth Ra Ft BL		Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Specific Conductance	umhos /cm	04/15/2009	N001	4	-	10.6	3975		FQ	#		
Sulfate	mg/L	04/15/2009	N001	4	-	10.6	1700		FQ	#	25	
Temperature	С	04/15/2009	N001	4	-	10.6	15.5		FQ	#		
Turbidity	NTU	04/15/2009	N001	4	-	10.6	653		FQ	#		
Uranium	mg/L	04/15/2009	N001	4	-	10.6	0.069		FQ	#	0.00009	
Vanadium	mg/L	04/15/2009	N001	4	-	10.6	3.1		FQ	#	0.023	

Location: 0687 WELL

Parameter	Units	Sam Date	ple ID		oth Ra Ft BLS		Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Alkalinity, Total (As CaCO3)	mg/L	04/16/2009	N001	9.7	-	14.7	331		F	#		
Ammonia Total as N	mg/L	04/16/2009	N001	9.7	-	14.7	17		F	#	2	
Arsenic	mg/L	04/16/2009	N001	9.7	-	14.7	0.0027		F	#	0.00001	
Calcium	mg/L	04/16/2009	N001	9.7	-	14.7	210		F	#	0.0031	
Chloride	mg/L	04/16/2009	N001	9.7	-	14.7	95		F	#	4	
Dissolved Oxygen	mg/L	04/16/2009	N001	9.7	-	14.7	2.67		F	#		
Field Ferrous Iron	mg/L	04/16/2009	N001	9.7	-	14.7	0.01		F	#		
Iron	mg/L	04/16/2009	N001	9.7	-	14.7	0.058	В	F	#	0.0013	
Magnesium	mg/L	04/16/2009	N001	9.7	-	14.7	56		F	#	0.0075	
Manganese	mg/L	04/16/2009	N001	9.7	-	14.7	2.1		F	#	0.00012	
Molybdenum	mg/L	04/16/2009	N001	9.7	-	14.7	0.1		F	#	0.00014	
Nitrate + Nitrite as Nitrogen	mg/L	04/16/2009	N001	9.7	-	14.7	40		F	#	0.2	
Oxidation Reduction Potential	mV	04/16/2009	N001	9.7	-	14.7	101.1		F	#		
рН	s.u.	04/16/2009	N001	9.7	-	14.7	7.11		F	#		
Potassium	mg/L	04/16/2009	N001	9.7	-	14.7	20	E	JF	#	0.11	
Selenium	mg/L	04/16/2009	N001	9.7	-	14.7	0.3		F	#	0.00091	
Sodium	mg/L	04/16/2009	N001	9.7	-	14.7	140		F	#	0.0047	

Location: 0687 WELL

Parameter	Units	Sam Date	ple ID		th Rang t BLS)		Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Specific Conductance	umhos /cm	04/16/2009	N001	9.7	-	14.7	2074		F	#		
Sulfate	mg/L	04/16/2009	N001	9.7	-	14.7	450		F	#	10	
Temperature	С	04/16/2009	N001	9.7	-	14.7	10.41		F	#		
Turbidity	NTU	04/16/2009	N001	9.7	-	14.7	1.45		F	#		
Uranium	mg/L	04/16/2009	N001	9.7	-	14.7	0.06		F	#	0.000009	
Vanadium	mg/L	04/16/2009	N001	9.7	-	14.7	2.2		F	#	0.023	

Location: 0855 WELL

Parameter	Units	Sam Date	ple ID		oth Rai		Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Alkalinity, Total (As CaCO3)	mg/L	04/15/2009	0001	6	-	11	330		FQ	#		
Ammonia Total as N	mg/L	04/15/2009	0001	6	-	11	78		FQ	#	5	
Arsenic	mg/L	04/15/2009	0001	6	-	11	2.2		FQ	#	0.0021	
Calcium	mg/L	04/15/2009	0001	6	-	11	780		FQ	#	0.016	
Chloride	mg/L	04/15/2009	0001	6	-	11	170		FQ	#	10	
Dissolved Oxygen	mg/L	04/15/2009	N001	6	-	11	0.72		FQ	#		
Field Ferrous Iron	mg/L	04/15/2009	N001	6	-	11	0.01		FQ	#		
Iron	mg/L	04/15/2009	0001	6	-	11	0.71		FQ	#	0.0067	
Magnesium	mg/L	04/15/2009	0001	6	-	11	25		FQ	#	0.038	
Manganese	mg/L	04/15/2009	0001	6	-	11	1.7		FQ	#	0.00058	
Molybdenum	mg/L	04/15/2009	0001	6	-	11	18		FQ	#	0.035	
Nitrate + Nitrite as Nitrogen	mg/L	04/15/2009	0001	6	-	11	17		FQ	#	0.2	
Oxidation Reduction Potential	mV	04/15/2009	N001	6	-	11	190		FQ	#		
рН	s.u.	04/15/2009	N001	6	-	11	6.41		FQ	#		
Potassium	mg/L	04/15/2009	0001	6	-	11	8.6		JFQ	#	0.54	
Selenium	mg/L	04/15/2009	0001	6	-	11	1.8		FQ	#	0.0036	
Sodium	mg/L	04/15/2009	0001	6	-	11	160		FQ	#	0.023	

Location: 0855 WELL

Parameter	Units	Sam Date	ple ID		oth Ra Ft BLS		Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Specific Conductance	umhos /cm	04/15/2009	N001	6	-	11	4100		FQ	#		
Sulfate	mg/L	04/15/2009	0001	6	-	11	1500		FQ	#	25	
Temperature	С	04/15/2009	N001	6	-	11	11.9		FQ	#		
Turbidity	NTU	04/15/2009	N001	6	-	11	76.5		FQ	#		
Uranium	mg/L	04/15/2009	0001	6	-	11	0.0084		FQ	#	0.000045	
Vanadium	mg/L	04/15/2009	0001	6	-	11	1000		FQ	#	9.1	

Location: 0856 WELL

Parameter	Units	Sam Date	ple ID		th Rar		Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Alkalinity, Total (As CaCO3)	mg/L	04/15/2009	N001	12	-	16	973		F	#		
Ammonia Total as N	mg/L	04/15/2009	N001	12	-	16	50		F	#	5	
Arsenic	mg/L	04/15/2009	N001	12	-	16	0.023		F	#	0.00052	
Calcium	mg/L	04/15/2009	N001	12	-	16	230		F	#	0.0031	
Chloride	mg/L	04/15/2009	N001	12	-	16	74		F	#	4	
Dissolved Oxygen	mg/L	04/15/2009	N001	12	-	16	0.36		F	#		
Field Ferrous Iron	mg/L	04/15/2009	N001	12	-	16	0.01		F	#		
Iron	mg/L	04/15/2009	N001	12	-	16	0.51		F	#	0.0013	
Magnesium	mg/L	04/15/2009	N001	12	-	16	54		F	#	0.0075	
Manganese	mg/L	04/15/2009	N001	12	-	16	2.6		F	#	0.00012	
Molybdenum	mg/L	04/15/2009	N001	12	-	16	0.17		F	#	0.00014	
Nitrate + Nitrite as Nitrogen	mg/L	04/15/2009	N001	12	-	16	15		F	#	0.1	
Oxidation Reduction Potential	mV	04/15/2009	N001	12	-	16	210		F	#		
рН	s.u.	04/15/2009	N001	12	-	16	7.12		F	#		
Potassium	mg/L	04/15/2009	N001	12	-	16	19		JF	#	0.11	
Selenium	mg/L	04/15/2009	N001	12	-	16	0.53		F	#	0.00091	
Sodium	mg/L	04/15/2009	N001	12	-	16	190		F	#	0.0047	

Location: 0856 WELL

Parameter	Units	Sam Date	ple ID		oth Rai		Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Specific Conductance	umhos /cm	04/15/2009	N001	12	-	16	2560		F	#		
Sulfate	mg/L	04/15/2009	N001	12	-	16	740		F	#	10	
Temperature	С	04/15/2009	N001	12	-	16	11.7		F	#		
Turbidity	NTU	04/15/2009	N001	12	-	16	9.05		F	#		
Uranium	mg/L	04/15/2009	N001	12	-	16	0.089		F	#	0.000009	
Vanadium	mg/L	04/15/2009	N001	12	-	16	8.6		F	#	0.091	

Location: 0857 WELL

Parameter	Units	Sam Date	ple ID		oth Rai		Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Alkalinity, Total (As CaCO3)	mg/L	04/15/2009	N001	19	-	23	490		F	#		
Ammonia Total as N	mg/L	04/15/2009	N001	19	-	23	61		F	#	5	
Arsenic	mg/L	04/15/2009	N001	19	-	23	0.088		F	#	0.00052	
Calcium	mg/L	04/15/2009	N001	19	-	23	340		F	#	0.0031	
Chloride	mg/L	04/15/2009	N001	19	-	23	76		F	#	4	
Dissolved Oxygen	mg/L	04/15/2009	N001	19	-	23	0.49		F	#		
Field Ferrous Iron	mg/L	04/15/2009	N001	19	-	23	0.09		F	#		
Iron	mg/L	04/15/2009	N001	19	-	23	0.16		F	#	0.0013	
Magnesium	mg/L	04/15/2009	N001	19	-	23	26		F	#	0.0075	
Manganese	mg/L	04/15/2009	N001	19	-	23	2.1		F	#	0.00012	
Molybdenum	mg/L	04/15/2009	N001	19	-	23	0.51		F	#	0.0007	
Nitrate + Nitrite as Nitrogen	mg/L	04/15/2009	N001	19	-	23	2		F	#	0.02	
Oxidation Reduction Potential	mV	04/15/2009	N001	19	-	23	35		F	#		
pН	s.u.	04/15/2009	N001	19	-	23	7.25		F	#		
Potassium	mg/L	04/15/2009	N001	19	-	23	17		JF	#	0.11	
Selenium	mg/L	04/15/2009	N001	19	-	23	0.32		F	#	0.00091	
Sodium	mg/L	04/15/2009	N001	19	-	23	170		F	#	0.0047	

Location: 0857 WELL

Parameter	Units	Sam Date	ple ID		th Rang t BLS)	je	Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Specific Conductance	umhos /cm	04/15/2009	N001	19	-	23	2700		F	#		
Sulfate	mg/L	04/15/2009	N001	19	-	23	890		F	#	10	
Temperature	С	04/15/2009	N001	19	-	23	13		F	#		
Turbidity	NTU	04/15/2009	N001	19	-	23	8.23		F	#		
Uranium	mg/L	04/15/2009	N001	19	-	23	0.09		F	#	0.000045	
Vanadium	mg/L	04/15/2009	N001	19	-	23	33		F	#	0.45	

Location: 0863 WELL

Parameter	Units	Sam Date	ple ID		th Ra		Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Alkalinity, Total (As CaCO3)	mg/L	04/15/2009	N001	10.5	-	25.5	445		F	#		
Ammonia Total as N	mg/L	04/15/2009	N001	10.5	-	25.5	290		F	#	10	
Arsenic	mg/L	04/15/2009	N001	10.5	-	25.5	0.0027		F	#	0.00001	
Calcium	mg/L	04/15/2009	N001	10.5	-	25.5	490		F	#	0.16	
Chloride	mg/L	04/15/2009	N001	10.5	-	25.5	180		F	#	10	
Dissolved Oxygen	mg/L	04/15/2009	N001	10.5	-	25.5	0.18		F	#		
Field Ferrous Iron	mg/L	04/15/2009	N001	10.5	-	25.5	0.82		F	#		
Iron	mg/L	04/15/2009	N001	10.5	-	25.5	0.32		F	#	0.0013	
Magnesium	mg/L	04/15/2009	N001	10.5	-	25.5	35		F	#	0.0075	
Manganese	mg/L	04/15/2009	N001	10.5	-	25.5	3.6		F	#	0.00012	
Molybdenum	mg/L	04/15/2009	N001	10.5	-	25.5	1.6		F	#	0.0035	
Nitrate + Nitrite as Nitrogen	mg/L	04/15/2009	N001	10.5	-	25.5	0.056		F	#	0.01	
Oxidation Reduction Potential	mV	04/15/2009	N001	10.5	-	25.5	28		F	#		
pH	s.u.	04/15/2009	N001	10.5	-	25.5	7.01		F	#		
Potassium	mg/L	04/15/2009	N001	10.5	-	25.5	21		JF	#	0.11	
Selenium	mg/L	04/15/2009	N001	10.5	-	25.5	0.0019		F	#	0.000018	
Sodium	mg/L	04/15/2009	N001	10.5	-	25.5	390		F	#	0.23	

