3.0 L-Bar, New Mexico, Disposal Site

3.1 Compliance Summary

The L-Bar, New Mexico, Uranium Mill Tailings Radiation Control Act (UMTRCA) Title II Disposal Site was inspected on March 20–21, 2024. Previous inspections performed in 2021, 2022, and 2023, as required by the Long-Term Surveillance Plan (DOE 2004) (LTSP), and associated follow-up site visits identified numerous surface degradation features on the disposal cell top slope. No new degradation features on the top slope were identified during the March 2024 inspection. During an Applied Studies and Technology (AS&T) investigation in September and October 2022, several piping features were discovered on the side slope of the disposal cell. These features continue to be monitored and currently do not affect the performance of the side slope. Inspectors also identified several routine maintenance needs during the March 2024 inspection.

Erosion and vegetation measurements to monitor the condition of the disposal cell top slope were conducted in July 2024, and results are included in Section 3.7.2.

Groundwater is monitored every 3 years in accordance with the site-specific U.S. Department of Energy (DOE) Office of Legacy Management (LM) LTSP (DOE 2004). The most recent routine groundwater sampling event was conducted on November 2, 2022, with follow-up exceedance sampling performed at three locations on November 15, 2023. Analytical results from these sampling events are presented in Section 3.7.1. Since sampling commenced in 2005, no alternate concentration limit (ACL) or alternative abatement standard (AAS) has been exceeded in any site well. State of New Mexico-approved background levels for sulfate and total dissolved solids (TDS) have been exceeded at the northeastern point of exposure (POE) (well 72), where chloride concentrations are also approaching the corresponding state standard.

3.2 Compliance Requirements

Requirements for the long-term surveillance and maintenance of the site are specified in the site-specific LTSP (DOE 2004) in accordance with procedures established to comply with the requirements of the U.S. Nuclear Regulatory Commission (NRC) general license at Title 10 *Code of Federal Regulations* Section 40.28 (10 CFR 40.28). Table 3-1 lists these requirements.

Requirement	LTSP	This Report	10 CFR 40.28
Annual Inspection and Report	Sections 3.3 and 3.4	Section 3.4	(b)(3)
Follow-Up Inspections	Section 3.5	Section 3.5	(b)(4)
Routine Maintenance and Emergency Measures	Section 3.6	Section 3.6	(b)(5)
Environmental Monitoring	Section 3.7	Section 3.7	(b)(3)

3.3 Institutional Controls

The 738-acre site, identified by the property boundary shown in Figure 3-1, is owned by the United States and was accepted under the NRC general license in 2004. DOE is the licensee and, in accordance with the requirements for UMTRCA Title II sites, LM is responsible for the custody and long-term care of the site. Institutional controls (ICs) at the site include federal ownership of the property, administrative controls, and the following physical ICs that are inspected annually: disposal cell, entrance gate and sign, perimeter fence and signs, site marker, boundary monuments, and monitoring wellhead protectors.

3.4 Inspection Results

The site, approximately 15 miles north of Laguna, New Mexico, was inspected on March 20–21, 2024. The inspection was conducted by C. Murphy, D. Atkinson, N. Lind, and J. Graham of the Legacy Management Support (LMS) contractor. In addition, A. Rheubottom (New Mexico Environment Department [NMED]) attended the inspection. The erosion and vegetation monitoring event was conducted in July 2024. The purposes of the inspection were to confirm the integrity of visible features at the site, identify changes in conditions that might affect conformance with the LTSP, and evaluate whether maintenance or follow-up inspection and monitoring are needed.

3.4.1 Site Surveillance Features

Figure 3-1 shows the locations of site features, including site surveillance features and inspection areas, in black and gray font. Some site features that are present but not required to be inspected are shown in italic font. Observations from previous inspections that are currently monitored are shown in blue, and new observations identified during the 2024 annual inspection are shown in red. Inspection results and recommended maintenance activities associated with site surveillance features are described in the following subsections. Photographs to support specific observations are noted in the text and in Figure 3-1 by photograph location (PL) numbers. The photographs and photograph log are presented in Section 3.9.

3.4.1.1 Site Access and Entrance Gate

Access to the site is from a public gravel road (Cibola County Road 1). Approximately 300 feet (ft) of Cebolleta Land Grant property is crossed to enter the site. Documentation of access is provided and described in the warranty and quitclaim deed for the site. The entrance gate is a tubular-steel stock gate. The gate was secured by a DOE lock with no other locks present.

Interior roads used to access LM assets consist of two-track dirt roads with drainage culverts to convey stormwater in key locations. A gully that formed through headcutting on a side slope of the G3 channel has encroached on the east site access road. Culverts were installed along the access road in 2016 to prevent washout of the road and to control erosion. Sediment is accumulating around one of the three culvert inlets, and erosion is also undercutting the outlets. Two of the three culverts are functioning as designed (PL-1). The U.S. Army Corps of Engineers (USACE) conducted culvert cleanout in October 2024.

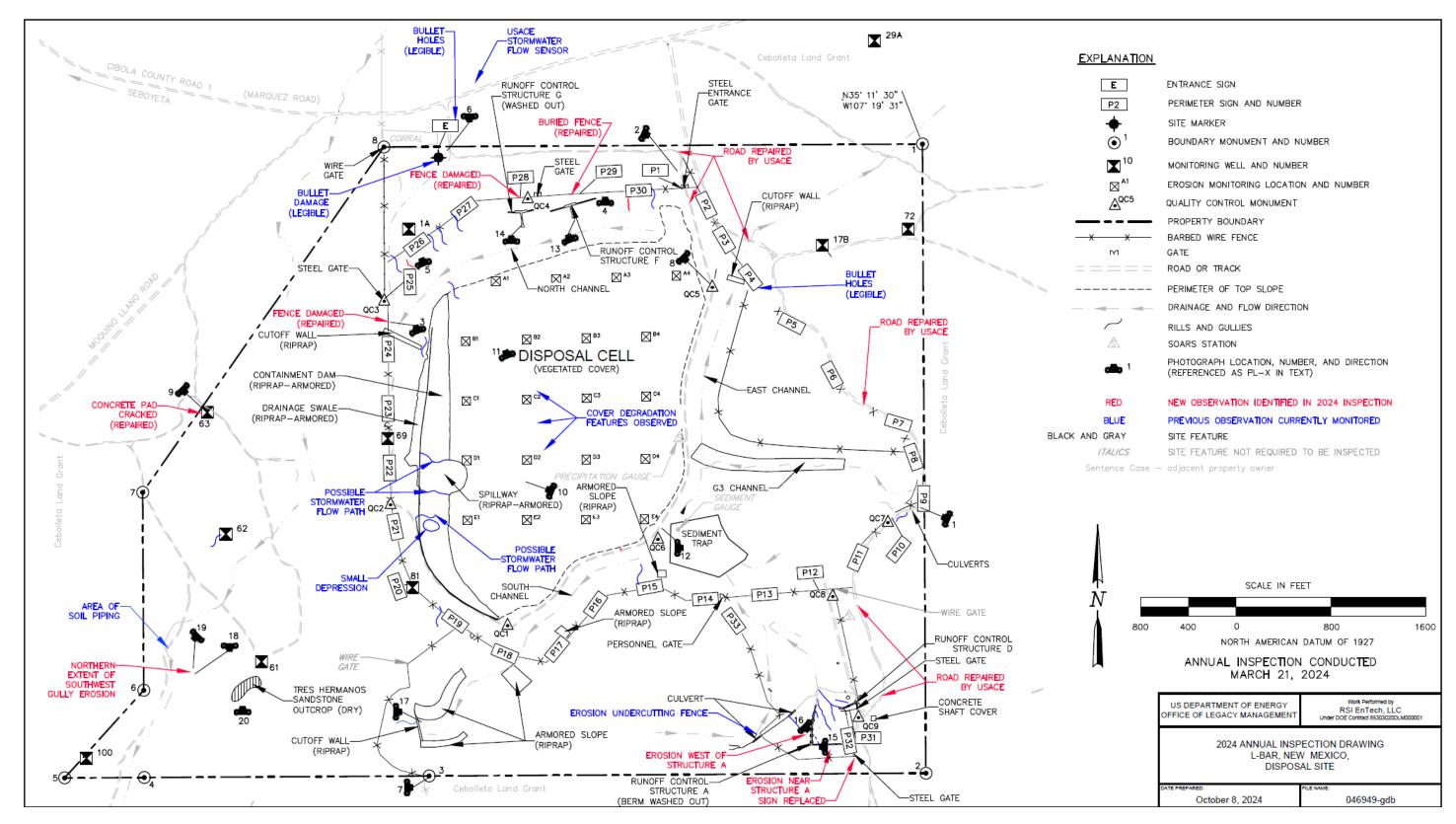


Figure 3-1. 2024 Annual Inspection Drawing for the L-Bar, New Mexico, Disposal Site

Access roads are susceptible to erosion and are repaired when they become impassable. In fall 2023, through an interagency agreement with USACE, LM began to repair access roads and construct low-water crossings in areas impacted by erosion. Road construction is in accordance with the engineering specifications and design plans in the *Department of Energy Legacy Management Bluewater and L-Bar Road Repairs Cibola County, New Mexico* document (USACE 2022). The USACE contractor was observed on site constructing one of the low-water crossings during the March 2024 inspections (PL-2). No additional maintenance needs were identified.

