LMS/RFN/RFO/S00611

Data Validation Package

June 2011 Groundwater and Surface Water Sampling at the Old and New Rifle, Colorado, Processing Sites

October 2011

This page intentionally left blank

Contents

Sampling Event Summary	1
Rifle New, Colorado Processing Site Sample Location Map	
Rifle Old, Colorado Processing Site Sample Location Map	
Data Assessment Summary	
Water Sampling Field Activities Verification Checklist	9
Laboratory Performance Assessments	11
Sampling Quality Control Assessment	28
Certification	32

Attachment 1—Assessment of Anomalous Data

Potential Outliers Report

Attachment 2—Data Presentation

New Rifle Groundwater Quality Data Old Rifle Groundwater Quality Data New Rifle Surface Water Quality Data Old Rifle Surface Water Quality Data Equipment Blank Data Static Water Level Data New Rifle Hydrographs Old Rifle Hydrographs New Rifle Groundwater Time-Concentration Graphs New Rifle Surface Water Time-Concentration Graphs Old Rifle Groundwater Time-Concentration Graphs Old Rifle Surface Water Time-Concentration Graphs

Attachment 3—Sampling and Analysis Work Order

Attachment 4—Trip Reports

This page intentionally left blank

Sampling Event Summary

Site: Old and New Rifle, Colorado, Processing Sites

Sampling Period: June 13–15, 2011 and August 9–11, 2011

Thirty four water samples were collected at New Rifle and Old Rifle, Colorado, Processing Sites between June 13–15, 2011. Ten New Rifle locations could not be sampled as planned in June due to flooding river conditions. Six of those locations were sampled between August 9–11, 2011. New Rifle groundwater location 0590 was not sampled because that location remained inaccessible due to flooding. New Rifle surface locations 0320, 0452, and 0453 were not sampled because, although these locations were distinct in the past, but they are now flooded by a large pond. Duplicate samples were collected from New Rifle locations 0201 and 0322, and Old Rifle location 0310. One equipment blank was collected. Sampling and analysis were conducted as specified in the *Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites* (LMS/PLN/S04351, continually updated). The samples collected in June were submitted to ALS Laboratory Group, Fort Collins, Colorado for general chemical analysis under requisition number 11063854; and for stable isotope analysis to Reston Stable Isotope Laboratory, Reston, Virginia under requisition number 11063855. The samples collected in August were submitted to ALS Laboratory Group, Fort Collins, Colorado for general chemical analysis under requisition number 11073976.

New Rifle Site

Samples were collected at the New Rifle site from 16 monitoring wells and 6 surface locations in compliance with the 2008 *Ground Water Compliance Action Plan for the New Rifle, Colorado, Processing Site.* Water levels were measured at each sampled well.

The contaminants of concern (COCs) at the New Rifle site are arsenic, molybdenum, nitrate + nitrite as nitrogen, selenium, uranium, and vanadium. All COCs except vanadium have a remedial action goal of the U.S. Environmental Protection Agency (EPA) groundwater standard or background concentration; an alternate concentration limit (ACL) of 50 milligrams per liter (mg/L) has been proposed for vanadium. The groundwater monitoring wells were sampled to monitor plume movement and natural flushing. Wells with sample concentrations that exceeded either the EPA groundwater standards or the maximum background concentration, whichever is greater, are listed in Table 1.

Analyte	Standard ^a	MBC ^b	Location	Concentration (mg/L)
Arsenic	0.05 mg/L	0.03 mg/L	0658	0.150
			0855	0.520
Molybdenum	0.10 mg/L	0.03 mg/L	0201	1.80
			0217	1.10
			0635	0.42
			0658	1.30
			0659	1.70
			0664	0.24
			0669	1.50
			0670	0.28
			0855	1.10
Nitrate + Nitrite as Nitrogen	10 mg/L	5.22 mg/L	0170	13.0
			0201	38.0
			0620	19.0
			0664	8.7
Selenium	0.01 mg/L	0.036 mg/L	0201	0.046
			0658	1.30
			0659	0.038
			0664	0.190
			0670	0.280
			0855	1.10
Uranium	0.044 mg/L	0.067 mg/L	0172	0.068
			0201	0.099
			0217	0.120
			0620	0.069
			0659	0.089
			0664	0.069
			0669	0.130
			0670	0.190

Table 1. New Rifle Locations that Exceed Standards

^a Standards are listed in 40 CFR 192.02 Table 1 to Subpart A.

^b Maximum background concentration listed in *Ground Water Compliance Action Plan for the New Rifle, Colorado, Processing Site.*

Time-concentration graphs from the locations sampled are included with the analytical data. Concentrations of the COCs are stable or decreasing at most locations. The concentrations of arsenic, molybdenum, selenium, and vanadium in well 0855 continue to decrease after spiking in 2009. The vanadium in well 0658 remains high, at a concentration near the proposed ACL.

Ammonia is not a COC however, it is monitored as an indicator for nitrate reduction. Well 0590 has shown an increase in ammonia concentration for the past two years as shown on the included time-concentration graph. Unfortunately, unusually high runoff in the Colorado River caused elevated pond water elevations and well 0590 was not accessible during this sampling event.

Elevated contaminate concentrations were observed at the two Roaring Fork ponds locations (RFN01-0323 and RFN01-0575). Contaminate concentrations at the two Colorado River surface water locations (RFN01-0322 and RFN01-0324) remain low indicating no impact due to groundwater discharge.

Old Rifle Site

Samples were collected at the Old Rifle site from 12 monitoring wells and 8 surface locations as specified in the 2001 *Ground Water Compliance Action Plan for the Old Rifle, Colorado, UMTRA Project Site.* Water levels were measured at each sampled well.

The COCs at the Old Rifle site are selenium, uranium, and vanadium. Locations with sample concentrations that exceeded EPA groundwater standards or ACLs are listed in Table 2.

Analyte	Standard ^a	ACL or MBC	Location	Concentration (mg/L)
Selenium	0.01 mg/L	0.05 mg/L ^b	0292A	0.027
			0305	0.031
			0655	0.076
			0658	0.013
			B-04	0.140
			LQ-108	0.063
Uranium	0.044 mg/L	0.067 mg/L ^c	0310	0.200
			0655	0.140
			0656	0.170
			B-04	0.270
			LQ-107	0.210
			LQ-108	0.160
			LQ-109	0.091

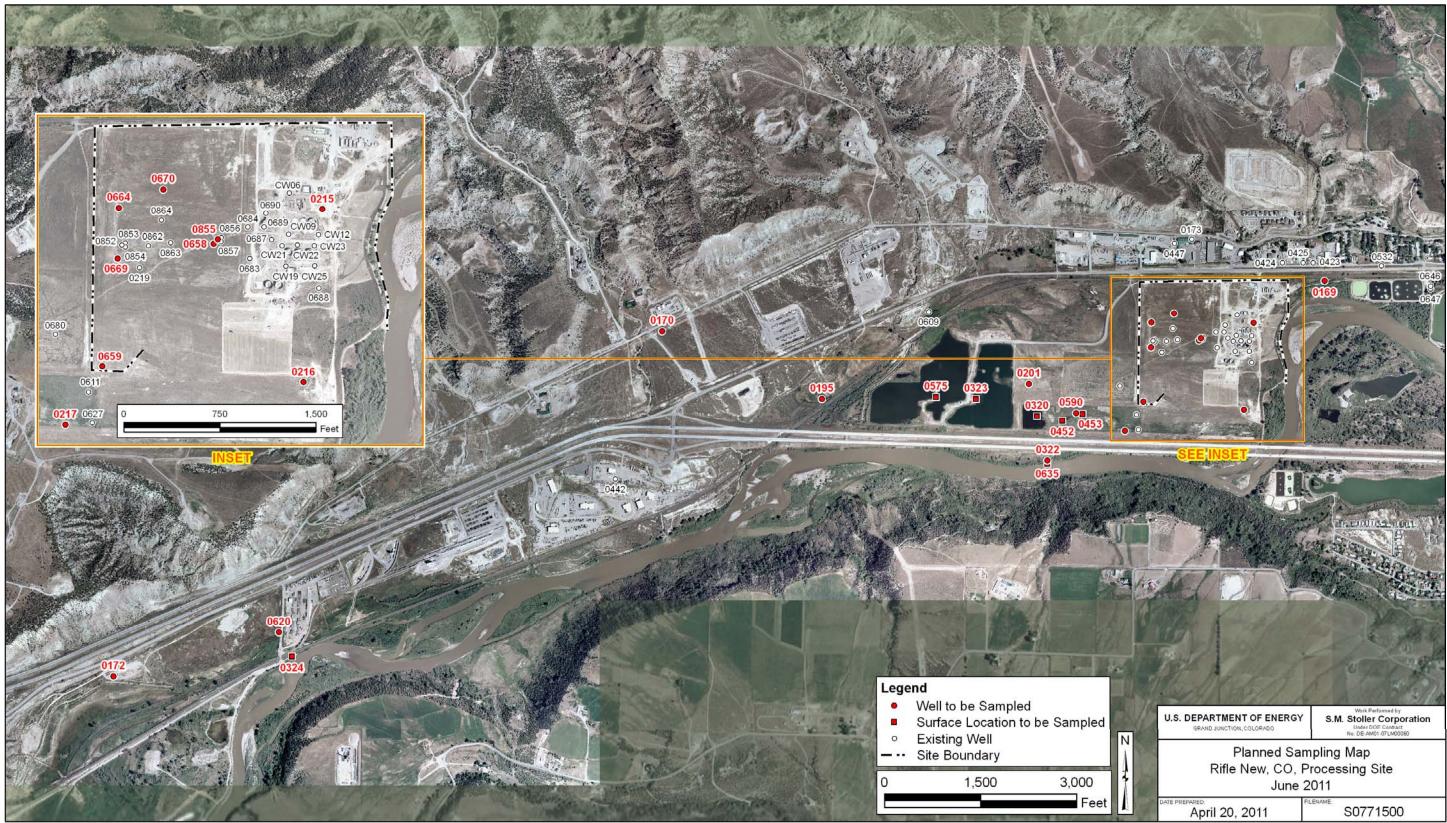
Table 2. Old Rifle Locations that Exceed Standards or ACLs

^a Groundwater standards are listed in 40 CFR 192.02 Table 1 to Subpart A.

^b ACL proposed in *Ground Water Compliance Action Plan for the Old Rifle, Colorado, UMTRA Project Site* (GCAP).

^c Maximum background concentration listed in *Ground Water Compliance Action Plan for the Old Rifle, Colorado, UMTRA Project Site* (GCAP).

Time-concentration graphs from the locations sampled are included with the analytical data and indicate that the concentrations of the COCs are decreasing at many locations with the following notable exceptions. The selenium concentration in well 0655 continues to increase as has been observed since 2009. The uranium concentration in well 0656 decreased, after showing an upward trend since 2005, but remains above the maximum concentration limit (MCL).


Analytical results for surface locations 0396 and 0741 that are adjacent to and downgradient of the site along the Colorado River remain low indicating no impact due to groundwater discharge.

Isotopic Analyses for Old Rifle

Isotopic analyses including U-234/U-238, D-2/H-1, and S34/S32 ratios were conducted for several well and surface (seep) water samples as part of the continuing characterization for this site. A full evaluation and interpretation of these results will be provided in the 2012 Verification Monitoring Report.

Richard Dayvault Site Lead, S. M. Stoller Corporation

L, Date

M:\LTS\111\0001\16\000\S07715\S0771500-11x17.mxd smithw 04/20/2011 2:42:29 PM

Rifle New, Colorado Processing Site Sample Location Map

M:\LTS\111\0001\16\000\S07716\S0771600-11x17.mxd smithw 05/23/2011 2:27:33 PM

Rifle Old, Colorado Processing Site Sample Location Map

Data Assessment Summary

This page intentionally left blank

Water Sampling Field Activities Verification Checklist

Project Old and New Rifle, Colorado, Processing Sites		Date(s) of Water	Sampling	October 6, 2011				
0	Date(s) of Verification	June 13–15, 2011 and August 9–11, 2011	Name of Verifier		Steve Donivan			
			Response (Yes, No, NA)		Comments			
1.	Is the SAP the primary document of	directing field procedures?	Yes					
	List other documents, SOPs, instructions.			Work Order letter dated May 24, 2011.				
2.	2. Were the sampling locations specified in the planning documents sampled?		No	Four New Rifle loca flooding conditions.	tions were not sampled because of			
3.	3. Was a pre-trip calibration conducted as specified in the above-named documents?		Yes	Pre-trip calibrations were performed on June 9 and August 8, 2011.				
4.	. Was an operational check of the field equipment conducted daily?		Yes					
	Did the operational checks meet c	iteria?	Yes					
5.	 Were the number and types (alkalinity, temperature, specific conductance, pH, turbidity, DO, ORP) of field measurements taken as specified? 		Yes					
6.	Was the category of the well docu	nented?	Yes					
7.	Were the following conditions met	when purging a Category I well:						
	Was one pump/tubing volume pure	ged prior to sampling?	Yes					
	Did the water level stabilize prior to	o sampling?	Yes					
	Did pH, specific conductance, and sampling?	turbidity measurements stabilize prior to	Yes					
	Was the flow rate less than 500 m	_/min?	Yes					
	If a portable pump was used, was installation and sampling?	there a 4-hour delay between pump	NA					

Water Sampling Field Activities Verification Checklist (continued)

	Response (Yes, No, NA)	Comments
8. Were the following conditions met when purging a Category II well:		
Was the flow rate less than 500 mL/min?	Yes	
Was one pump/tubing volume removed prior to sampling?	Yes	
9. Were duplicates taken at a frequency of one per 20 samples?	Yes	Duplicate samples were collected from New Rifle locations 0201 and 0322, and Old Rifle location 0310.
10. Were equipment blanks taken at a frequency of one per 20 samples that were collected with nondedicated equipment?	Yes	
11. Were trip blanks prepared and included with each shipment of VOC samples?	NA	
12. Were QC samples assigned a fictitious site identification number?	Yes	
Was the true identity of the samples recorded on the Quality Assurance Sample Log or in the Field Data Collection System (FDCS) report?	Yes	
13. Were samples collected in the containers specified?	Yes	
14. Were samples filtered and preserved as specified?	Yes	
15. Were the number and types of samples collected as specified?	Yes	
16. Were chain of custody records completed and was sample custody maintained?	Yes	
17. Are field data sheets signed and dated by both team members (hardcopies) or are dates present for the "Date Signed" fields (FDCS)?	Yes	
18. Was all other pertinent information documented on the field data sheets?	Yes	
19. Was the presence or absence of ice in the cooler documented at every sample location?	Yes	
20. Were water levels measured at the locations specified in the planning documents?	Yes	

Laboratory Performance Assessments

General Information

Report Number (RIN):	11063854
Sample Event:	June 13-15, 2011
Site(s):	Rifle Processing Sites, Colorado
Laboratory:	ALS Laboratory Group, Fort Collins, Colorado
Work Order No.:	1106266
Analysis:	Metals, Radiochemistry, and Wet Chemistry
Validator:	Steve Donivan
Review Date:	October 4, 2011

This validation was performed according to the *Environmental Procedures Catalog*, (LMS/PRO/S04325, continually updated) "Standard Practice for Validation of Laboratory Data." The procedure was applied at Level 3, Data Validation. See attached Data Validation Worksheets for supporting documentation on the data review and validation. All analyses were successfully completed. The samples were prepared and analyzed using accepted procedures based on methods specified by line item code, which are listed in Table 3.

Analyte	Line Item Code	Prep Method	Analytical Method
Ammonia as N	WCH-A-005	MCAWW 350.2	MCAWW 350.1
Arsenic, Molybdenum, Selenium, Uranium, Vanadium	LMM-02	SW-846 3005A	SW-846 3005/6020
Nitrate + Nitrite as N	WCH-A-022	MCAWW 353.2	MCAWW 353.2
Uranium Isotopes	LMR-02	SOP776R12, SOP778R13	SOP714R12

Data Qualifier Summary

Analytical results were qualified as listed in Table 4. Refer to the sections below for an explanation of the data qualifiers applied.

Table 4. Data Qualifier	Summary
-------------------------	---------

Sample Number	Location	Analyte(s)	Flag	Reason
1106266-1	0170	Ammonia as N	J	Matrix spike failure
1106266-6	0324	Vanadium	U	Less than 5 times the calibration blank
1106266-16	Equipment Blank	Vanadium	U	Less than 5 times the calibration blank
1106266-17	0292A	Vanadium	U	Less than 5 times the calibration blank
1106266-18	0294	Vanadium	U	Less than 5 times the calibration blank
1106266-21	0309	Vanadium	U	Less than 5 times the calibration blank
1106266-25	0394	Vanadium	U	Less than 5 times the calibration blank
1106266-25	0394	Uranium-235	U	Less than the Decision Level concentration
1106266-27	0396	Vanadium	U	Less than 5 times the calibration blank
1106266-32	0741	Vanadium	U	Less than 5 times the calibration blank

Sample Shipping/Receiving

ALS Laboratory Group in Fort Collins, Colorado, received 37 water samples on June 17, 2011, accompanied a Chain of Custody form. The Chain of Custody form was checked to confirm that all of the samples were listed with sample collection dates and times, and that signatures and dates were present indicating sample relinquishment and receipt. The air bill numbers were listed in the receiving documentation. The Chain of Custody form was complete with no errors or omissions.

Preservation and Holding Times

The sample shipments were received intact with the temperature inside the iced cooler at 1.4 °C, which complies with requirements. All samples were received in the correct container types and had been preserved correctly for the requested analyses. All samples were analyzed within the applicable holding times.

Laboratory Instrument Calibration

Compliance requirements for instrument calibration are established to ensure that the instrument is capable of producing acceptable qualitative and quantitative data for all analytes. Initial calibration demonstrates that the instrument is capable of acceptable performance in the beginning of the analytical run and of producing a linear curve. Compliance requirements for continuing calibration checks are established to ensure that the instrument continues to be capable of producing acceptable qualitative and quantitative data. All laboratory instrument calibrations were performed in accordance with the cited methods. All calibration and laboratory spike standards were prepared from independent sources.

Method MCAWW 350.1

Calibrations for ammonia as N were performed using six calibration standards on June 23, 2011. The calibration curve correlation coefficient values were greater than 0.995 and the absolute values of the intercepts were less than 3 times the method detection limit (MDL). Initial and continuing calibration verification checks were made at the required frequency resulting in five verification checks. All calibration check results were within the acceptance criteria.

Method MCAWW 353.2

Calibrations for nitrate + nitrite as N were performed using seven calibration standards on June 22, 2011. The calibration curve correlation coefficient values were greater than 0.995 and the absolute values of the intercepts were less than 3 times the MDL. Initial and continuing calibration verification checks were made at the required frequency resulting in six verification checks. All calibration check results were within the acceptance criteria.

Method SW-846 6020

Calibrations were performed for arsenic, molybdenum, selenium, uranium, and vanadium on June 28, 2011, using four calibration standards. The calibration curve correlation coefficient values were greater than 0.995 and the absolute values of the intercepts were less than 3 times the MDL. Initial and continuing calibration verification checks were made at the required frequency resulting in eight verification checks. All calibration checks met the acceptance criteria. Reporting limit verification checks were made at the required frequency to verify the

linearity of the calibration curve near the practical quantitation limit (PQL) and all results were within the acceptance range with the following exception. One uranium check result was above the acceptance range. There were no sample results associated with this check. Mass calibration and resolution verifications were performed at the beginning of each analytical run in accordance with the analytical procedure. Internal standard recoveries associated with requested analytes were stable and within acceptable ranges.

Radiochemical Analysis

Radiochemical results are qualified with a "U" flag (not detected) when the result is greater than the minimum detectable concentration (MDC) but less than the Decision Level Concentration, estimated as 3 times the one-sigma total propagated uncertainty. Results above the Decision Level Concentration and the MDC are qualified with a "J" flag (estimated) when the result is less than Determination Limit (3 times the MDC).

Alpha Spectrometry

Alpha spectrometry calibrations and instrument backgrounds were performed within a month prior to sample analysis. Calibration standards were counted to obtain a minimum of 10,000 counts per peak. Daily instrument checks met the acceptance criteria. The tracer recoveries met the acceptance criteria of 30 to 110 percent for all samples. The full width at half maximum was reviewed to evaluate the spectral resolution. All internal standard full width at half maximum values were below 100 kiloelectron volts demonstrating acceptable resolution. All internal standard peaks were within 50 kiloelectron volts of the expected position. The regions of interest for analyte peaks were reviewed. All regions of interest were satisfactory and all manual integrations were performed correctly.

Method and Calibration Blanks

Method blanks are analyzed to assess any contamination that may have occurred during sample preparation. Calibration blanks are analyzed to assess instrument contamination prior to and during sample analysis.

Metals and Wet Chemistry

All method blank and calibration blank results associated with the samples were below the PQLs. In cases where a blank concentration exceeds the MDL, the associated sample results are qualified with a "U" flag (not detected) when the sample result is greater than the MDL but less than 5 times the blank concentration.

Radiochemistry

The method blank results for uranium isotopes were below the decision level concentration.

Inductively Coupled Plasma Interference Check Sample Analysis

Interference check samples were analyzed at the required frequency to verify the instrumental interelement and background correction factors. All check sample results met the acceptance criteria.

Matrix Spike Analysis

Matrix spike and matrix spike duplicate (MS/MSD) samples are used to measure method performance in the sample matrix. The MS/MSD data are not evaluated when the concentration of the unspiked sample is greater than 4 times the spike concentration. The spike results met the recovery and precision criteria for all analytes evaluated with the following exception. The spike recoveries of ammonia as N were below the acceptance range. The associated sample result is qualified with a "J" flag and an estimated value.

Laboratory Replicate Analysis

Laboratory replicate analyses are used to determine laboratory precision for each sample matrix. The relative percent difference for replicate results that are greater than 5 times the PQL should be less than 20 percent (or less than the laboratory-derived control limits for organics). For results that are less than the PQL, the range should be no greater than the PQL. The replicate results met these criteria, demonstrating acceptable laboratory precision.

Laboratory Control Sample

Laboratory control samples were analyzed at the correct frequency to provide information on the accuracy of the analytical method and the overall laboratory performance, including sample preparation. All control sample results were acceptable.

Metals Serial Dilution

Serial dilutions were prepared and analyzed for the metals analyses to monitor chemical or physical interferences in the sample matrix. Method 6020 serial dilution data are evaluated when the concentration of the undiluted sample is greater than 100 times the PQL. All evaluated serial dilution data were acceptable.

Detection Limits/Dilutions

Samples were diluted in a consistent and acceptable manner when required. The required detection limits were met for all analytes.

Completeness

Results were reported in the correct units for all analytes requested using contract-required laboratory qualifiers.

Electronic Data Deliverable (EDD) File

The EDD file arrived on July 5, 2011. The Sample Management System EDD validation module was used to verify that the EDD file was complete and in compliance with requirements. The module compares the contents of the file to the requested analyses to ensure all and only the requested data are delivered. The contents of the EDD were manually examined to verify that the sample results accurately reflect the data contained in the sample data package.

	General Data Validation Report
: 11063854 Lab Code	e: PAR Validator: Steve Donivan Validation Date: 10/3/2011
ect: Rifle Disposal/Processing Site (ol	Id/new) Analysis Type: 🗸 Metals 🗸 General Chem 🗸 Rad 🗌 Organics
Samples: <u>37</u> Matrix:	WATER Requested Analysis Completed: Yes
Chain of Custody	Dated: OK Integrity: OK Preservation: OK Temperature: OK
Present: OK Signed: OK	Dated: <u>OK</u> Integrity: <u>OK</u> Preservation: <u>OK</u> Temperature: <u>OK</u>
elect Quality Parameters	
✓ Holding Times	All analyses were completed within the applicable holding times.
Detection Limits	The reported detection limits are equal to or below contract requirements.
✓ Field/Trip Blanks	There was 1 trip/equipment blank evaluated.
✓ Field Duplicates	There were 2 duplicates evaluated.