Location: 0863 WELL

Parameter	Units	Sam Date	ple ID	Depth R (Ft Bl		Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Specific Conductance	umhos /cm	04/15/2009	N001	10.5 -	25.5	6480		F	#		
Sulfate	mg/L	04/15/2009	N001	10.5 -	25.5	2700		F	#	25	
Temperature	С	04/15/2009	N001	10.5 -	25.5	12.3		F	#		
Turbidity	NTU	04/15/2009	N001	10.5 -	25.5	2.08		F	#		
Uranium	mg/L	04/15/2009	N001	10.5 -	25.5	0.094		F	#	0.00022	
Vanadium	mg/L	04/15/2009	N001	10.5 -	25.5	0.48		F	#	0.0045	

Location: CW31 WELL City of Rifle WWTP Dewatering Wells

Parameter	Units	Sam Date	ple ID	Depth Range (Ft BLS)	Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Alkalinity, Total (As CaCO3)	mg/L	04/17/2009	N001	-	160		F	#		
Ammonia Total as N	mg/L	04/17/2009	N001	-	7.9		F	#	0.5	
Arsenic	mg/L	04/17/2009	N001	-	0.12		F	#	0.00052	
Calcium	mg/L	04/17/2009	N001	-	170		F	#	0.0031	
Chloride	mg/L	04/17/2009	N001	-	99		F	#	4	
Dissolved Oxygen	mg/L	04/17/2009	N001	-	1.83		F	#		
Field Ferrous Iron	mg/L	04/17/2009	N001	-	0.01		F	#		
Iron	mg/L	04/17/2009	N001	-	0.0067	В	F	#	0.0013	
Magnesium	mg/L	04/17/2009	N001	-	37		F	#	0.0075	
Manganese	mg/L	04/17/2009	N001	-	1.2		F	#	0.00012	
Molybdenum	mg/L	04/17/2009	N001	-	0.51		F	#	0.0007	
Nitrate + Nitrite as Nitrogen	mg/L	04/17/2009	N001	-	16		F	#	0.1	
Oxidation Reduction Potential	mV	04/17/2009	N001	-	289.7		F	#		
рН	s.u.	04/17/2009	N001	-	7.25		F	#		
Potassium	mg/L	04/17/2009	N001	-	7.6		JF	#	0.11	
Selenium	mg/L	04/17/2009	N001	-	0.42		F	#	0.00091	
Sodium	mg/L	04/17/2009	N001	-	120		F	#	0.0047	

Location: CW31 WELL City of Rifle WWTP Dewatering Wells

Parameter	Units	Sam Date	ple ID	Depth Range (Ft BLS)	Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Specific Conductance	umhos /cm	04/17/2009	N001	-	1702		F	#		
Sulfate	mg/L	04/17/2009	N001	-	480		F	#	10	
Temperature	С	04/17/2009	N001	-	8.66		F	#		
Turbidity	NTU	04/17/2009	N001	-	1.94		F	#		
Uranium	mg/L	04/17/2009	N001	-	0.039		F	#	0.000045	
Vanadium	mg/L	04/17/2009	N001	-	4.1		F	#	0.045	

Location: CW32 WELL City of Rifle WWTP Dewatering Wells

Parameter	Units	Sam Date	ple ID	Depth Range (Ft BLS)	Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Alkalinity, Total (As CaCO3)	mg/L	04/16/2009	0001	-	388		FQ	#		
Ammonia Total as N	mg/L	04/16/2009	0001	-	4.9		FQ	#	0.1	
Arsenic	mg/L	04/16/2009	0001	-	0.14		FQ	#	0.00052	
Calcium	mg/L	04/16/2009	0001	-	200		FQ	#	0.0031	
Chloride	mg/L	04/16/2009	0001	-	110		FQ	#	4	
Dissolved Oxygen	mg/L	04/16/2009	N001	-	0.76		FQ	#		
Field Ferrous Iron	mg/L	04/16/2009	N001	-	0.1		FQ	#		
Iron	mg/L	04/16/2009	0001	-	0.076	В	FQ	#	0.0013	
Magnesium	mg/L	04/16/2009	0001	-	28		FQ	#	0.0075	
Manganese	mg/L	04/16/2009	0001	-	1.2		FQ	#	0.00012	
Molybdenum	mg/L	04/16/2009	0001	-	0.48		FQ	#	0.0007	
Nitrate + Nitrite as Nitrogen	mg/L	04/16/2009	0001	-	9.3		FQ	#	0.05	
Oxidation Reduction Potential	mV	04/16/2009	N001	-	69		FQ	#		
рН	s.u.	04/16/2009	N001	-	7.29		FQ	#		
Potassium	mg/L	04/16/2009	0001	-	6.8		JFQ	#	0.11	
Selenium	mg/L	04/16/2009	0001	-	0.52		FQ	#	0.00091	
Sodium	mg/L	04/16/2009	0001	-	110	-	FQ	#	0.0047	

Location: CW32 WELL City of Rifle WWTP Dewatering Wells

Parameter	Units	Sam Date	ple ID	Depth Range (Ft BLS)	Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Specific Conductance	umhos /cm	04/16/2009	N001	-	1646		FQ	#		
Sulfate	mg/L	04/16/2009	0001	-	440		FQ	#	10	
Temperature	С	04/16/2009	N001	-	9.51		FQ	#		
Turbidity	NTU	04/16/2009	N001	-	249		FQ	#		
Uranium	mg/L	04/16/2009	0001	-	0.035		FQ	#	0.000045	
Vanadium	mg/L	04/16/2009	0001	-	7.5		FQ	#	0.045	

Location: CW33 WELL City of Rifle WWTP Dewatering Wells

Parameter	Units	Sam Date	ple ID	Depth Range (Ft BLS)	Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Alkalinity, Total (As CaCO3)	mg/L	04/17/2009	N001	-	187		F	#		
Ammonia Total as N	mg/L	04/17/2009	N001	-	12		F	#	0.5	
Ammonia Total as N	mg/L	04/17/2009	N002	-	12		F	#	0.5	
Arsenic	mg/L	04/17/2009	N001	-	0.28		F	#	0.00052	
Arsenic	mg/L	04/17/2009	N002	-	0.28		F	#	0.00052	
Calcium	mg/L	04/17/2009	N001	-	290		F	#	0.0031	
Calcium	mg/L	04/17/2009	N002	-	300		F	#	0.0031	
Chloride	mg/L	04/17/2009	N001	-	120		F	#	4	
Chloride	mg/L	04/17/2009	N002	-	130		F	#	4	
Dissolved Oxygen	mg/L	04/17/2009	N001	-	0.4		F	#		
Field Ferrous Iron	mg/L	04/17/2009	N001	-	0.15		F	#		
Iron	mg/L	04/17/2009	N001	-	0.011	В	F	#	0.0013	
Iron	mg/L	04/17/2009	N002	-	0.012	В	F	#	0.0013	
Magnesium	mg/L	04/17/2009	N001	-	25		F	#	0.0075	
Magnesium	mg/L	04/17/2009	N002	-	26		F	#	0.0075	
Manganese	mg/L	04/17/2009	N001	-	1.2		F	#	0.00012	
Manganese	mg/L	04/17/2009	N002	-	1.2		F	#	0.00012	

Location: CW33 WELL City of Rifle WWTP Dewatering Wells

Parameter	Units	Sam Date	ple ID	Depth Range (Ft BLS)	Result	C Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Molybdenum	mg/L	04/17/2009	N001	-	0.59		F	#	0.0007	
Molybdenum	mg/L	04/17/2009	N002	-	0.57		F	#	0.0007	
Nitrate + Nitrite as Nitrogen	mg/L	04/17/2009	N001	-	5		F	#	0.05	
Nitrate + Nitrite as Nitrogen	mg/L	04/17/2009	N002	-	5		F	#	0.05	
Oxidation Reduction Potential	mV	04/17/2009	N001	-	282.4		F	#		
рН	s.u.	04/17/2009	N001	-	7.27		F	#		
Potassium	mg/L	04/17/2009	N001	-	8.8		JF	#	0.11	
Potassium	mg/L	04/17/2009	N002	-	8.9		JF	#	0.11	
Selenium	mg/L	04/17/2009	N001	-	0.23		F	#	0.00091	
Selenium	mg/L	04/17/2009	N002	-	0.22		F	#	0.00091	
Sodium	mg/L	04/17/2009	N001	-	110		F	#	0.0047	
Sodium	mg/L	04/17/2009	N002	-	110		F	#	0.0047	
Specific Conductance	umhos /cm	04/17/2009	N001	-	2030		F	#		
Sulfate	mg/L	04/17/2009	N001	-	710		F	#	10	
Sulfate	mg/L	04/17/2009	N002	-	700		F	#	10	
Temperature	С	04/17/2009	N001	-	8.07		F	#		
Turbidity	NTU	04/17/2009	N001	-	3.04		F	#		

Groundwater Quality Data by Location (USEE100) FOR SITE RFN01, Rifle New Processing Site REPORT DATE: 6/17/2009 Location: CW33 WELL City of Rifle WWTP Dewatering Wells

Parameter	Units	Sam _l Date	ole ID	Depth Range (Ft BLS)	Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Uranium	mg/L	04/17/2009	N001	-	0.047		F	#	0.000045	
Uranium	mg/L	04/17/2009	N002	-	0.045		F	#	0.000045	
Vanadium	mg/L	04/17/2009	N001	-	9.1		F	#	0.091	
Vanadium	mg/L	04/17/2009	N002	-	8.9		F	#	0.091	

Location: CW34 WELL City of Rifle WWTP Dewatering Wells

Parameter	Units	Sam Date	ple ID	Depth Range (Ft BLS)	Result	Quali Lab Da		Detection Limit	Uncertainty
Alkalinity, Total (As CaCO3)	mg/L	04/17/2009	N001	-	178	F	#		
Ammonia Total as N	mg/L	04/17/2009	N001	-	9.6	F	#	0.5	
Arsenic	mg/L	04/17/2009	N001	-	0.047	F	#	0.00052	
Calcium	mg/L	04/17/2009	N001	-	150	F	#	0.0031	
Chloride	mg/L	04/17/2009	N001	-	120	F	#	4	
Dissolved Oxygen	mg/L	04/17/2009	N001	-	0.49	F	#		
Field Ferrous Iron	mg/L	04/17/2009	N001	-	1.07	F	#		
Iron	mg/L	04/17/2009	N001	-	1.3	F	#	0.0013	
Magnesium	mg/L	04/17/2009	N001	-	25	F	#	0.0075	
Manganese	mg/L	04/17/2009	N001	-	1.3	F	#	0.00012	
Molybdenum	mg/L	04/17/2009	N001	-	0.36	F	#	0.00035	
Nitrate + Nitrite as Nitrogen	mg/L	04/17/2009	N001	-	3	F	#	0.05	
Oxidation Reduction Potential	mV	04/17/2009	N001	-	-69.3	F	#		
рН	s.u.	04/17/2009	N001	-	7.41	F	#		
Potassium	mg/L	04/17/2009	N001	-	8.9	JF	- #	0.11	
Selenium	mg/L	04/17/2009	N001	-	0.29	F	#	0.00091	
Sodium	mg/L	04/17/2009	N001	-	100	F	#	0.0047	·