3.4.1.2 Fence and Perimeter Signs

A barbed-wire fence encloses the disposal cell and associated drainage structures and is intended to prohibit trespassing and livestock intrusion on the disposal cell to prevent gullies from developing from the livestock trails. The fence is about 3300 ft inside the property boundary, and the area between the fence and the boundary is grazed in accordance with an LM grazing license with the Cebolleta Land Grant stakeholders, who collectively own and manage the surrounding property. Cattle were observed within the fence-enclosed area and inspectors discovered a portion of fence line with the top strands of barbed wire broken, which allowed cattle to cross over between perimeter signs P24 and P25 (PL-3). Additionally, sediment is accumulating along the fence line near perimeter sign P28, and the fence was extended vertically due to the sedimentation. The damaged fence line was repaired during the 2024 annual maintenance trip. Erosion is undercutting the perimeter fence in several locations where the fence was extended vertically to prohibit livestock from entering the site. Erosion features were monitored along the northern fence line (PL-4 and PL-5). Two tubular steel gates were installed to allow personnel to cross the fence line safely. One gate was installed in 2021 on the west side near perimeter sign P19.

The entrance sign is on the main site access road near the site marker. It has several bullet holes but is legible. Thirty-three warning or perimeter signs are attached to the barbed-wire fence that surrounds the disposal site structures, as well as an area of excessive gully erosion in the southeast portion of the site. Perimeter sign P32 was missing during the time of the inspection and was replaced during the maintenance event. No other maintenance needs were identified.

3.4.1.3 Site Marker

The site has one granite site marker north of the disposal cell adjacent to the site access road. Bullet damage was observed on the site marker, but it remains legible (PL-6). No maintenance needs were identified.

3.4.1.4 Boundary Monuments

Eight boundary monuments define the site boundary (PL-7). All eight boundary monuments were observed during the 2024 inspection. No maintenance needs were identified.

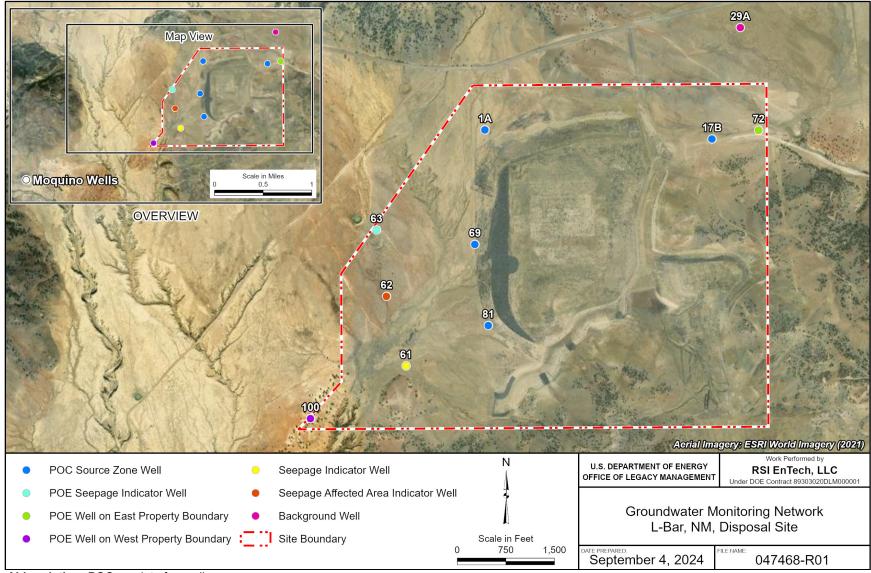
3.4.1.5 Aerial Survey Quality Control Monuments

Nine aerial survey quality control monuments were inspected during the 2024 inspection (PL-8). Quality control monuments QC-7 and QC-8 were covered in sediment. T-posts were installed near these monuments to help locate them. The sediment was removed from quality control

monument QC-7; however, quality control monument QC-8 was not located under the sediment and may need to be located and uncovered with a metal detector in the future. No additional maintenance needs were identified.

3.4.1.6 Monitoring Wells

The site groundwater monitoring network consists of 10 wells (Figure 3-1; Figure 3-2). Nine of the wells are on DOE property; background monitoring well 29A is outside the northeast property boundary of the site. The wellhead protectors observed during the 2024 inspection were undamaged and locked. The concrete pad for well 63 was observed to be severely cracked. It was repaired during the 2024 spring maintenance trip (PL-9). Erosion is propagating upstream near monitoring well 62 and will continue to be monitored to ensure that erosion does not impact the integrity of the well. No additional maintenance needs were identified.


3.4.2 Inspection Areas

In accordance with the LTSP, the site is divided into four inspection areas (referred to as "transects" in the LTSP) to ensure a thorough and efficient inspection. The inspection areas are (1) the cover of the disposal cell; (2) the containment dam; (3) the diversion channels; and (4) the site perimeter, outlying areas, and balance of the site. Inspectors examined the specific site surveillance features within each area and looked for evidence of erosion, settling, slumping, or other modifying processes that might affect site conformance with LTSP requirements.

3.4.2.1 Cover of the Disposal Cell

The disposal cell, completed in 2000, occupies approximately 100 acres. The disposal cell top slope surface is minimally sloped to the west toward the central portion of the containment dam; this promotes drainage and minimizes runoff water velocities to prevent erosion. Although the top slope was not seeded because plant growth was not expected to be successful, vegetation is occurring naturally with native and early successional weedy species. Vegetation was slow to establish in the southeast portion of the top slope, so a native seed mix was applied in 2009. This area has successfully vegetated, although several years of below-average precipitation have stressed the vegetation. The establishment and maturing of vegetation are expected to reduce wind and water erosion of the surface and help prevent precipitation from percolating into the tailings. In accordance with the LTSP, erosion and vegetation are monitored on the disposal cell top slope. Section 3.7.2 describes the erosion monitoring program and presents the results to date.

During the LTSP-required vegetation and erosion monitoring activity in August 2021, inspectors observed a single degradation feature on the top slope of the disposal cell. Subsequent visits to the site were conducted to further identify and document these features and resulted in the observations of several cover degradation features. Each surface degradation feature varied in overall size and depth with the deepest feature measuring 8 ft both vertically and horizontally during the April 2022 site visit. A total of 33 features were identified across the entire top slope of the disposal cell. Depth measurements of one of the surface degradation features indicate the potential for erosion of the radon barrier. During the February 2022 site visit, field radiological screening was performed using an alphaNUCLEAR Model 597-PX3 radon gas concentration monitor and a handheld sodium iodide scintillometer. Measurement results did not indicate release of radon gas above 10 CFR 835 or DOE Order 458.1 Chg 4 (LtdChg) actionable limits, or elevated radiation levels.

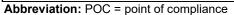


Figure 3-2. Groundwater Monitoring Network at L-Bar, New Mexico, Disposal Site

During the 2024 inspection, no additional degradation features were identified, and the most prominent degradation feature (E-004) designated (PL-10) was observed to have collapsed on itself or filled with sediment. This feature, along with most of the previously documented features, was observed to look more similar to a minor depression now (PL-11) rather than as degraded piping features during the 2023 inspection.

These features represent a change in the characteristics of the condition of the disposal cell cover and may require annual monitoring. Preliminary evaluations suggest that surface degradation features were caused by stormwater flows penetrating the disposal cell cover via desiccation cracking, animal burrows, and vegetation root systems.

To evaluate the surface degradation features, a geophysical investigation was performed in 2023 to support further evaluation of cover degradation conditions. Multiple methods of nonintrusive geophysical techniques were implemented to analyze the subsurface tailings, radon attenuation barrier, and the common fill layer for potential void spaces. Initial findings did not indicate the potential for significant void spaces to be present. Based on the results of the recent inspection and currently available information, the disposal cell cover continues to function as designed.

3.4.2.2 Containment Dam

The disposal cell was constructed during mill operations by damming the head of a natural drainage basin. The face of the earthen containment dam has a 20% slope and is riprap armored to prevent erosion and degradation. Large-diameter riprap was used to protect the spillway in the central portion of the containment dam where precipitation runoff would discharge from the disposal cell cover. Native vegetation is well-established on the spillway face, which is desirable for increasing the erosion protection of the surface. A potential stormwater flow path was observed during the 2022 inspection on the northern and southern edge of the spillway where the armored spillway and armored containment dam meet. Inspectors visually inspected the spillway during the 2024 annual inspection, and the stormwater pathways do not appear to affect the integrity of the spillway. Maintenance is not needed at this time.

A geotechnical investigation was performed by USACE in September 2022 to characterize surface and subsurface erosion along a transect of the containment dam side slope. This effort was in support of an AS&T project to characterize and inform erosion risks across the LM portfolio. During this investigation, five erosional piping features were identified in an observation area focused near the riprap spillway on the western side slope. These features are difficult to characterize, and the longest piping feature extended roughly 5 ft into the side slope. No defined sediment outlets or evidence that mill tailings have been exposed or mobilized were identified. To monitor the above-stated observations, LM approved the use of annual terrestrial light detection and ranging (lidar) scanning of the riprap-covered side slope, which was conducted for the first time in March 2024. The analysis of data from the 2024 terrestrial lidar scanning is in progress. Any indications of erosion, settlement, mounding, or other modifying processes that might affect the integrity of the containment dam will be compared to previous 2022 baseline aerial survey lidar for changes in topographical conditions. If any changes are detected, further monitoring will be conducted to assess the condition. As of the March 2024 inspection, the performance of the disposal cell side slope is functioning as designed. No maintenance needs were identified.