SAMPLE MANAGEMENT SYSTEM

Metals Data Validation Worksheet

RIN: <u>11063854</u>

Lab Code: PAR Site Code: RFL Date Due: 7/15/2011
Date Completed: 7/5/2011

Analyte	Method Type			and the second se	Date Analyzed		CAL	IBRA	TION			Method	LCS %R	MS %R	MSD %R	Dup. RPD	ICSAB %R	Serial Dil. %R	CRI %R
			Int.	R^2	ICV	CCV	ICB	CCB	Blank	k									
Arsenic	ICP/MS	06/28/2011	0.0000	1.0000	OK	OK	OK	OK	OK	101.0	105.0	106.0	1.0	108.0		116.0			
Arsenic	ICP/MS	06/28/2011	ĺ		Î	Î	0		OK	96.0	98.0	99.0	1.0	Î		111.0			
Molybdenum	ICP/MS	06/28/2011	0.0000	1.0000	OK	OK	OK	OK	OK	100.0	103.0	102.0	0.0	101.0	3.0	92.0			
Molybdenum	ICP/MS	06/28/2011							OK	95.0	97.0	99.0	2.0			71.0			
Selenium	ICP/MS	06/28/2011	0.0000	1.0000	OK	OK	OK	OK	OK	103.0	108.0	106.0	1.0	108.0	9.0	89.0			
Selenium	ICP/MS	06/28/2011	ĺ			Î			OK	101.0	100.0	101.0	0.0	ĺ		95.0			
Uranium	ICP/MS	06/28/2011	0.0000	1.0000	OK	OK	OK	OK	OK	104.0	116.0	117.0	0.0	114.0	1.0	140.0			
Uranium	ICP/MS	06/28/2011							OK	101.0	102.0	105.0	3.0			120.0			
Vanadium	ICP/MS	06/28/2011	0.0000	1.0000	OK	OK	OK	OK	OK	98.0	103.0	103.0	0.0	103.0		108.0			
Vanadium	ICP/MS	06/28/2011				Ĩ			OK	94.0	96.0	97.0	2.0			102.0			

SAMPLE MANAGEMENT SYSTEM

Wet Chemistry Data Validation Worksheet

Lab Code: PAR

Site Code: RFL

RIN: 11063854

Date Due: 7/15/2011

Matrix: Water

Date Completed: 7/5/2011

Analyte	Date Analyzed		CAL	IBRA	TION			Method	LCS %R	MS %R	MSD %R	DUP RPD	Serial Dil. %R
		Int.	R^2	ICV	ccv	ICB	CCB	Blank	- 00000		10000		11000
AMMONIA AS N	06/23/2011	0.000	1.0000	OK	OK	OK	OK	OK	96.00	53.0	53.0	1.00	
Nitrate+Nitrite as N	06/22/2011	0.000	0.9999	OK	OK	OK	OK	OK	98.00				1

SAMPLE MANAGEMENT SYSTEM Radiochemistry Data Validation Worksheet

RIN: <u>11063854</u>	Lab Code: PAR	Date Due: 7/15/2011
Matrix: Water	Site Code: <u>RFL</u>	Date Completed: 7/5/2011

Sample	Analyte	Date Analyzed	Result	Flag	Tracer %R	LCS %R	MS %R	Duplicate
0304	U-234	06/23/2011			72.8			
0310	U-234	06/23/2011			41.4			
0387	U-234	06/23/2011			88.6			
0388	U-234	06/23/2011			82.7			
0394	U-234	06/23/2011			79.4			Í
0395	U-234	06/23/2011			79.7			
LQ-107	U-234	06/23/2011			48.7			
LQ-109	U-234	06/23/2011			74.4			
Blank_Spike	U-234	06/23/2011			69.5	107.00		
Blank_Spike_Du	U-234	06/23/2011			78.4	99.70		0.50
Blank	U-234	06/23/2011	0.0300	U	77.5			
Blank	U-235	06/23/2011	-0.0070	U				
Blank	U-238	06/23/2011	0.0070	U				
Blank_Spike	Uranium-238	06/23/2011				110.00		
Blank_Spike_Du	Uranium-238	06/23/2011				106.00		0.30

General Information

Requisition No. (RIN):	11063855
Sample Event:	June 13 – 15, 2011
Site(s):	Rifle, Colorado
Laboratory:	Reston Stable Isotope Laboratory, Reston, Virginia
Analysis:	Stable Isotopes
Validator:	Steve Donivan
Review Date:	July 20, 2011

This validation was performed according to the *Environmental Procedures Catalog* (LMS/PRO/S04325, continually updated), "Standard Practice for Validation of Laboratory Data." The procedure was applied at Level 1, Data Deliverables Examination. All analyses were successfully completed. The samples were prepared and analyzed using accepted procedures based on methods specified by line item code, which are listed in Table 5.

Table 5. Analytes and Methods

Analyte	Line Item Code	Prep Method	Analytical Method
H-2/H-1 and O-18/O-16 Isotope Ratios	LMW-08	NA	Mass Spectrometry
S-34/S-32 Isotope Ratios	LMW-09	NA	Mass Spectrometry

Data Qualifier Summary

None of the analytical results required qualification.

Sample Shipping/Receiving

The Reston Stable Isotope Laboratory in Reston, Virginia, received eight water samples on June 24, 2011, submitted for the determination of stable hydrogen, oxygen, and sulfur isotope ratios. The analytical report was checked to confirm that all of the samples scheduled were received and analyzed.

Preservation and Holding Times

The sample shipment was received intact with all samples in the correct container types preserved correctly for the requested analyses. All samples were analyzed within the applicable holding times.

Laboratory Analysis

Hydrogen-isotope-ratio analyses was performed using a hydrogen equilibration technique based on measuring the deuterium activity. Water samples are measured for delta O-18 using the CO_2 equilibration technique of Epstein and Mayeda (1953), which has been automated (Revesz and Coplen 2008). Therefore, both oxygen and hydrogen isotopic ratio measurements are reported as activities. Oxygen and hydrogen isotopic results are reported in per mill relative to VSMOW (Vienna Standard Mean Ocean Water) and normalized on scales such that the oxygen and hydrogen isotopic values of SLAP (Standard Light Antarctic Precipitation) are -55.5 per mill and -428 per mill, respectively. The 2-sigma uncertainties of oxygen and hydrogen isotopic results are 0.2 per mill and 2 per mill, respectively, unless otherwise indicated.

Sulfur isotope samples are prepared for isotopic analysis using the methods of Carmody and others (1997). For sulfur isotope ratio measurements, dissolved sulfate is converted to BaSO₄, which is analyzed by conversion to sulfur dioxide with an elemental analyzer and subsequent analysis with a continuous flow isotope ratio mass spectrometer (Brenna 1997). Samples are analyzed simultaneously with BaSO₄ isotopic reference materials. No correction for oxygen isotopic composition is made to reported data.

Sulfur isotope ratios are reported in parts per thousand (per mill) relative to VCDT, defined by assigning a value of -0.3 per mill exactly (Coplen and Krouse, 1998) to IAEA-S-1 silver sulfide (previously known as NZ-1).

The 2-sigma uncertainty of sulfur isotopic results is 0.4 per mill, unless otherwise indicated.

Completeness

The electronic data deliverable was the only deliverable received for this RIN.

Electronic Data Deliverable File

The EDD files arrived on July 11, 2011.

General Information

Report Number (RIN):	11073976
Sample Event:	August 9-11, 2011
Site(s):	Rifle Processing Sites, Colorado
Laboratory:	ALS Laboratory Group, Fort Collins, Colorado
Work Order No.:	1108139
Analysis:	Metals and Wet Chemistry
Validator:	Steve Donivan
Review Date:	October 4, 2011

This validation was performed according to the *Environmental Procedures Catalog*, (LMS/PRO/S04325, continually updated) "Standard Practice for Validation of Laboratory Data." The procedure was applied at Level 3, Data Validation. See attached Data Validation Worksheets for supporting documentation on the data review and validation. All analyses were successfully completed. The samples were prepared and analyzed using accepted procedures based on methods specified by line item code, which are listed in Table 6.

Table 6. Analytes and Method	s
------------------------------	---

Analyte	Line Item Code	Prep Method	Analytical Method
Ammonia as N	WCH-A-005	MCAWW 350.2	MCAWW 350.1
Arsenic, Molybdenum, Selenium, Uranium, Vanadium	LMM-02	SW-846 3005A	SW-846 3005/6020
Nitrate + Nitrite as N	WCH-A-022	MCAWW 353.2	MCAWW 353.2

Data Qualifier Summary

None of the analytical results required qualification.

Sample Shipping/Receiving

ALS Laboratory Group in Fort Collins, Colorado, received nine water samples between August 11 and 13, 2011, accompanied Chain of Custody forms. The Chain of Custody forms were checked to confirm that all of the samples were listed with sample collection dates and times, and that signatures and dates were present indicating sample relinquishment and receipt. The air bill numbers were listed in the receiving documentation. The Chain of Custody form was complete with no errors or omissions.

Preservation and Holding Times

The sample shipments were received intact with the temperature inside the iced coolers at 2.8 °C and 3.5 °C, which complies with requirements. All samples were received in the correct container types and had been preserved correctly for the requested analyses. All samples were analyzed within the applicable holding times.

Laboratory Instrument Calibration

Compliance requirements for instrument calibration are established to ensure that the instrument is capable of producing acceptable qualitative and quantitative data for all analytes. Initial calibration demonstrates that the instrument is capable of acceptable performance in the beginning of the analytical run and of producing a linear curve. Compliance requirements for continuing calibration checks are established to ensure that the instrument continues to be capable of producing acceptable qualitative and quantitative data. All laboratory instrument calibrations were performed in accordance with the cited methods. All calibration and laboratory spike standards were prepared from independent sources.

Method MCAWW 350.1

Calibrations for ammonia as N were performed using six calibration standards on August 25, 2011. The calibration curve correlation coefficient values were greater than 0.995 and the absolute values of the intercepts were less than 3 times the MDL. Initial and continuing calibration verification checks were made at the required frequency resulting in seven verification checks. All calibration check results were within the acceptance criteria.

Method MCAWW 353.2

Calibrations for nitrate + nitrite as N were performed using seven calibration standards on August 18, 2011. The calibration curve correlation coefficient values were greater than 0.995 and the absolute values of the intercepts were less than 3 times the MDL. Initial and continuing calibration verification checks were made at the required frequency resulting in four verification checks. All calibration check results were within the acceptance criteria.

Method SW-846 6020

Calibrations were performed for arsenic, molybdenum, selenium, uranium, and vanadium August 29-30, 2011, using four calibration standards. The calibration curve correlation coefficient values were greater than 0.995 and the absolute values of the intercepts were less than 3 times the MDL. Initial and continuing calibration verification checks were made at the required frequency resulting in seven verification checks. All calibration checks met the acceptance criteria. Reporting limit verification checks were made at the required frequency to verify the linearity of the calibration curve near the PQL and all results were within the acceptance range with the following exception. One uranium check result was above the acceptance range. There were no sample results associated with this check. Mass calibration and resolution verifications were performed at the beginning of each analytical run in accordance with the analytical procedure. Internal standard recoveries associated with requested analytes were stable and within acceptable ranges.

Method and Calibration Blanks

Method blanks are analyzed to assess any contamination that may have occurred during sample preparation. Calibration blanks are analyzed to assess instrument contamination prior to and during sample analysis. All method blank and calibration blank results associated with the samples were below the PQLs, with the exception of two calibration blanks for vanadium. The samples bracketed by these blanks either had vanadium concentrations greater than 10 times the blank concentration or were re-analyzed with acceptable blanks.

Inductively Coupled Plasma Interference Check Sample Analysis

Interference check samples were analyzed at the required frequency to verify the instrumental interelement and background correction factors. All check sample results met the acceptance criteria.

Matrix Spike Analysis

Matrix spike and matrix spike duplicate (MS/MSD) samples are used to measure method performance in the sample matrix. The MS/MSD data are not evaluated when the concentration of the unspiked sample is greater than 4 times the spike concentration. The spike results met the recovery and precision criteria for all analytes evaluated.

Laboratory Replicate Analysis

Laboratory replicate analyses are used to determine laboratory precision for each sample matrix. The relative percent difference for replicate results that are greater than 5 times the PQL should be less than 20 percent (or less than the laboratory-derived control limits for organics). For results that are less than the PQL, the range should be no greater than the PQL. The replicate results met these criteria, demonstrating acceptable laboratory precision.

Laboratory Control Sample

Laboratory control samples were analyzed at the correct frequency to provide information on the accuracy of the analytical method and the overall laboratory performance, including sample preparation. All control sample results were acceptable.

Metals Serial Dilution

Serial dilutions were prepared and analyzed for the metals analyses to monitor chemical or physical interferences in the sample matrix. Method 6020 serial dilution data are evaluated when the concentration of the undiluted sample is greater than 100 times the PQL. All evaluated serial dilution data were acceptable.

Detection Limits/Dilutions

Samples were diluted in a consistent and acceptable manner when required. The required detection limits were met for all analytes.

Completeness

Results were reported in the correct units for all analytes requested using contract-required laboratory qualifiers.

Electronic Data Deliverable File

The EDD file arrived on August 31, 2011. The Sample Management System EDD validation module was used to verify that the EDD file was complete and in compliance with requirements. The module compares the contents of the file to the requested analyses to ensure all and only the requested data are delivered. The contents of the EDD were manually examined to verify that the sample results accurately reflect the data contained in the sample data package.

Ject: Rifle Disposal/Processing Site (old/new) Analysis Type: Metals General Chem Rad Organics Samples: 9 Matrix: WATER Requested Analysis Completed: Yes Chain of Custody Present: OK OK Dated: OK Sample Integrity: OK Preservation: OK Temperature: OK All analyses were completed within the applicable holding times. Petection Limits Field/Trip Blanks	Ject: Rifle Disposal/Processing Site (old/new) Analysis Type: Metals General Chem Rad Organics Samples: 9 Matrix: WATER Requested Analysis Completed: Yes Chain of Custody Present: OK OK Dated: OK Sample Integrity: OK Preservation: OK Temperature: OK All analyses were completed within the applicable holding times. Petection Limits Field/Trip Blanks	ect: Rifle Disposal/Processing Site (old/new) Analysis Type: Metals General Chem Rad Organics Samples: 9 Matrix: WATER Requested Analysis Completed: Yes Chain of Custody Present: OK Signed: OK Dated: OK Present: OK Signed: OK Dated: OK Present: OK Signed: OK Dated: OK Present: OK Signed: OK Dated: OK Present: OK Signed: OK Dated: OK Present: OK Signed: OK Dated: OK Present: OK Signed: OK Dated: OK Present: OK Signed: OK Dated: OK Present: OK Signed: OK Dated: OK Present: OK Signed: OK Dated: OK Present: OK Signed: OK Dated: OK Present: OK Signed: OK Preservation:: OK Preservation: OK Temperature:: OK Preservation: OK Temperature:: OK Preservation: OK Temperature:: OK Preservation: OK Temperature:: OK Preservation: OK Temperature:: OK	ct: Rifle Disposal/Processing Site (old/new) Analysis Type: Metals General Chem Rad Organics amples: 9 Matrix: WATER Requested Analysis Completed: Yes Chain of Custody Present: OK Signed: OK Dated: OK Present: OK Signed: OK Dated: OK Holding Times All analyses were completed within the applicable holding times. Detection Limits The reported detection limits are equal to or below contract requirements.	Ject: <u>Rifle Disposal/Processing Site (o</u> f Samples: <u>9</u> Matrix:	old/new) Analysis Type: 🗹 Metals 🗹 General Chem 🗌 Rad 🗌 Organics
Samples: 9 Matrix: WATER Requested Analysis Completed: Yes Chain of Custody	Samples: 9 Matrix: WATER Requested Analysis Completed: Yes Chain of Custody	Samples: 9 Matrix: WATER Requested Analysis Completed: Yes Chain of Custody	amples: 9 Matrix: WATER Requested Analysis Completed: Yes Chain of Custody	Samples: <u>9</u> Matrix:	
Chain of Custody Sample Present: OK Signed: OK OK Dated: OK Integrity: OK Preservation: OK Temperature: OK Select Quality Parameters Holding Times All analyses were completed within the applicable holding times. Detection Limits Field/Trip Blanks	Chain of Custody Sample Present: OK Signed: OK OK Dated: OK Integrity: OK Preservation: OK Temperature: OK Select Quality Parameters Holding Times All analyses were completed within the applicable holding times. Detection Limits Field/Trip Blanks	Chain of Custody Sample Present: OK Signed: OK OK Dated: OK Integrity: OK Preservation: OK Telect Quality Parameters Holding Times All analyses were completed within the applicable holding times. Detection Limits The reported detection limits are equal to or below contract requirements. Field/Trip Blanks	Chain of Custody Sample Present: OK Signed: OK Dated: OK Integrity: OK Preservation: OK Temperature: OK Elect Quality Parameters All analyses were completed within the applicable holding times. Holding Times All analyses were completed within the applicable holding times. Detection Limits The reported detection limits are equal to or below contract requirements.	- manki	WATER Requested Analysis Completed: Yes
Present: OK Signed: OK Dated: OK Integrity: OK Preservation: OK Temperature: OK Select Quality Parameters Integrity: OK Preservation: OK Temperature: OK Integrity: OK All analyses were completed within the applicable holding times. The reported detection limits are equal to or below contract requirements. Field/Trip Blanks Field/Trip Blanks Integrity: OK Integrity: OK Integrity: OK	Present: OK Signed: OK Dated: OK Integrity: OK Preservation: OK Temperature: OK Select Quality Parameters Integrity: OK Preservation: OK Temperature: OK Integrity: OK All analyses were completed within the applicable holding times. The reported detection limits are equal to or below contract requirements. Field/Trip Blanks Field/Trip Blanks Integrity: OK Integrity: OK Integrity: OK	Present: OK Signed: OK Dated: OK Integrity: OK Preservation: OK Temperature: OK elect Quality Parameters Integrity: OK Preservation: OK Temperature: OK Integrity: OK All analyses were completed within the applicable holding times. The reported detection limits are equal to or below contract requirements. Field/Trip Blanks Integrity: OK Integrity: OK Integrity:	Present: OK Signed: OK Dated: OK Integrity: OK Preservation: OK Temperature: OK Elect Quality Parameters Holding Times All analyses were completed within the applicable holding times. The reported detection limits are equal to or below contract requirements. The reported detection limits are equal to or below contract requirements.	Chain of Custody	
Select Quality Parameters Image: Provide a state of the s	Select Quality Parameters Image: Holding Times All analyses were completed within the applicable holding times. Image: Detection Limits The reported detection limits are equal to or below contract requirements. Field/Trip Blanks	Image: Select Quality Parameters Image: Holding Times All analyses were completed within the applicable holding times. Image: Detection Limits The reported detection limits are equal to or below contract requirements. Field/Trip Blanks	Elect Quality Parameters Holding Times All analyses were completed within the applicable holding times. Detection Limits The reported detection limits are equal to or below contract requirements. Field/Trip Blanks Field/Trip Blanks		
Image: Weight of the second	Image: Weight of the second	Image: Holding Times All analyses were completed within the applicable holding times. Image: Detection Limits The reported detection limits are equal to or below contract requirements. Image: Field/Trip Blanks Field/Trip Blanks	Holding Times All analyses were completed within the applicable holding times. Detection Limits The reported detection limits are equal to or below contract requirements. Field/Trip Blanks Field/Trip Blanks	Present: OK Signed: OK	Dated: OK Preservation: OK Temperature: OK
Image: Weight of the second	Image: Weight of the second	Image: Holding Times All analyses were completed within the applicable holding times. Image: Detection Limits The reported detection limits are equal to or below contract requirements. Image: Field/Trip Blanks Field/Trip Blanks	Holding Times All analyses were completed within the applicable holding times. Detection Limits The reported detection limits are equal to or below contract requirements. Field/Trip Blanks Field/Trip Blanks	Select Quality Parameters-	-
Field/Trip Blanks	Field/Trip Blanks	Field/Trip Blanks] Field/Trip Blanks	✓ Holding Times	All analyses were completed within the applicable holding times.
✓ Reld Duplicates	✓ Field Duplicates	✓ Field Duplicates] Field Duplicates	Field/Trip Blanks	
				✓ Field Duplicates	There was 1 duplicate evaluated.

SAMPLE MANAGEMENT SYSTEM

Metals Data Validation Worksheet

RIN:	11073976

Lab Code: PAR

Date Due: 9/10/2011 Site Code: <u>RFL</u> Date Completed: <u>9/2/2011</u>

Matrix: Water

Dute	00111

Analyte	Method Type	Date Analyzed		CAL	IBRA	TION			Method	LCS %R	MS %R	MSD %R	Dup. RPD	ICSAB %R	Serial Dil. %R	CRI %R
		,	Int.	R^2	ICV	ccv	ICB	ССВ	Blank							
Arsenic	ICP/MS	08/29/2011	0.0000	1.0000	OK	OK	OK	OK	OK	93.0	96.0	95.0	1.0	107.0		108.0
Molybdenum	ICP/MS	08/29/2011	0.0000	1.0000	OK	OK	OK	OK	OK	93.0	94.0	97.0	2.0	102.0	10.0	103.0
Selenium	ICP/MS	08/29/2011	0.0000	1.0000	OK	OK	OK	OK	OK	96.0				105.0		95.0
Selenium	ICP/MS	08/30/2011	0.0000	1.0000	OK	OK	OK	OK			103.0	100.0	3.0			108.0
Uranium	ICP/MS	08/29/2011	0.0000	1.0000	OK	OK	OK	OK	OK	94.0	101.0	97.0	1.0	104.0	7.0	100.0
Vanadium	ICP/MS	08/29/2011	0.0000	1.0000	OK	OK	OK	OK	OK	94.0	91.0	92.0	1.0	103.0	6.0	128.0

SAMPLE MANAGEMENT SYSTEM

Wet Chemistry Data Validation Worksheet

Lab Code: PAR

Site Code: RFL

RIN: 11073976

0

Date Due: 9/10/2011

Matrix: Water

Date Completed: 9/2/2011

Analyte	Date Analyzed		CAL	IBRA	TION			Method	LCS %R	MS %R	MSD %R	DUP RPD	Serial Dil. %R
-		Int.	R^2	ICV	ccv	ICB	ССВ	Blank					
AMMONIA AS N	08/25/2011	0.000	1.0000	OK	OK	OK	OK	OK	96.00	75.0	75.0	1.00	
Nitrate+Nitrite as N	08/18/2011	0.000	1.0000	OK	OK	OK	OK	OK	100.00	103.0	104.0	1.00	

Sampling Quality Control Assessment

The following information summarizes and assesses quality control for this sampling event.

Sampling Protocol

Sample results for all monitoring wells were qualified with an "F" flag in the database, indicating the wells were purged and sampled using the low-flow sampling method. All wells met the Category I criteria with the following exceptions:

• New Rifle wells 0669 and 0670 were classified as Category II.

The sample results for these wells were qualified with a "Q" flag, indicating the data are qualitative because of the sampling technique.

Equipment Blank Assessment

An equipment blank (field ID 2949) was collected after decontamination of the tubing reel used to collect the surface water samples. Arsenic, molybdenum, and uranium were detected in this blank. The associated sample results were greater than 5 times the blank concentration, not requiring qualification. The equipment blank results indicate adequate decontamination of the sampling equipment.

Field Duplicate Assessment

Field duplicate samples are collected and analyzed as an indication of overall precision of the measurement process. The precision observed includes both field and laboratory precision and has more variability than laboratory duplicates, which measure only laboratory performance. The relative percent difference for duplicate results that are greater than 5 times the PQL should be less than 20 percent. For results that are less than the PQL, the range should be no greater than the PQL. Duplicate samples were collected at locations RFN01-0201, RFN01-0322, and RFO01-0310 (field IDs 2948, 2187, and 2927, respectively). All duplicate results met the acceptance criteria, demonstrating acceptable overall precision.