Location: CW34 WELL City of Rifle WWTP Dewatering Wells

Parameter	Units	Sam Date	ple ID	Depth Range (Ft BLS)	Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Specific Conductance	umhos /cm	04/17/2009	N001	-	1458		F	#		
Sulfate	mg/L	04/17/2009	N001	-	370		F	#	10	
Temperature	С	04/17/2009	N001	-	9.22		F	#		
Turbidity	NTU	04/17/2009	N001	-	9.84		F	#		
Uranium	mg/L	04/17/2009	N001	-	0.022		F	#	0.000022	
Vanadium	mg/L	04/17/2009	N001	-	5.1		F	#	0.045	

Groundwater Quality Data by Location (USEE100) FOR SITE RFN01, Rifle New Processing Site REPORT DATE: 6/17/2009 Location: CW35 WELL City of Rifle WWTP Dewatering Wells

Parameter	Units	Sam Date	ple ID	Depth Range (Ft BLS)	Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Alkalinity, Total (As CaCO3)	mg/L	04/17/2009	N001	-	156		F	#		
Ammonia Total as N	mg/L	04/17/2009	N001	-	5.1		F	#	0.5	
Arsenic	mg/L	04/17/2009	N001	-	0.027		F	#	0.00021	
Calcium	mg/L	04/17/2009	N001	-	140		F	#	0.0031	
Chloride	mg/L	04/17/2009	N001	-	120		F	#	4	
Dissolved Oxygen	mg/L	04/17/2009	N001	-	1.65		F	#		
Field Ferrous Iron	mg/L	04/17/2009	N001	-	0.03		F	#		
Iron	mg/L	04/17/2009	N001	-	0.019	В	F	#	0.0013	
Magnesium	mg/L	04/17/2009	N001	-	30		F	#	0.0075	
Manganese	mg/L	04/17/2009	N001	-	1.1		F	#	0.00012	
Molybdenum	mg/L	04/17/2009	N001	-	0.24		F	#	0.00035	
Nitrate + Nitrite as Nitrogen	mg/L	04/17/2009	N001	-	12		F	#	0.1	
Oxidation Reduction Potential	mV	04/17/2009	N001	-	3.7		F	#		
рН	s.u.	04/17/2009	N001	-	7.52		F	#		
Potassium	mg/L	04/17/2009	N001	-	7.2		JF	#	0.11	
Selenium	mg/L	04/17/2009	N001	-	0.16		F	#	0.00036	
Sodium	mg/L	04/17/2009	N001	-	100		F	#	0.0047	
Specific Conductance	umhos /cm	04/17/2009	N001	-	1426		F	#		
Sulfate	mg/L	04/17/2009	N001	-	320		F	#	10	

REPORT DATE: 6/17/2009

Location: CW35 WELL City of Rifle WWTP Dewatering Wells

Parameter	Units	Sam Date	ple ID	Depth Range (Ft BLS)	Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Temperature	С	04/17/2009	N001	-	8.44		F	#		
Turbidity	NTU	04/17/2009	N001	-	1.42		F	#		
Uranium	mg/L	04/17/2009	N001	-	0.016		F	#	0.000022	
Vanadium	mg/L	04/17/2009	N001	-	3.7		F	#	0.045	

SAMPLE ID CODES: 000X = Filtered sample (0.45 µm). N00X = Unfiltered sample. X = replicate number.

LAB QUALIFIERS:

- * Replicate analysis not within control limits.
- > Result above upper detection limit.
- A TIC is a suspected aldol-condensation product.
- B Inorganic: Result is between the IDL and CRDL. Organic: Analyte also found in method blank.
- C Pesticide result confirmed by GC-MS.
- D Analyte determined in diluted sample.
- E Inorganic: Estimate value because of interference, see case narrative. Organic: Analyte exceeded calibration range of the GC-MS.
- H Holding time expired, value suspect.
- I Increased detection limit due to required dilution.
- J Estimated
- N Inorganic or radiochemical: Spike sample recovery not within control limits. Organic: Tentatively identified compound (TIC).
- > 25% difference in detected pesticide or Aroclor concentrations between 2 columns.
- U Analytical result below detection limit.
- W Post-digestion spike outside control limits while sample absorbance < 50% of analytical spike absorbance.
- X,Y,Z Laboratory defined qualifier, see case narrative.

DATA QUALIFIERS:

- F Low flow sampling method used. G Possible grout contamination, pH > 9.
- L Less than 3 bore volumes purged prior to sampling. Q Qualitative result due to sampling technique. R Unusable result.
- U Parameter analyzed for but was not detected. X Location is undefined.

QA QUALIFIER:

Validated according to quality assurance guidelines.

J Estimated value.

New Rifle Surface Water Quality Data

Location: 0320 SURFACE LOCATION

Parameter	Units	Samp Date	le ID	Result	Qualifiers Lab Data QA	Detection Limit	Uncertainty
Alkalinity, Total (As CaCO3)	mg/L	04/16/2009	N001	189	#		
Ammonia Total as N	mg/L	04/16/2009	N001	15	#	0.5	
Dissolved Oxygen	mg/L	04/16/2009	N001	6.76	#		
Field Ferrous Iron	mg/L	04/16/2009	N001	0.01	#		
Molybdenum	mg/L	04/16/2009	N001	2.7	J #	0.0035	
Nitrate + Nitrite as Nitrogen	mg/L	04/16/2009	N001	87	#	0.5	
Oxidation Reduction Potential	mV	04/16/2009	N001	187.3	#		
рН	s.u.	04/16/2009	N001	8.21	#		
Specific Conductance	umhos/cm	04/16/2009	N001	8888	#		
Temperature	С	04/16/2009	N001	12.51	#		
Turbidity	NTU	04/16/2009	N001	9.52	#		
Uranium	mg/L	04/16/2009	N001	0.24	#	0.00022	
Vanadium	mg/L	04/16/2009	N001	0.12	#	0.00091	

Location: 0322 SURFACE LOCATION

Parameter	Units	Samp Date	le ID	Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Alkalinity, Total (As CaCO3)	mg/L	04/16/2009	0001	207			#		
Ammonia Total as N	mg/L	04/16/2009	0001	0.1	U		#	0.1	
Dissolved Oxygen	mg/L	04/16/2009	N001	6.36			#		
Field Ferrous Iron	mg/L	04/16/2009	N001	0.01			#		
Molybdenum	mg/L	04/16/2009	0001	0.0033		J	#	0.00007	
Nitrate + Nitrite as Nitrogen	mg/L	04/16/2009	0001	0.18			#	0.01	
Oxidation Reduction Potential	mV	04/16/2009	N001	75.9			#		
рН	s.u.	04/16/2009	N001	8.33			#		
Specific Conductance	umhos/cm	04/16/2009	N001	899			#		
Temperature	С	04/16/2009	N001	12.4			#		
Turbidity	NTU	04/16/2009	N001	205			#		
Uranium	mg/L	04/16/2009	0001	0.002			#	0.0000045	
Vanadium	mg/L	04/16/2009	0001	0.0014		J	#	0.00014	

Location: 0323 SURFACE LOCATION

Parameter	Units	Samp Date	le ID	Result	Qualifiers Lab Data Q	Detection A Limit	Uncertainty
Alkalinity, Total (As CaCO3)	mg/L	04/16/2009	N001	171	#		
Ammonia Total as N	mg/L	04/16/2009	N001	26	#	2	
Dissolved Oxygen	mg/L	04/16/2009	N001	6.62	#	·	
Field Ferrous Iron	mg/L	04/16/2009	N001	0.01	#	!	
Molybdenum	mg/L	04/16/2009	N001	2.2	J #	0.0035	
Nitrate + Nitrite as Nitrogen	mg/L	04/16/2009	N001	99	#	0.5	
Oxidation Reduction Potential	mV	04/16/2009	N001	205.1	#	<u>!</u>	
pH	s.u.	04/16/2009	N001	8.32	#	ŧ	
Specific Conductance	umhos/cm	04/16/2009	N001	8048	#	!	
Temperature	С	04/16/2009	N001	12.08	#	!	
Turbidity	NTU	04/16/2009	N001	4.84	#	<u>!</u>	
Uranium	mg/L	04/16/2009	N001	0.26	#	0.00022	
Vanadium	mg/L	04/16/2009	N001	0.0035	#	0.00014	

Location: 0324 SURFACE LOCATION

Parameter	Units	Samp Date	le ID	Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Alkalinity, Total (As CaCO3)	mg/L	04/17/2009	0001	114			#		
Ammonia Total as N	mg/L	04/17/2009	0001	0.1	U		#	0.1	
Dissolved Oxygen	mg/L	04/17/2009	N001	11.54			#		
Field Ferrous Iron	mg/L	04/17/2009	N001	0.05			#		
Molybdenum	mg/L	04/17/2009	0001	0.003		J	#	0.00007	
Nitrate + Nitrite as Nitrogen	mg/L	04/17/2009	0001	0.26			#	0.01	
Oxidation Reduction Potential	mV	04/17/2009	N001	51.2			#		
рН	s.u.	04/17/2009	N001	8.41			#		
Specific Conductance	umhos/cm	04/17/2009	N001	896			#		
Temperature	С	04/17/2009	N001	9.17			#		
Turbidity	NTU	04/17/2009	N001	78.5			#		
Uranium	mg/L	04/17/2009	0001	0.002			#	0.0000045	
Vanadium	mg/L	04/17/2009	0001	0.0026		J	#	0.00014	

Location: 0452 SURFACE LOCATION

Parameter	Units	Samp Date	le ID	Result	Qualifiers Lab Data	QA	Detection Limit	Uncertainty
Alkalinity, Total (As CaCO3)	mg/L	04/15/2009	N001	183		#		
Ammonia Total as N	mg/L	04/15/2009	N001	36		#	5	
Dissolved Oxygen	mg/L	04/15/2009	N001	5.52		#		
Field Ferrous Iron	mg/L	04/15/2009	N001	0.01		#		
Molybdenum	mg/L	04/15/2009	N001	3	J	#	0.0035	
Nitrate + Nitrite as Nitrogen	mg/L	04/15/2009	N001	92		#	0.5	
Oxidation Reduction Potential	mV	04/15/2009	N001	146		#		
рН	s.u.	04/15/2009	N001	7.76		#		
Specific Conductance	umhos/cm	04/15/2009	N001	6440		#		
Temperature	С	04/15/2009	N001	20.6		#		
Turbidity	NTU	04/15/2009	N001	9.37		#		
Uranium	mg/L	04/15/2009	N001	0.09		#	0.00022	
Vanadium	mg/L	04/15/2009	N001	1		#	0.0091	

Location: 0453 SURFACE LOCATION

Parameter	Units	Samp Date	le ID	Result	Qualifiers Lab Data	QA	Detection Limit	Uncertainty
Alkalinity, Total (As CaCO3)	mg/L	04/15/2009	N001	145		#		
Ammonia Total as N	mg/L	04/15/2009	N001	51		#	5	
Dissolved Oxygen	mg/L	04/15/2009	N001	6.48		#		
Field Ferrous Iron	mg/L	04/15/2009	N001	0.01		#		
Molybdenum	mg/L	04/15/2009	N001	3.3	J	#	0.0035	
Nitrate + Nitrite as Nitrogen	mg/L	04/15/2009	N001	82		#	0.5	
Oxidation Reduction Potential	mV	04/15/2009	N001	147		#		
рН	s.u.	04/15/2009	N001	7.71		#		
Specific Conductance	umhos/cm	04/15/2009	N001	5445		#		
Temperature	С	04/15/2009	N001	21.7		#		
Turbidity	NTU	04/15/2009	N001	5.3		#		
Uranium	mg/L	04/15/2009	N001	0.084		#	0.00022	
Vanadium	mg/L	04/15/2009	N001	2.1		#	0.023	

REPORT DATE: 6/17/2009

Location: 0575 SURFACE LOCATION

Parameter	Units	Samp Date	le ID	Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Alkalinity, Total (As CaCO3)	mg/L	04/16/2009	N001	216			#		
Ammonia Total as N	mg/L	04/16/2009	N001	0.1	U		#	0.1	
Dissolved Oxygen	mg/L	04/16/2009	N001	8.27			#		
Field Ferrous Iron	mg/L	04/16/2009	N001	0.01			#		
Molybdenum	mg/L	04/16/2009	N001	0.042		J	#	0.00007	
Nitrate + Nitrite as Nitrogen	mg/L	04/16/2009	N001	0.01	U		#	0.01	
Oxidation Reduction Potential	mV	04/16/2009	N001	198.4			#		
рН	s.u.	04/16/2009	N001	8.35			#		
Specific Conductance	umhos/cm	04/16/2009	N001	1578			#		
Temperature	С	04/16/2009	N001	10.67			#		
Turbidity	NTU	04/16/2009	N001	9.49			#		
Uranium	mg/L	04/16/2009	N001	0.017			#	0.0000045	
Vanadium	mg/L	04/16/2009	N001	0.0025			#	0.00014	

SAMPLE ID CODES: 000X = Filtered sample (0.45 µm). N00X = Unfiltered sample. X = replicate number.