3.4.2.3 Diversion Channels

The surface water diversion system consists primarily of the east, north, and south channels that divert runoff water away from the disposal cell. The system is designed to accommodate probable maximum flood discharges. Cutoff walls composed of large-diameter riprap were constructed at the outlet of each channel. The cutoff walls are designed to prevent headward erosion into the diversion channels that could eventually impact the disposal cell. Runoff from an upgradient watershed east of the disposal cell is designed to be conveyed away from the site to a northeastward-flowing drainage via the east channel. The east channel is separated from the disposal cell by a dike that serves as an onsite access road. Gullies are present along the east slope of the east channel, but the erosion and sediment deposition are not impairing the function of the east-channel. Runoff flow in the channel could potentially erode the adjacent weathered shale and fill materials and thus bypass the cutoff wall, causing headward erosion into the channel. This feature will continue to be monitored. The east channel was dry at the time of the inspection.

A tributary channel (G3) was constructed to divert runoff from a smaller watershed into the east channel. The erosion and sediment deposition are not impairing the function of the channel.

Some erosion was also observed in a watershed that encompasses the southeast portion of the site and adjacent property. Stormwater runoff from this watershed discharges into a sediment trap where the sediment load settles out. If runoff overtops the sediment trap, the flow is diverted to the east channel. Standing water was observed in the sediment trap at the time of the inspection (PL-12).

Since the completion of site reclamation, multiple high-intensity storms have caused deep gullies to form in the highly erodible soils and fill materials upgradient of the sediment trap. Construction of runoff control structures to reduce the rate of erosion in the area and prevent headward migration of gullies into adjoining private property was completed in December 2009. Runoff from a storm event in September 2011 overtopped an earthen runoff control berm of Runoff Control Structure A and caused substantial damage to the berm. Subsequent runoff events have caused erosion adjacent to gabion drop structures associated with Runoff Control Structure A near Runoff Control Structure D. Because of continued excessive erosion, an interagency agreement was established with USACE to repair these structures and construct additional structures in the watershed. Runoff water from the area north of the disposal cell is captured by the north channel. The water is diverted away from the site to the west. Deep gullies had formed in the alluvium and weathered shale along a portion of the north bank of the channel, and headward erosion was rapidly migrating to the north toward the site access road and property boundary. The eroded channel bank was restored to the original design configuration, and two runoff control structures were constructed in 2009 to reduce erosion and sedimentation. Runoff Control Structure F is showing signs of undermining erosion but was stable and functional at the time of the inspection (PL-13). However, Runoff Control Structure G suffered severe erosion during runoff events in August and September 2011 and continues to erode (PL-14). Runoff Control Structure A is experiencing gully erosion (PL-15) and undermining at portions of the gabion block sections (PL-16), and it is likely that continued erosion will lead to failure of the structure. DOE will continue to monitor these structures and, as part of the interagency agreement, USACE will complete a design for repairs and modifications to these structures.

The north channel cutoff wall does not extend to the toe of the containment dam slope, allowing runoff to bypass the cutoff wall; minimal erosion in the form of rills has occurred at this location. This area will continue to be monitored for erosion and other impacts to the north channel and containment dam.

The east channel diverts stormwater runoff from the G3 channel and higher terrain immediately east of the disposal cell toward the sediment trap to the south. A northern riprap cutoff wall exists to inhibit erosion and sedimentation north of the east channel northern cutoff wall. Minimal erosion in the form of rills has occurred at this location.

The south channel diverts stormwater runoff from higher terrain immediately south of the disposal cell toward the channel outlet to the west. Two riprap structures are on the north-facing slope (south bank) to inhibit erosion along natural drainage swales. Erosion is occurring on the unprotected slope surfaces, resulting in sediment accumulation in the south channel. The erosion and sediment deposition are not impairing the function of the south channel. Erosion headcutting that has migrated to the edge of the riprap cutoff wall at the outlet of the channel was monitored during the inspection. The cutoff wall is functioning as designed and will continue to be monitored (PL-17).

Erosion in diversion channels and other features will continue to be monitored through aerial and terrestrial surveys using photogrammetry and lidar. A baseline aerial survey was conducted in 2018 using photogrammetry to obtain accurate site topography for future comparison. The most recent aerial survey was conducted in November 2022.

3.4.2.4 Site Perimeter, Outlying Areas, and Balance of the Site

The site is surrounded by open private land that is used primarily for grazing. Uranium mine reclamation activities occur periodically, and access road repairs have occurred in recent years in areas adjacent to the site. These activities have not been detrimental to site security.

The access road to monitoring well 100 in the southwest corner of the site is damaged by subsurface erosion (soil piping) near the head of an arroyo. The affected area has been mapped, metal fence posts have been installed next to soil collapse features, and the information has been identified on the inspection and sampling maps to prevent injury or vehicle damage. Consequently, monitoring well 100 is accessed by foot or all-terrain vehicle during sampling events. The arroyo system that limits access to monitoring well 100 presents a potential major risk to the disposal cell. This arroyo is over 100 ft wide in places and 10 to 20 ft deep (PL-18). It is headcutting in a northeast trajectory toward the western side slope of the disposal cell (PL-19). LM has begun to track the yearly erosion rate via satellite imagery. At this time, no maintenance actions are needed.

A Tres Hermanos Sandstone unit of the Mancos Shale crops out in the southwest corner of the site. This unit is reported to be hydraulically connected to contaminated groundwater under the disposal cell, and the outcrop is considered a potential evapotranspiration area. The outcrop was dry at the time of the inspection, and there is no evidence that seepage has occurred (PL-20). This location will continue to be monitored for seepage and recommended for sampling if seep water is present.

Several legacy features, including concrete pads (e.g., a large pad covers the mine shaft) and abandoned sewer manholes, are near the southeast corner of the site. These features were observed as stable and secure and do not require attention at this time. These features will continue to be monitored to ensure that they do not present a safety hazard and continue to prevent access to the underground mine structures.

3.5 Follow-Up Inspections

LM will conduct follow-up inspections if (1) a condition is identified during the annual inspection or other site visit that requires a return to the site to evaluate the condition or (2) LM is notified by a citizen or outside agency that conditions at the site are substantially changed.

3.6 Routine Maintenance and Emergency Measures

LM requested design and construction support for ongoing road repair needs from the USACE Albuquerque District. The work included maintenance and repairs to existing off-cell locations to repair the existing two-track perimeter at 10 road and ditch sections, one eroded bank area, one soil stockpile site, and one contractor staging area. Work included grading, V-ditch construction, riprap revetment construction, placement of articulated concrete mat, culvert construction, and incidental related work with the total disturbed area estimated to be 1.29 acres. This work was completed in 2024.

LM also completed the following maintenance in 2024:

- Extended the fence vertically between perimeter signs P28 and P29 due to sedimentation
- Extended areas of the fence vertically between perimeter signs P24 and P25 to keep livestock out
- Repaired the fence near perimeter sign P28
- Replaced the cracked concrete well pad for monitoring well 63 with new concrete
- Replaced perimeter sign P32
- Performed minor road repairs
- Performed culvert maintenance

Emergency measures are corrective actions that LM will take in response to unusual damage or disruption that threatens or compromises site health and safety, security, integrity, or compliance with 40 CFR 192. No emergency measures were identified.

3.7 Environmental Monitoring

3.7.1 Groundwater Monitoring

In accordance with the LTSP, groundwater monitoring is required at the site once every 3 years. The monitoring network consists of 10 LM wells on or adjacent to the site and two Moquino Water Users Association wells approximately 2 miles west of the site in the village of Moquino. Table 3-2 lists these wells along with their network application as defined in the LTSP.

Corresponding locations are shown in Figure 3-2. All monitoring wells are screened within the First Tres Hermanos Sandstone, which is the uppermost permeable unit within the Mancos Shale beneath the site.

The most recent routine triannual sampling event was conducted on November 2, 2022.

In November 2023, easternmost wells 17B, 72, and 29A (background) were sampled to confirm results for this region after the triannual sampling event in 2022 showed concentrations of sulfate and TDS in exceedance of state-approved background levels (4000 and 5880 mg/L, respectively). Although not explicitly required by the LTSP (no ACLs or AASs were exceeded), LM conducted this supplemental sampling as a best management practice given exceedances of state standards at POE well 72. An evaluation of the 2023 results in comparison to the 2022 results and an updated analysis of corresponding groundwater flow patterns and trends in water quality are provided below.

Monitoring Well	Network Application ^a		
1A	POC source zone well		
17B	POC source zone well		
29A	Background well		
61	Seepage indicator well		
62	Seepage indicator well; affected area well		
63	POE; seepage indicator well		
69	POC source zone well		
72	POE well on east property boundary		
81	POC source zone well		
100	POE well on west property boundary		
Moquino New ^b	Public water supply well in Moquino		
Moquino Old ^c	Backup public water supply well in Moquino		

Table 3-2. Groundwater Monitoring Network for the L-Bar, New Mexico, Disposal Site

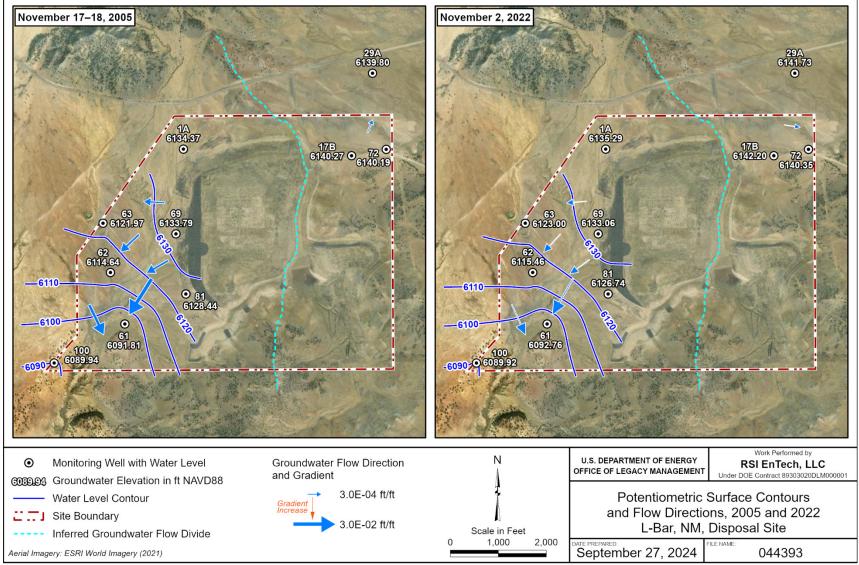
Notes:

^a The four POC wells are within the source zone; the three POE wells are on the property boundary. The source zone and the affected area are shown in Figure 3-2 of the LTSP (DOE 2004).