N: <u>11063854</u>	Lab Code: PAR	Project:	Rifle Disposal/Processing Site	Date: 10/4	10/4/2011		
Blank Data							
Blank Type Equipment Blank	Lab Sample ID 1106266-16	Lab Method SW6020	Analyte Name Arsenic	Resul		MDL 0.015	Units UG/L
	1100200-10	300020	Alsenic	0.026	, в	0.015	0G/L
Sample ID	Sample Ticket	Location	Result	Dilution Factor	Lab Qualifier	Validatio	on Qualifi
1106266-5	JHS 779	0323	1.1	5			
1106266-6	JHS 780	0324	0.43	1			
1106266-7	JHS 783	0575	2.5	1			
Blank Data							
Blank Type	Lab Sample ID	Lab Method	Analyte Name	Resul	t Qualifier	MDL	Units
Equipment Blank	1106266-16	SW6020	Molybdenum	0.21		0.032	UG/L
Oceando ID	Osmula Tisket		Baarit	Dilution Footon	Lab Orall Tax	V-8-4-44	0
Sample ID	Sample Ticket	Location	Result	Dilution Factor	Lab Qualifier	Validatio	on Qualifie
1106266-5	JHS 779	0323	2600	10			
1106266-6	JHS 780	0324	2.1	1			
1106266-7	JHS 783	0575	34	1			
Blank Data							
Blank Type	Lab Sample ID	Lab Method	Analyte Name	Resul		MDL	Units
Equipment Blank	1106266-16	SW6020	Uranium	0.017	, 	0.0029	UG/L
Sample ID	Sample Ticket	Location	Result	Dilution Factor	Lab Qualifier	Validatio	on Qualifie
1106266-18	JHS 798	0294	0.72	1			
1106266-23	JHS 799	0387	33	1			
1106266-24	JHS 800	0388	42	1			
1106266-27	JHS 804	0396	0.8	1			
1106266-32	JHS 806	0741	0.77	1			
1106266-5	JHS 779	0323	320	10			
1106266-6	JHS 780	0324	0.76	1			
1106266-7	JHS 783	0575	17	1			

SAMPLE MANAGEMENT SYSTEM

Page 1 of 1

Validation Report: Field Duplicates

 RIN:
 11063854
 Lab Code:
 PAR
 Project:
 Rifle Disposal/Processing Site (old/new)
 Validation Date:
 10/3/2011

Duplicate: 2927	Sample: 03	310			Duplicate-				1		
Analyte	Result	Flag	Error	Dilution	Result	Flag	Error	Dilution	RPD	RER	Units
Selenium	2.7			5	2.6			5	3.77		UG/L
Uranium	200			5	200			5	0		UG/L
Vanadium	11			5	12			5	8.70		UG/L

Duplicate: 2948	Sample: 02	01			– Duplicate –						
Analyte	Result	Flag	Error	Dilution	Result	Flag	Error	Dilution	RPD	RER	Units
AMMONIA AS N	85			20	87			20	2.33		MG/L
Arsenic	0.5			2	0.57			2	13.08		UG/L
Molybdenum	1800			10	1700			10	5.71		UG/L
Nitrate+Nitrite as N	38			20	38			20	0		MG/L
Selenium	46			10	45			10	2.20		UG/L
Uranium	99			10	94			10	5.18		UG/L

SAMPLE MANAGEMENT SYSTEM

Page 1 of 1

Validation Report: Field Duplicates

RIN: 11073976

Lab Code: PAR

Project: Rifle Disposal/Processing Site (old/new)

Validation Date: 10/4/2011

Duplicate: 2187

Sample:	0322

	Sample				Duplicate—						
Analyte	Result	Flag	Error	Dilution	Result	Flag	Error	Dilution	RPD	RER	Units
AMMONIA AS N	0.1	U		1	0.1	U		1			MG/L
Arsenic	0.52			1	0.5			1	3.92		UG/L
Molybdenum	4.2			1	4.3			1	2.35		UG/L
Nitrate+Nitrite as N	0.018			1	0.011			1			MG/L
Selenium	0.37			1	0.34			1	8.45		UG/L
Uranium	1.4			1	1.4			1	0		UG/L
Vanadium	1.3			1	1.2			1	8.00		UG/L

Certification

All laboratory analytical quality control criteria were met except as qualified in this report. The data qualifiers listed on the SEEPro database reports are defined on the last page of each report. All data in this package are considered validated and available for use.

Laboratory Coordinator:

Stere Vorin

10-26-2011 Date

Steve Donivan

Data Validation Lead:

Ater Donivon Steve Donivan

DVP—June 2011, Rifle, Colorado RIN 11063854, 11063855, and 11073976 Page 32

Attachment 1 Assessment of Anomalous Data

This page intentionally left blank

Potential Outliers Report

This page intentionally left blank

Potential Outliers Report

Potential outliers are measurements that are extremely large or small relative to the rest of the data and, therefore, are suspected of misrepresenting the population from which they were collected. Potential outliers may result from transcription errors, data-coding errors, or measurement system problems. However, outliers may also represent true extreme values of a distribution and indicate more variability in the population than was expected.

Statistical outlier tests give probabilistic evidence that an extreme value does not "fit" with the distribution of the remainder of the data and is therefore a statistical outlier. These tests should only be used to identify data points that require further investigation. The tests alone cannot determine whether a statistical outlier should be discarded or corrected within a data set.

There are three steps involved in identifying extreme values or outliers:

- 1. Identify extreme values that may be potential outliers by generating the Outliers Report using the Sample Management System from data in the SEEPro database. The application compares the new data set with historical data and lists the new data that fall outside the historical data range. A determination is also made if the data are normally distributed using the Shapiro-Wilk Test.
- 2. Apply the appropriate statistical test. Dixon's Extreme Value test is used to test for statistical outliers when the sample size is less than or equal to 25. This test considers both extreme values that are much smaller than the rest of the data (case 1) and extreme values that are much larger than the rest of the data (case 2). This test is valid only if the data without the suspected outlier are normally distributed. Rosner's Test is a parametric test that is used to detect outliers for sample sizes of 25 or more. This test also assumes that the data without the suspected outliers are normally distributed.
- 3. Scientifically review statistical outliers and decide on their disposition.

Four analytical results were identified as potentially anomalous. Analyte concentrations at many of the associated locations are trending upward or downward. No analytical errors were noted during the review of the selenium data from locations 0170 and 0310 and the uranium data from location 0396. The molybdenum concentration at location 0217 is following a downward trend and more variability in analyte concentration is expected. No analytical errors were noted during the review of the data and all data from these sampling events may be treated as validated results.

Data Validation Outliers Report - No Field Parameters Comparison: All Historical Data Laboratory: ALS Laboratory Group RIN: 11063854 Report Date: 10/11/2011

					C	urrent Qualifiers	Historic		num lifiers	Historic		num lifiers		mber of a Points	Statistical Outlier
Site Code	Location Code	Sample ID	Sample Date	Analyte	Result	Lab Data	Result	Lab	Data	Result	Lab	Data	N	N Below Detect	
RFN01	0170	N001	06/14/2011	Nitrate + Nitrite as Nitrogen	13	F	37		F	16.4		F	7	0	No
RFN01	0170	N001	06/14/2011	Selenium	0.013	F	0.0101	Ν	F	0.0029	В		14	0	Yes
RFN01	0172	N001	06/14/2011	Arsenic	0.0079	F	0.0058		JF	0.0006	U	F	15	2	No
RFN01	0201	N001	06/14/2011	Nitrate + Nitrite as Nitrogen	38	F	130		F	52		F	10	0	No
RFN01	0201	N002	06/14/2011	Nitrate + Nitrite as Nitrogen	38	F	130		F	52		F	10	0	No
RFN01	0215	N001	06/13/2011	Selenium	0.0021	F	0.0018		F	0.00002	U	F	24	9	No
RFN01	0323	N001	06/14/2011	Nitrate + Nitrite as Nitrogen	76		130			91			10	0	No
RFN01	0324	0001	06/14/2011	Uranium	0.00076		0.00285			0.00098			11	0	No
RFN01	0620	N001	06/14/2011	Molybdenum	0.0088	F	0.07			0.0097		F	26	2	No
RFN01	0658	N001	06/13/2011	Ammonia Total as N	47	F	180		F	48		FJ	9	0	No
RFN01	0658	N001	06/13/2011	Nitrate + Nitrite as Nitrogen	4.1	F	75		F	12		F	9	0	No
RFN01	0659	N001	06/13/2011	Arsenic	0.0083	F	0.195		L	0.0093		F	28	0	No
RFN01	0659	N001	06/13/2011	Molybdenum	1.7	F	7.7			2.08		F	30	0	No
RFN01	0659	N001	06/13/2011	Nitrate + Nitrite as Nitrogen	3.7	F	50		F	9.18		F	14	0	No
RFN01	0659	N001	06/13/2011	Selenium	0.038	F	1.4		F	0.0398			25	0	No
RFN01	0659	N001	06/13/2011	Vanadium	0.65	F	13.8			0.71		F	33	0	No
RFN01	0664	N001	06/13/2011	Molybdenum	0.24	F	0.888			0.27		F	19	0	No
RFN01	0664	N001	06/13/2011	Selenium	0.19	F	0.13		F	0.0157			16	0	No

Data Validation Outliers Report - No Field Parameters Comparison: All Historical Data Laboratory: ALS Laboratory Group RIN: 11063854 Report Date: 10/11/2011

					C	u rrent Qualifiers	Historic	al Maximun Qualifier		Historic		num lifiers		mber of a Points	Statistical Outlier
Site Code	Location Code	Sample ID	Sample Date	Analyte	Result	Lab Data	Result	Lab D)ata	Result	Lab	Data	Ν	N Below Detect	
RFN01	0669	N001	06/13/2011	Arsenic	0.0029	FQ	0.0162			0.0044		FQ	14	0	No
RFN01	0669	N001	06/13/2011	Nitrate + Nitrite as Nitrogen	0.019	FQ	26.3	F	=Q	0.23		FQ	11	0	No
RFN01	0669	N001	06/13/2011	Vanadium	0.73	FQ	14.3			1.1			24	0	No
RFN01	0670	N001	06/13/2011	Arsenic	0.0039	FQ	0.0175	F	=Q	0.0045		F	13	0	No
RFN01	0855	N001	06/13/2011	Molybdenum	1.1	F	18	F	=Q	1.2		F	17	0	No
RFO01	0294	0001	06/14/2011	Uranium	0.00072		0.0027			0.00079			13	0	No
RFO01	0310	N001	06/15/2011	Selenium	0.0027	F	0.0016		F	0.000041	В	F	34	14	Yes
RFO01	0396	0001	06/15/2011	Uranium	0.0008		0.0028			0.00081			25	0	Yes
RFO01	0655	N001	06/14/2011	Selenium	0.076	F	0.067		F	0.0088		F	33	0	No
RFO01	0741	0001	06/14/2011	Uranium	0.00077		0.0027			0.00091			30	2	No
RFO01	LQ-107	N001	06/15/2011	Selenium	0.00063	F	0.037		F	0.001	UN	F	6	1	No

Data Validation Outliers Report - No Field Parameters

Comparison: All Historical Data Laboratory: ALS Laboratory Group RIN: 11073976 Report Date: 10/11/2011

					С	urrent Qua	lifiers	Historic	al Maximu Qualifie		Historic		num lifiers		nber of a Points	Statistical Outlier
Site Code	Location Code	Sample ID	Sample Date	Analyte	Result	Lab	Data	Result	Lab I	Data	Result	Lab	Data	Ν	N Below Detect	
RFN01	0195	N001	08/09/2011	Ammonia Total as N	0.23		F	46		F	0.309		F	9	0	No
RFN01	0195	N001	08/09/2011	Molybdenum	0.021		F	0.6		FJ	0.0334		F	18	0	No
RFN01	0195	N001	08/09/2011	Uranium	0.012		F	0.177			0.016		F	18	0	No
RFN01	0216	N001	08/09/2011	Ammonia Total as N	4.7		F	8.7		F	4.9		F	11	0	No
RFN01	0217	N001	08/09/2011	Molybdenum	1.1		F	2.1		F	1.54			16	0	Yes
RFN01	0635	N001	08/11/2011	Ammonia Total as N	77		F	210		F	84.6		F	9	0	No
RFN01	0635	N001	08/11/2011	Nitrate + Nitrite as Nitrogen	4		F	85		F	6		F	9	0	No

STATISTICAL TESTS:

The distribution of the data is tested for normality or lognormality using the Shapiro-Wilk Test Outliers are identified using Dixon's Test when there are 25 or fewer data points. Outliers are identified using Rosner's Test when there are 26 or more data points. See Data Quality Assessment: Statistical Methods for Practitioners, EPA QC/G-9S, February 2006.

Attachment 2 Data Presentation

This page intentionally left blank

New Rifle Groundwater Quality Data

This page intentionally left blank

Groundwater Quality Data by Location (USEE100) FOR SITE RFN01, Rifle New Processing Site REPORT DATE: 10/11/2011 Location: 0169 WELL

Parameter	Units	Sam Date	nple ID	Deptl (Ft	h Ra : BLS		Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Alkalinity, Total (as CaCO ₃)	mg/L	08/09/2011	N001	3.13	-	18.13	436		F	#		
Ammonia Total as N	mg/L	08/09/2011	N001	3.13	-	18.13	0.1	U	F	#	0.1	
Arsenic	mg/L	08/09/2011	N001	3.13	-	18.13	0.00064		F	#	0.000015	
Molybdenum	mg/L	08/09/2011	N001	3.13	-	18.13	0.0056		F	#	0.000032	
Nitrate + Nitrite as Nitrogen	mg/L	08/09/2011	N001	3.13	-	18.13	0.01	U	F	#	0.01	
Oxidation Reduction Potential	mV	08/09/2011	N001	3.13	-	18.13	54.9		F	#		
рН	s.u.	08/09/2011	N001	3.13	-	18.13	6.95		F	#		
Selenium	mg/L	08/09/2011	N001	3.13	-	18.13	0.0019		F	#	0.000032	
Specific Conductance	umhos /cm	08/09/2011	N001	3.13	-	18.13	2752		F	#		
Temperature	С	08/09/2011	N001	3.13	-	18.13	15.47		F	#		
Turbidity	NTU	08/09/2011	N001	3.13	-	18.13	1.43		F	#		
Uranium	mg/L	08/09/2011	N001	3.13	-	18.13	0.026		F	#	0.0000029	

REPORT DATE: 10/11/2011

Location: 0170 WELL Ground elevation was calculated as surveyed TOC elevation minus stick up height reported in the Borehole Summary

Parameter	Units	Sam Date	iple ID	Depth F (Ft B	•	Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Alkalinity, Total (as CaCO ₃)	mg/L	06/14/2011	N001	92.23 -	112.23	513		F	#		
Ammonia Total as N	mg/L	06/14/2011	N001	92.23 -	112.23	0.18	Ν	FJ	#	0.1	
Arsenic	mg/L	06/14/2011	N001	92.23 -	112.23	0.00032		F	#	0.000015	
Molybdenum	mg/L	06/14/2011	N001	92.23 -	112.23	0.0033		F	#	0.000032	
Nitrate + Nitrite as Nitrogen	mg/L	06/14/2011	N001	92.23 -	112.23	13		F	#	0.1	
Oxidation Reduction Potential	mV	06/14/2011	N001	92.23 -	112.23	57.5		F	#		
рН	s.u.	06/14/2011	N001	92.23 -	112.23	6.95		F	#		
Selenium	mg/L	06/14/2011	N001	92.23 -	112.23	0.013		F	#	0.000032	
Specific Conductance	umhos /cm	06/14/2011	N001	92.23 -	112.23	3155		F	#		
Temperature	С	06/14/2011	N001	92.23 -	112.23	14.94		F	#		
Turbidity	NTU	06/14/2011	N001	92.23 -	112.23	1.73		F	#		
Uranium	mg/L	06/14/2011	N001	92.23 -	112.23	0.059		F	#	0.0000029	

Groundwater Quality Data by Location (USEE100) FOR SITE RFN01, Rifle New Processing Site REPORT DATE: 10/11/2011 Location: 0172 WELL

Parameter	Units	Sam Date	ple ID	Depth F (Ft B		Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Alkalinity, Total (as CaCO ₃)	mg/L	06/14/2011	N001	6.98 -	31.98	807		F	#		
Alkalinity, Total (as CaCO ₃)	mg/L	08/09/2011	N001	6.98 -	31.98	820		F	#		
Ammonia Total as N	mg/L	06/14/2011	N001	6.98 -	31.98	0.1	U	F	#	0.1	
Arsenic	mg/L	06/14/2011	N001	6.98 -	31.98	0.0079		F	#	0.000015	
Arsenic	mg/L	08/09/2011	N001	6.98 -	31.98	0.0057		F	#	0.000015	
Molybdenum	mg/L	06/14/2011	N001	6.98 -	31.98	0.0062		F	#	0.000032	
Molybdenum	mg/L	08/09/2011	N001	6.98 -	31.98	0.0054		F	#	0.000032	
Nitrate + Nitrite as Nitrogen	mg/L	06/14/2011	N001	6.98 -	31.98	0.01		F	#	0.01	
Oxidation Reduction Potential	mV	06/14/2011	N001	6.98 -	31.98	-64.6		F	#		
Oxidation Reduction Potential	mV	08/09/2011	N001	6.98 -	31.98	-88		F	#		
рН	s.u.	06/14/2011	N001	6.98 -	31.98	6.91		F	#		
рН	s.u.	08/09/2011	N001	6.98 -	31.98	6.95		F	#		
Selenium	mg/L	06/14/2011	N001	6.98 -	31.98	0.00052		F	#	0.000032	
Selenium	mg/L	08/09/2011	N001	6.98 -	31.98	0.00027		F	#	0.000032	
Specific Conductance	umhos /cm	06/14/2011	N001	6.98 -	31.98	17604		F	#		
Specific Conductance	umhos /cm	08/09/2011	N001	6.98 -	31.98	17770		F	#		
Temperature	С	06/14/2011	N001	6.98 -	31.98	14.84		F	#		

Groundwater Quality Data by Location (USEE100) FOR SITE RFN01, Rifle New Processing Site REPORT DATE: 10/11/2011 Location: 0172 WELL

Parameter	Units	Sam Date	ple ID	Depth F (Ft B	•	Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Temperature	С	08/09/2011	N001	6.98 -	31.98	14.95		F	#		
Turbidity	NTU	06/14/2011	N001	6.98 -	31.98	9.85		F	#		
Turbidity	NTU	08/09/2011	N001	6.98 -	31.98	1.73		F	#		
Uranium	mg/L	06/14/2011	N001	6.98 -	31.98	0.068		F	#	0.0000029	
Uranium	mg/L	08/09/2011	N001	6.98 -	31.98	0.066		F	#	0.0000029	

REPORT DATE: 10/11/2011

Location: 0195 WELL Ground elevation was calculated as surveyed TOC elevation minus stick up height reported in the Borehole Summary

Parameter	Units	Sam Date	iple ID	Dept (F	h Ra t BL		Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Alkalinity, Total (as CaCO ₃)	mg/L	08/09/2011	N001	5.29	-	25.29	388		F	#		
Ammonia Total as N	mg/L	08/09/2011	N001	5.29	-	25.29	0.23		F	#	0.1	
Arsenic	mg/L	08/09/2011	N001	5.29	-	25.29	0.0014		F	#	0.000015	
Molybdenum	mg/L	08/09/2011	N001	5.29	-	25.29	0.021		F	#	0.000032	
Nitrate + Nitrite as Nitrogen	mg/L	08/09/2011	N001	5.29	-	25.29	0.01	U	F	#	0.01	
Oxidation Reduction Potential	mV	08/09/2011	N001	5.29	-	25.29	-58.2		F	#		
рН	s.u.	08/09/2011	N001	5.29	-	25.29	6.95		F	#		
Selenium	mg/L	08/09/2011	N001	5.29	-	25.29	0.00024		F	#	0.000032	
Specific Conductance	umhos /cm	08/09/2011	N001	5.29	-	25.29	1238		F	#		
Temperature	С	08/09/2011	N001	5.29	-	25.29	18.77		F	#		
Turbidity	NTU	08/09/2011	N001	5.29	-	25.29	3.8		F	#		
Uranium	mg/L	08/09/2011	N001	5.29	-	25.29	0.012		F	#	0.0000029	

REPORT DATE: 10/11/2011

Location: 0201 WELL Ground elevation was calculated as surveyed TOC elevation minus stick up height reported in the Borehole Summary

Parameter	Units	Sam Date	ple ID	Depth I (Ft B		Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Alkalinity, Total (as CaCO ₃)	mg/L	06/14/2011	N001	7.35 -	22.35	249		F	#		
Ammonia Total as N	mg/L	06/14/2011	N001	7.35 -	22.35	85		F	#	2	
Ammonia Total as N	mg/L	06/14/2011	N002	7.35 -	22.35	87		F	#	2	
Arsenic	mg/L	06/14/2011	N001	7.35 -	22.35	0.0005		F	#	0.00003	
Arsenic	mg/L	06/14/2011	N002	7.35 -	22.35	0.00057		F	#	0.00003	
Molybdenum	mg/L	06/14/2011	N001	7.35 -	22.35	1.8		F	#	0.00032	
Molybdenum	mg/L	06/14/2011	N002	7.35 -	22.35	1.7		F	#	0.00032	
Nitrate + Nitrite as Nitrogen	mg/L	06/14/2011	N001	7.35 -	22.35	38		F	#	0.2	
Nitrate + Nitrite as Nitrogen	mg/L	06/14/2011	N002	7.35 -	22.35	38		F	#	0.2	
Oxidation Reduction Potential	mV	06/14/2011	N001	7.35 -	22.35	164.3		F	#		
рН	s.u.	06/14/2011	N001	7.35 -	22.35	6.76		F	#		
Selenium	mg/L	06/14/2011	N001	7.35 -	22.35	0.046		F	#	0.00032	
Selenium	mg/L	06/14/2011	N002	7.35 -	22.35	0.045		F	#	0.00032	
Specific Conductance	umhos /cm	06/14/2011	N001	7.35 -	22.35	4214		F	#		
Temperature	С	06/14/2011	N001	7.35 -	22.35	13.14		F	#		
Turbidity	NTU	06/14/2011	N001	7.35 -	22.35	1.25		F	#		
Uranium	mg/L	06/14/2011	N001	7.35 -	22.35	0.099		F	#	0.000029	
Uranium	mg/L	06/14/2011	N002	7.35 -	22.35	0.094		F	#	0.000029	

REPORT DATE: 10/11/2011

Location: 0215 WELL Ground elevation was calculated as surveyed TOC elevation minus stick up height reported in the Borehole Summary

Parameter	Units	Sam Date	ple ID	Deptl (Ft	h Ra : BLS		Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Alkalinity, Total (as CaCO ₃)	mg/L	06/13/2011	N001	6.84	-	21.84	334		F	#		
Ammonia Total as N	mg/L	06/13/2011	N001	6.84	-	21.84	3.3		F	#	0.1	
Arsenic	mg/L	06/13/2011	N001	6.84	-	21.84	0.00044		F	#	0.000015	
Molybdenum	mg/L	06/13/2011	N001	6.84	-	21.84	0.013		F	#	0.000032	
Nitrate + Nitrite as Nitrogen	mg/L	06/13/2011	N001	6.84	-	21.84	0.03		F	#	0.01	
Oxidation Reduction Potential	mV	06/13/2011	N001	6.84	-	21.84	17.3		F	#		
рН	s.u.	06/13/2011	N001	6.84	-	21.84	7.13		F	#		
Selenium	mg/L	06/13/2011	N001	6.84	-	21.84	0.0021		F	#	0.000032	
Specific Conductance	umhos /cm	06/13/2011	N001	6.84	-	21.84	1673		F	#		
Temperature	С	06/13/2011	N001	6.84	-	21.84	13.2		F	#		
Turbidity	NTU	06/13/2011	N001	6.84	-	21.84	1.19		F	#		
Uranium	mg/L	06/13/2011	N001	6.84	-	21.84	0.029		F	#	0.0000029	
Vanadium	mg/L	06/13/2011	N001	6.84	-	21.84	0.0021	Е	F	#	0.000015	

Groundwater Quality Data by Location (USEE100) FOR SITE RFN01, Rifle New Processing Site REPORT DATE: 10/11/2011 Location: 0216 WELL

Parameter	Units	Sam Date	ple ID		h Rar t BLS		Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Alkalinity, Total (as CaCO ₃)	mg/L	08/09/2011	N001	5.5	-	20.5	212		F	#		
Ammonia Total as N	mg/L	08/09/2011	N001	5.5	-	20.5	4.7		F	#	0.1	
Arsenic	mg/L	08/09/2011	N001	5.5	-	20.5	0.032	Е	F	#	0.00015	
Molybdenum	mg/L	08/09/2011	N001	5.5	-	20.5	0.085		F	#	0.00032	
Nitrate + Nitrite as Nitrogen	mg/L	08/09/2011	N001	5.5	-	20.5	0.01	U	F	#	0.01	
Oxidation Reduction Potential	mV	08/09/2011	N001	5.5	-	20.5	-10.3		F	#		
рН	s.u.	08/09/2011	N001	5.5	-	20.5	7.49		F	#		
Selenium	mg/L	08/09/2011	N001	5.5	-	20.5	0.00047		F	#	0.000032	
Specific Conductance	umhos /cm	08/09/2011	N001	5.5	-	20.5	1020		F	#		
Temperature	С	08/09/2011	N001	5.5	-	20.5	16.34		F	#		
Turbidity	NTU	08/09/2011	N001	5.5	-	20.5	1.03		F	#		
Uranium	mg/L	08/09/2011	N001	5.5	-	20.5	0.033		F	#	0.000029	
Vanadium	mg/L	08/09/2011	N001	5.5	-	20.5	0.16		F	#	0.00015	

REPORT DATE: 10/11/2011

Location: 0217 WELL Ground elevation was calculated as surveyed TOC elevation minus stick up height reported in the Borehole Summary

Parameter	Units	Sam Date	ple ID		th Ra t BLS		Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Alkalinity, Total (as $CaCO_3$)	mg/L	08/09/2011	N001	7.4	-	22.4	203		F	#		
Ammonia Total as N	mg/L	08/09/2011	N001	7.4	-	22.4	68		F	#	2	
Arsenic	mg/L	08/09/2011	N001	7.4	-	22.4	0.001		F	#	0.000074	
Molybdenum	mg/L	08/09/2011	N001	7.4	-	22.4	1.1		F	#	0.0016	
Nitrate + Nitrite as Nitrogen	mg/L	08/09/2011	N001	7.4	-	22.4	0.01	U	F	#	0.01	
Oxidation Reduction Potential	mV	08/09/2011	N001	7.4	-	22.4	92.2		F	#		
рН	s.u.	08/09/2011	N001	7.4	-	22.4	6.8		F	#		
Selenium	mg/L	08/09/2011	N001	7.4	-	22.4	0.011		F	#	0.00016	
Specific Conductance	umhos /cm	08/09/2011	N001	7.4	-	22.4	3759		F	#		
Temperature	С	08/09/2011	N001	7.4	-	22.4	15.42		F	#		
Turbidity	NTU	08/09/2011	N001	7.4	-	22.4	1.4		F	#		
Uranium	mg/L	08/09/2011	N001	7.4	-	22.4	0.12		F	#	0.00015	
Vanadium	mg/L	08/09/2011	N001	7.4	-	22.4	1.7		F	#	0.00076	