LAB QUALIFIERS:

- Replicate analysis not within control limits.
- Result above upper detection limit.
- Α
- TIC is a suspected aldol-condensation product.

 Inorganic: Result is between the IDL and CRDL. Organic: Analyte also found in method blank.

- C Pesticide result confirmed by GC-MS.
- D Analyte determined in diluted sample.
- E Inorganic: Estimate value because of interference, see case narrative. Organic: Analyte exceeded calibration range of the GC-MS.
- H Holding time expired, value suspect.
- I Increased detection limit due to required dilution.
- J Estimated
- N Inorganic or radiochemical: Spike sample recovery not within control limits. Organic: Tentatively identified compound (TIC).
- P > 25% difference in detected pesticide or Aroclor concentrations between 2 columns.
- U Analytical result below detection limit.
- W Post-digestion spike outside control limits while sample absorbance < 50% of analytical spike absorbance.
- X,Y,Z Laboratory defined qualifier, see case narrative.

DATA QUALIFIERS:

F Low flow sampling method used. G Possible grout contamination, pH > 9. J Estimated value.
Less than 3 bore volumes purged prior to sampling. Q Qualitative result due to sampling technique. R Unusable result.
U Parameter analyzed for but was not detected. X Location is undefined.

QA QUALIFIER:

Validated according to quality assurance guidelines.

Equipment Blank Data

BLANKS REPORT

LAB: PARAGON (Fort Collins, CO)

RIN: 09032201

Report Date: 6/17/2009

Parameter	Site Code	Location ID	Sample Date	e ID	Units	Result	Qua Lab	lifiers Data	Detection Limit	Uncertainty	Sample Type
Ammonia Total as N	RFN01	0999	04/17/2009	N001	mg/L	0.1	U		0.1		Е
Molybdenum	RFN01	0999	04/17/2009	N001	mg/L	0.00035	В	U	0.00007		E
Nitrate + Nitrite as Nitrogen	RFN01	0999	04/17/2009	N001	mg/L	0.01	U		0.01		E
Uranium	RFN01	0999	04/17/2009	N001	mg/L	0.000025	В	U	0.0000045		E
Vanadium	RFN01	0999	04/17/2009	N001	mg/L	0.0036			0.00014		E
Selenium	RFO01	0999	04/14/2009	N001	mg/L	0.000052	В	U	0.000018		E
Uranium	RFO01	0999	04/14/2009	N001	mg/L	0.000025	В	U	0.0000045		E
Vanadium	RFO01	0999	04/14/2009	N001	mg/L	0.00014	U	J	0.00014		E

SAMPLE ID CODES: 000X = Filtered sample (0.45 µm). N00X = Unfiltered sample. X = replicate number.

LAB QUALIFIERS:

- * Replicate analysis not within control limits.
- > Result above upper detection limit.
- A TIC is a suspected aldol-condensation product.
- B Inorganic: Result is between the IDL and CRDL. Organic: Analyte also found in method blank.
- C Pesticide result confirmed by GC-MS.
- D Analyte determined in diluted sample.
- E Inorganic: Estimate value because of interference, see case narrative. Organic: Analyte exceeded calibration range of the GC-MS.
- H Holding time expired, value suspect.
- I Increased detection limit due to required dilution.
- J Estimated
- N Inorganic or radiochemical: Spike sample recovery not within control limits. Organic: Tentatively identified compound (TIC).
- P > 25% difference in detected pesticide or Aroclor concentrations between 2 columns.
- U Analytical result below detection limit.
- W Post-digestion spike outside control limits while sample absorbance < 50% of analytical spike absorbance.
- X,Y,Z Laboratory defined qualifier, see case narrative.

DATA QUALIFIERS:

- F Low flow sampling method used. G Possible grout contamination, pH > 9. J Estimated value.
 Less than 3 bore volumes purged prior to sampling. Q Qualitative result due to sampling technique. R Unusable result.
- U Parameter analyzed for but was not detected. X Location is undefined.

SAMPLE TYPES:

E Equipment Blank.

Static Water Level Data

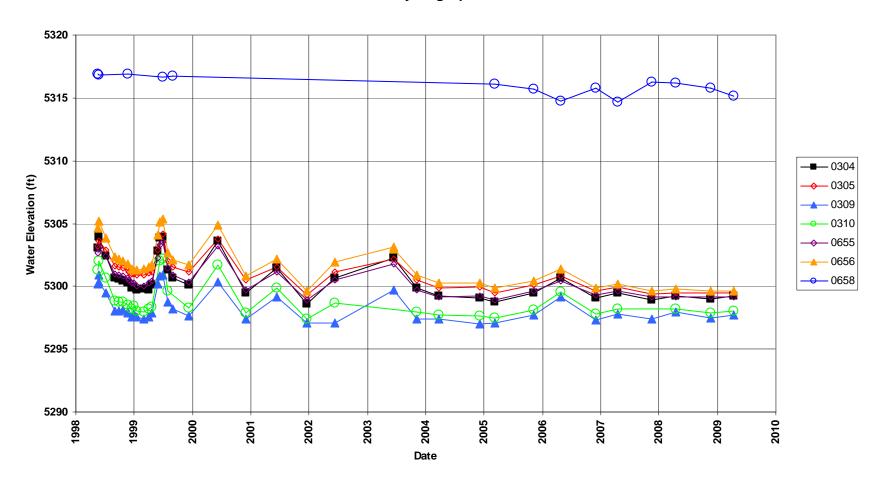
STATIC WATER LEVELS (USEE700) FOR SITE RF001, Rifle Old Processing Site REPORT DATE: 6/17/2009

Location Code	Flow Code	Top of Casing Elevation (Ft)	Measure Date	ement Time	Depth From Top of Casing (Ft)	Water Elevation (Ft)	Water Level Flag
0292A			04/14/2009	13:40:13	11.9	-11.9	_
0304	0	5310.63	04/14/2009	11:15:48	11.37	5299.26	
0305	0	5312.08	04/13/2009	15:45:57	12.62	5299.46	_
0309	0	5313.37	04/13/2009	13:50:13	15.69	5297.68	
0310	0	5311.64	04/13/2009	14:55:44	13.62	5298.02	
0655	0	5312.87	04/13/2009	16:15:28	13.75	5299.12	
0656	0	5313.28	04/14/2009	13:15:34	13.65	5299.63	
0658	U	5323.07	04/14/2009	12:45:40	7.94	5315.13	

FLOW CODES: B BACKGROUND C CROSS GRADIENT D DOWN GRADIENT F OFF SITE U UPGRADIENT

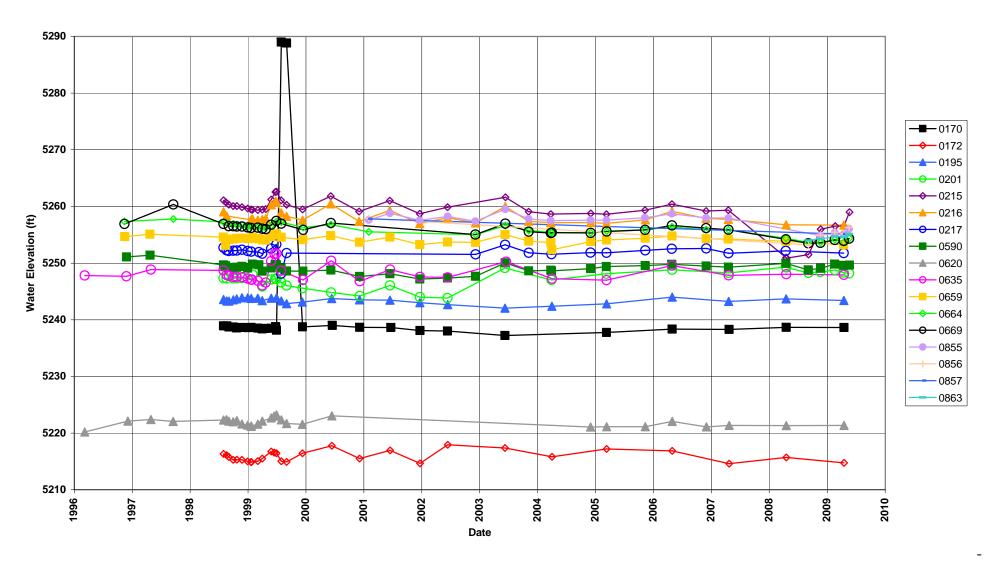
WATER LEVEL FLAGS: D Dry F FLOWING

STATIC WATER LEVELS (USEE700) FOR SITE RFN01, Rifle New Processing Site **REPORT DATE: 6/17/2009**


Location Code	Flow Code	Top of Casing Elevation (Ft)	Measure Date	ement Time	Depth From Top of Casing (Ft)	Water Elevation (Ft)	Water Level Flag
0170	D	5332.97	04/17/2009	13:17:07	94.33	5238.64	
0172	D	5229.45	04/17/2009	15:20:12	14.71	5214.74	
0195	D	5253.1	04/16/2009	16:00:01	9.69	5243.41	
0201	D	5261.07	04/16/2009	11:50:33	12.75	5248.32	
0215	0	5271.42	04/16/2009	13:15:09	14.88	5256.54	
0216	0	5265.41	04/16/2009	12:50:18	8.71	5256.7	
0217	D	5256.98	04/15/2009	15:10:41	5.21	5251.77	
0590	D	5256.37	04/15/2009	15:35:29	6.79	5249.58	
0620	D	5231.22	04/17/2009	14:20:39	9.86	5221.36	
0635	D	5253.12	04/16/2009	14:40:47	5.19	5247.93	
0659	0	5261.33	04/15/2009	14:40:24	8.11	5253.22	
0664	0	5270.17	04/15/2009	14:15:21	16.5	5253.67	
0669	0	5266.56	04/15/2009	13:55:31	12.65	5253.91	
0687			04/16/2009	13:35:54	12.82	-12.82	
0855	0	5267.24	04/15/2009	11:55:06	12.15	5255.09	
0856	0	5267.7	04/15/2009	11:05:32	12.49	5255.21	
0857	0	5267.24	04/15/2009	11:40:24	12.11	5255.13	
0863	0	5267.77	04/15/2009	13:30:11	13.19	5254.58	
CW31			04/17/2009	10:30:42	13	-13	
CW32			04/16/2009	17:00:38	10.74	-10.74	
CW33			04/17/2009	11:00:20	11.21	-11.21	
CW34			04/17/2009	11:30:47	13.2	-13.2	
CW35			04/17/2009	11:55:15	11.95	-11.95	