^b The Moquino New well has been sampled four times: in 2005, 2007, 2013, and 2022. LM was unable to access this well in 2016 and 2019.

^c The backup water supply well (Moquino Old) has never been sampled by LM, initially because of inability to access the well and more recently because the well is no longer operational.

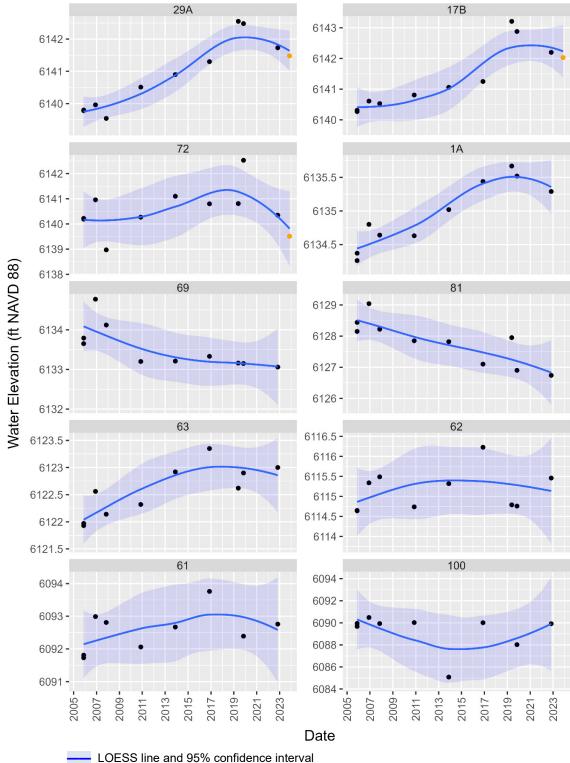
Abbreviation:


POC = point of compliance

3.7.1.1 Groundwater Elevation Monitoring

Previous groundwater-level elevation evaluations for the L-Bar site (Kennecott 1996) showed that groundwater generally flowed to the southwest on the western side of the former tailings impoundment. Three-point vector analysis using 2005 and 2022 water-level elevations show that groundwater still generally flows to the southwest on the western side of the disposal cell, which was constructed over the former tailings impoundment (Figure 3-3).

On the eastern side of the disposal cell, one three-point vector was calculated using the only three wells at this location: wells 72, 17B, and 29A. The three-point vector at this location shows groundwater generally flowing to the northeast. The 180-degree difference in horizontal flow direction between wells on opposite sides of the disposal cell suggests the presence of a groundwater divide somewhere between the two groups of wells (Figure 3-3). Horizontal hydraulic gradients at the site range from 3.0×10^{-4} ft/ft relative to up to 0.03 ft/ft.


In general, groundwater levels have been relatively stable in L-Bar site monitoring wells (Figure 3-4). Water levels increased by as much as 2 ft in wells 72, 17B, and 29A northeast of the cell from 2005 to 2019, then began decreasing after 2019. Water levels in wells 69 and 81 at the western edge of the disposal cell have decreased as much as 2 ft from 2005 to 2022. The localized groundwater elevation declines immediately downgradient from the western cell embankment indicate a potential reduction in the rate of gravity drainage of tailings fluid from the disposal cell.

Notes: Because wells are monitored triennially (last routine sampling conducted in 2022), this figure duplicates the potentiometric surface presented in the previous annual report (DOE 2023). Groundwater elevations measured at the three wells sampled in November 2023 (nonroutine event) were 6142.03 ft (well 17B), 6141.48 ft (well 29A), and 6139.51 ft (well 72).

Abbreviation: NAVD 88 = North American Vertical Datum of 1988

Figure 3-3. Potentiometric Contours and Groundwater Flow Directions in the First Tres Hermanos Sandstone in 2005 and 2022

• November 15, 2023, groundwater elevation (nonroutine monitoring)

Notes: Because of the approximate 60 ft range in groundwater elevations across site wells (highest in well 17B at 6143 ft NAVD 88 and lowest in well 100 at 6085 ft NAVD 88), y-axis scales are unique to facilitate interpretation of water elevation trends. Data for background well 29A are plotted first; plots for remaining wells are shown in approximate order of decreasing average groundwater elevations. **Abbreviation:** NAVD 88 = North American Vertical Datum of 1988

Figure 3-4. Groundwater Elevation Trends in L-Bar Monitoring Wells, 2005–2023

3.7.1.2 Groundwater Quality Monitoring

Samples collected during the last routine (November 2022) sampling event were analyzed for chloride, nitrate, selenium, sulfate, TDS, and uranium. The same suite of constituents was also analyzed in samples collected from the three easternmost monitoring locations—point of compliance (POC) well 17B, POE well 72, and background well 29A—during the November 2023 nonroutine event. Analytical results are measured in milligrams per liter (mg/L) and compared to the LTSP-required concentration limits listed in Table 3-3 that consist of ACLs granted by NRC and AASs stipulated by NMED. By definition, ACLs are applied to the four POC wells (1A, 17B, 69, and 81) shown in Figure 3-2; these wells also constitute the source zone wells.

Analyte	State of New Mexico Standardª	ACL (POC Wells)⁵	AAS Source Zone (POC Wells) ^b	AAS Affected Area (Well 62)
Chloride (mg/L)	250	NA	1127	NA
Nitrate (mg/L)	10.0	NA	1180	NA
Selenium (mg/L)	0.05	2.0	2.0	NA
Sulfate (mg/L)	4000° (600)	NA	13,110	5185
TDS (mg/L)	5880° (1000)	NA	20,165	7846
Uranium (mg/L)	0.03 ^d	13.0	13.0	NA

 Table 3-3. Groundwater Alternate Concentration Limits and Alternative Abatement Standards for the L-Bar, New Mexico, Disposal Site

Notes:

^a https://www.env.nm.gov/wp-content/uploads/sites/27/2016/06/20.6.2.pdf.

^b ACLs and source zone AASs apply only to the four POC wells (1A, 17B, 69, and 81).

^c Background value approved by the State of New Mexico for the L-Bar site (for sulfate and TDS); corresponding current state standards are listed in parentheses.

^d The LTSP listed the former State of New Mexico standard of 5.0 mg/L.

Abbreviation:

NA = not applicable

The LTSP states that if an ACL or AAS is exceeded in any monitoring well, LM will inform NRC of the exceedance and conduct confirmatory sampling. If confirmatory sampling verifies the exceedance, LM will develop an evaluative monitoring work plan and submit that plan to NRC for review before initiating the evaluative monitoring program. Results of the evaluative monitoring program will be used, in consultation with NRC, to determine if corrective action is necessary (DOE 2004).

ACLs require both POC and POE locations, with the ACL being applied to the POC and applicable groundwater standards or background concentrations being applied to the POE. While not explicitly stated in the LTSP, by extension, POE exceedances also require verification monitoring and, if the exceedance is confirmed, reporting of the results to NRC.

Groundwater monitoring results for the November 2022 and 2023 sampling events are listed in Table 3-4. For the three wells sampled during the November 2023 nonroutine event, both 2022 and 2023 results are listed. All historical groundwater monitoring results for the site are reported and published on the LM Geospatial Environmental Mapping System (GEMS) website at https://gems.lm.doe.gov. The requirements for annual groundwater monitoring stipulated in the LTSP were met in 2007, when the sampling frequency changed to once every 3 years. In accordance with the LTSP, groundwater monitoring will continue for as long as groundwater contamination, defined as exceeding New Mexico standards or background concentrations (Table 3-4), is present at the site (DOE 2004).

Monitoring			Analyte	(mg/L) ^{a,b}				
Well	Chloride	Nitrate ^c	Selenium	Sulfate	TDS	Uranium		
	Applicable Standards							
State of New Mexico	250.0	10.0	0.05	4000 ^d	5880 ^d	0.03		
POC wells	1127	1180	2.0	13,110	20,165	13.0		
Affected area wells				5185	7846			
		POC Sour	ce Zone Wells					
1A	294	0.144	ND	3480	6420	0.0034		
17B (2022) (2023)	283 288	838 880	0.26 0.25	4630 4400	12,100 12,700	0.032 0.033		
69	675	ND	ND	8010	16,400	1.55		
81	154	28.8	0.072	4090	7360	0.017		
		Affecte	d Area Well					
62	51.4	ND	ND	534	1540	ND		
		PO	E Wells					
63	49	ND	ND	487	1420	ND		
72 (2022) (2023)	182 243	9.88 8.35	0.032 0.022	4820 6080	7820 7360	0.017 0.016		
100	38.5	0.227	ND	2160	3570	0.0014		
		Remai	ning Wells		•			
29A (2022) (2023)	183 221	ND	ND	5280 4880	7970 8470	ND		
61	98.6	0.0696	ND	3120	5090	ND		
63	49.4	ND	ND	487	1420	ND		
Moquino New	6.3	0.164	ND	102	454	ND		

Table 3-4. November 2022 and 2023 Groundwater Monitoring Results
for the L-Bar, New Mexico, Disposal Site ^a

Notes:

^a Results shown are for November 2022 except where indicated. Results are rounded to the number of significant figures in the corresponding applicable standards (from Table 3-3). Detection limit values for ND results are reported in GEMS, as are corresponding data qualifiers and the results of duplicate analyses; the original sample results are reported above.