Groundwater Quality Data by Location (USEE100) FOR SITE RFN01, Rifle New Processing Site REPORT DATE: 10/11/2011 Location: 0620 WELL

Parameter	Units	Sam Date	ple ID		n Range BLS)	Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Alkalinity, Total (as CaCO ₃)	mg/L	06/14/2011	N001	6.7	- 10.7	556		F	#		
Alkalinity, Total (as CaCO ₃)	mg/L	08/09/2011	N001	6.7	- 10.7	549		F	#		
Ammonia Total as N	mg/L	06/14/2011	N001	6.7	- 10.7	0.1	U	F	#	0.1	
Arsenic	mg/L	06/14/2011	N001	6.7	- 10.7	0.00062		F	#	0.000015	
Arsenic	mg/L	08/09/2011	N001	6.7	- 10.7	0.00063		F	#	0.000015	
Molybdenum	mg/L	06/14/2011	N001	6.7	- 10.7	0.0088		F	#	0.000032	
Molybdenum	mg/L	08/09/2011	N001	6.7	- 10.7	0.0093		F	#	0.000032	
Nitrate + Nitrite as Nitrogen	mg/L	06/14/2011	N001	6.7	- 10.7	19		F	#	0.1	
Oxidation Reduction Potential	mV	06/14/2011	N001	6.7	- 10.7	-23		F	#		
Oxidation Reduction Potential	mV	08/09/2011	N001	6.7	- 10.7	19		F	#		
pН	s.u.	06/14/2011	N001	6.7	- 10.7	6.99		F	#		
рН	s.u.	08/09/2011	N001	6.7	- 10.7	7.08		F	#		
Selenium	mg/L	06/14/2011	N001	6.7	- 10.7	0.015		F	#	0.000032	
Selenium	mg/L	08/09/2011	N001	6.7	- 10.7	0.023		F	#	0.000032	
Specific Conductance	umhos /cm	06/14/2011	N001	6.7	- 10.7	6557		F	#		
Specific Conductance	umhos /cm	08/09/2011	N001	6.7	- 10.7	6661		F	#		
Temperature	С	06/14/2011	N001	6.7	- 10.7	14.42		F	#		

Groundwater Quality Data by Location (USEE100) FOR SITE RFN01, Rifle New Processing Site REPORT DATE: 10/11/2011 Location: 0620 WELL

Parameter	Units	Sam Date	ple ID		n Range BLS)	Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Temperature	С	08/09/2011	N001	6.7	- 10.7	16.44		F	#		
Turbidity	NTU	06/14/2011	N001	6.7	- 10.7	2.56		F	#		
Turbidity	NTU	08/09/2011	N001	6.7	- 10.7	1.42		F	#		
Uranium	mg/L	06/14/2011	N001	6.7	- 10.7	0.069		F	#	0.0000029	
Uranium	mg/L	08/09/2011	N001	6.7	- 10.7	0.066		F	#	0.0000029	

Groundwater Quality Data by Location (USEE100) FOR SITE RFN01, Rifle New Processing Site REPORT DATE: 10/11/2011 Location: 0635 WELL

Parameter	Units	Sam Date	iple ID		oth Ra Ft BLS		Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Alkalinity, Total (as CaCO ₃)	mg/L	08/11/2011	N001	12	-	17	288		F	#		
Ammonia Total as N	mg/L	08/11/2011	N001	12	-	17	77		F	#	2	
Arsenic	mg/L	08/11/2011	N001	12	-	17	0.00029		F	#	0.000015	
Molybdenum	mg/L	08/11/2011	N001	12	-	17	0.42		F	#	0.00016	
Nitrate + Nitrite as Nitrogen	mg/L	08/11/2011	N001	12	-	17	4		F	#	0.05	
Oxidation Reduction Potential	mV	08/11/2011	N001	12	-	17	203.8		F	#		
рН	s.u.	08/11/2011	N001	12	-	17	6.94		F	#		
Selenium	mg/L	08/11/2011	N001	12	-	17	0.0029		F	#	0.000032	
Specific Conductance	umhos /cm	08/11/2011	N001	12	-	17	2632		F	#		
Temperature	С	08/11/2011	N001	12	-	17	16.11		F	#		
Turbidity	NTU	08/11/2011	N001	12	-	17	4.4		F	#		
Uranium	mg/L	08/11/2011	N001	12	-	17	0.049		F	#	0.000015	

Groundwater Quality Data by Location (USEE100) FOR SITE RFN01, Rifle New Processing Site REPORT DATE: 10/11/2011 Location: 0658 WELL

Parameter	Units	Sam Date	iple ID		th Rar t BLS		Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Alkalinity, Total (as CaCO ₃)	mg/L	06/13/2011	N001	.5	-	5.5	811		F	#		
Ammonia Total as N	mg/L	06/13/2011	N001	.5	-	5.5	47		F	#	1	
Arsenic	mg/L	06/13/2011	N001	.5	-	5.5	0.15		F	#	0.003	
Molybdenum	mg/L	06/13/2011	N001	.5	-	5.5	1.3		F	#	0.0064	
Nitrate + Nitrite as Nitrogen	mg/L	06/13/2011	N001	.5	-	5.5	4.1		F	#	0.05	
Oxidation Reduction Potential	mV	06/13/2011	N001	.5	-	5.5	156.7		F	#		
рН	s.u.	06/13/2011	N001	.5	-	5.5	6.79		F	#		
Selenium	mg/L	06/13/2011	N001	.5	-	5.5	1.3		F	#	0.0065	
Specific Conductance	umhos /cm	06/13/2011	N001	.5	-	5.5	2696		F	#		
Temperature	С	06/13/2011	N001	.5	-	5.5	18.35		F	#		
Turbidity	NTU	06/13/2011	N001	.5	-	5.5	2.48		F	#		
Uranium	mg/L	06/13/2011	N001	.5	-	5.5	0.065		F	#	0.00058	
Vanadium	mg/L	06/13/2011	N001	.5	-	5.5	38		F	#	0.003	

Groundwater Quality Data by Location (USEE100) FOR SITE RFN01, Rifle New Processing Site REPORT DATE: 10/11/2011 Location: 0659 WELL

Parameter	Units	Sam Date	iple ID		th Ra ⁻t BLS		Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Alkalinity, Total (as CaCO ₃)	mg/L	06/13/2011	N001	.5	-	10.5	214		F	#		
Ammonia Total as N	mg/L	06/13/2011	N001	.5	-	10.5	44		F	#	1	
Arsenic	mg/L	06/13/2011	N001	.5	-	10.5	0.0083		F	#	0.00015	
Molybdenum	mg/L	06/13/2011	N001	.5	-	10.5	1.7		F	#	0.00032	
Nitrate + Nitrite as Nitrogen	mg/L	06/13/2011	N001	.5	-	10.5	3.7		F	#	0.02	
Oxidation Reduction Potential	mV	06/13/2011	N001	.5	-	10.5	159.3		F	#		
рН	s.u.	06/13/2011	N001	.5	-	10.5	6.96		F	#		
Selenium	mg/L	06/13/2011	N001	.5	-	10.5	0.038		F	#	0.00032	
Specific Conductance	umhos /cm	06/13/2011	N001	.5	-	10.5	3370		F	#		
Temperature	С	06/13/2011	N001	.5	-	10.5	15.45		F	#		
Turbidity	NTU	06/13/2011	N001	.5	-	10.5	2.4		F	#		
Uranium	mg/L	06/13/2011	N001	.5	-	10.5	0.089		F	#	0.000029	
Vanadium	mg/L	06/13/2011	N001	.5	-	10.5	0.65		F	#	0.00015	

Groundwater Quality Data by Location (USEE100) FOR SITE RFN01, Rifle New Processing Site REPORT DATE: 10/11/2011 Location: 0664 WELL

Parameter	Units	Sam Date	iple ID		th Ra t BLS		Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Alkalinity, Total (as CaCO ₃)	mg/L	06/13/2011	N001	7.7	-	14.7	436		F	#		
Ammonia Total as N	mg/L	06/13/2011	N001	7.7	-	14.7	35		F	#	1	
Arsenic	mg/L	06/13/2011	N001	7.7	-	14.7	0.0048		F	#	0.00015	
Molybdenum	mg/L	06/13/2011	N001	7.7	-	14.7	0.24		F	#	0.00032	
Nitrate + Nitrite as Nitrogen	mg/L	06/13/2011	N001	7.7	-	14.7	8.7		F	#	0.05	
Oxidation Reduction Potential	mV	06/13/2011	N001	7.7	-	14.7	116.8		F	#		
рН	s.u.	06/13/2011	N001	7.7	-	14.7	6.82		F	#		
Selenium	mg/L	06/13/2011	N001	7.7	-	14.7	0.19		F	#	0.00032	
Specific Conductance	umhos /cm	06/13/2011	N001	7.7	-	14.7	2530		F	#		
Temperature	С	06/13/2011	N001	7.7	-	14.7	14.56		F	#		
Turbidity	NTU	06/13/2011	N001	7.7	-	14.7	7.2		F	#		
Uranium	mg/L	06/13/2011	N001	7.7	-	14.7	0.069		F	#	0.000029	
Vanadium	mg/L	06/13/2011	N001	7.7	-	14.7	2.8		F	#	0.00015	

Groundwater Quality Data by Location (USEE100) FOR SITE RFN01, Rifle New Processing Site REPORT DATE: 10/11/2011 Location: 0669 WELL

Parameter	Units	Sam Date	ple ID		oth Ra Ft BLS		Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Alkalinity, Total (as CaCO ₃)	mg/L	06/13/2011	N001	4	-	10.6	328		FQ	#		
Ammonia Total as N	mg/L	06/13/2011	N001	4	-	10.6	130		FQ	#	5	
Arsenic	mg/L	06/13/2011	N001	4	-	10.6	0.0029		FQ	#	0.00015	
Molybdenum	mg/L	06/13/2011	N001	4	-	10.6	1.5		FQ	#	0.00032	
Nitrate + Nitrite as Nitrogen	mg/L	06/13/2011	N001	4	-	10.6	0.019		FQ	#	0.01	
Oxidation Reduction Potential	mV	06/13/2011	N001	4	-	10.6	162.6		FQ	#		
рН	s.u.	06/13/2011	N001	4	-	10.6	6.87		FQ	#		
Selenium	mg/L	06/13/2011	N001	4	-	10.6	0.0046		FQ	#	0.00032	
Specific Conductance	umhos /cm	06/13/2011	N001	4	-	10.6	4069		FQ	#		
Temperature	С	06/13/2011	N001	4	-	10.6	18.24		FQ	#		
Turbidity	NTU	06/13/2011	N001	4	-	10.6	6.73		FQ	#		
Uranium	mg/L	06/13/2011	N001	4	-	10.6	0.13		FQ	#	0.000029	
Vanadium	mg/L	06/13/2011	N001	4	-	10.6	0.73		FQ	#	0.00015	

Groundwater Quality Data by Location (USEE100) FOR SITE RFN01, Rifle New Processing Site REPORT DATE: 10/11/2011 Location: 0670 WELL For Organics Study.

Parameter	Units	Sam Date	ple ID		Range BLS)	Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Alkalinity, Total (as CaCO ₃)	mg/L	06/13/2011	N001	5.2	- 12.2	314		FQ	#		
Ammonia Total as N	mg/L	06/13/2011	N001	5.2	- 12.2	9.5		FQ	#	0.2	
Arsenic	mg/L	06/13/2011	N001	5.2	- 12.2	0.0039		FQ	#	0.00015	
Molybdenum	mg/L	06/13/2011	N001	5.2	- 12.2	0.28		FQ	#	0.00032	
Nitrate + Nitrite as Nitrogen	mg/L	06/13/2011	N001	5.2	- 12.2	9		FQ	#	0.05	
Oxidation Reduction Potential	mV	06/13/2011	N001	5.2	- 12.2	112.5		FQ	#		
рН	s.u.	06/13/2011	N001	5.2	- 12.2	6.89		FQ	#		
Selenium	mg/L	06/13/2011	N001	5.2	- 12.2	0.28		FQ	#	0.00032	
Specific Conductance	umhos /cm	06/13/2011	N001	5.2	- 12.2	2366		FQ	#		
Temperature	С	06/13/2011	N001	5.2	- 12.2	15.02		FQ	#		
Turbidity	NTU	06/13/2011	N001	5.2	- 12.2	5.23		FQ	#		
Uranium	mg/L	06/13/2011	N001	5.2	- 12.2	0.19		FQ	#	0.000029	
Vanadium	mg/L	06/13/2011	N001	5.2	- 12.2	1.7		FQ	#	0.00015	

Groundwater Quality Data by Location (USEE100) FOR SITE RFN01, Rifle New Processing Site REPORT DATE: 10/11/2011 Location: 0855 WELL

Parameter	Units	Sam			oth Ra		Result		Qualifiers	~	Detection	Uncertainty
		Date	ID	(1	Ft BLS)		Lab	Data	QA	Limit	
Alkalinity, Total (as CaCO ₃)	mg/L	06/13/2011	N001	6	-	11	245		F	#		
Ammonia Total as N	mg/L	06/13/2011	N001	6	-	11	41		F	#	1	
Arsenic	mg/L	06/13/2011	N001	6	-	11	0.52		F	#	0.003	
Molybdenum	mg/L	06/13/2011	N001	6	-	11	1.1		F	#	0.0064	
Nitrate + Nitrite as Nitrogen	mg/L	06/13/2011	N001	6	-	11	2.9		F	#	0.02	
Oxidation Reduction Potential	mV	06/13/2011	N001	6	-	11	145.6		F	#		
рН	s.u.	06/13/2011	N001	6	-	11	6.68		F	#		
Selenium	mg/L	06/13/2011	N001	6	-	11	1.1		F	#	0.0065	
Specific Conductance	umhos /cm	06/13/2011	N001	6	-	11	2515		F	#		
Temperature	С	06/13/2011	N001	6	-	11	15.57		F	#		
Turbidity	NTU	06/13/2011	N001	6	-	11	5.33		F	#		
Uranium	mg/L	06/13/2011	N001	6	-	11	0.054		F	#	0.00058	
Vanadium	mg/L	06/13/2011	N001	6	-	11	28		F	#	0.003	

SAMPLE ID CODES: 000X = Filtered sample (0.45 µm). N00X = Unfiltered sample. X = replicate number.

LAB QUALIFIERS:

- Replicate analysis not within control limits. Result above upper detection limit. *
- >
- А
- TIC is a suspected aldol-condensation product. Inorganic: Result is between the IDL and CRDL. Organic: Analyte also found in method blank. В
- Pesticide result confirmed by GC-MS. С
- Analyte determined in diluted sample. D
- Inorganic: Estimate value because of interference, see case narrative. Organic: Analyte exceeded calibration range of the GC-MS. Е
- Holding time expired, value suspect. н

- I Increased detection limit due to required dilution.
- J Estimated
- N Inorganic or radiochemical: Spike sample recovery not within control limits. Organic: Tentatively identified compound (TIC).
- P > 25% difference in detected pesticide or Aroclor concentrations between 2 columns.
- U Analytical result below detection limit.
- W Post-digestion spike outside control limits while sample absorbance < 50% of analytical spike absorbance.
- X,Y,Z Laboratory defined qualifier, see case narrative.

DATA QUALIFIERS:

F Low flow sampling method used.

- G Possible grout contamination, pH > 9. J Estimated value.
- Q Qualitative result due to sampling technique. R Unusable result.
- Less than 3 bore volumes purged prior to sampling. Parameter analyzed for but was not detected.
- X Location is undefined.

QA QUALIFIER:

L

U

Validated according to quality assurance guidelines.

This page intentionally left blank

Old Rifle Groundwater Quality Data

This page intentionally left blank

Groundwater Quality Data by Location (USEE100) FOR SITE RF001, Rifle Old Processing Site REPORT DATE: 10/11/2011 Location: 0292A WELL

Parameter	Units	Sam Date	iple ID		Range BLS)	Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Alkalinity, Total (as CaCO ₃)	mg/L	06/14/2011	N001	10.5	- 20.5	488		F	#		
Oxidation Reduction Potential	mV	06/14/2011	N001	10.5	- 20.5	68.3		F	#		
рН	s.u.	06/14/2011	N001	10.5	- 20.5	6.99		F	#		
Selenium	mg/L	06/14/2011	N001	10.5	- 20.5	0.027		F	#	0.000032	
Specific Conductance	umhos /cm	06/14/2011	N001	10.5	- 20.5	2142		F	#		
Temperature	С	06/14/2011	N001	10.5	- 20.5	13.1		F	#		
Turbidity	NTU	06/14/2011	N001	10.5	- 20.5	3.1		F	#		
Uranium	mg/L	06/14/2011	N001	10.5	- 20.5	0.03		F	#	0.0000029	
Vanadium	mg/L	06/14/2011	N001	10.5	- 20.5	0.00074		UF	#	0.000015	

Groundwater Quality Data by Location (USEE100) FOR SITE RF001, Rifle Old Processing Site REPORT DATE: 10/11/2011 Location: 0304 WELL

Parameter	Units	Sam Date	ple ID	Dept (F	th Ra		Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Alkalinity, Total (as CaCO ₃)	mg/L	06/15/2011	N001	13.2	-	18.2	261		F	#		
Isotope ratio H2/H1 in Water	‰	06/15/2011	0001	13.2	-	18.2	-117.81		F	#		2
Isotope ratio O18/O16 in Water	‰	06/15/2011	0001	13.2	-	18.2	-15.48		F	#		0.2
Isotope ratio S34/S32 in SO4	‰	06/15/2011	0001	13.2	-	18.2	-4.04		F	#		0.4
Oxidation Reduction Potential	mV	06/15/2011	N001	13.2	-	18.2	13.7		F	#		
рН	s.u.	06/15/2011	N001	13.2	-	18.2	7.12		F	#		
Selenium	mg/L	06/15/2011	N001	13.2	-	18.2	0.0022		F	#	0.000032	
Specific Conductance	umhos /cm	06/15/2011	N001	13.2	-	18.2	2212		F	#		
Temperature	С	06/15/2011	N001	13.2	-	18.2	11.83		F	#		
Turbidity	NTU	06/15/2011	N001	13.2	-	18.2	1.31		F	#		
Uranium	mg/L	06/15/2011	N001	13.2	-	18.2	0.044		F	#	0.0000029	
Uranium-234	pCi/L	06/15/2011	N001	13.2	-	18.2	15.7		F	#	0.048	2.72
Uranium-235	pCi/L	06/15/2011	N001	13.2	-	18.2	0.591		F	#	0.039	0.172
Uranium-238	pCi/L	06/15/2011	N001	13.2	-	18.2	13.8		F	#	0.051	2.4
Vanadium	mg/L	06/15/2011	N001	13.2	-	18.2	0.022		F	#	0.000015	

Groundwater Quality Data by Location (USEE100) FOR SITE RF001, Rifle Old Processing Site REPORT DATE: 10/11/2011 Location: 0305 WELL

Parameter	Units	Sam Date	iple ID	Depth R (Ft BL		Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Alkalinity, Total (as $CaCO_3$)	mg/L	06/14/2011	N001	13.76 -	18.76	352		F	#		
Oxidation Reduction Potential	mV	06/14/2011	N001	13.76 -	18.76	122.4		F	#		
рН	s.u.	06/14/2011	N001	13.76 -	18.76	7.15		F	#		
Selenium	mg/L	06/14/2011	N001	13.76 -	18.76	0.031		F	#	0.00016	
Specific Conductance	umhos /cm	06/14/2011	N001	13.76 -	18.76	2156		F	#		
Temperature	С	06/14/2011	N001	13.76 -	18.76	12.82		F	#		
Turbidity	NTU	06/14/2011	N001	13.76 -	18.76	1.3		F	#		
Uranium	mg/L	06/14/2011	N001	13.76 -	18.76	0.057		F	#	0.000015	
Vanadium	mg/L	06/14/2011	N001	13.76 -	18.76	0.34		F	#	0.000076	

Groundwater Quality Data by Location (USEE100) FOR SITE RF001, Rifle Old Processing Site REPORT DATE: 10/11/2011 Location: 0309 WELL

Parameter	Units	Sam Date	iple ID	Depth R (Ft Bl		Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Alkalinity, Total (as CaCO ₃)	mg/L	06/14/2011	N001	16.93 -	21.93	388		F	#		
Oxidation Reduction Potential	mV	06/14/2011	N001	16.93 -	21.93	12.7		F	#		
рН	s.u.	06/14/2011	N001	16.93 -	21.93	7		F	#		
Selenium	mg/L	06/14/2011	N001	16.93 -	21.93	0.00017		F	#	0.000032	
Specific Conductance	umhos /cm	06/14/2011	N001	16.93 -	21.93	2351		F	#		
Temperature	С	06/14/2011	N001	16.93 -	21.93	14.02		F	#		
Turbidity	NTU	06/14/2011	N001	16.93 -	21.93	1.67		F	#		
Uranium	mg/L	06/14/2011	N001	16.93 -	21.93	0.022		F	#	0.0000029	
Vanadium	mg/L	06/14/2011	N001	16.93 -	21.93	0.00048		UF	#	0.000015	

Groundwater Quality Data by Location (USEE100) FOR SITE RF001, Rifle Old Processing Site REPORT DATE: 10/11/2011 Location: 0310 WELL

Parameter	Units	Sam Date	ple ID	Depth R (Ft BL		Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Alkalinity, Total (as CaCO ₃)	mg/L	06/15/2011	N001	17.93 -	22.93	504		F	#		
Isotope ratio H2/H1 in Water	‰	06/15/2011	0001	17.93 -	22.93	-112.3		F	#		2
Isotope ratio O18/O16 in Water	‰	06/15/2011	0001	17.93 -	22.93	-15.03		F	#		0.2
Isotope ratio S34/S32 in SO4	‰	06/15/2011	0001	17.93 -	22.93	-7.06		F	#		0.4
Oxidation Reduction Potential	mV	06/15/2011	N001	17.93 -	22.93	6.3		F	#		
рН	s.u.	06/15/2011	N001	17.93 -	22.93	6.97		F	#		
Selenium	mg/L	06/15/2011	N001	17.93 -	22.93	0.0027		F	#	0.00016	
Selenium	mg/L	06/15/2011	N002	17.93 -	22.93	0.0026		F	#	0.00016	
Specific Conductance	umhos /cm	06/15/2011	N001	17.93 -	22.93	2627		F	#		
Temperature	С	06/15/2011	N001	17.93 -	22.93	13.68		F	#		
Turbidity	NTU	06/15/2011	N001	17.93 -	22.93	1.28		F	#		
Uranium	mg/L	06/15/2011	N001	17.93 -	22.93	0.2		F	#	0.000015	
Uranium	mg/L	06/15/2011	N002	17.93 -	22.93	0.2		F	#	0.000015	
Uranium-234	pCi/L	06/15/2011	N001	17.93 -	22.93	70.5		F	#	0.078	13
Uranium-235	pCi/L	06/15/2011	N001	17.93 -	22.93	3.06		F	#	0.07	0.7
Uranium-238	pCi/L	06/15/2011	N001	17.93 -	22.93	65.6		F	#	0.059	12.1
Vanadium	mg/L	06/15/2011	N001	17.93 -	22.93	0.011		F	#	0.000076	
Vanadium	mg/L	06/15/2011	N002	17.93 -	22.93	0.012		F	#	0.000076	

Groundwater Quality Data by Location (USEE100) FOR SITE RF001, Rifle Old Processing Site REPORT DATE: 10/11/2011 Location: 0655 WELL

Parameter	Units	Sam Date	ple ID	Depth F (Ft Bl		Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Alkalinity, Total (as CaCO ₃)	mg/L	06/14/2011	N001	13.6 -	23.6	446		F	#		
Oxidation Reduction Potential	mV	06/14/2011	N001	13.6 -	23.6	123		F	#		
рН	s.u.	06/14/2011	N001	13.6 -	23.6	6.97		F	#		
Selenium	mg/L	06/14/2011	N001	13.6 -	23.6	0.076		F	#	0.00016	
Specific Conductance	umhos /cm	06/14/2011	N001	13.6 -	23.6	2512		F	#		
Temperature	С	06/14/2011	N001	13.6 -	23.6	13.47		F	#		
Turbidity	NTU	06/14/2011	N001	13.6 -	23.6	1.72		F	#		
Uranium	mg/L	06/14/2011	N001	13.6 -	23.6	0.14		F	#	0.000015	
Vanadium	mg/L	06/14/2011	N001	13.6 -	23.6	0.37		F	#	0.000076	