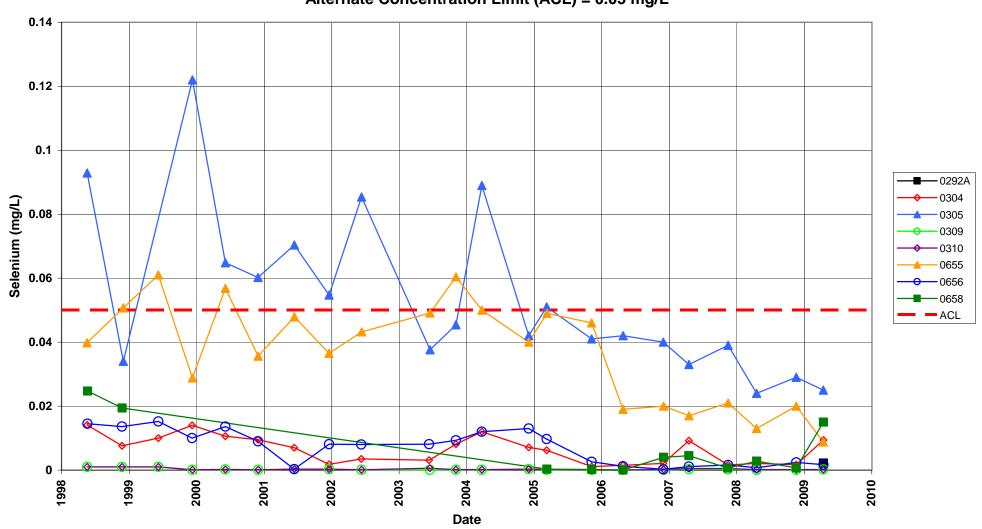
FLOW CODES: B BACKGROUND C CROSS GRADIENT D DOWN GRADIENT F OFF SITE U UPGRADIENT

WATER LEVEL FLAGS: D Dry F FLOWING


Old Rifle Hydrograph

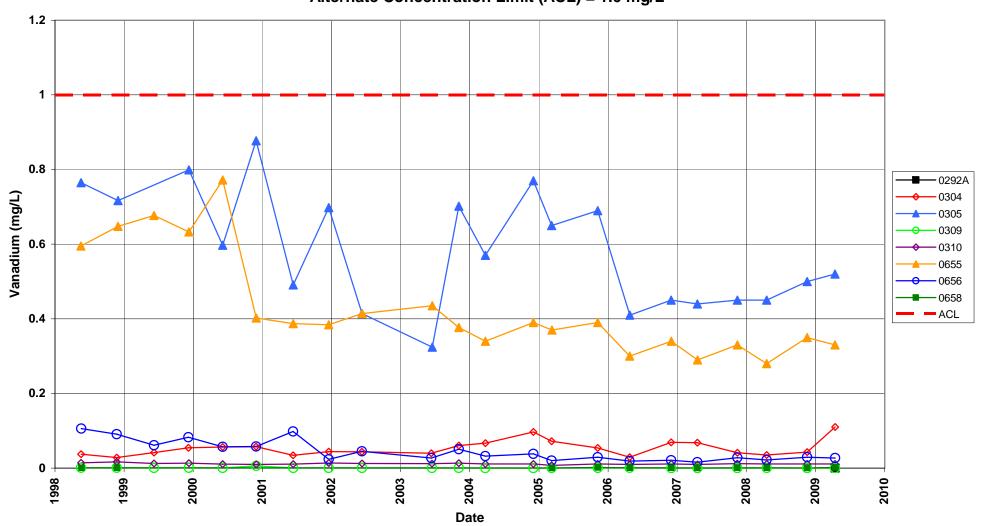
Rifle Old Processing Site Hydrograph

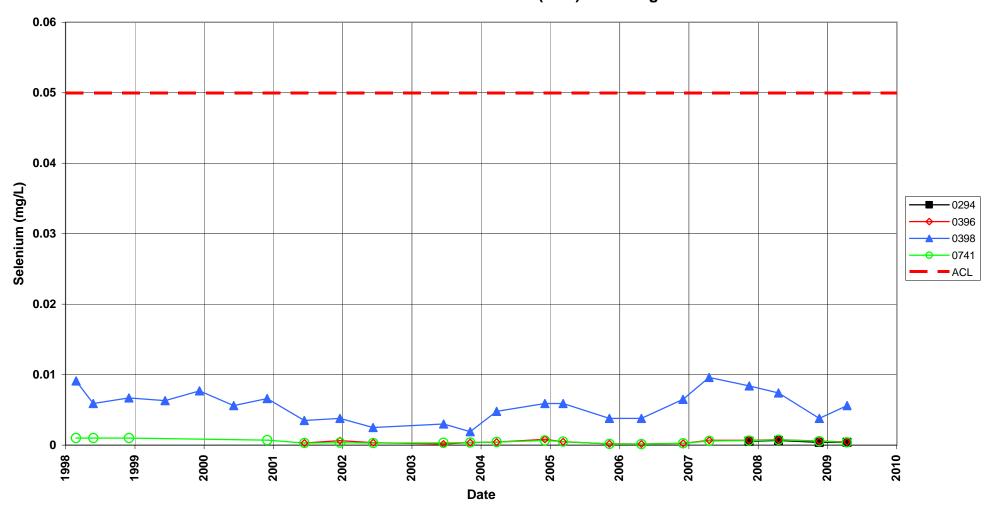
New Rifle Hydrograph

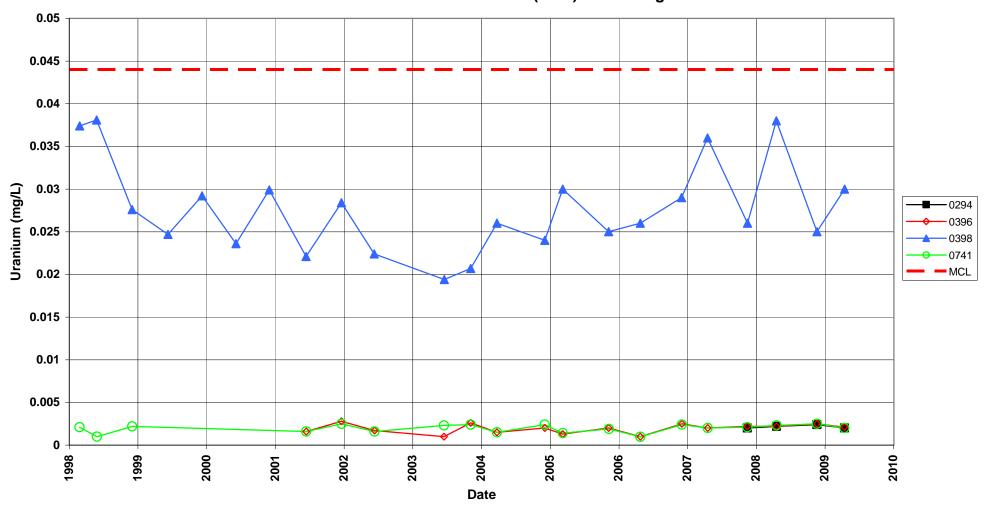

Rifle New Processing Site Hydrograph

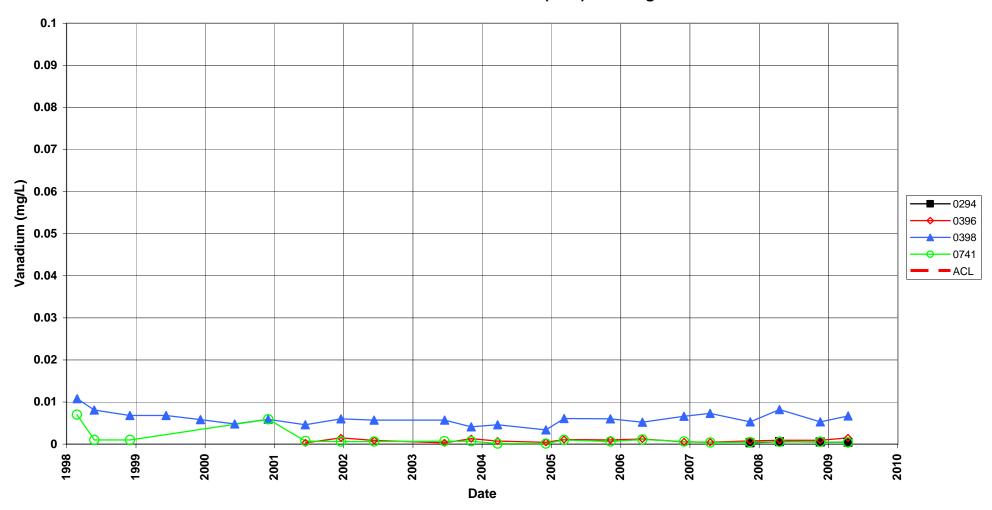

Old Rifle Time-Concentration Graphs

This page intentionally left blank

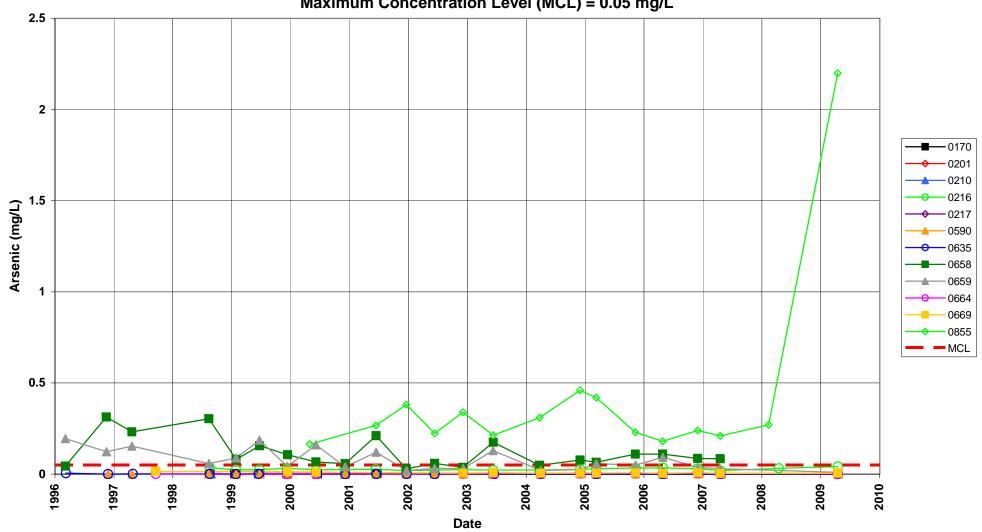

Rifle Old Processing Site Selenium Concentration Alternate Concentration Limit (ACL) = 0.05 mg/L

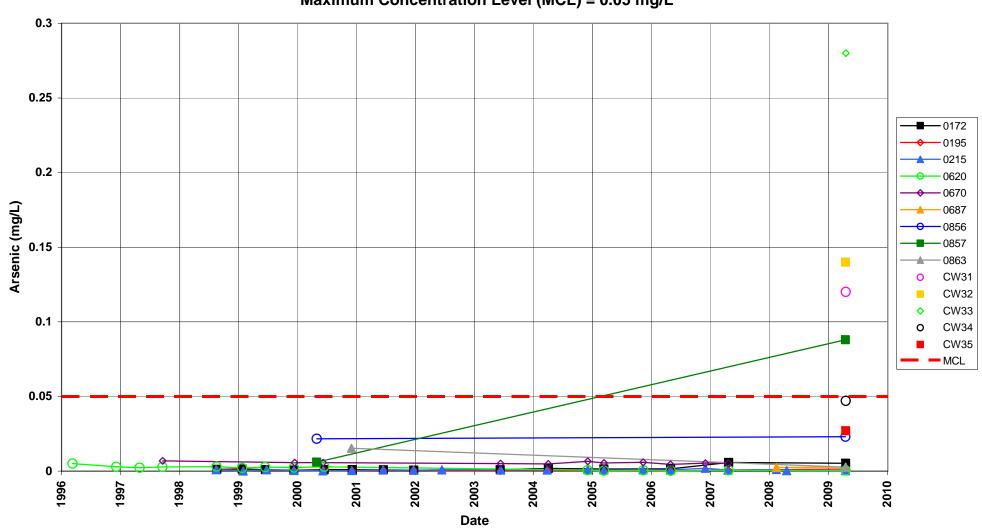

Rifle Old Processing Site Uranium Concentration Maximum Concentration Level (MCL) = 0.044 mg/L


Rifle Old Processing Site
Vanadium Concentration
Alternate Concentration Limit (ACL) = 1.0 mg/L