^b *Italicized* results exceed the corresponding State of New Mexico standard.

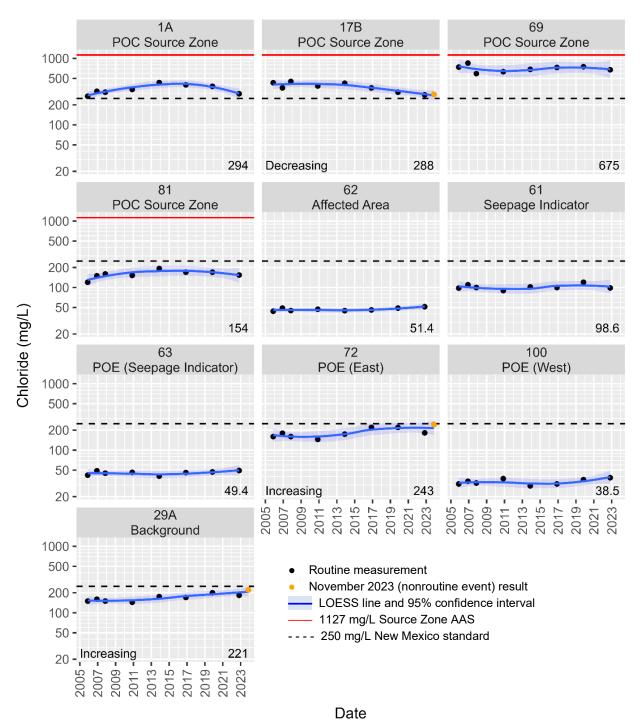
^c Nitrate plus nitrite as nitrogen (NO₃ + NO₂ as N).

^d State-approved background levels from Table 3-3 warrant comparison with results from background well 29A.

Abbreviation:

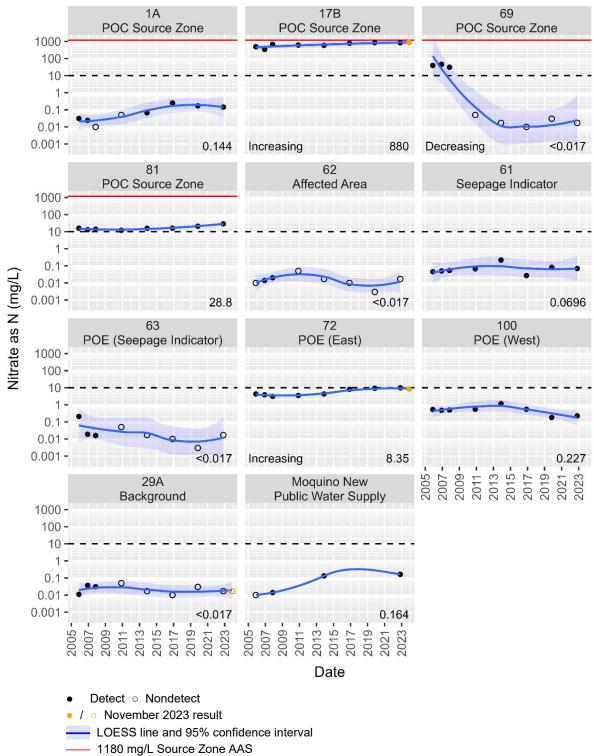
ND = not detected (below laboratory detection limit)

Figure 3-5 through Figure 3-10 plot results for the six analytes from 2005–2023 relative to the limits and standards listed in Table 3-3. For most wells, the data shown are the same as those included in the previous annual report (DOE 2023). For the three wells where nonroutine samples were collected in 2023 (17B, 72, and 29A), results from that event are denoted with a distinct (•) symbol.


Although the focus of the monitoring program is to demonstrate compliance with LTSP requirements (i.e., to ensure that no ACL or AAS source zone levels are exceeded), results are also plotted relative to corresponding New Mexico standards to facilitate review. Since sampling commenced in 2005, no ACL or AAS source zone levels have been exceeded in any of the POC wells, and no AAS affected area levels have been exceeded in monitoring well 62.

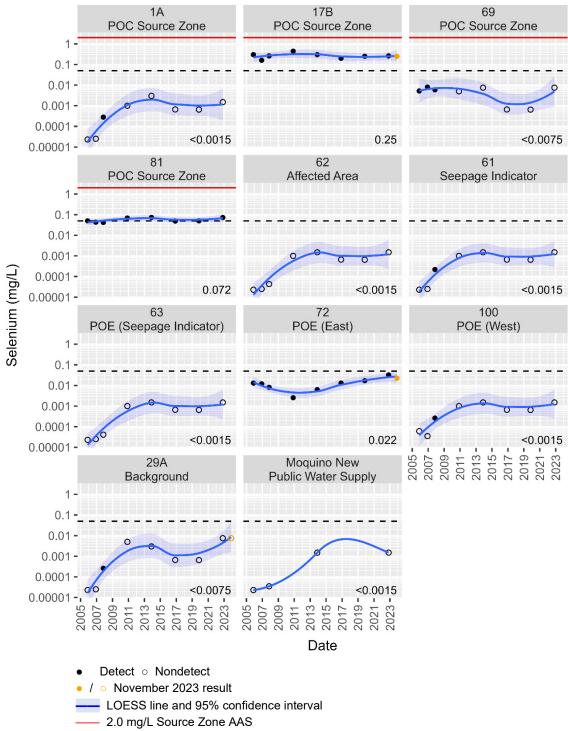
The time-concentration plots provided in this section were generated using a faceting approach, whereby data for each well are plotted separately. A nonparametric locally estimated scatterplot smoothing (LOESS) method is applied to facilitate interpretation of the figures. Using this approach, overall trends in the data are more apparent and not obscured by "noise" or random variation. In each of these figures, wells are ordered by purpose: POC source zone wells are listed first, followed by affected area seepage indicator well 62 and remaining indicator and POE wells. Data for background well 29A and (for most parameters) the Moquino New public water supply well are plotted last.

To support interpretation of these figures, Mann-Kendall trend analysis was performed for each well-parameter combination to characterize whether trends in analyte concentrations are upward, stable (no trend), or declining. Detailed trend analysis results are provided in Table 3-5. For most (49 of 60) well-parameter combinations that were evaluated, no statistically significant increasing or decreasing trend was found. Exceptions to the latter are identified in Figure 3-5 through Figure 3-9 and that information is discussed below.


Chloride concentrations in POC source zone wells 1A, 17B, and 69 continue to exceed the 250 mg/L State of New Mexico standard but are below the corresponding 1127 mg/L AAS (Figure 3-5). The highest chloride concentrations have been measured in well 69 (590–850 mg/L). Chloride concentrations have decreased significantly in well 17B, from a maximum of 450 mg/L in 2007 to about 280–290 mg/L in 2022 and 2023, slightly exceeding the 250 mg/L standard. Chloride concentrations in the remaining wells, including the remaining POC well (81) and the three POE locations, have been consistently below the state standard. As found for background well 29A, chloride concentrations in POE well 72 have a statistically significant increasing trend and are approaching the 250 mg/L state standard. At both locations, temporal chloride concentrations have been similar (Figure 3-5) and the November 2023 result was the highest on record (221 and 243 mg/L at wells 29A and 72, respectively).

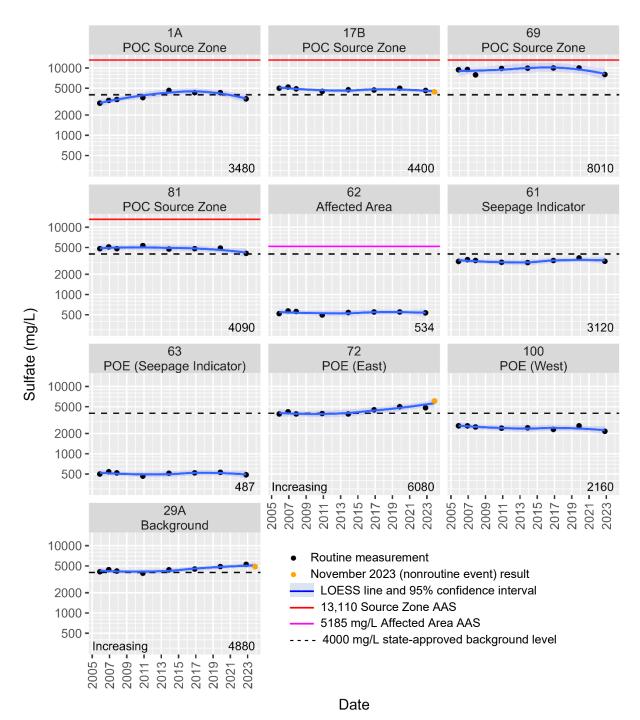
Nitrate (+ nitrite as nitrogen [N]) concentrations have exceeded the 10.0 mg/L State of New Mexico standard in only three wells: POC zone wells 17B, 69, and 81 (Figure 3-6). The highest nitrate concentrations have been measured in well 17B (340–880 mg/L) and, based on Mann-Kendall trend analysis, have a significant increasing trend (Table 3-5). The most recent (2023) measurement (880 mg/L) is the highest on record for this well. Although below the 1180 mg/L AAS, if the increasing trend continues, the AAS could be met or potentially exceeded. Nitrate concentrations in POC source zone well 81 have remained at levels slightly exceeding the 10 mg/L standard but well below the 1180 mg/L AAS.