Groundwater Quality Data by Location (USEE100) FOR SITE RF001, Rifle Old Processing Site REPORT DATE: 10/11/2011 Location: 0656 WELL

Parameter	Units	Sam Date	iple ID	Depth F (Ft B		Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Alkalinity, Total (as CaCO ₃)	mg/L	06/14/2011	N001	6.35 -	21.35	467		F	#		
Oxidation Reduction Potential	mV	06/14/2011	N001	6.35 -	21.35	108.8		F	#		
рН	s.u.	06/14/2011	N001	6.35 -	21.35	7.01		F	#		
Selenium	mg/L	06/14/2011	N001	6.35 -	21.35	0.00094		F	#	0.00016	
Specific Conductance	umhos /cm	06/14/2011	N001	6.35 -	21.35	2107		F	#		
Temperature	С	06/14/2011	N001	6.35 -	21.35	14.06		F	#		
Turbidity	NTU	06/14/2011	N001	6.35 -	21.35	1.01		F	#		
Uranium	mg/L	06/14/2011	N001	6.35 -	21.35	0.17		F	#	0.000015	
Vanadium	mg/L	06/14/2011	N001	6.35 -	21.35	0.021		F	#	0.000076	

Groundwater Quality Data by Location (USEE100) FOR SITE RF001, Rifle Old Processing Site REPORT DATE: 10/11/2011 Location: 0658 WELL

Parameter	Units	Sam Date	iple ID		th Rang t BLS)	ge	Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Alkalinity, Total (as $CaCO_3$)	mg/L	06/14/2011	N001	2.3	-	17.3	448		F	#		
Oxidation Reduction Potential	mV	06/14/2011	N001	2.3	-	17.3	93.6		F	#		
рН	s.u.	06/14/2011	N001	2.3	-	17.3	6.98		F	#		
Selenium	mg/L	06/14/2011	N001	2.3	-	17.3	0.013		F	#	0.000032	
Specific Conductance	umhos /cm	06/14/2011	N001	2.3	-	17.3	1734		F	#		
Temperature	С	06/14/2011	N001	2.3	-	17.3	10.27		F	#		
Turbidity	NTU	06/14/2011	N001	2.3	-	17.3	1.69		F	#		
Uranium	mg/L	06/14/2011	N001	2.3	-	17.3	0.02		F	#	0.0000029	
Vanadium	mg/L	06/14/2011	N001	2.3	-	17.3	0.0016		F	#	0.000015	

Groundwater Quality Data by Location (USEE100) FOR SITE RF001, Rifle Old Processing Site REPORT DATE: 10/11/2011 Location: B-04 WELL

Parameter	Units	Sam Date	ple ID		oth Rar Ft BLS		Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Alkalinity, Total (as CaCO ₃)	mg/L	06/15/2011	N001	5	-	20	506		F	#		
Oxidation Reduction Potential	mV	06/15/2011	N001	5	-	20	149		F	#		
рН	s.u.	06/15/2011	N001	5	-	20	6.98		F	#		
Selenium	mg/L	06/15/2011	N001	5	-	20	0.14		F	#	0.0032	
Specific Conductance	umhos /cm	06/15/2011	N001	5	-	20	2676		F	#		
Temperature	С	06/15/2011	N001	5	-	20	14.42		F	#		
Turbidity	NTU	06/15/2011	N001	5	-	20	6.15		F	#		
Uranium	mg/L	06/15/2011	N001	5	-	20	0.27		F	#	0.00029	
Vanadium	mg/L	06/15/2011	N001	5	-	20	2.6		F	#	0.0015	

Groundwater Quality Data by Location (USEE100) FOR SITE RF001, Rifle Old Processing Site REPORT DATE: 10/11/2011 Location: LQ-107 WELL

Parameter	Units	Sam Date	ple ID	Dept (Fi	h Ra t BL		Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Alkalinity, Total (as CaCO ₃)	mg/L	06/15/2011	N001	9.67	-	19.67	379		F	#		
Isotope ratio H2/H1 in Water	‰	06/15/2011	0001	9.67	-	19.67	-116.66		F	#		2
Isotope ratio O18/O16 in Water	‰	06/15/2011	0001	9.67	-	19.67	-15.36		F	#		0.2
Isotope ratio S34/S32 in SO4	‰	06/15/2011	0001	9.67	-	19.67	-5.84		F	#		0.4
Oxidation Reduction Potential	mV	06/15/2011	N001	9.67	-	19.67	-105.8		F	#		
рН	s.u.	06/15/2011	N001	9.67	-	19.67	7.2		F	#		
Selenium	mg/L	06/15/2011	N001	9.67	-	19.67	0.00063		F	#	0.00016	
Specific Conductance	umhos /cm	06/15/2011	N001	9.67	-	19.67	2052		F	#		
Temperature	С	06/15/2011	N001	9.67	-	19.67	13.71		F	#		
Turbidity	NTU	06/15/2011	N001	9.67	-	19.67	6.94		F	#		
Uranium	mg/L	06/15/2011	N001	9.67	-	19.67	0.21		F	#	0.000015	
Uranium-234	pCi/L	06/15/2011	N001	9.67	-	19.67	68.9		F	#	0.086	12.3
Uranium-235	pCi/L	06/15/2011	N001	9.67	-	19.67	3.27		F	#	0.07	0.707
Uranium-238	pCi/L	06/15/2011	N001	9.67	-	19.67	66.4		F	#	0.1	11.9
Vanadium	mg/L	06/15/2011	N001	9.67	-	19.67	0.26		F	#	0.000076	

Groundwater Quality Data by Location (USEE100) FOR SITE RF001, Rifle Old Processing Site REPORT DATE: 10/11/2011 Location: LQ-108 WELL

Parameter	Units	Sam Date	iple ID	Depth Range (Ft BLS)	Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Alkalinity, Total (as CaCO ₃)	mg/L	06/15/2011	N001	-	474		F	#		
Oxidation Reduction Potential	mV	06/15/2011	N001	-	183.1		F	#		
рН	s.u.	06/15/2011	N001	-	6.91		F	#		
Selenium	mg/L	06/15/2011	N001	-	0.063		F	#	0.0032	
Specific Conductance	umhos /cm	06/15/2011	N001	-	2773		F	#		
Temperature	С	06/15/2011	N001	-	18.75		F	#		
Turbidity	NTU	06/15/2011	N001	-	7.3		F	#		
Uranium	mg/L	06/15/2011	N001	-	0.16		F	#	0.00029	
Vanadium	mg/L	06/15/2011	N001	-	2.6		F	#	0.0015	

Groundwater Quality Data by Location (USEE100) FOR SITE RF001, Rifle Old Processing Site REPORT DATE: 10/11/2011 Location: LQ-109 WELL

Parameter	Units	Sam Date	ple ID		th Ra t BL		Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Alkalinity, Total (as CaCO ₃)	mg/L	06/15/2011	N001	9.6	-	19.6	435		F	#		
Isotope ratio H2/H1 in Water	‰	06/15/2011	0001	9.6	-	19.6	-115.06		F	#		2
Isotope ratio O18/O16 in Water	‰	06/15/2011	0001	9.6	-	19.6	-15.14		F	#		0.2
Isotope ratio S34/S32 in SO4	‰	06/15/2011	0001	9.6	-	19.6	-3.5		F	#		0.4
Oxidation Reduction Potential	mV	06/15/2011	N001	9.6	-	19.6	39.7		F	#		
рН	s.u.	06/15/2011	N001	9.6	-	19.6	6.85		F	#		
Selenium	mg/L	06/15/2011	N001	9.6	-	19.6	0.0018		F	#	0.000032	
Specific Conductance	umhos /cm	06/15/2011	N001	9.6	-	19.6	1809		F	#		
Temperature	С	06/15/2011	N001	9.6	-	19.6	13.64		F	#		
Turbidity	NTU	06/15/2011	N001	9.6	-	19.6	0.55		F	#		
Uranium	mg/L	06/15/2011	N001	9.6	-	19.6	0.091		F	#	0.0000029	
Uranium-234	pCi/L	06/15/2011	N001	9.6	-	19.6	34		F	#	0.052	5.79
Uranium-235	pCi/L	06/15/2011	N001	9.6	-	19.6	1.48		F	#	0.04	0.334
Uranium-238	pCi/L	06/15/2011	N001	9.6	-	19.6	29.9		F	#	0.044	5.1
Vanadium	mg/L	06/15/2011	N001	9.6	-	19.6	0.0049		F	#	0.000015	

SAMPLE ID CODES: 000X = Filtered sample (0.45 µm). N00X = Unfiltered sample. X = replicate number.

LAB QUALIFIERS:

- * Replicate analysis not within control limits.
- > Result above upper detection limit.
- A TIC is a suspected aldol-condensation product.
- B Inorganic: Result is between the IDL and CRDL. Organic: Analyte also found in method blank.
- C Pesticide result confirmed by GC-MS.
- D Analyte determined in diluted sample.
- E Inorganic: Estimate value because of interference, see case narrative. Organic: Analyte exceeded calibration range of the GC-MS.
- H Holding time expired, value suspect.
- I Increased detection limit due to required dilution.
- J Estimated
- N Inorganic or radiochemical: Spike sample recovery not within control limits. Organic: Tentatively identified compound (TIC).
- P > 25% difference in detected pesticide or Aroclor concentrations between 2 columns.
- U Analytical result below detection limit.
- W Post-digestion spike outside control limits while sample absorbance < 50% of analytical spike absorbance.
- X,Y,Z Laboratory defined qualifier, see case narrative.

DATA QUALIFIERS:

- F Low flow sampling method used.
- L Less than 3 bore volumes purged prior to sampling.
- U Parameter analyzed for but was not detected.
- G Possible grout contamination, pH > 9. J Estimated value.
- Q Qualitative result due to sampling technique. R Unusable result.
- X Location is undefined.

QA QUALIFIER:

Validated according to quality assurance guidelines.

This page intentionally left blank

New Rifle Surface Water Quality Data

This page intentionally left blank

Surface Water Quality Data by Location (USEE102) FOR SITE RFN01, Rifle New Processing Site REPORT DATE: 10/11/2011 Location: 0322 SURFACE LOCATION

Parameter	Units	Samp Date	le ID	Result	Q Lab	ualifiers Data QA	Detection Limit	Uncertainty
Alkalinity, Total (as CaCO ₃)	mg/L	08/09/2011	N001	220		#		
Ammonia Total as N	mg/L	08/09/2011	N001	0.1	U	#	0.1	
Arsenic	mg/L	08/09/2011	N001	0.00052		#	0.000015	
Molybdenum	mg/L	08/09/2011	N001	0.0042		#	0.000032	
Nitrate + Nitrite as Nitrogen	mg/L	08/09/2011	N001	0.018		#	0.01	
Oxidation Reduction Potential	mV	08/09/2011	N001	47.6		#		
рН	s.u.	08/09/2011	N001	8.68		#		
Selenium	mg/L	08/09/2011	N001	0.00037		#	0.000032	
Specific Conductance	umhos/cm	08/09/2011	N001	562		#		
Temperature	С	08/09/2011	N001	18.7		#		
Turbidity	NTU	08/09/2011	N001	5.23		#		
Uranium	mg/L	08/09/2011	N001	0.0014		#	0.0000029	
Vanadium	mg/L	08/09/2011	N001	0.0013		#	0.000015	
Ammonia Total as N	mg/L	08/09/2011	N002	0.1	U	#	0.1	
Arsenic	mg/L	08/09/2011	N002	0.0005		#	0.000015	
Molybdenum	mg/L	08/09/2011	N002	0.0043		#	0.000032	
Nitrate + Nitrite as Nitrogen	mg/L	08/09/2011	N002	0.011		#	0.01	
Selenium	mg/L	08/09/2011	N002	0.00034		#	0.000032	
Uranium	mg/L	08/09/2011	N002	0.0014		#	0.0000029	
Vanadium	mg/L	08/09/2011	N002	0.0012		#	0.000015	

Surface Water Quality Data by Location (USEE102) FOR SITE RFN01, Rifle New Processing Site REPORT DATE: 10/11/2011 Location: 0323 SURFACE LOCATION

Parameter	Units	Samp Date	le ID	Result	Qualifiers Lab Data QA	Detection Limit	Uncertainty
Alkalinity, Total (as CaCO ₃)	mg/L	06/14/2011	N001	183	#		
Ammonia Total as N	mg/L	06/14/2011	N001	24	#	0.5	
Arsenic	mg/L	06/14/2011	N001	0.0011	#	0.000074	
Molybdenum	mg/L	06/14/2011	N001	2.6	#	0.00032	
Nitrate + Nitrite as Nitrogen	mg/L	06/14/2011	N001	76	#	0.5	
Oxidation Reduction Potential	mV	06/14/2011	N001	178.7	#		
рН	s.u.	06/14/2011	N001	7.73	#		
Selenium	mg/L	06/14/2011	N001	0.012	#	0.00032	
Specific Conductance	umhos/cm	06/14/2011	N001	8171	#		
Temperature	С	06/14/2011	N001	22.45	#		
Turbidity	NTU	06/14/2011	N001	3.44	#		
Uranium	mg/L	06/14/2011	N001	0.32	#	0.000029	
Vanadium	mg/L	06/14/2011	N001	0.0049	#	0.000076	

Surface Water Quality Data by Location (USEE102) FOR SITE RFN01, Rifle New Processing Site REPORT DATE: 10/11/2011 Location: 0324 SURFACE LOCATION

Parameter	Units	Sampl Date	le ID	Result	Qualifiers Lab Data	S QA	Detection Limit	Uncertainty
Alkalinity, Total (as CaCO ₃)	mg/L	06/14/2011	0001	175		#		
Ammonia Total as N	mg/L	06/14/2011	0001	0.1	U #		0.1	
Arsenic	mg/L	06/14/2011	0001	0.00043	#		0.000015	
Molybdenum	mg/L	06/14/2011	0001	0.0021	#		0.000032	
Nitrate + Nitrite as Nitrogen	mg/L	06/14/2011	0001	0.1	#		0.01	
Oxidation Reduction Potential	mV	06/14/2011	N001	-63.1		#		
рН	s.u.	06/14/2011	N001	8.08		#		
Selenium	mg/L	06/14/2011	0001	0.00028		#	0.000032	
Specific Conductance	umhos/cm	06/14/2011	N001	293		#		
Temperature	С	06/14/2011	N001	14.92	#			
Turbidity	NTU	06/14/2011	N001	74.1	#			
Uranium	mg/L	06/14/2011	0001	0.00076	#		0.0000029	
Vanadium	mg/L	06/14/2011	0001	0.00069	U	#	0.000015	

Surface Water Quality Data by Location (USEE102) FOR SITE RFN01, Rifle New Processing Site REPORT DATE: 10/11/2011 Location: 0575 SURFACE LOCATION

Parameter	Units	Sampl Date	e ID	Result	Lab	Qualifiers Data QA	Detection Limit	Uncertainty
Alkalinity, Total (as CaCO ₃)	mg/L	06/14/2011	N001	220		#		
Ammonia Total as N	mg/L	06/14/2011	N001	0.1	U	#	0.1	
Arsenic	mg/L	06/14/2011	N001	0.0025		#		
Molybdenum	mg/L	06/14/2011	N001	0.034		#		
Nitrate + Nitrite as Nitrogen	mg/L	06/14/2011	N001	0.01	U	#	0.01	
Oxidation Reduction Potential	mV	06/14/2011	N001	-1.3		#		
рН	s.u.	06/14/2011	N001	8.8		#		
Selenium	mg/L	06/14/2011	N001	0.00049		#	0.000032	
Specific Conductance	umhos/cm	06/14/2011	N001	1544		#		
Temperature	С	06/14/2011	N001	21.23		#		
Turbidity	NTU	06/14/2011	N001	7.41		#		
Uranium	mg/L	06/14/2011	N001	0.017		#	0.0000029	
Vanadium	mg/L	06/14/2011	N001	0.0027		#	0.000015	

SAMPLE ID CODES: 000X = Filtered sample (0.45 µm). N00X = Unfiltered sample. X = replicate number.

LAB QUALIFIERS:

- Replicate analysis not within control limits. Result above upper detection limit. *
- >
- А
- TIC is a suspected aldol-condensation product. Inorganic: Result is between the IDL and CRDL. Organic: Analyte also found in method blank. В
- С
- Pesticide result confirmed by GC-MS. Analyte determined in diluted sample. D
- Е Inorganic: Estimate value because of interference, see case narrative. Organic: Analyte exceeded calibration range of the GC-MS.
- Holding time expired, value suspect. н

- Increased detection limit due to required dilution. L
- J Estimated
- Inorganic or radiochemical: Spike sample recovery not within control limits. Organic: Tentatively identified compound (TIC). > 25% difference in detected pesticide or Aroclor concentrations between 2 columns. Ν
- Ρ
- U Analytical result below detection limit.
- Post-digestion spike outside control limits while sample absorbance < 50% of analytical spike absorbance. W
- X,Y,Z Laboratory defined qualifier, see case narrative.

DATA QUALIFIERS:

Low flow sampling method used. F

- Less than 3 bore volumes purged prior to sampling.
- Parameter analyzed for but was not detected. U
- X Location is undefined.

QA QUALIFIER:

L

Validated according to quality assurance guidelines. This page intentionally left blank

Old Rifle Surface Water Quality Data

This page intentionally left blank

Surface Water Quality Data by Location (USEE102) FOR SITE RF001, Rifle Old Processing Site REPORT DATE: 10/11/2011 Location: 0294 SURFACE LOCATION

Parameter	Units	Samp Date	le ID	Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Alkalinity, Total (as CaCO ₃)	mg/L	06/14/2011	0001	171			#		
Selenium	mg/L	06/14/2011	0001	0.00039			#	0.000032	
Uranium	mg/L	06/14/2011	0001	0.00072			#	0.0000029	
Vanadium	mg/L	06/14/2011	0001	0.00074		U	#	0.000015	
Oxidation Reduction Potential	mV	06/14/2011	N001	59			#		
рН	s.u.	06/14/2011	N001	7.96			#		
Specific Conductance	umhos/cm	06/14/2011	N001	273			#		
Temperature	С	06/14/2011	N001	14.91			#		
Turbidity	NTU	06/14/2011	N001	73.9			#		

Surface Water Quality Data by Location (USEE102) FOR SITE RF001, Rifle Old Processing Site REPORT DATE: 10/11/2011 Location: 0387 SURFACE LOCATION

Parameter	Units	Samp Date	le ID	Result	Qualifiers Lab Data QA	Detection Limit	Uncertainty
Alkalinity, Total (as CaCO ₃)	mg/L	06/15/2011	N001	362	#		
Isotope ratio H2/H1 in Water	‰	06/15/2011	0001	-112.6	#		2
Isotope ratio O18/O16 in Water	‰	06/15/2011	0001	-14.55	#		0.2
Isotope ratio S34/S32 in SO4	‰	06/15/2011	0001	-7.68	#		0.4
Oxidation Reduction Potential	mV	06/15/2011	N001	-26.5	#		
рН	s.u.	06/15/2011	N001	7.87	#		
Selenium	mg/L	06/15/2011	N001	0.0034	#	0.000032	
Specific Conductance	umhos/cm	06/15/2011	N001	1875	#		
Temperature	С	06/15/2011	N001	23.74	#		
Turbidity	NTU	06/15/2011	N001	5.63	#		
Uranium	mg/L	06/15/2011	N001	0.033	#	0.0000029	
Uranium-234	pCi/L	06/15/2011	N001	14.1	#	0.05	2.39
Uranium-235	pCi/L	06/15/2011	N001	0.528	#	0.033	0.149
Uranium-238	pCi/L	06/15/2011	N001	10.1	#	0.033	1.74
Vanadium	mg/L	06/15/2011	N001	0.0063	#	0.000015	

Surface Water Quality Data by Location (USEE102) FOR SITE RF001, Rifle Old Processing Site REPORT DATE: 10/11/2011 Location: 0388 SURFACE LOCATION

Parameter	Units	Samp Date	le ID	Result	Qualifiers Lab Data QA	Detection Limit	Uncertainty
Alkalinity, Total (as CaCO ₃)	mg/L	06/15/2011	N001	354	Lab Dala QA		
Isotope ratio H2/H1 in Water	‰	06/15/2011	0001	-113.46	#		2
Isotope ratio O18/O16 in Water	%0	06/15/2011	0001	-14.8	#		0.2
Isotope ratio S34/S32 in SO4	‰	06/15/2011	0001	-10.38	#		0.4
Oxidation Reduction Potential	mV	06/15/2011	N001	-52.4	#		
рН	s.u.	06/15/2011	N001	7.8	#		
Selenium	mg/L	06/15/2011	N001	0.0081	#	0.000032	
Specific Conductance	umhos/cm	06/15/2011	N001	2006	#		
Temperature	С	06/15/2011	N001	22	#		
Turbidity	NTU	06/15/2011	N001	4.42	#		
Uranium	mg/L	06/15/2011	N001	0.042	#	0.0000029	
Uranium-234	pCi/L	06/15/2011	N001	18.1	#	0.049	3.06
Uranium-235	pCi/L	06/15/2011	N001	0.613	#	0.049	0.168
Uranium-238	pCi/L	06/15/2011	N001	13.1	#	0.044	2.24
Vanadium	mg/L	06/15/2011	N001	0.0048	#	0.000015	

Surface Water Quality Data by Location (USEE102) FOR SITE RF001, Rifle Old Processing Site REPORT DATE: 10/11/2011 Location: 0394 SURFACE LOCATION

Parameter	Units	Samp Date	le ID	Result	Qualifiers Lab Data	QA	Detection Limit	Uncertainty
Alkalinity, Total (as CaCO ₃)	mg/L	06/15/2011	N001	220		#		
Isotope ratio H2/H1 in Water	‰	06/15/2011	0001	-119.08		#		2
Isotope ratio O18/O16 in Water	‰	06/15/2011	0001	-15.54		#		0.2
Isotope ratio S34/S32 in SO4	‰	06/15/2011	0001	3.61		#		0.4
Oxidation Reduction Potential	mV	06/15/2011	N001	140.4		#		
рН	s.u.	06/15/2011	N001	7.33		#		
Selenium	mg/L	06/15/2011	N001	0.00042		#	0.000032	
Specific Conductance	umhos/cm	06/15/2011	N001	1296		#		
Temperature	С	06/15/2011	N001	18.36		#		
Turbidity	NTU	06/15/2011	N001	3.64		#		
Uranium	mg/L	06/15/2011	N001	0.0077		#	0.0000029	
Uranium-234	pCi/L	06/15/2011	N001	3.04		#	0.064	0.583
Uranium-235	pCi/L	06/15/2011	N001	0.0852	U	#	0.054	0.0572
Uranium-238	pCi/L	06/15/2011	N001	2.2		#	0.057	0.44
Vanadium	mg/L	06/15/2011	N001	0.0011	U	#	0.000015	

Surface Water Quality Data by Location (USEE102) FOR SITE RF001, Rifle Old Processing Site REPORT DATE: 10/11/2011 Location: 0395 SURFACE LOCATION

Parameter	Units	Samp Date	le ID	Result	Qualifiers Lab Data QA	Detection Limit	Uncertainty
Alkalinity, Total (as CaCO ₃)	mg/L	06/15/2011	N001	394	Lab Data QA	Limit	
Isotope ratio H2/H1 in Water	‰	06/15/2011	0001	-114.32	#		2
Isotope ratio O18/O16 in Water	‰	06/15/2011	0001	-14.83	#		0.2
Isotope ratio S34/S32 in SO4	‰	06/15/2011	0001	-3.69	#		0.4
Oxidation Reduction Potential	mV	06/15/2011	N001	33	#		
рН	s.u.	06/15/2011	N001	7.71	#		
Selenium	mg/L	06/15/2011	0001	0.0052	#	0.000032	
Specific Conductance	umhos/cm	06/15/2011	N001	1382	#		
Temperature	С	06/15/2011	N001	20.76	#		
Turbidity	NTU	06/15/2011	N001	36.7	#		
Uranium	mg/L	06/15/2011	0001	0.03	#	0.0000029	
Uranium-234	pCi/L	06/15/2011	0001	12.4	#	0.075	2.13
Uranium-235	pCi/L	06/15/2011	0001	0.422	#	0.045	0.131
Uranium-238	pCi/L	06/15/2011	0001	8.97	#	0.052	1.55
Vanadium	mg/L	06/15/2011	0001	0.0018	#	0.000015	

Surface Water Quality Data by Location (USEE102) FOR SITE RF001, Rifle Old Processing Site REPORT DATE: 10/11/2011 Location: 0396 SURFACE LOCATION

Parameter	Units	Samp Date	le ID	Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Alkalinity, Total (as CaCO ₃)	mg/L	06/15/2011	N001	127			#		
Oxidation Reduction Potential	mV	06/15/2011	N001	78			#		
рН	s.u.	06/15/2011	N001	8.46			#		
Specific Conductance	umhos/cm	06/15/2011	N001	281			#		
Selenium	mg/L	06/15/2011	0001	0.00036			#	0.000032	
Temperature	С	06/15/2011	N001	18.09			#		
Turbidity	NTU	06/15/2011	N001	51.4			#		
Uranium	mg/L	06/15/2011	0001	0.0008			#	0.0000029	
Vanadium	mg/L	06/15/2011	0001	0.00086		U	#	0.000015	

Surface Water Quality Data by Location (USEE102) FOR SITE RF001, Rifle Old Processing Site REPORT DATE: 10/11/2011 Location: 0398 SURFACE LOCATION

Parameter	Units	Samp Date	le ID	Result	 alifiers Data QA	Detection Limit	Uncertainty
Alkalinity, Total (as CaCO ₃)	mg/L	06/14/2011	N001	299	 #		
Oxidation Reduction Potential	mV	06/14/2011	N001	107.9	#		
рН	s.u.	06/14/2011	N001	8.09	#		
Selenium	mg/L	06/14/2011	N001	0.0023	#	0.000032	
Specific Conductance	umhos/cm	06/14/2011	N001	1400	#		
Temperature	С	06/14/2011	N001	18.81	#		
Turbidity	NTU	06/14/2011	N001	8.69	#		
Uranium	mg/L	06/14/2011	N001	0.014	#	0.0000029	
Vanadium	mg/L	06/14/2011	N001	0.0045	#	0.000015	

Surface Water Quality Data by Location (USEE102) FOR SITE RF001, Rifle Old Processing Site REPORT DATE: 10/11/2011 Location: 0741 SURFACE LOCATION

Parameter	Units	Samp Date	le ID	Result	Qualifiers Lab Data	QA	Detection Limit	Uncertainty
Alkalinity, Total (as CaCO ₃)	mg/L	06/14/2011	N001	82		#		
Oxidation Reduction Potential	mV	06/14/2011	N001	-58.1		#		
рН	s.u.	06/14/2011	N001	8.22		#		
Specific Conductance	umhos/cm	06/14/2011	N001	270		#		
Selenium	mg/L	06/14/2011	0001	0.00032		#	0.000032	
Temperature	С	06/14/2011	N001	16.75		#		
Turbidity	NTU	06/14/2011	N001	78.1		#		
Uranium	mg/L	06/14/2011	0001	0.00077		#	0.0000029	
Vanadium	mg/L	06/14/2011	0001	0.00074	U	#	0.000015	

SAMPLE ID CODES: 000X = Filtered sample (0.45 µm). N00X = Unfiltered sample. X = replicate number.