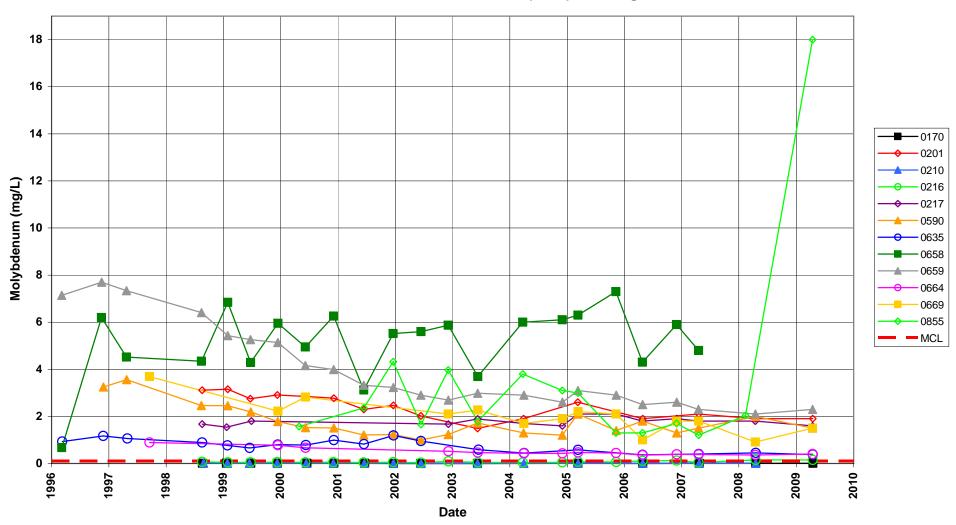

Rifle Old Processing Site Selenium Concentration Surface Locations Alternate Concentration Limit (ACL) = 0.05 mg/L

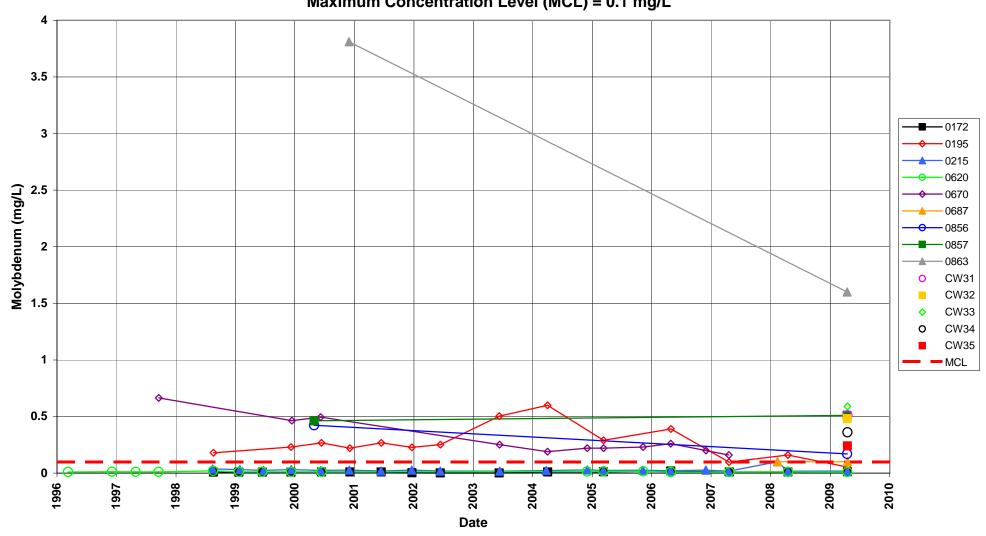
Rifle Old Processing Site Uranium Concentration Surface Locations Maximum Concentration Level (MCL) = 0.044 mg/L

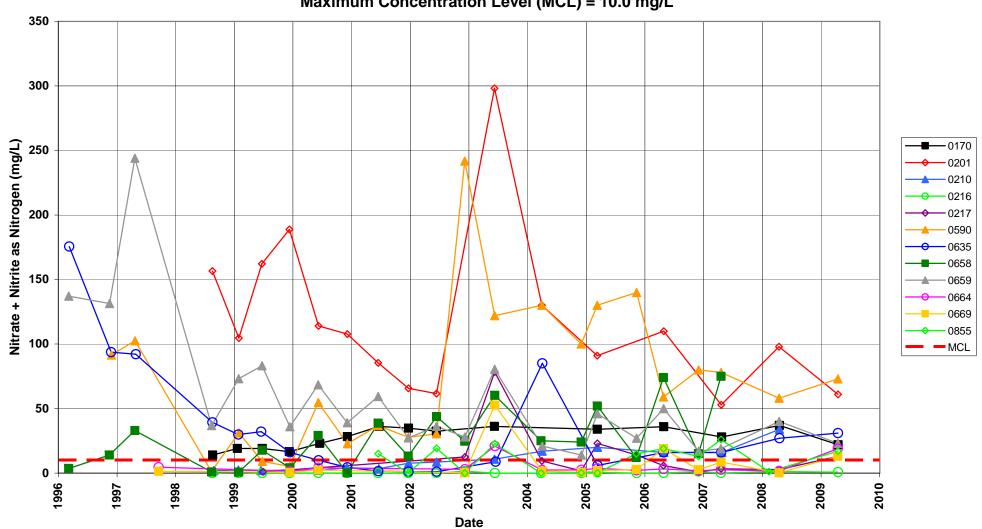

Rifle Old Processing Site Vanadium Concentration Surface Locations Alternate Concentration Limit (ACL) = 1.0 mg/L

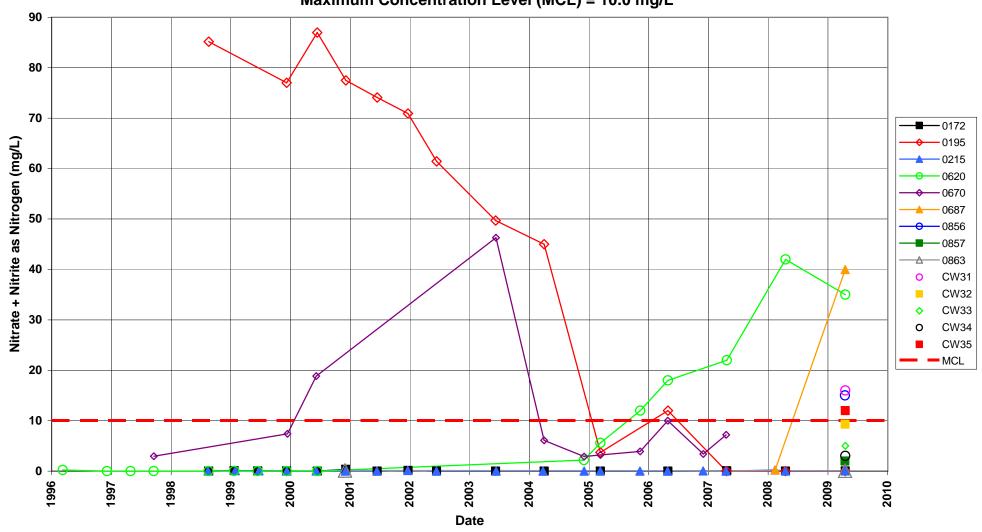

New Rifle Time-Concentration Graphs

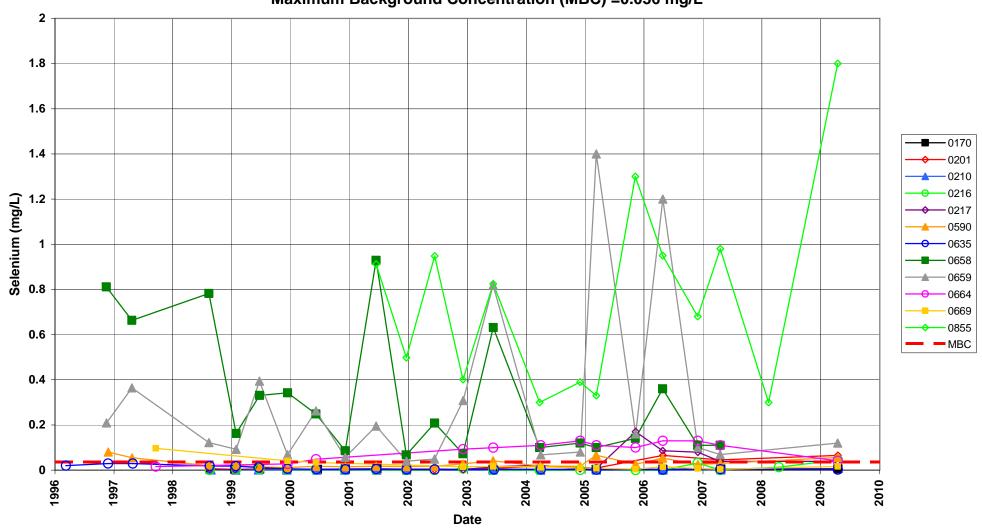
This page intentionally left blank

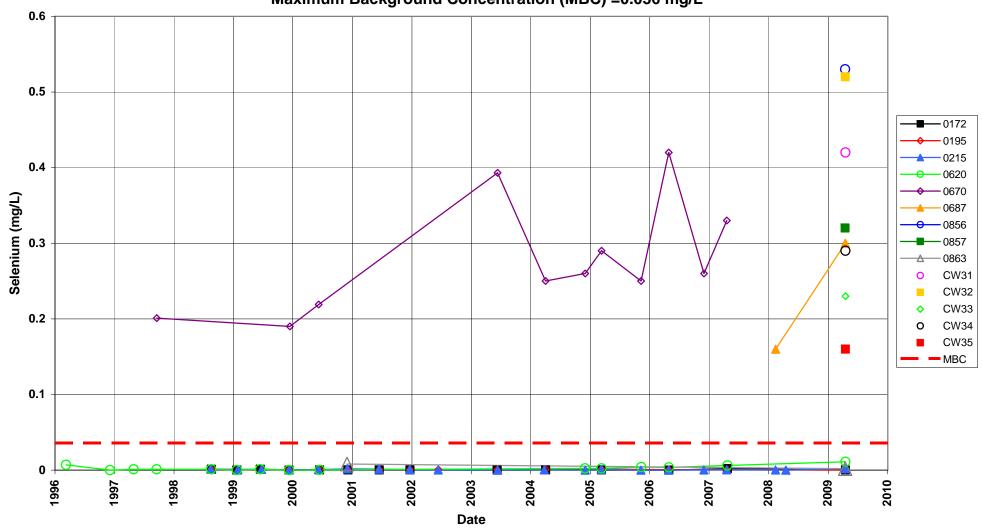

Rifle New Processing Site Arsenic Concentration Maximum Concentration Level (MCL) = 0.05 mg/L

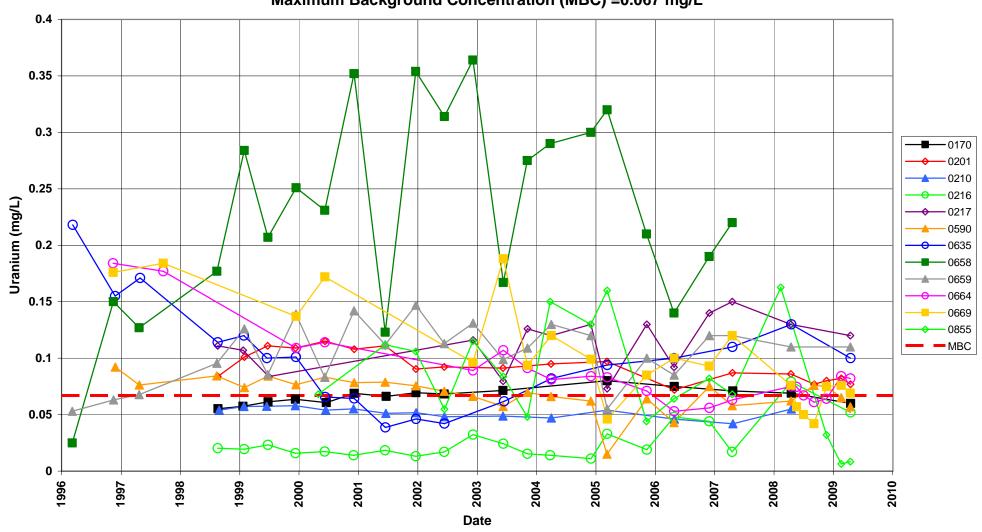

Rifle New Processing Site Arsenic Concentration Maximum Concentration Level (MCL) = 0.05 mg/L