Notes: The most recent (2022 or 2023) results are labeled in the lower right corner of each plot. For wells with statistically significant trends (see Table 3-5), the direction of the trend is also indicated. Data are not plotted for the Moquino New public water supply well because the historically low chloride concentrations (3.9–6.4 mg/L) affect the scaling of this figure. The most recent chloride result in the Moquino New well was 6.3 mg/L (Table 3-4).


Figure 3-5. Chloride Concentrations in Groundwater at the L-Bar Disposal Site, 2005–2023

---- 10.0 mg/L New Mexico standard

Notes: The most recent (2022 or 2023) results are labeled in the lower right corner of each plot. For wells with statistically significant trends (Table 3-5), the direction of the trend is also indicated.


Figure 3-6. Nitrate Concentrations in Groundwater at the L-Bar Disposal Site, 2005–2023

---- 0.05 mg/L New Mexico standard

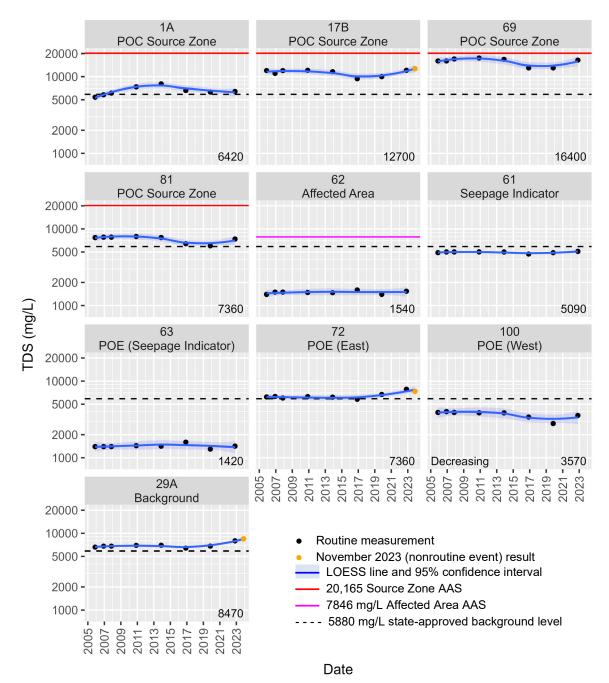

Notes: The most recent (2022 or 2023) results are labeled in the lower right corner of each plot. For all wells, no statistically significant trend in selenium concentrations was found based on Mann-Kendall trend analysis (Table 3-5); most wells have a high proportion of nondetects.

Figure 3-7. Selenium Concentrations in Groundwater at the L-Bar Disposal Site, 2005–2023

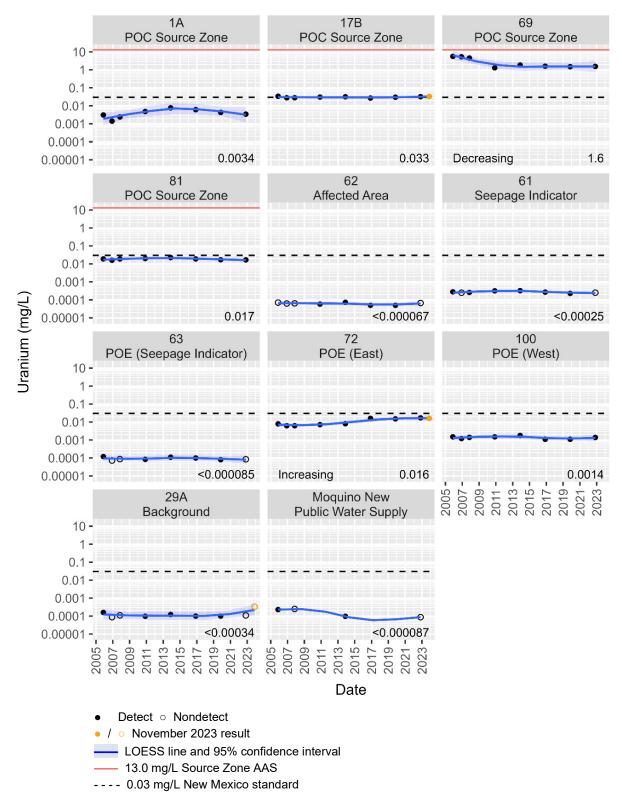
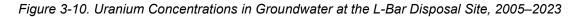

Notes: The most recent (2022 or 2023) results are labeled in the lower right corner of each plot. For wells with statistically significant trends (Table 3-5), the direction of the trend is also indicated. Data are not plotted for the Moquino New public water supply well because the historically low sulfate concentrations (91.9–120 mg/L) affect the scaling of this figure. The most recent sulfate result in the Moquino New well was 100 mg/L (Table 3-4).

Figure 3-8. Sulfate Concentrations in Groundwater at the L-Bar Disposal Site, 2005–2023



Notes: The most recent (2022 or 2023) results are labeled in the lower right corner of each plot. For wells with statistically significant trends (Table 3-5), the direction of the trend is also indicated. Data are not plotted for the Moquino New public water supply well because the historically low TDS concentrations (454–530 mg/L) affect the scaling of this figure. The most recent TDS result in the Moquino New well was 454 mg/L (Table 3-4).

Figure 3-9. TDS Concentrations in Groundwater at the L-Bar Disposal Site, 2005–2023

Notes: The most recent (2022 or 2023) results are labeled in the lower right corner of each plot. For wells with statistically significant trends (Table 3-5), the direction of the trend is also indicated.

Well ^b	Initial Trend Analysis Date	Final Trend Analysis Date	Number of Samples	Number of Nondetects	Kendall's tau ^c	p-value ^d	Trend ^{c,d}	
	Chloride							
1A	11/17/2005	11/02/2022	8	0	0.28	0.39	No Trend	
17B	11/18/2005	11/15/2023	9	0	-0.65	0.021	Decreasing	
69	11/17/2005	11/02/2022	8	0	0.00	1.0	No Trend	
81	11/17/2005	11/02/2022	8	0	0.47	0.13	No Trend	
62	11/17/2005	11/02/2022	8	0	0.47	0.13	No Trend	
61	11/17/2005	11/02/2022	8	0	0.11	0.80	No Trend	
63	11/17/2005	11/02/2022	8	0	0.36	0.26	No Trend	
72	11/18/2005	11/15/2023	9	0	0.57	0.045	Increasing	
100	11/17/2005	11/02/2022	8	0	0.33	0.32	No Trend	
29A	11/18/2005	11/15/2023	9	0	0.65	0.021	Increasing	
			Nitrate + N	itrite as N			-	
1A	11/17/2005	11/02/2022	8	2	0.46	0.13	No Trend	
17B	11/18/2005	11/15/2023	9	0	0.72	0.009	Increasing	
69	11/17/2005	11/02/2022	8	5	-0.57	0.044	Decreasing	
81	11/17/2005	11/02/2022	8	0	0.54	0.081	No Trend	
62	11/17/2005	11/02/2022	8	6	-0.11	0.77	No Trend	
61	11/17/2005	11/02/2022	8	0	0.43	0.17	No Trend	
63	11/17/2005	11/02/2022	8	5	-0.33	0.07	No Trend	
72	11/18/2005	11/15/2023	9	0	0.61	0.028	Increasing	
100	11/17/2005	11/02/2022	8	0	-0.11	0.80	No Trend	
29A	11/18/2005	11/15/2023	9	6	-0.28	0.28	No Trend	
	•		Seler	nium				
1A	11/17/2005	11/02/2022	8	7	0.07	0.87	No Trend	
17B	11/18/2005	11/15/2023	9	0	-0.17	0.60	No Trend	
69	11/17/2005	11/02/2022	8	5	-0.36	0.21	No Trend	
81	11/17/2005	11/02/2022	8	0	0.33	0.32	No Trend	
62	11/17/2005	11/02/2022	8	8	N	A (all results	BDL)	
61	11/17/2005	11/02/2022	8	7	0.07	0.87	No Trend	
63	11/17/2005	11/02/2022	8	8	NA (all results BDL)		BDL)	
72	11/18/2005	11/15/2023	9	0	0.42	0.14	No Trend	
100	11/17/2005	11/02/2022	8	7	0.07	0.87	No Trend	
29A	11/18/2005	11/15/2023	9	8	0.06	0.90	No Trend	
			Sulf	ate				
1A	11/17/2005	11/02/2022	8	0	0.54	0.081	No Trend	
17B	11/18/2005	11/15/2023	9	0	-0.54	0.059	No Trend	
69	11/17/2005	11/02/2022	8	0	0.40	0.21	No Trend	
81	11/17/2005	11/02/2022	8	0	-0.26	0.44	No Trend	
62	11/17/2005	11/02/2022	8	0	-0.11	0.80	No Trend	
61	11/17/2005	11/02/2022	8	0	0.04	1.0	No Trend	