LAB QUALIFIERS:

- * Replicate analysis not within control limits.
- > Result above upper detection limit.
- A TIC is a suspected aldol-condensation product.
- B Inorganic: Result is between the IDL and CRDL. Organic: Analyte also found in method blank.
- C Pesticide result confirmed by GC-MS.
- D Analyte determined in diluted sample.
- E Inorganic: Estimate value because of interference, see case narrative. Organic: Analyte exceeded calibration range of the GC-MS.
- H Holding time expired, value suspect.
- I Increased detection limit due to required dilution.
- J Estimated
- N Inorganic or radiochemical: Spike sample recovery not within control limits. Organic: Tentatively identified compound (TIC).
- P > 25% difference in detected pesticide or Aroclor concentrations between 2 columns.
- U Analytical result below detection limit.
- W Post-digestion spike outside control limits while sample absorbance < 50% of analytical spike absorbance.
- X,Y,Z Laboratory defined qualifier, see case narrative.

DATA QUALIFIERS:

F L U $\begin{array}{lll} G & \mbox{Possible grout contamination, } pH > 9. & J & \mbox{Estimated value.} \\ Q & \mbox{Qualitative result due to sampling technique. R} & \mbox{Unusable result.} \\ X & \mbox{Location is undefined.} \end{array}$

- Low flow sampling method used. Less than 3 bore volumes purged prior to sampling. Parameter analyzed for but was not detected.

QA QUALIFIER:

Validated according to quality assurance guidelines. #

Page 99

This page intentionally left blank

Equipment Blank Data

This page intentionally left blank

BLANKS REPORT

LAB: PARAGON/ALS LABORATORY GROUP (Fort Collins, CO) RIN: 11063854 Report Date: 10/11/2011

Parameter	Site Code	Location ID	Sample Date	e ID	Units	Result	Qua Lab	lifiers Data	Detection Limit	Uncertainty	Sample Type
Ammonia Total as N	RFO01	0999	06/14/2011	N001	mg/L	0.1	U		0.1		Е
Arsenic	RFO01	0999	06/14/2011	N001	mg/L	0.000026	В		0.000015		Е
Molybdenum	RFO01	0999	06/14/2011	N001	mg/L	0.00021			0.000032		E
Nitrate + Nitrite as Nitrogen	RFO01	0999	06/14/2011	N001	mg/L	0.01	U		0.01		E
Selenium	RFO01	0999	06/14/2011	N001	mg/L	0.000032	U		0.000032		Е
Uranium	RFO01	0999	06/14/2011	N001	mg/L	0.000017			0.0000029		E
Vanadium	RFO01	0999	06/14/2011	N001	mg/L	0.00029	В	U	0.000015		Е

SAMPLE ID CODES: 000X = Filtered sample (0.45 µm). N00X = Unfiltered sample. X = replicate number.

LAB QUALIFIERS:

- Replicate analysis not within control limits.
- Result above upper detection limit. >
- TIC is a suspected aldol-condensation product. А
- В Inorganic: Result is between the IDL and CRDL. Organic: Analyte also found in method blank.
- С Pesticide result confirmed by GC-MS.
- D Analyte determined in diluted sample.
- Е Inorganic: Estimate value because of interference, see case narrative. Organic: Analyte exceeded calibration range of the GC-MS.
- н Holding time expired, value suspect.
- Increased detection limit due to required dilution. Т
- Estimated J
- Ν Inorganic or radiochemical: Spike sample recovery not within control limits. Organic: Tentatively identified compound (TIC).
- > 25% difference in detected pesticide or Aroclor concentrations between 2 columns. Ρ
- U Analytical result below detection limit.

DATA QUALIFIERS:

F Low flow sampling method used.

- G Possible grout contamination, pH > 9. J Estimated value.
- Less than 3 bore volumes purged prior to sampling.
- U Parameter analyzed for but was not detected.
- Q Qualitative result due to sampling technique. R Unusable result. X Location is undefined.

SAMPLE TYPES:

L

Е Equipment Blank. This page intentionally left blank

Static Water Level Data

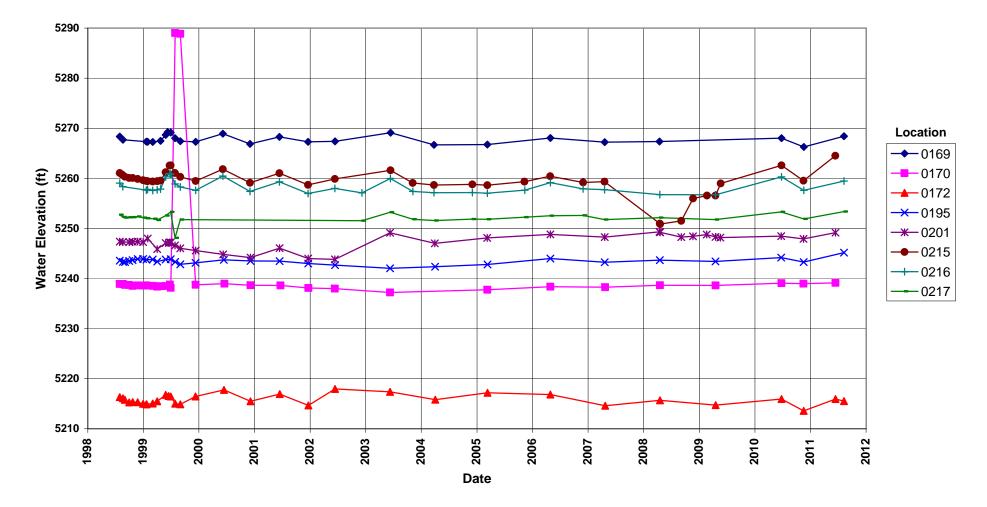
This page intentionally left blank

STATIC WATER LEVELS (USEE700) FOR SITE RFN01, Rifle New Processing Site REPORT DATE: 10/11/2011

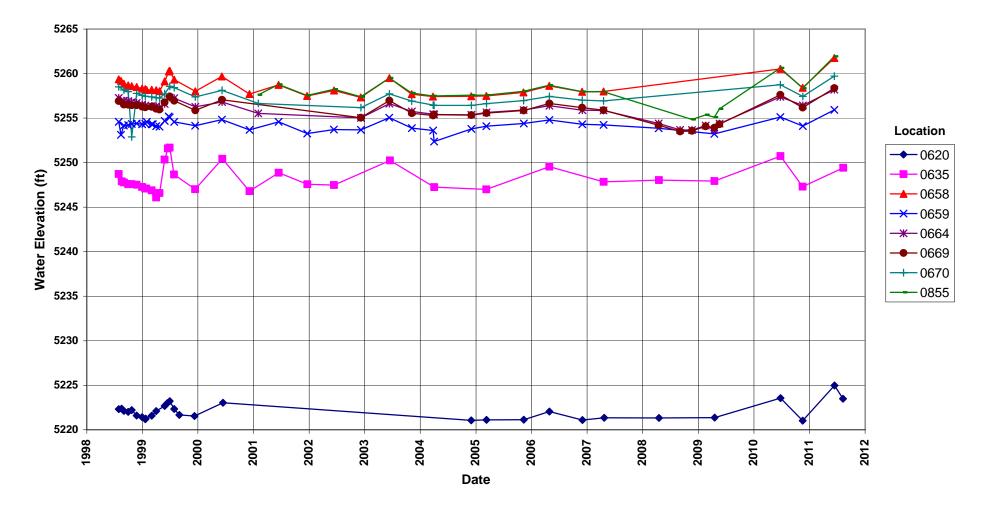
Location Code	Flow Code	Top of Casing Elevation (Ft)	Measure Date	ement Time	Depth From Top of Casing (Ft)	Water Elevation (Ft)
0169	U	5275.47	08/09/2011	11:15:47	7.08	5268.39
0170	D	5332.97	06/14/2011	11:50:17	93.84	5239.13
0172	D	5229.45	06/14/2011	10:30:19	13.5	5215.95
0172	D	5229.45	08/09/2011	09:35:20	13.92	5215.53
0195	D	5253.1	08/09/2011	13:45:02	7.94	5245.16
0201	D	5261.07	06/14/2011	13:05:33	11.91	5249.16
0215	0	5271.42	06/13/2011	17:20:37	6.92	5264.5
0216	0	5265.41	08/09/2011	11:50:51	5.95	5259.46
0217	D	5256.98	08/09/2011	12:50:13	3.63	5253.35
0620	D	5231.22	06/14/2011	11:00:15	6.25	5224.97
0620	D	5231.22	08/09/2011	10:10:53	7.74	5223.48
0635	D	5253.12	08/11/2011	11:40:46	3.71	5249.41
0658	0	5265.91	06/13/2011	13:00:45	4.16	5261.75
0659	0	5261.33	06/13/2011	15:30:38	5.4	5255.93
0664	0	5270.17	06/13/2011	11:55:15	11.99	5258.18
0669	0	5266.56	06/13/2011	15:00:15	8.2	5258.36
0670	0	5270.94	06/13/2011	12:15:11	11.23	5259.71
0855	0	5267.24	06/13/2011	16:15:22	5.31	5261.93

STATIC WATER LEVELS (USEE700) FOR SITE RF001, Rifle Old Processing Site REPORT DATE: 10/11/2011

Location Code	Flow Code	Top of Casing Elevation (Ft)	Measure Date	ement Time	Depth From Top of Casing (Ft)	Water Elevation (Ft)
0292A		5323.08	06/14/2011	15:00:50	9.14	5313.94
0304	0	5310.63	06/15/2011	15:15:22	4.6	5306.03
0305	0	5312.08	06/14/2011	16:20:44	6.71	5305.37
0309	0	5313.37	06/14/2011	17:00:25	9.74	5303.63
0310	0	5311.64	06/15/2011	14:40:14	6.87	5304.77
0655	0	5312.87	06/14/2011	16:40:05	7.83	5305.04
0656	0	5313.28	06/14/2011	15:50:30	6.65	5306.63
0658	U	5323.07	06/14/2011	14:30:25	6.8	5316.27
B-04		5311.23	06/15/2011	12:20:18	6.83	5304.4
LQ-107		5307.95	06/15/2011	15:35:47	3.27	5304.68
LQ-108		5309.4	06/15/2011	12:55:45	4.86	5304.54
LQ-109		5312.33	06/15/2011	14:10:39	7.78	5304.55

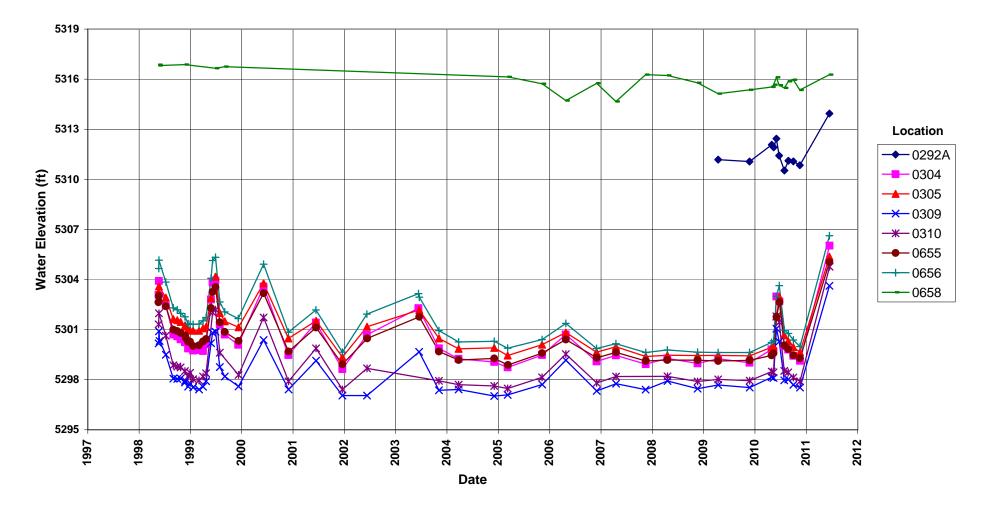

FLOW CODES: B BACKGROUND C CROSS GRADIENT D DOWN GRADIENT F OFF SITE U UPGRADIENT F OFF SITE

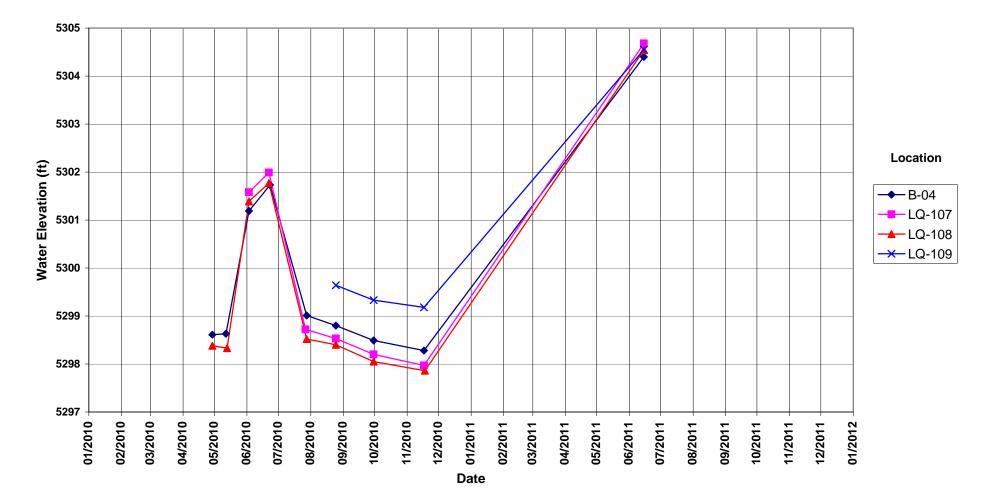
WATER LEVEL FLAGS: D Dry F FLOWING


New Rifle Hydrographs

This page intentionally left blank

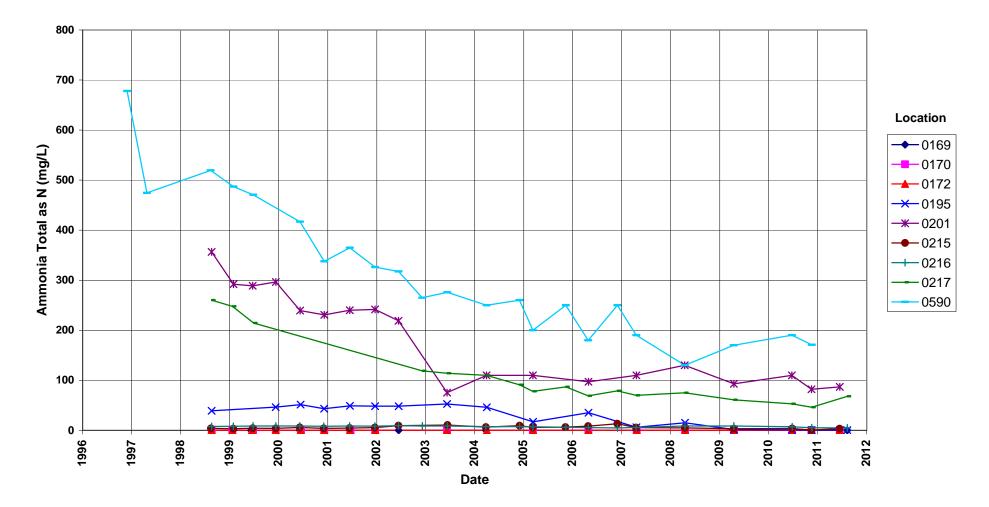
Rifle New Processing Site Hydrograph

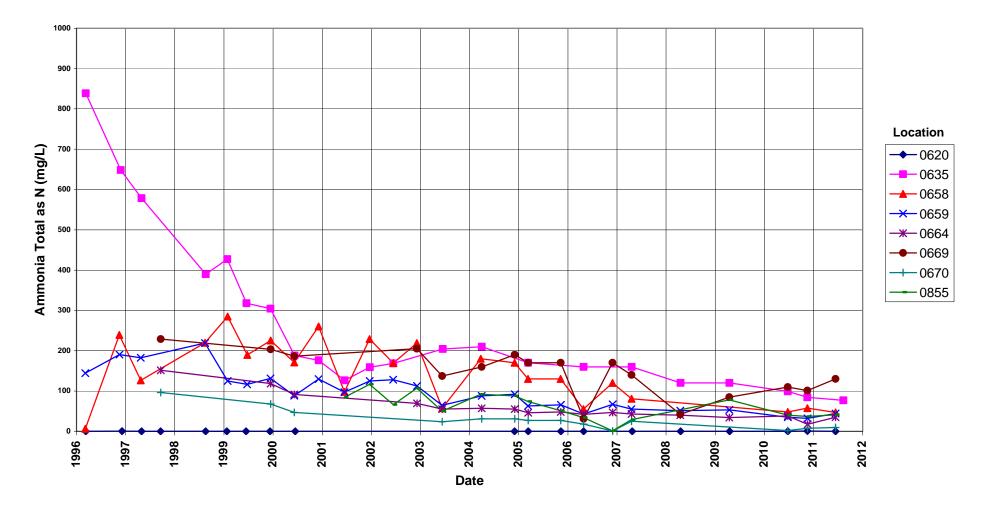

Rifle New Processing Site Hydrograph


Old Rifle Hydrographs

This page intentionally left blank

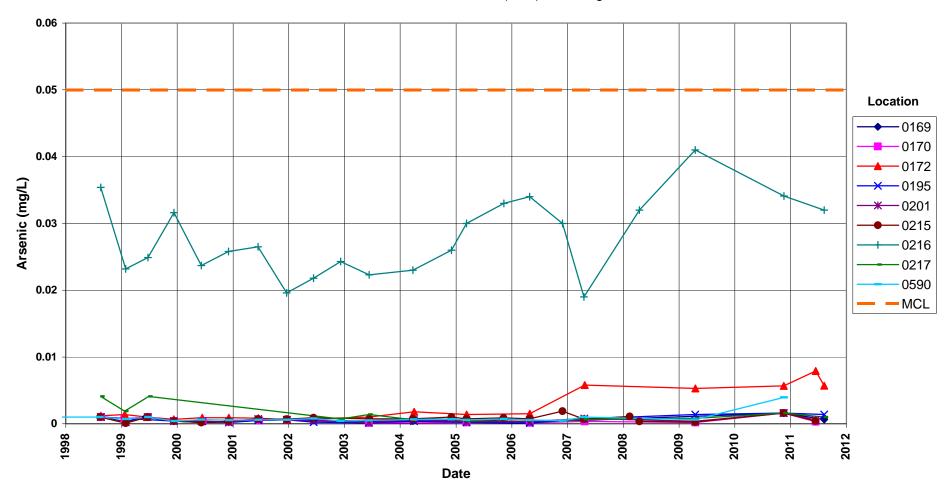
Rifle Old Processing Site Hydrograph

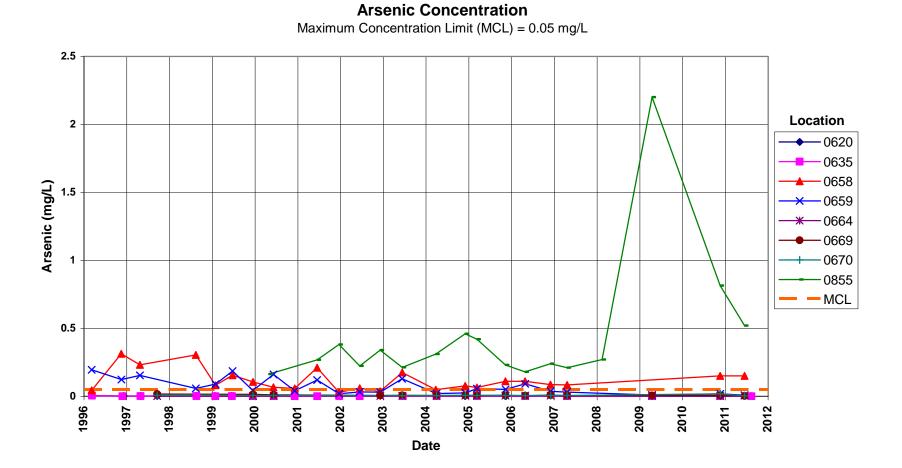

Rifle Old Processing Site Hydrograph


New Rifle Groundwater Time-Concentration Graphs

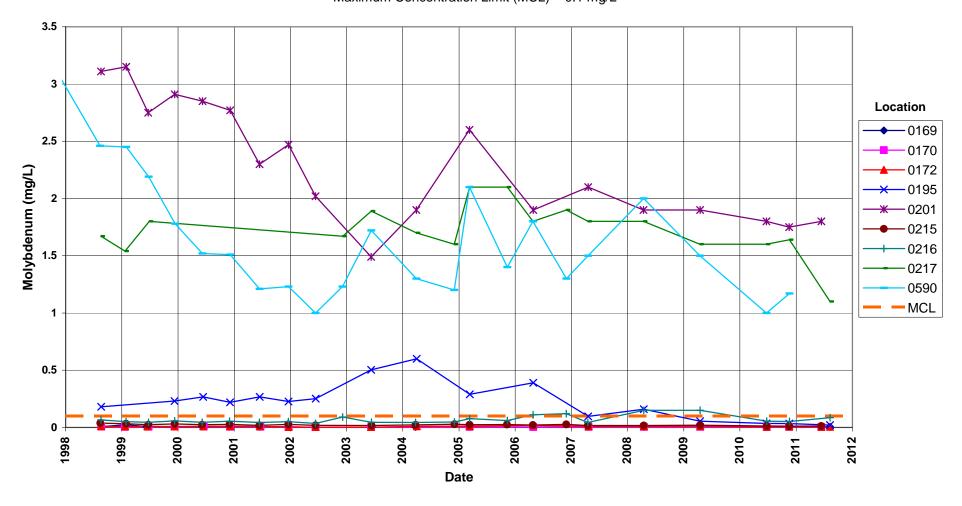
This page intentionally left blank

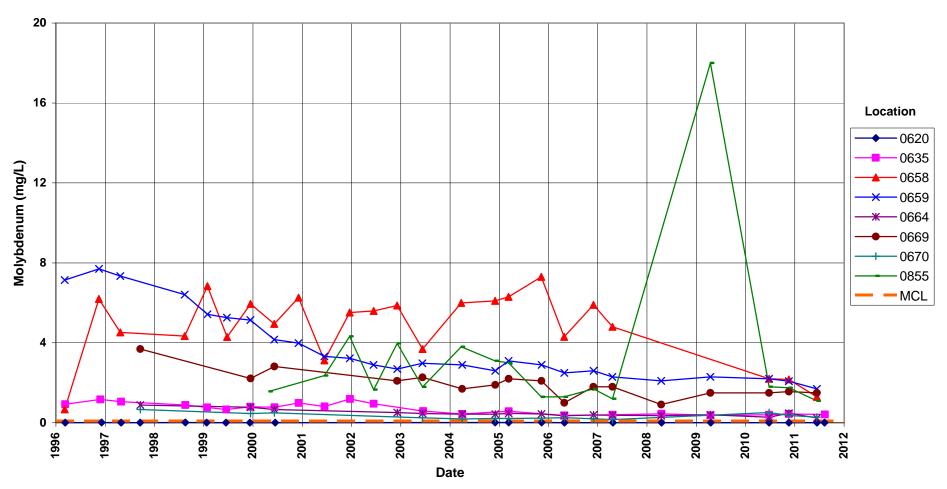
Rifle New Processing Site Ammonia Total as N Concentration