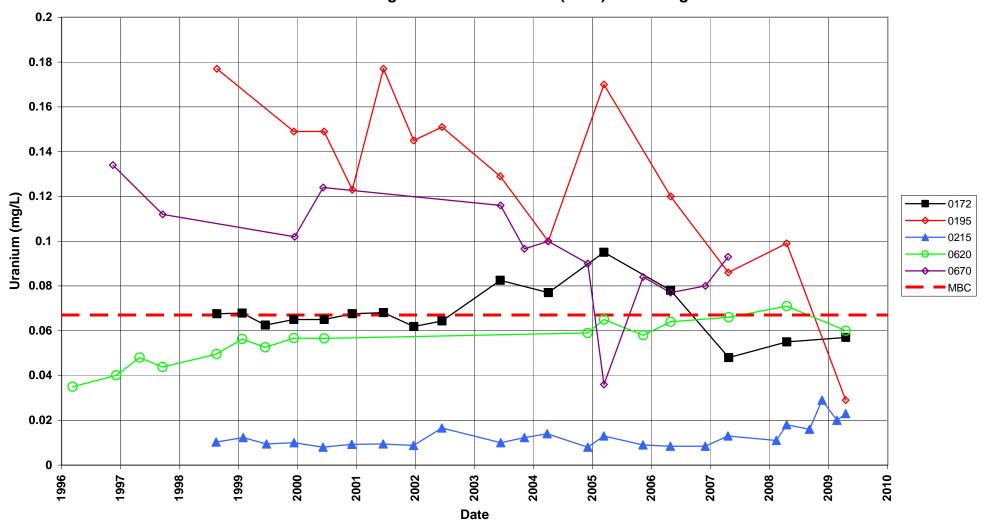

Rifle New Processing Site Molybdenum Concentration Maximum Concentration Level (MCL) = 0.1 mg/L

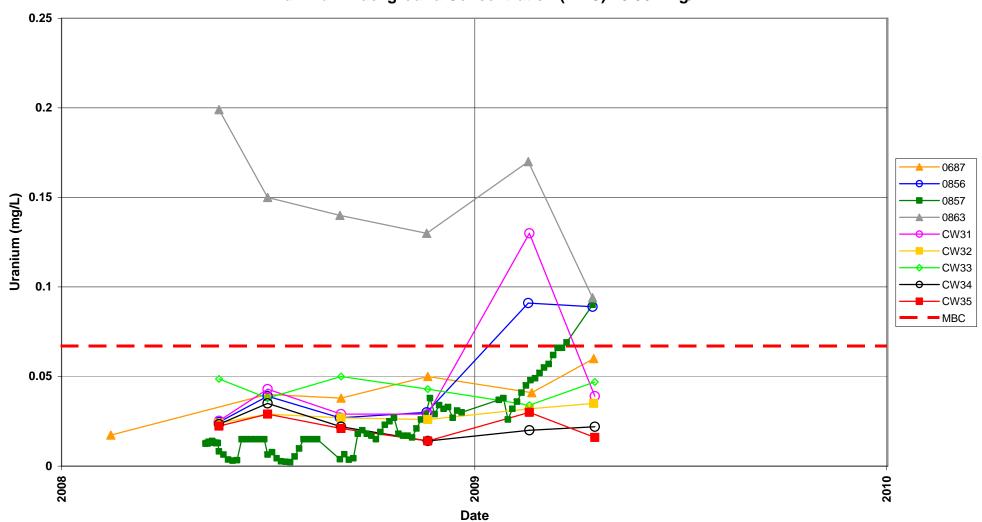

Rifle New Processing Site Molybdenum Concentration Maximum Concentration Level (MCL) = 0.1 mg/L

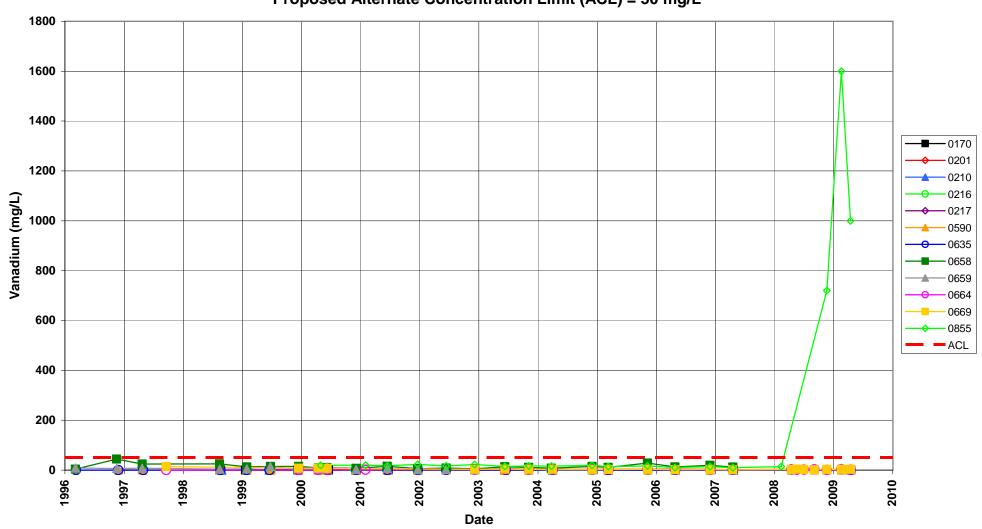

Rifle New Processing Site Nitrate + Nitrite as Nitrogen Concentration Maximum Concentration Level (MCL) = 10.0 mg/L

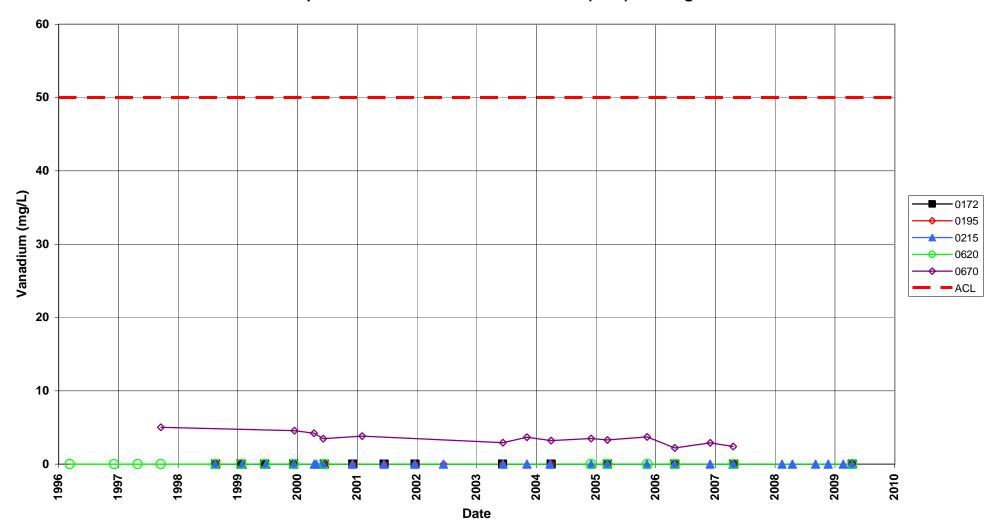

Rifle New Processing Site Nitrate + Nitrite as Nitrogen Concentration Maximum Concentration Level (MCL) = 10.0 mg/L

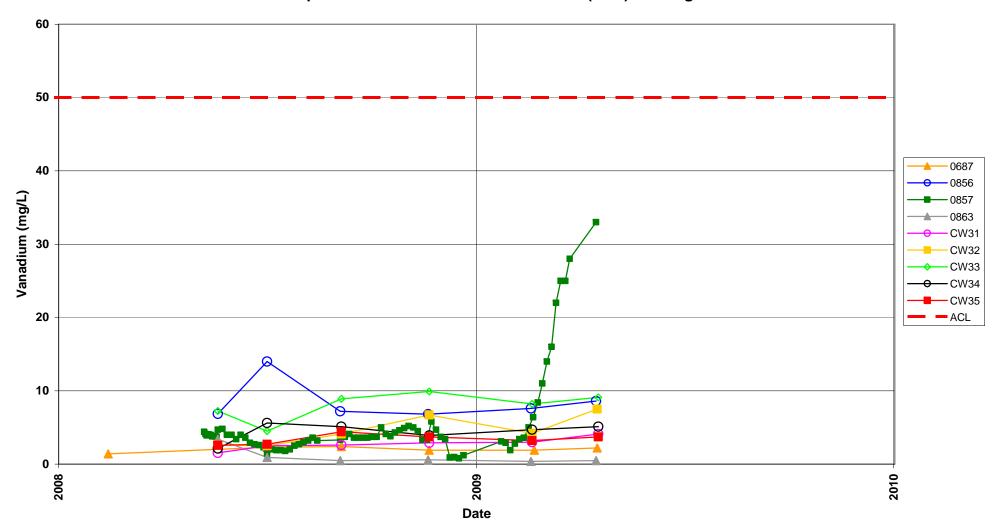

Rifle New Processing Site Selenium Concentration Maximum Background Concentration (MBC) =0.036 mg/L

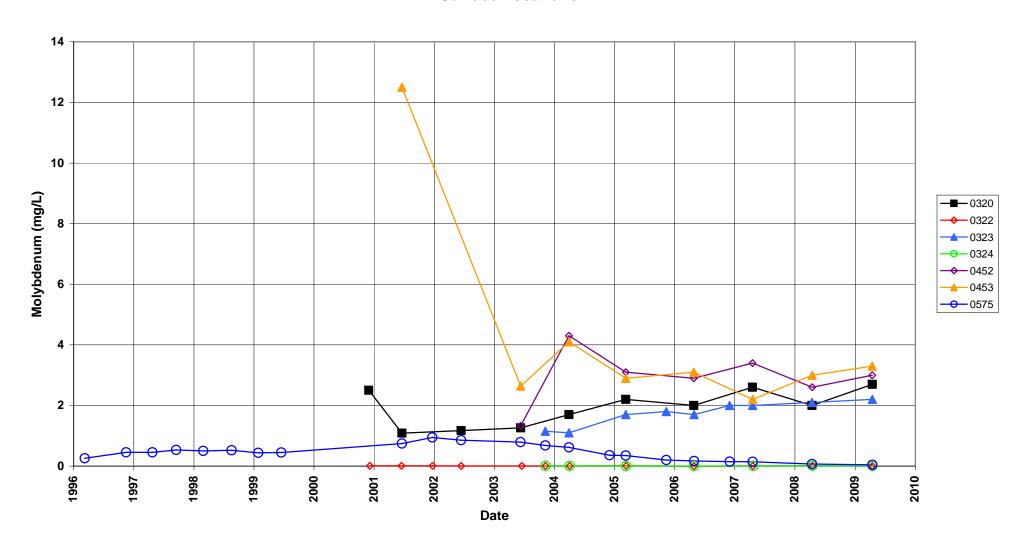

Rifle New Processing Site Selenium Concentration Maximum Background Concentration (MBC) =0.036 mg/L