Well ^b	Initial Trend Analysis Date	Final Trend Analysis Date	Number of Samples	Number of Nondetects	Kendall's tau ^c	p-value ^d	Trend ^{c,d}
Sulfate (continued)							
63	11/17/2005	11/02/2022	8	0	-0.04	1.0	No Trend
72	11/18/2005	11/15/2023	9	0	0.67	0.019	Increasing
100	11/17/2005	11/02/2022	8	0	-0.57	0.075	No Trend
29A	11/18/2005	11/15/2023	9	0	0.61	0.028	Increasing
			TD	S			
1A	11/17/2005	11/02/2022	8	0	0.43	0.17	No Trend
17B	11/18/2005	11/15/2023	9	0	0.17	0.60	No Trend
69	11/17/2005	11/02/2022	8	0	-0.15	0.71	No Trend
81	11/17/2005	11/02/2022	8	0	-0.40	0.21	No Trend
62	11/17/2005	11/02/2022	8	0	0.15	0.71	No Trend
61	11/17/2005	11/02/2022	8	0	0.07	0.90	No Trend
63	11/17/2005	11/02/2022	8	0	0.23	0.52	No Trend
72	11/18/2005	11/15/2023	9	0	0.33	0.25	No Trend
100	11/17/2005	11/02/2022	8	0	-0.76	0.013	Decreasing
29A	11/18/2005	11/15/2023	9	0	0.55	0.055	No Trend
			Uran	ium			
1A	11/17/2005	11/02/2022	8	0	0.28	0.39	No Trend
17B	11/18/2005	11/15/2023	9	0	0.20	0.53	No Trend
69	11/17/2005	11/02/2022	8	0	-0.64	0.035	Decreasing
81	11/17/2005	11/02/2022	8	0	-0.11	0.80	No Trend
62	11/17/2005	11/02/2022	8	4	-0.04	1.0	No Trend
61	11/17/2005	11/02/2022	8	2	-0.18	0.61	No Trend
63	11/17/2005	11/02/2022	8	3	-0.18	0.60	No Trend
72	11/18/2005	11/15/2023	9	0	0.68	0.015	Increasing
100	11/17/2005	11/02/2022	8	0	-0.22	0.53	No Trend
29A	11/18/2005	11/15/2023	9	4	-0.06	0.91	No Trend

Table 3 5. Trend Analysis Results for Analytes in L-Bar Site Monitoring Wells, 2005–2023^a (continued)

Notes:

^a Trend analyses were conducted at the 0.05 significance (or alpha) level using a two-sided test. For well-analyte combinations with no nondetects, trend analyses were conducted using the Kendall package in R, version 2.2.1 (McLeod 2022). For parameters with nondetect results, trend analyses were conducted using the NADA package (Lee 2020).

^b Wells are listed in the order shown in the preceding figures. POC wells are listed first, followed by affected area and seepage indicator wells, POE wells, and background well 29A.

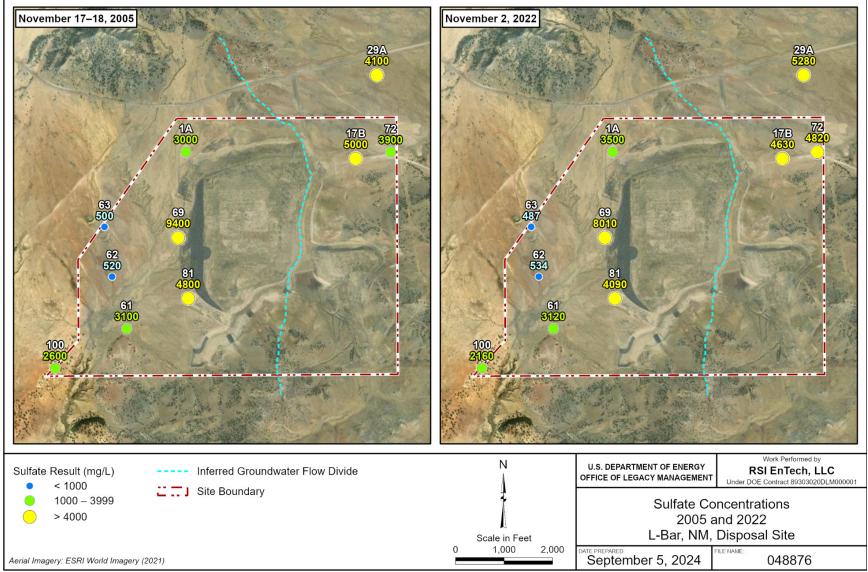
^c The test statistic Kendall's tau is a measure of the strength of the association between two variables, with values always falling between −1 and +1. A tau value of 1.0 corresponds to a perfect strong association between the time series, indicating a significant increasing trend. Conversely, a perfect association in the negative direction (for decreasing trends) will have a tau value of −1.0. Time-series data with no statistically significant trend will have a tau value closer to 0.0.

^d A calculated p-value of <0.05 indicates that the null hypothesis is rejected and a significant trend in the time series exists.

Abbreviations:

BDL = below detection limit

NA = not applicable (trend analysis results are not meaningful given the high proportion of nondetects)


Nitrate concentrations are increasing in POC well 81, having more than doubled since 2010 (from 12.2 mg/L to a maximum of 28.8 mg/L in 2022), but the trend is not significant. Nitrate levels in POC source zone well 69 exceeded the 10 mg/L standard between 2005 and 2007 (31–46 mg/L), but then declined to nondetectable levels (≤ 0.05 mg/L) (Figure 3-6). In addition to POC well 17B, a statistically significant increasing trend in nitrate concentrations was also found for eastern POE well 72 (Table 3-5), where the November 2022 result (9.88 mg/L) was approximately equal to the 10.0 mg/L State of New Mexico standard. Although the most recent nonroutine (2023) measurement declined somewhat (to 8.35 mg/L), if the increasing concentration trend continues, the State of New Mexico nitrate standard will soon be exceeded.

Selenium concentrations in POC source zone wells have been consistently below the corresponding 2.0 mg/L ACL and AAS (Figure 3-7). Except for POC wells 17B and 81 (0.16–0.44 and 0.042–0.073 mg/L, respectively), selenium concentrations in all site monitoring wells have also been below the 0.05 mg/L New Mexico standard. Results for most remaining wells have been below the detection limit. An exception is POE well 72, where selenium concentrations are approaching the 0.05 mg/L standard; the most recent (2023) result was 0.022 mg/L. Although concentrations in this well are trending upward (as indicated by a positive tau value), the trend (as true for all site wells) is not statistically significant (Table 3-5).

Sulfate concentrations in the four POC source zone wells continue to be below the corresponding 13,110 mg/L AAS. The highest concentrations (7900–10,000 mg/L) have been measured in well 69. Sulfate concentrations in remaining POC source zone wells (1A, 17B, and 81) are comparable to (usually just slightly exceeding) the 4000 mg/L state-approved background level (Figure 3-8). Sulfate concentrations in AAS affected area well 62 (496–570 mg/L) have been well below the corresponding AAS of 5185 mg/L. Similar levels have been measured in POE seepage indicator well 63 (Figure 3-8). Concentrations in seepage indicator well 61 have been higher (2980–3500 mg/L) but stable (non-trending) at levels just below 4000 mg/L.

Sulfate concentrations in all wells are non-trending except for easternmost wells 72 (POE) and 29A (background). Sulfate concentrations in POE well 72 have exceeded the 4000 mg/L standard since 2016 (4500–6080 mg/L) and have a statistically significant increasing trend (Table 3-5). A significant increasing trend is also found for background well 29A, where sulfate concentrations have exceeded the state-approved background level in all but one sample, with the maximum (5280 mg/L) measured in November 2022. The most recent (nonroutine) 2023 result was 4880 mg/L, also exceeding the state-approved background level. As shown in Figure 3-8, sulfate concentrations in POE well 72 are very similar to those measured in well 29A. Both wells have concentrations now exceeding those measured in upgradient POC well 17B.

Figure 3-11 was developed to satisfy a requirement in Section 3.7.1 of the LTSP, which states that annual inspection reports are to include a groundwater level contour map (provided in Figure 3-3) and a sulfate isoconcentration map for the years that sampling has been conducted (DOE 2004). As discussed in previous annual reports (DOE 2023), bubble plot maps for sulfate were generated in lieu of isoconcentration maps because of the limited number of well locations. No water quality measurements have been taken directly beneath the tailings impoundment, so interpolated isoconcentrations would likely not be representative of site conditions.

Notes: Because wells are monitored triennially (last routine sampling conducted in 2022), this figure duplicates that presented in the previous annual report (DOE 2023). For the three wells sampled in November 2023 (nonroutine event), sulfate results were as follows: 4400 mg/L at well 17B, 6080 mg/L at well 72 (duplicate result of 5060 mg/L), and 4880 mg/L at offsite background well 29A.

Figure 3-11. Sulfate Concentrations in 2005 and 2022, L-Bar Site Monitoring Wells

All site monitoring wells are screened within the First Tres Hermanos Sandstone unit and do not represent contaminant levels in porous media above or below this stratigraphic unit. Sulfate concentrations continue to be highest in POC source zone well 69 (most recent result of 8010 mg/L). The state-approved background level is also currently exceeded in POC well 81 and the three easternmost wells: POC source zone well 17B, POE well 72, and background well 29A.

General observations for TDS in L-Bar site wells are similar to those discussed above for sulfate. TDS levels in POC source zone wells have exceeded the state-approved background level of 5880 mg/L but have been below the corresponding AAS of 20,165 mg/L (Figure 3-9). TDS concentrations have been highest in POC source zone well 69 (13,000–17,500 mg/L) and lowest in affected area well 62 (1400–1600 mg/L, below the corresponding AAS of 7846 mg/L) and POE seepage indicator well 63 (1300–1600 mg/L).