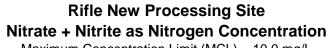


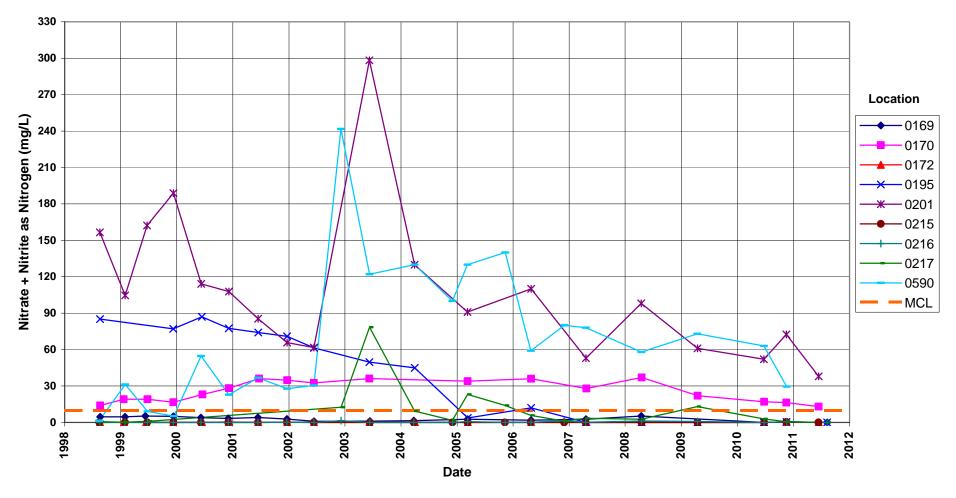

Rifle New Processing Site Ammonia Total as N Concentration

Rifle New Processing Site Arsenic Concentration

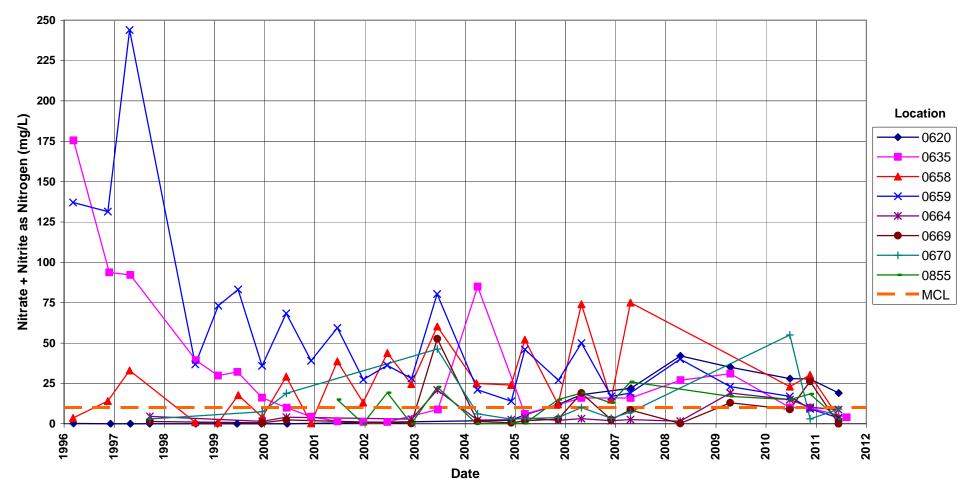

Maximum Concentration Limit (MCL) = 0.05 mg/L


Rifle New Processing Site

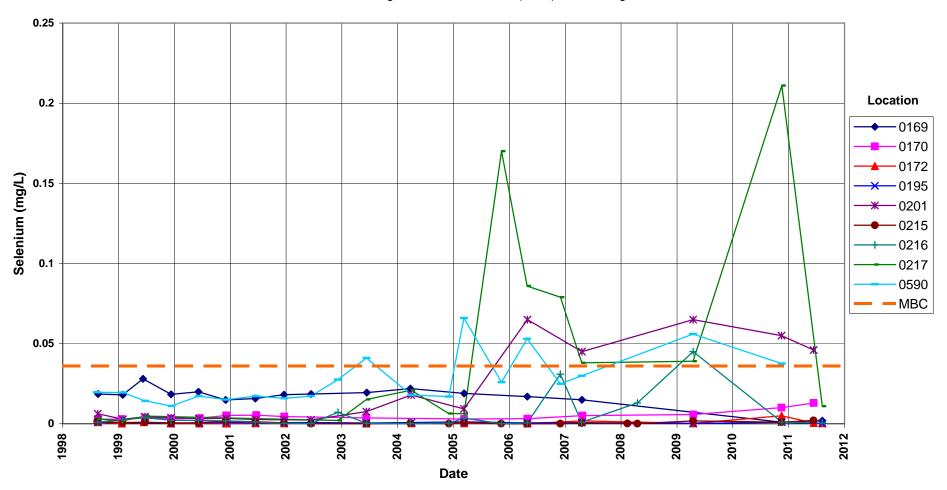

Rifle New Processing Site Molybdenum Concentration Maximum Concentration Limit (MCL) = 0.1 mg/L


Rifle New Processing Site Molybdenum Concentration

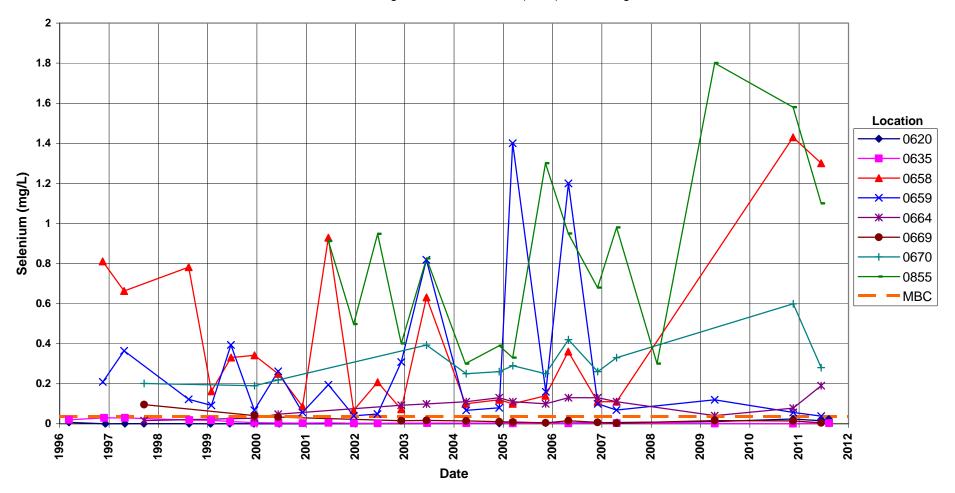
Maximum Concentration Limit (MCL) = 0.1 mg/L



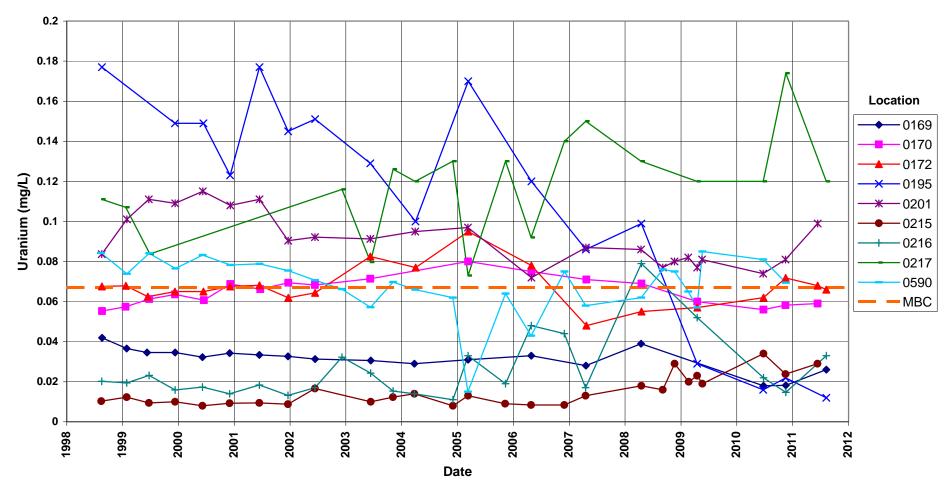
Maximum Concentration Limit (MCL) = 10.0 mg/L


Rifle New Processing Site Nitrate + Nitrite as Nitrogen Concentration

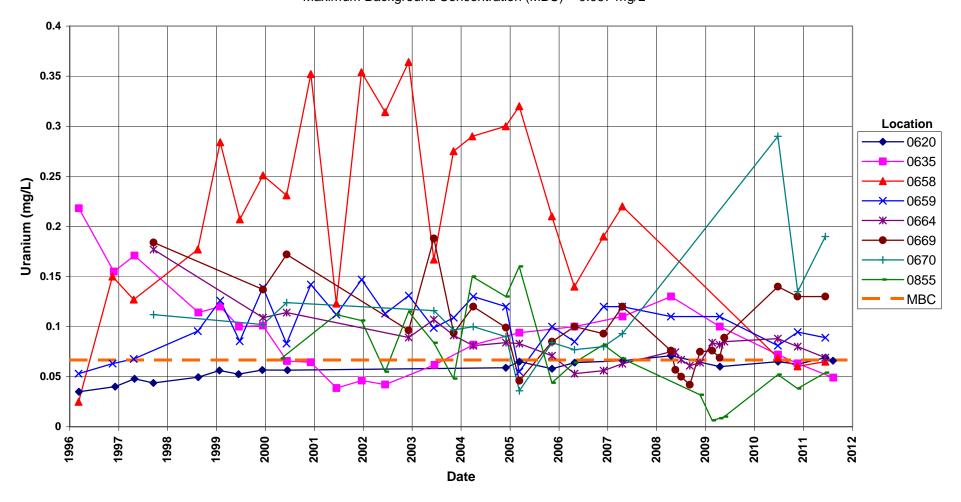
Maximum Concentration Limit (MCL) = 10.0 mg/L


Rifle New Processing Site Selenium Concentration

Maximum Background Concentration (MBC) = 0.036 mg/L

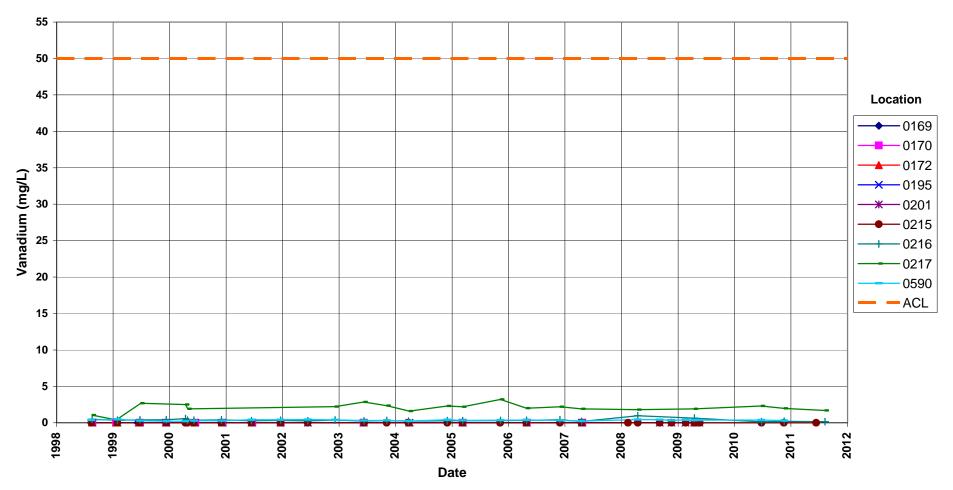

Rifle New Processing Site Selenium Concentration

Maximum Background Concentration (MBC) = 0.036 mg/L

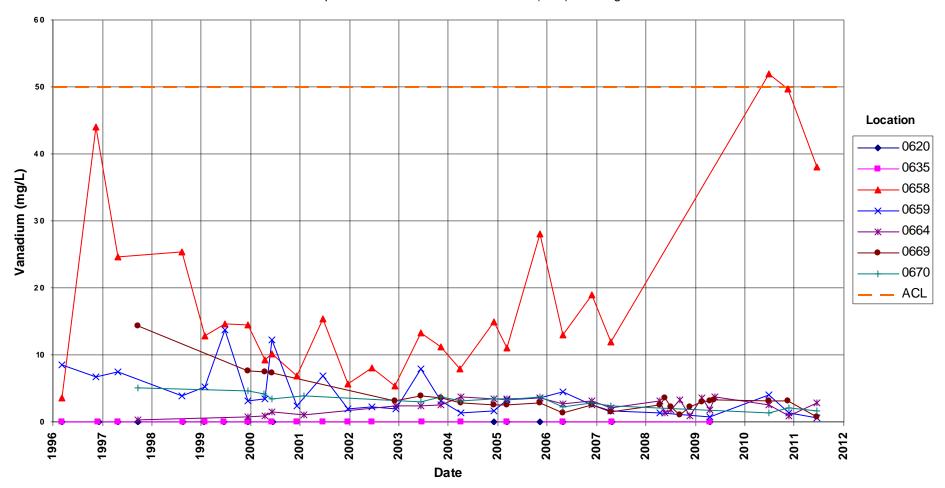


Rifle New Processing Site Uranium Concentration

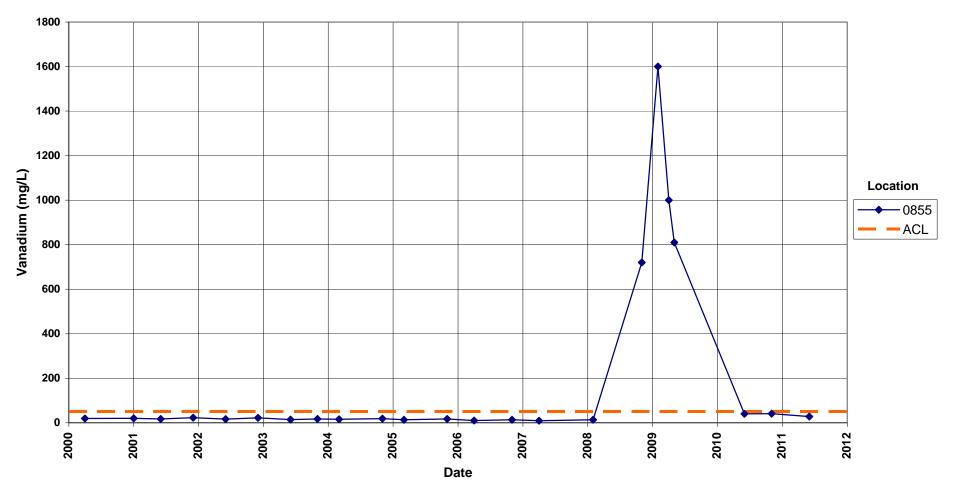
Maximum Background Concentration (MBC) = 0.067 mg/L



Rifle New Processing Site Uranium Concentration Maximum Background Concentration (MBC) = 0.067 mg/L


Rifle New Processing Site Vanadium Concentration

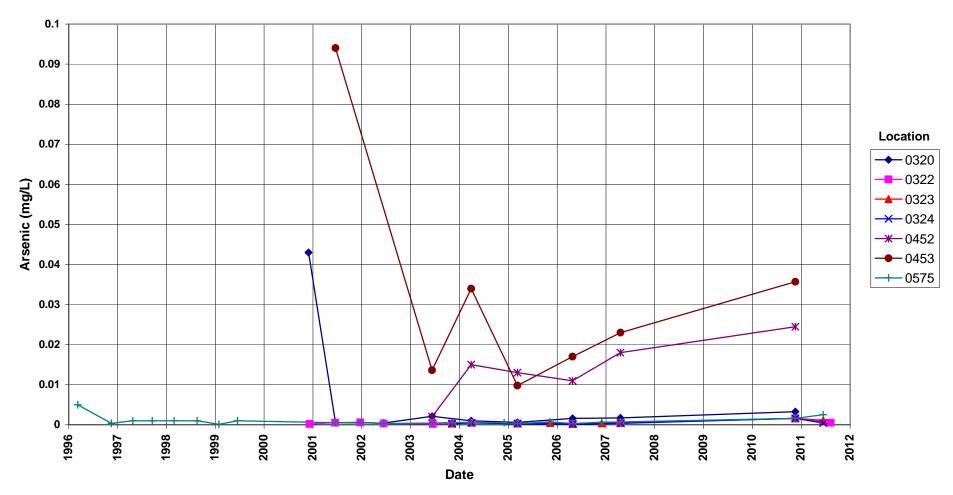
Proposed Alternate Concentration Limit (ACL) = 50 mg/L


Rifle New Processing Site Vanadium Concentration

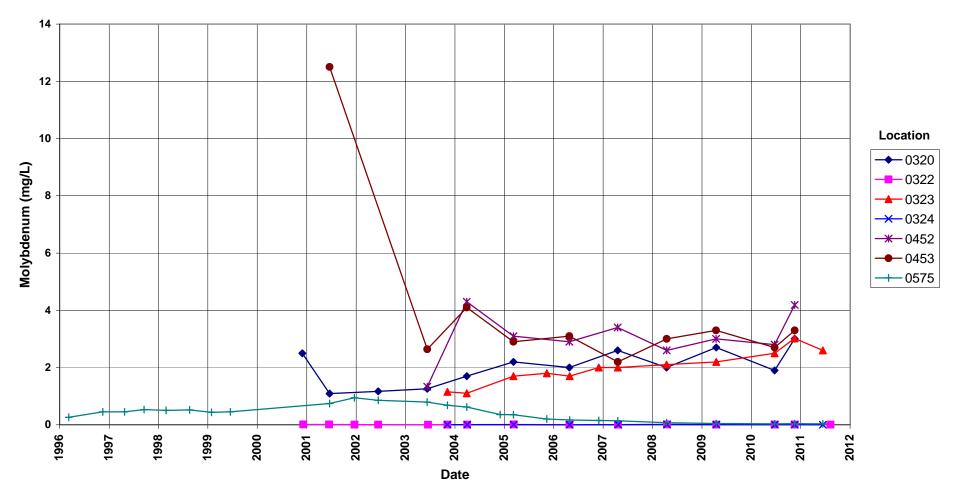
Proposed Alternate Concentration Limit (ACL) = 50 mg/L

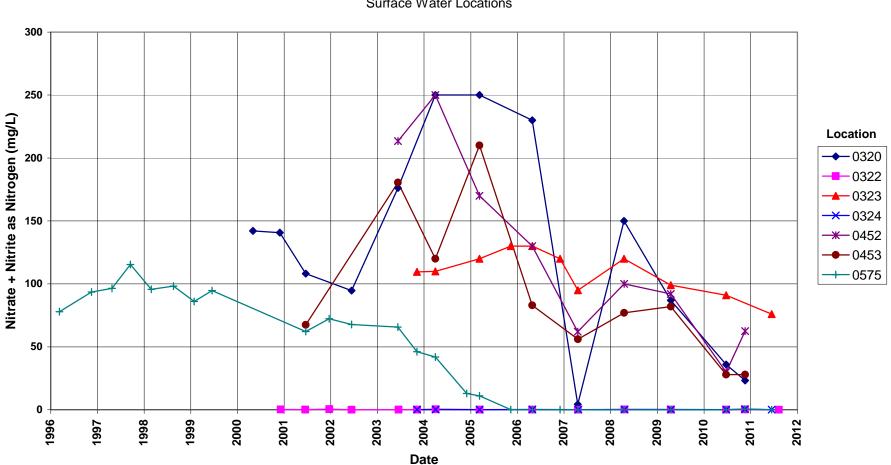
Rifle New Processing Site Vanadium Concentration

Proposed Alternate Concentration Limit (ACL) = 50 mg/L

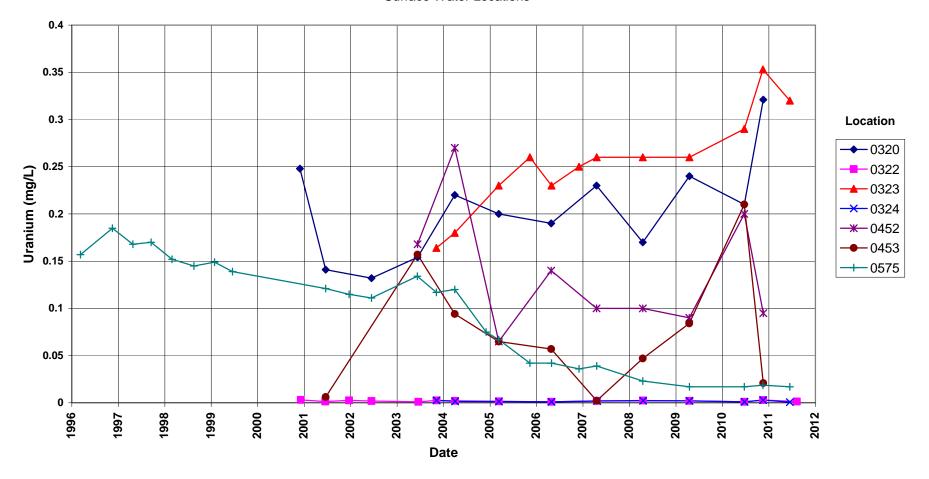


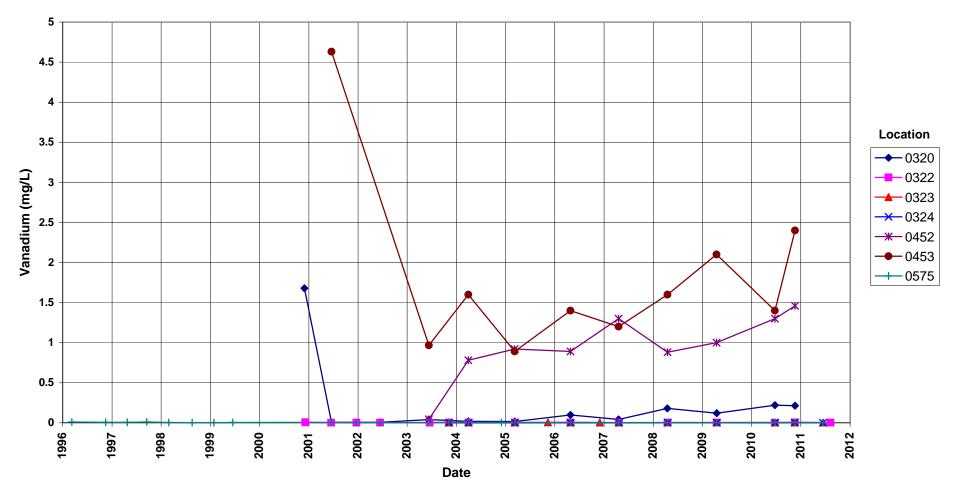
This page intentionally left blank


New Rifle Surface Water Time-Concentration Graphs


This page intentionally left blank

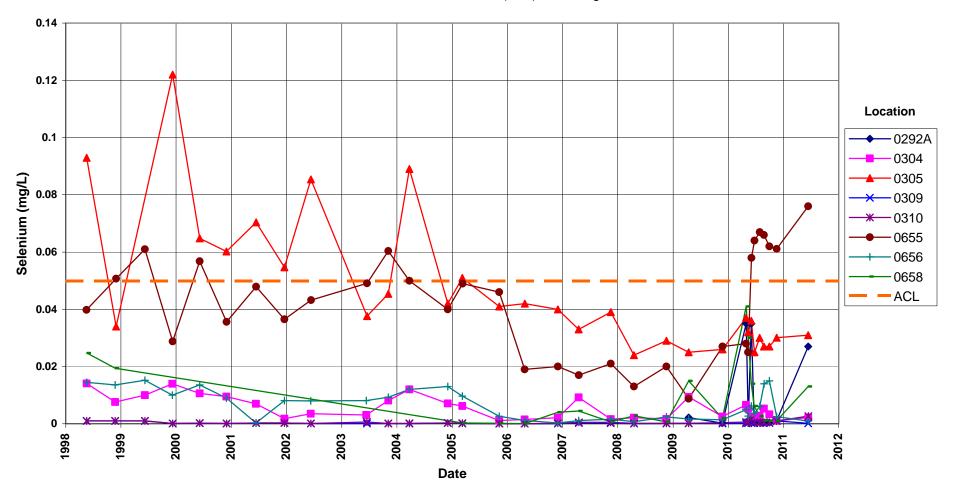
Rifle New Processing Site Arsenic Concentration Surface Water Locations