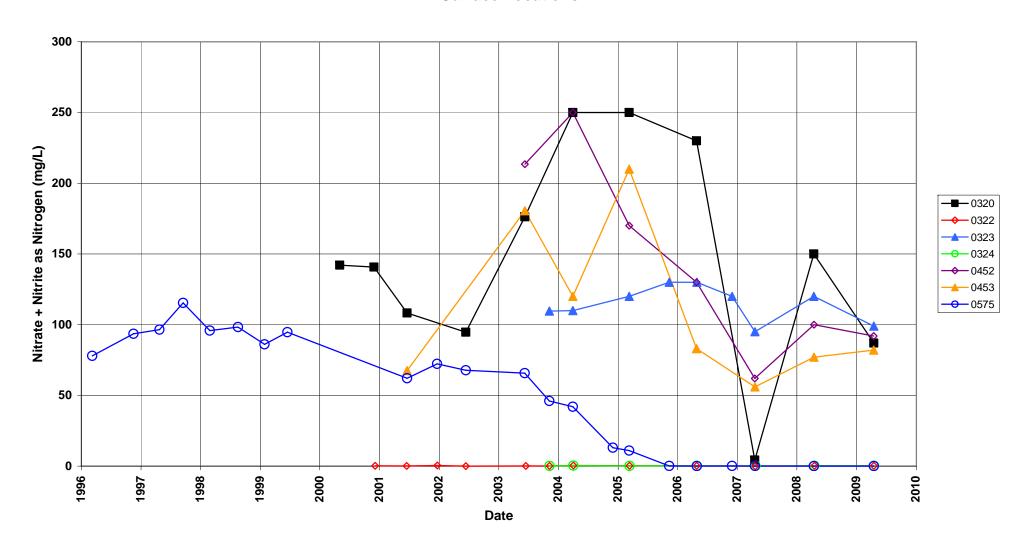

Rifle New Processing Site Uranium Concentration Maximum Background Concentration (MBC) =0.067 mg/L

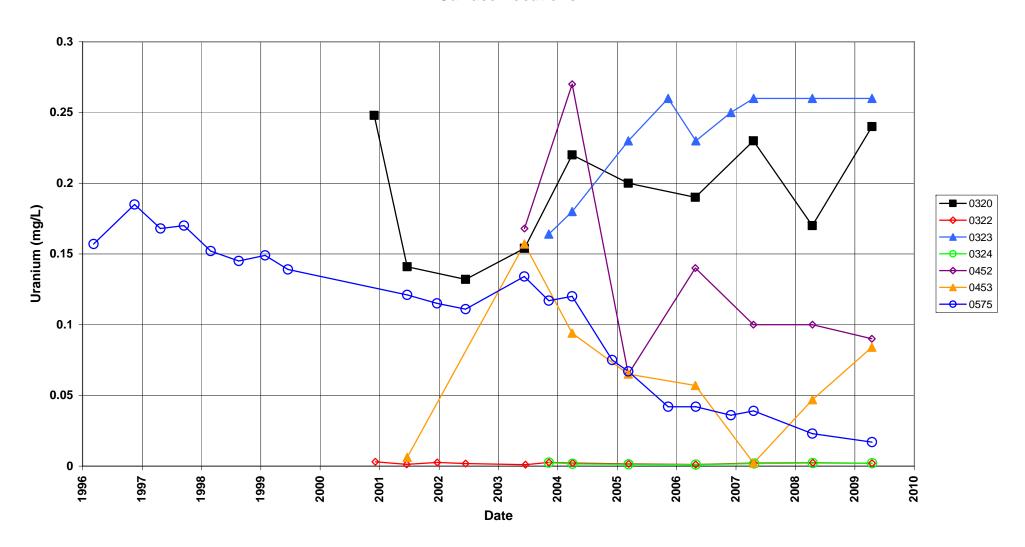

Rifle New Processing Site Uranium Concentration Maximum Background Concentration (MBC) =0.067 mg/L

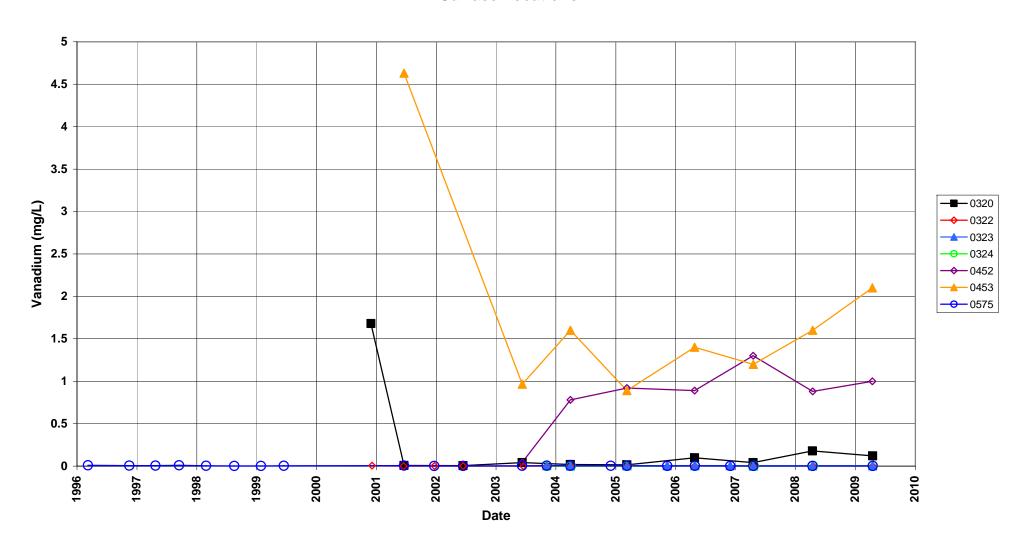

Rifle New Processing Site Uranium Concentration Maximum Background Concentration (MBC) =0.067 mg/L


Rifle New Processing Site Vanadium Concentration Proposed Alternate Concentration Limit (ACL) = 50 mg/L


Rifle New Processing Site Vanadium Concentration Proposed Alternate Concentration Limit (ACL) = 50 mg/L


Rifle New Processing Site Vanadium Concentration Proposed Alternate Concentration Limit (ACL) = 50 mg/L


Rifle New Processing Site Molybdenum Concentration Surface Locations


Rifle New Processing Site Nitrate + Nitrite as Nitrogen Concentration Surface Locations

Rifle New Processing Site Uranium Concentration Surface Locations

Rifle New Processing Site Vanadium Concentration Surface Locations

Attachment 3 Sampling and Analysis Work Order

This page intentionally left blank

established 1959

Task Order LM00-501 Control Number 09-0630

March 19, 2009

U.S. Department of Energy Office of Legacy Management ATTN: Richard P. Bush Site Manager 2597 B ¾ Road Grand Junction, CO 81503

SUBJECT:

Contract No. DE-AM01-07LM00060, Stoller

April 2009 Environmental Sampling at Rifle, Colorado - Revised

REFERENCE: Task Order LM00-501-02-116-402, Rifle, CO, Site

Dear Mr. Bush:

The S.M. Stoller Corporation

The purpose of this letter is to inform you of the upcoming sampling event at Rifle, Colorado. Enclosed are the map and tables specifying sample locations and analytes for monitoring at the Rifle New and Old Processing sites. Water quality data will be collected at this site as part of the routine environmental sampling currently scheduled to begin the week of April 13, 2009. In addition, five CW wells owned by the City of Rifle will be sampled and major anion and cation data will be collected at New Rifle as part of a vanadium study being conducted.

The following lists show the monitor well and surface water locations scheduled to be sampled during this event.

Monitor W	ells*					
New Rifle						
170 A1	210 Al	590 Al	659 AI	687 AI	863 Al	CW33
172 Al	215 Al	620 Al	664 AI	855 AI	CW31	CW34
195 Al	216 Al	635 AI	669 AI	856 AI	CW32	CW35
201 Al	217 Al	658 AI	670 Al	857 AI		
Old Rifle	*		*			
292A Al	305 Al	309 AI	310 Al	655 AI	656 Al	658 Al
304 Al						
*NOTE: A	= alluvium					
Surface Lo	cations					
New Rifle	222	222	224	150	452	595
320	322	323	324	452	453	575

Grand Junction, CO 81503

2597 B3/4 Road

(970) 248-6000

Fax: (970) 248-6040

Richard P. Bush Control Number 09-0630 Page 2

Old Rifle 294

396

398

741

All samples will be collected as directed in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites. Access agreements are being reviewed and are expected to be complete by the beginning of fieldwork.

If you have any questions, please call me at (970) 248-6375.

Tillime (Day van by Richard Dayvault

Site Lead

RD/leg/lb

Enclosures (3)

cc: (electronic)

Cheri Bahrke, Stoller Richard Dayvault, Stoller Steve Donivan, Stoller Bev Gallagher, Stoller Lauren Goodknight, Stoller **EDD Delivery**

rc-grand.junction

The S.M. Stoller Corporation

2597 B3/4 Road

Grand Junction, CO 81503

(970) 248-6000

Fax: (970) 248-6040

Attachment 4
Trip Report

This page intentionally left blank

Memorandum

DATE: April 22, 2009

TO: Dick Dayvault

FROM: Dan Sellers

SUBJECT: Sampling Trip Report

Site: New and Old Rifle, CO

Dates of Sampling Event: April 13 through April 17, 2009

Team Members: Joe Trevino, Kent Moe, Jeff Price and Dan Sellers

Number of Locations Sampled:

New Rifle: Water samples for metals and major cations/anions (Mo, U, V, As, Se, Ca, Na, Mg, K, Fe (total), Mn, SO₄, and Cl), nitrate plus nitrite as N (NO₃+NO₂)-N, and ammonia as N (NH₃-N), were collected from 18 monitor wells, 5 culverts, and 7 surface water locations. One duplicate and one equipment blank were taken for QA/QC purposes.

Old Rifle: Water samples for metals (Se, U, and V) were collected from 8 monitor wells and 4 surface water locations. One duplicate and one equipment blank were taken for QA/QC purposes.

Locations Not Sampled/Reason:

New Rifle: Monitor well 0210 was not found due to the area being covered by drilling equipment. Well locations 0658 and 0670 were not sampled due to insufficient water.

Old Rifle: None.

Location Specific Information: None.

Quality Control Sample Cross Reference: The following are the false identifications assigned to the quality control samples:

False Id	True Id	Sample Type	Associated Matrix	Ticket Number
2747	0309	Old Rifle Filtered Duplicate	Groundwater	HEV 055
2754		Old Rifle Equipment Blank	DI Water	HFW 061
2745	CW33	New Rifle Duplicate	Groundwater	HEV 053
2746		New Rifle Equipment Blank	DI water	HEV 054
2744	0659	New Rifle Duplicate	Groundwater	HEV 052

RIN Number Assigned: New and Old Rifle samples were assigned to RIN 09032201.

Sample Shipment: Samples were shipped overnight via FedEx to Paragon Analytics, Inc., from GJO on April 20, 2008.

Well Inspection Summary: Well inspections were conducted at all sampled wells and were in good condition. Well RFN01-0195 may have a broken screen or well casing.

Equipment: All wells were sampled using the low-flow procedure. All samples from wells were collected using a peristaltic pump and dedicated down hole tubing except well RFN01-0170, which had a dedicated bladder pump and dedicated tubing. Surface water and culvert samples were collected using a peristaltic pump, non-dedicated flex tubing, and a stainless steel inlet weight.

Water Level Measurements: Water levels were collected at all sampled wells and culverts.

Field Variance: Turbidity criteria were not met for wells RFN01-0855, 0664, 0669, CW32, and 0292A. All river surface samples were filtered due to turbidity being >10 NTUs. Field tests were conducted for ferrous iron at all New Rifle sample locations.

Institutional Controls: All gates were appropriately closed and locked during the sampling event.

Fences, Gates, Locks: All were in good condition.

Signs: No missing or vandalized signs were observed.

Trespassing/Site Disturbances: There is evidence of trespassing on the Old Rifle site

(sleeping bag, tubs, food and camping equipment).

Site Issues:

Disposal Cell/Drainage Structure Integrity: N/A.

Vegetation/Noxious Weed Concerns: N/A.

Maintenance Requirements: N/A.

Other: N/A.

Corrective Action Taken: Need to investigate well RFN01-0195 with downhole camera to determine if screen is broken. Need to investigate well RFN01-0173 to determine if it has been abandoned.

(DLS/lcg)

cc: (electronic)

Richard Bush, LM–50 Steve Donivan, Stoller

EDD Delivery

\\Condor\Home\L40048\My Documents\Ground Water\RFL\0904rfl-trp.doc