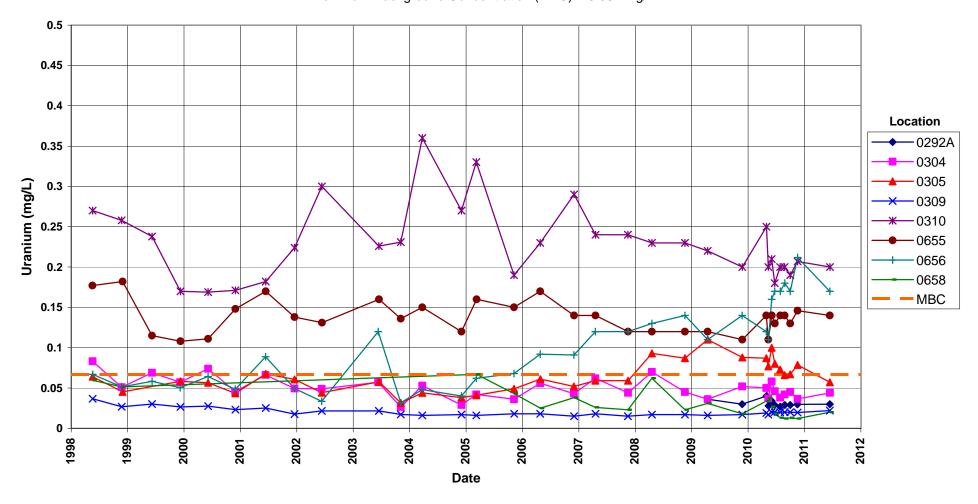

Rifle New Processing Site Molybdenum Concentration Surface Water Locations



Rifle New Processing Site Nitrate + Nitrite as Nitrogen Concentration Surface Water Locations

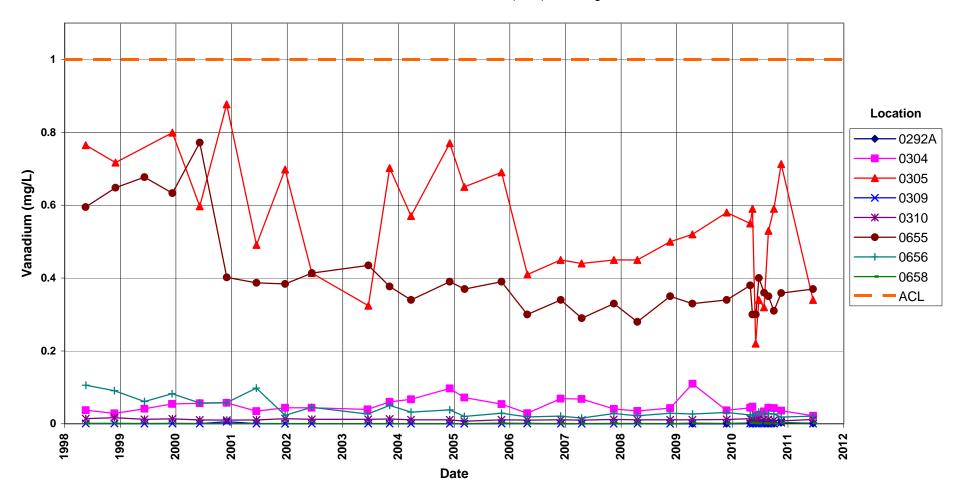
Rifle New Processing Site Uranium Concentration Surface Water Locations


Rifle New Processing Site Vanadium Concentration Surface Water Locations


Old Rifle Groundwater Time-Concentration Graphs

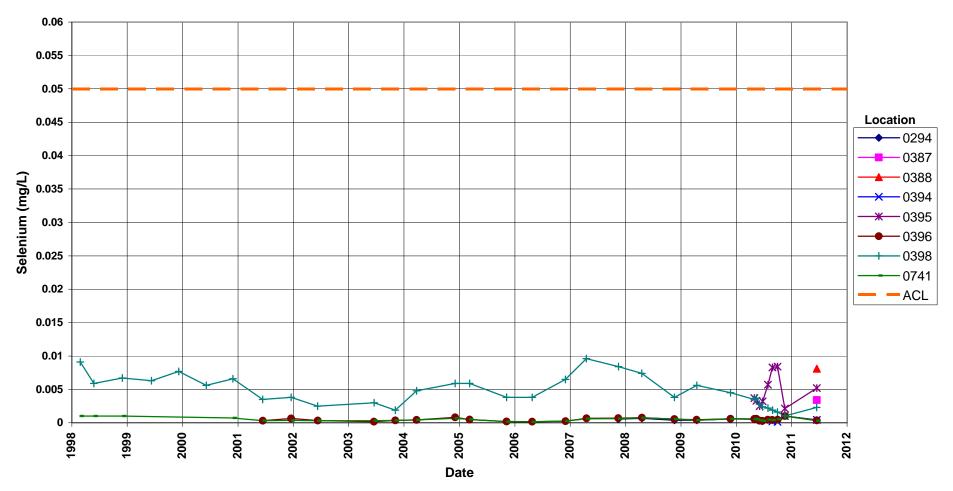
Rifle Old Processing Site Selenium Concentration

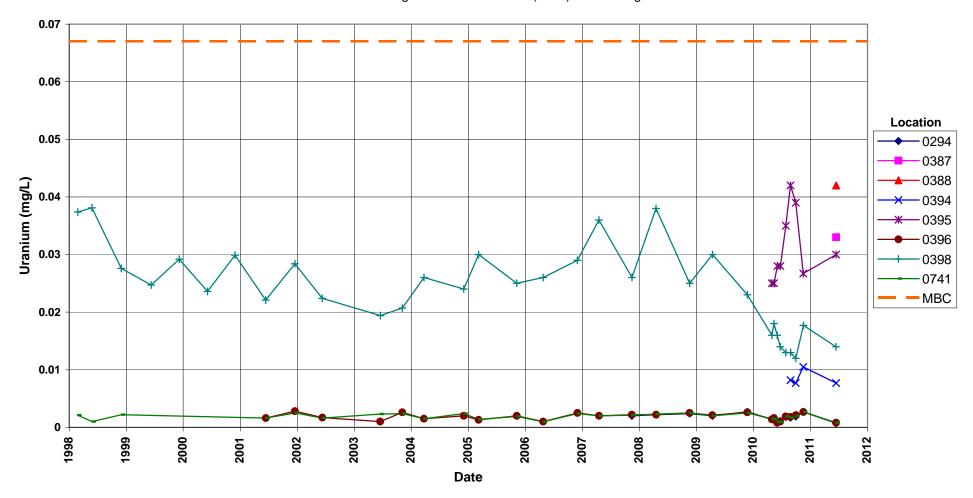
Alternate Concentration Limit (ACL) = 0.05 mg/L

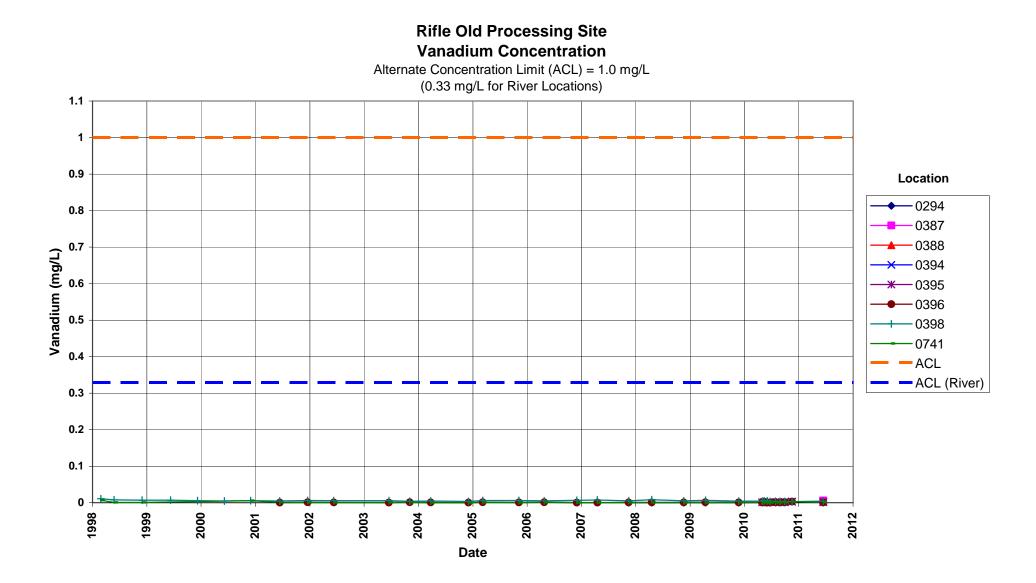


Rifle Old Processing Site Uranium Concentration Maximum Background Concentration (MBC) = 0.067 mg/L

Rifle Old Processing Site Vanadium Concentration


Alternate Concentration Limit (ACL) = 1.0 mg/L


Old Rifle Surface Water Time-Concentration Graphs


Rifle Old Processing Site Selenium Concentration

Alternate Concentration Limit (ACL) = 0.05 mg/L

Rifle Old Processing Site Uranium Concentration Maximum Background Concentration (MBC) = 0.067 mg/L

Page 153

Attachment 3 Sampling and Analysis Work Order

established 1959

Task Order LM00-501 Control Number 11-0614

May 24, 2011

U.S. Department of Energy Office of Legacy Management ATTN: Richard Bush Site Manager 2597 Legacy Way Grand Junction, CO 81503

toller

SUBJECT: Contract No. DE-AM01-07LM00060, S.M. Stoller Corporation (Stoller) June 2011 Environmental Sampling at Rifle, Colorado

REFERENCE: Task Order LM00-501-02-116-402, Rifle (New and Old), CO, Processing Sites

Dear Mr. Bush:

The purpose of this letter is to inform you of the upcoming sampling event at Rifle, CO. Enclosed are the map and tables specifying sample locations and analytes for monitoring at the Rifle New and Old Processing Sites. Water quality data will be collected from this site as part of the environmental sampling currently scheduled to begin the week of June 13, 2011.

The following lists show the monitoring wells and surface water locations scheduled to be sampled during this event.

Monitoring New Rifle	Wells*					
169	195 Al	216 Al	620 AI	658 Al	664 AL	670 Al
170 Al 172 Al	201 Al 215 Al	217 Al 590 Al	635 Al	659 Al	669 Al	855 Al
172 AI	215 AI	590 AI				
Old Rifle	205.41	200.41	210.11			
292A A1 304 A1	305 Al B-04	309 Al LQ-107	310 Al LQ-108	655 Al LQ-109	656 Al	658 Al
*NOTE: Al =	alluvium		El			
Surface Loc: New Rifle	ations					
320	322	323	324	452	453	575
<u>Old Rifle</u> 294	387	388	395	396	398	741

Grand Junction, CO 81503

Richard Bush Control Number 11-0614 Page 2

All samples will be collected as directed in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites. Access agreements are being reviewed and are expected to be complete by the beginning of fieldwork.

Please contact me at (970) 248-6375 if you have any questions.

Sincerely, Richard Dougwand t

Richard Dayvault Site Lead

RD/lcg/lb

Enclosures (3)

cc: (electronic)

Richard Dayvault, Stoller Steve Donivan, Stoller Bev Gallagher, Stoller Lauren Goodknight, Stoller EDD Delivery rc-grand.junction File: RFN 410.02(A) RFO 410.02(A)

.

Location ID	Quarterly	Semiannually	Annually	Bionnially	Not Sampled	Notes
Monitoring Wells	Quarterly	Semiannually	Annually	Diennany		INDIES
New Rifle						
169		V				
170		X X				
170		X				
172		X				
201		X				Data logger
201		X				Data logger
215		X				
210		X				
590		X				Data logger
620		X				
635		X				
658		X				
659		X				
664		X				
669		X				
670		X				
855		X				
Old Rifle		Λ				
		V				CCAR
292A		X X				GCAP
304 305		X				GCAP
305		X				GCAP GCAP
		X				
310		X				GCAP; data logger
655 656		X				GCAP; data logger GCAP
658		X				Background well
		^	l			Background well
ERSP		X				1
B-04		X				
LQ-107		X X				
LQ-108 LQ-109		X				
Surface Locations		X				
New Rifle	5					
	1	V		1	[Watland Dand
320		X				Wetland Pond
322		X X				Colorado River
323		X				Gravel pit pond
324		х				Colorado River downgradient
452	1	X	}			Wetland Pond
452	1	X				Wetland Pond
575		X				Gravel pit pond
Old Rifle	1		I	1	1	
294		Х				
387	1	X				New
388	1	X				New
395	1	X	}			
395	1	X				GCAP
396	1	X				GCAP
741		X				
141		<u>^</u>				

Sampling Frequencies for Locations at Rifle, Colorado

Semi-annual sampling conducted in June and November; annual sampling conducted for Rifle Disposal Cell in July

Constituent Sampling Breakdown

Site	Rifle				1			
Analyte	Groundw	ater	Surface Water		Required Detection Limit (mg/L)	Analytical Method	Line Item Code	
Approx. No. Samples/yr	35			15				
Field Measurements								
Alkalinity								
Dissolved Oxygen								
Redox Potential	Х			Х				
рН	Х			Х				
Specific Conductance	Х			Х				
Turbidity	Х							
Temperature	Х			X				
Laboratory Measurements	*RFO	*RFN	<u>RF0</u>	RFN	RFL			
Aluminum		V		V		0.1		
Ammonia as N (NH3-N)		Х		Х		0.1	EPA 350.1 SW-846	WCH-A-005
Arsenic		Х		Х		0.0001	6020	LMM-02
Molybdenum		Х		Х		0.003	SW-846 6020	LMM-02
Nitrate + Nitrite as N (NO ₃ +NO ₂)-N		Х		Х		0.05	EPA 353.1	WCH-A-022
Delta Oxygen 18/Deuterium	0387, 0388, 0395, 0394, LQ-109, LQ-107, 0310, 0304 ONLY					N/A	Mass Spec.	LMW-08
Selenium	Х	х	х	Х		0.0001	SW-846 6020	LMM-02
Delta Sulfur 34	0387, 0388, 0395, 0394, LQ-109, LQ-107, 0310, 0304 ONLY					N/A	Mass Spec.	LMW-08
U234/238	0387, 0388, 0395, 0394, LQ-109, LQ-107, 0310, 0304 ONLY					0.1	Alpa Spec	LMR-02
Uranium	Х	х	х	х	х	0.0001	SW-846 6020	LMM-02
Vanadium	х	0215, 0216, 0217, 0590, 0658, 0659, 0664, 0669, 0670, and 0855 only	x	х	x	0.0003	SW-846 6020	LMM-02
Total No. of Analytes	6	7	3	7	2			

*RFN = New Rifle; *RFO =

Old Rifle

Note: All private well samples are to be unfiltered. The total number of analytes does not include field parameters.

Attachment 4 Trip Reports

established 1959

Memorandum

DATE: July 6, 2010

TO: Richard Dayvault

FROM: Daniel Sellers

SUBJECT: Sampling Trip Report

Site: New Rifle and Old Rifle, Colorado, Processing Sites, including some Integrated Field Research Challenge Program (IFRCP) locations.

Dates of Sampling Event: June, 13–15, 2010.

Team Members: Joe Treviño and Dan Sellers

Number of Locations Sampled: A total of 34 locations were sampled.

Site ID	Site	Number of Monitoring Wells	Number of Surface Water Locations	Analytes	Field Measurements
RFN01	New Rifle	4	3	As, Mo, Se, U Nitrate plus Nitrite as N, Ammonia as N	ORP, pH, Conductivity, Turbidity, Temperature, Alkalinity
RFN01	New Rifle	7		As, Mo, Se, U Nitrate plus Nitrite as N, Ammonia as N, including V	ORP, pH, Conductivity, Turbidity, Temperature, Alkalinity
RFO01	Old Rifle	6	4	Se, U, V	ORP, pH, Conductivity, Turbidity, Temperature, and Alkalinity
RFO01	Old Rifle	2	4	Se, U, V, and *Oxygen- 18/ Deuterium, Sulfur-34, and U-234,-238	ORP, pH, Conductivity, Turbidity, Temperature, and Alkalinity
RFO01	IFRCP	2		Se, U, V	ORP, pH, Conductivity, Turbidity, Temperature, and Alkalinity
RFO01	IFRCP	2		Se, U, V and *Oxygen-18/ Deuterium, Sulfur-34, and U-234,-238	ORP, pH, Conductivity, Turbidity, Temperature, and Alkalinity

* Oxygen-18/ Deuterium and Sulfur-34 were filtered. U-234, U-238 were not filtered, which had been noted on field data collection field sheets relevant to identified locations requiring these specific analytes.

Well Locations IDs	Reason
0169	Inaccessible due to river flooding.
0195	Inaccessible due to irrigation flooding
0216	Inaccessible due to river flooding.
0217	Inaccessible due to river flooding.
0590	Inaccessible due to river flooding.
0635	Inaccessible due to river flooding.
Surface Locations IDs	Reason
0320	Flooded by river
0322	Flooded by river
0452	Flooded by river
0453	Flooded by river

Locations Not Sampled/Reason: A total 10 New Rifle (RFN01) locations were not sampled.

Location Specific Information/Field Variance: The following New Rifle wells are locations where Jim Duke of Caca Loco co-collected groundwater samples: RFN01-0664, -0669, -0855, and -0215. These samples were coordinated with Jeff Simonson of SGM and approved by Richard P. Bush (Site Manager, DOE Office of Legacy Management) and Richard Dayvault (Geosciences, S.M. Stoller Corporation – Contractor for the U.S. Department of Energy).

The following listed locations are noted with specific information.

Site ID	Location IDs	Comments
RFN01	0172	Strong petroleum odor.
RFN01	0669, 0670	Cat II based on WL drop at slow purge rate.
RFN01	0855	Alkalinity turns orange
RFN01	0324	Filtered River samples
RFO01	0294, 0396 and 0741	Filtered River samples
RFO01	0395	Filtered Seep/Surface water
RFO01	0310	Removed data logger to sample. Replaced logger immediately after sampling.
	All surface water	Although not requested, turbidity was measured to determine whether filtration
	locations	was required.

Quality Control Sample Cross Reference: The following are the false identifications assigned to the quality control samples:

False ID	True ID	Ticket Number	Sample Type	Associated Matrix
2927	RFO01-0310	JHS 797	Duplicate	Groundwater
2948	RFN01-0201	JHS 784	Duplicate	Groundwater
2949	RFN01-0323	JHS 785	Equipment Blank	Surface water

RIN Number Assigned: 11063854 was assigned to all collected samples excluding the Oxygen-18/ Deuterium and Sulfur-34 samples. RIN# 11063855 was assigned to the Oxygen-18/Deuterium and Sulfur-34 samples.

Sample Shipment: Samples with RIN# 11063854 were shipped from Grand Junction to ALS Laboratory Group, 225 Commerce Dr., Ft. Collins, CO 80524, on 06/16/2011.

Samples with RIN# 11063855 were shipped from Grand Junction to Reston Stable Isotope Laboratory, 431 National Center, 12201 Sunrise Valley Dr., Reston, VA 20192, on 06/16/2011.

Well Inspection Summary: Well inspections were conducted at all sampled wells, which were all in good condition.

Equipment: All wells were sampled using the low-flow procedure. All wells were sampled using a peristaltic pump and dedicated down hole tubing except well RFN01-0170, which had a dedicated bladder pump. Surface water locations were sampled using a peristaltic pump and tubing reel or by container immersion. An equipment blank was collected after decontamination of the tubing reel. All other equipment was dedicated or disposable. All equipment functioned properly.

Water Level Measurements: Water levels were collected at all sampled wells.

Institutional Controls: All gates were appropriately closed and locked during the sampling event.

Fences, Gates, Locks: All were in good condition. Signs: No missing or vandalized signs were observed. Trespassing/Site Disturbances: None observed.

Site Issues:

Disposal Cell/Drainage Structure Integrity: N/A.
Vegetation/Noxious Weed Concerns: None observed.
Maintenance Requirements: None observed.
Safety Issues: River flooding has occurred over a large area at the New Rifle site.
Access: Vehicle access to RFN01 locations 0620 and 0324 is blocked by a locked gate owned by Williams Production. The combination to the lock was provided by Bryan Hotard of Williams (970-361-2006 & 970-263-2754). The combination is 2-0-0-6.

Corrective Action Required/Taken: Locations not sampled due to both river and irrigation flooding needs to be sampled.

(SC/lb)

cc: (electronic)

Richard Bush, DOE Steve Donivan, Stoller Keith Miller, Stoller EDD Delivery File: RFL410.02(A)

established 1959

Memorandum

DATE: September 7, 2011

TO: Richard Dayvault

FROM: Gretchen Baer

SUBJECT: Trip Report

Site: New Rifle, Colorado, Processing Site

Dates of Sampling Event: August 9 and 11, 2011

Team Members: Kent Moe, Gretchen Baer, and David Atkinson. Two wells were sampled with Jarrod Kent and Tim Dobransky of Olsson. A copy of the JSA signed by Olsson personnel is available in Condor\sms\11073976.

Number of Locations Sampled: Samples were collected from 8 locations as described in the following table.

Location ID	Location Type	Comment
0169	Groundwater	
0195	Groundwater	
0216	Groundwater	Collected in August because location was inaccessible due to river flooding during
0217	Groundwater	the June sampling event.
0322	Surface Water	
0635	Groundwater	
0172	Groundwater	Co-sampled with Olsson samplers. Collected metals only. Olsson collected
0620	Groundwater	multiple analytes.
0590	Groundwater	Could not sample: Inaccessible due to flooding. Photo attached below.
0320	Surface Water	
0452	Surface Water	Did not sample. These surface water locations were distinct in the past, but they are now flooded by one large pond.
0453	Surface Water	are now nooded by one large pond.

Locations Not Sampled/Reason: 0320, 0452, 0453, and 0590 were not sampled. See previous table.

Location Specific Information:

• Well 0635: Well was covered over with mud from recent river flooding. Well was moderately dirty on the inside but otherwise in good condition. Re-developed well prior to sampling, pumped approximately 2 gallons out of well during development, turbidity quickly dropped to below 10 NTUs. The casing was extended to be above ground level.

• Surface water location 0322: Although not requested, turbidity was measured to determine whether filtration was required.

Quality Control Sample Cross Reference: The following is the false identification assigned to the quality control sample.

False ID	True ID	Ticket Number	Sample Type	Associated Matrix
2187	0322	JIX 343	Duplicate	Groundwater

Report Identification Number (RIN) Assigned: 11073976. Field data sheets can be found in Condor\sms\11073976 in the FieldData folder.

Sample Shipment: Samples were shipped from Grand Junction to ALS Laboratory Group on August 10 and 12, 2011.

Water Level Measurements: Water levels were measured in all sampled wells.

Well Inspection Summary: The flush-mount style for well 0635 (close to the river) caused the well to be covered by flood water through early summer. On August 11, the casing was extended to be above ground level. All other wells were in good condition. The recent flood waters caused no apparent detrimental effects at wells 0169, 0195, 0216, and 0217.

Field Variance: None. Samples were collected according to the *Sampling and Analysis Plan for* U. S. Department of Energy Office of Legacy Management Sites.

Equipment: All equipment functioned properly. Wells were sampled with a peristaltic pump and dedicated tubing. Surface waters were sampled by container immersion. All sampling equipment was dedicated or disposable.

Regulatory: Nothing to note.

Institutional Controls:

Fences, Gates, and Locks: Nothing to note. Signs: Nothing to note. Trespassing/Site Disturbances: None observed.

Site Issues:

Disposal Cell/Drainage Structure Integrity: N/A Vegetation/Noxious Weed Concerns: None observed. Maintenance Requirements: None observed. Safety Issues: The water surrounding well 0590 appears to be too deep to safely wade

safety issues: The water surrounding well 0590 appears to be too deep to safely wade into. It is too deep to see the bottom. It appears to be >3 feet deep and the ground is probably very soft.

Access Issues:

- The areas surrounding wells 0169, 0195, 0216, 0217, and 0635 were flooded in June 2011. The water in these areas had receded by August 2011 and these wells could be reached by vehicle or by foot.
- The area surrounding well 0590 is still flooded and cannot be reached on foot:

Well 0590 on August 9, 2011

Corrective Action Required/Taken: The casing for well 0635 was extended above ground level. Two items remain to be completed at well 0635:

- 1. Measure the extension and notify Keith Miller so that the database can be updated.
- 2. Install protective casing.

(GB/lg)

cc: (electronic) Rich Bush, DOE Steve Donivan, Stoller EDD Delivery