As observed for sulfate, TDS concentrations in eastern POE well 72 are similar to those in background well 29A (>5880 mg/L for the last three sampling events), and the trend in both wells is slightly increasing but not statistically significant (Table 3-5). TDS concentrations in background well 29A have exceeded 5880 mg/L in all nine samples, with a maximum of 8470 mg/L measured in November 2023 (nonroutine sampling event). Consistent with the previous annual report (DOE 2023), the only statistically significant trend in TDS concentrations was found for western POE well 100, which has a decreasing trend (Table 3-5).

Uranium concentrations in POC wells 17B and 69 were above the 0.03 mg/L State of New Mexico standard in 2022–2023 (Figure 3-10). Historically, uranium concentrations in POC source zone well 17B have remained stable at or slightly exceeding the standard (0.027–0.034 mg/L), while concentrations in well 69 have exceeded the standard by 1 to 2 orders of magnitude (1.3–5.6 mg/L). Although Mann-Kendall trend analysis yielded a statistically significant decreasing trend for well 69 from 2005–2022 (Table 3-5), concentrations have stabilized at about 1–2 mg/L since 2010 (Figure 3-10). Uranium concentrations in all POC source zone wells continue to be below the 13.0 mg/L ACL and AAS.

Uranium concentrations in eastern POE well 72, although historically below the 0.03 mg/L standard, are increasing and approaching this value (most recent result of 0.016 mg/L in 2023). If this increasing trend continues, uranium concentrations in POE well 72 may exceed the State of New Mexico standard in the future.

In summary, notable increases in chloride, sulfate, and TDS concentrations were observed for background well 29A. At this location, approved background concentrations for sulfate and TDS have been exceeded in all nine sampling events except one (sulfate in 2010). Chloride concentrations are significantly increasing and approaching the 250 mg/L state standard. These increases at background well 29A correlate with those found at POE well 72, where state-approved background values have been exceeded in five and eight (respectively) of the nine sampling events.

3.7.2 Erosion Monitoring Program

An erosion monitoring program (EMP) was developed to address potential erosion of the disposal cell cover over time and was incorporated as an LTSP requirement. Sohio Western Mining Company developed the plan at the request of the New Mexico Water Quality Control

Commission as a condition for granting AASs for groundwater at the site. In accordance with Appendix C of the LTSP, erosion measurements will be performed annually for 20 years, through 2023, and then once every 10 years for the following 80 years. In accordance with the EMP, erosion will be considered excessive when 2 ft of erosion is noted at more than half of the monitoring locations.

The cover of the disposal cell consists of several feet of clay-rich soil materials and a 4.1-foot-thick (minimum) compacted layer of clay that functions as a radon barrier. The total thickness of the cover ranges from 6–10 ft. The EMP has two requirements: (1) measure surface soil erosion and (2) measure the progress of revegetation. Erosion and vegetation monitoring was performed on July 2, 2024.

3.7.2.1 Erosion Monitoring

In accordance with the EMP, the former licensee installed a grid of 20 evenly spaced monitoring locations on the cover in November 2003 (Figure 3-1). The locations were initially measured in December 2003 by the former licensee to establish baseline values.

Each monitoring location consists of a 5-foot length of half-inch-diameter, epoxy-coated rebar surrounded by three metal T-posts. The rebar was driven at each location so that approximately 1 ft remained above the soil surface. The three T-posts are set approximately 6 ft from the rebar and form an equilateral triangle, with one point of the triangle due east of the rebar. An 8-foot length of PVC pipe was mounted over the east T-post at each monitoring location in 2016 to aid in finding the monitoring locations in the increasingly tall vegetation.

Erosion measurement is accomplished by placing a 4-foot-long level centered at the base of the rebar (and on the north side of the rebar) so the east end of the level points to the easternmost T-post. The height of the rebar is measured from the base of the level to the top of the rebar and is recorded to the nearest 1/16 inch, using the method established during baseline measurements in 2003.

Results of the 2024 measurements are presented in Table 3-6. The surface elevation has increased by 0.06–2.9 inches at the monitoring locations when compared to the baseline measurements taken in 2003. These results indicate that the surface of the disposal cell is rising compared to 2003. Since 2003, the surface has risen an average of 1.22 inches and an increase of 0.181 inches since 2024. The 0.181-inch rise since 2024 is probably because, during monitoring, soils were nearly saturated from rainfall. Cover soils are normally drier during monitoring, and heavy clay soils such as those on the disposal cell cover tend to expand when wet. The rise is probably also due mainly to accretion of soil. As vegetation develops on the disposal cell cover, the surface elevation rises through underground root growth and the accumulation of organic matter in the soil. Vegetation also prevents or slows surface erosion, and windborne sediment deposition can also increase in vegetated areas, as the plants' foliage and stems slow wind speeds, allowing sediment to accumulate more quickly.

	Lengt	Change in			
Monitoring Location	2003 (Ba	aseline)	2	024	Surface Elevation ^a Baseline to Present
	(fraction)	(decimal)	(fraction)	(decimal)	(decimal inches)
A1	12 10/16	12.625	9 11/16	9.688	2.937
A2	12 7/16	12.438	11 9/16	11.563	0.875
A3	12 15/16	12.938	12 0/16	12.000	0.938
A4	12 6/16	12.375	11 4/16	11.250	1.125
B1	12 10/16	12.625	10 14/16	10.875	1.750
B2	12 8/16	12.500	11 13/16	11.813	0.687
B3	13 0/16	13.000	12 3/16	12.188	0.812
B4	12 15/16	12.938	11 4/16	11.250	1.688
C1	12 8/16	12.500	10 6/16	10.375	2.125
C2	13 1/16	13.063	11 4/16	11.250	1.813
C3	12 2/16	12.125	12 8/16	12.500	-0.375
C4	12 6/16	12.375	12 5/16	12.313	0.062
D1	12 7/16	12.438	11 5/16	11.313	1.125
D2	12 12/16	12.750	12 7/16	12.438	0.312
D3	12 3/16	12.188	10 8/16	10.500	1.688
D4	12 12/16	12.750	12 6/16	12.375	0.375
E1	13 1/16	13.063	10 9/16	10.563	2.500
E2	12 14/16	12.875	11 12/16	11.750	1.125
E3	12 9/16	12.563	11 5/16	11.313	1.250
E4	12 15/16	12.938	11 5/16	11.313	1.625

Table 3-6. Surface Elevation Changes on the L-Bar, New Mexico, Disposal Cell CoverBetween 2003 and 2024

Note:

^a A positive change indicates that the surface elevation at that monitoring point increased; a negative change indicates that the surface elevation at that location decreased. Positive changes were apparent in 2024.

3.7.2.2 Vegetation Monitoring

Vegetation monitoring plots were established at 10 of the erosion monitoring locations to record changes in the vegetation over time. Plots were established at locations A1, A3, B2, B4, C1, C3, D2, D4, E1, and E3. At each plot, the three existing T-posts were used to form three corners of the plot, and a fourth point was projected south of the three T-posts to form a parallelogram covering approximately 100 square ft. An ecologist visually estimated the percent foliar cover of each species of live vegetation within each plot. Percent foliar cover is the vertical projection of leaf area onto the ground surface. Foliar cover would equal the shadow cast by the vegetation if the sun was directly overhead, excluding openings or overlaps in the canopy.

In accordance with the EMP, LM will perform annual vegetation monitoring until at least 20% average foliar cover is achieved, and when more than half of the monitoring plots exceed 20% cover by perennial plants. In 2024, the total foliar cover was 30 % and the average cover of perennial plants was 28%. Seven of the 10 plots contained 20% or more perennial cover. The increase in cover was probably due to higher precipitation at the site. The success criterion was

met in 2024; however additional annual monitoring will be required until we observed continued significant increase in plant density is noted during future annual site inspections.

Perennial plant species observed in the plots in 2024 include, in order of abundance: four-wing saltbush (*Atriplex canescens*), broom snakeweed (*Gutierrezia sarothrae*), and James' galleta (*Pleuraphis jamesii*), rubber rabbitbrush (*Ericameria nauseosa*), squirreltail (*Elymus elymoides*), with traces of desert globemallow (*Sphaeralcea ambigua*) and dropseed (*Sporobolus* spp.).

3.8 References

Note: Previous compliance reports and other key site-related documents are available on the LM public website at: https://lmpublicsearch.lm.doe.gov/SitePages/default.aspx?sitename=L-Bar.

10 CFR 40.28. U.S. Nuclear Regulatory Commission, "General License for Custody and Long-Term Care of Uranium or Thorium Byproduct Materials Disposal Sites," *Code of Federal Regulations*.

10 CFR 835. U.S. Department of Energy, "Occupational Radiation Protection Program," *Code of Federal Regulations*.

40 CFR 192. U.S. Environmental Protection Agency, "Health and Environmental Protection Standards for Uranium and Thorium Mill Tailings," *Code of Federal Regulations*.

DOE (U.S. Department of Energy), 2004. Long-Term Surveillance Plan for the U.S. Department of Energy L-Bar, New Mexico, (UMTRCA Title II) Disposal Site, Seboyeta, New Mexico, DOE-LM/GJ709-2004, September.

DOE (U.S. Department of Energy), 2023. 2023 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title II Disposal Sites, LMS/46122, Office of Legacy Management, December.

DOE Order 458.1 Chg 4 (LtdChg), *Radiation Protection of the Public and the Environment*, U.S. Department of Energy, September 15, 2020.

Kennecott Corporation, 1996. Final Report: Hydrogeology Investigation of the L-Bar Uranium Mill Tailings Pile, Cibola County, New Mexico, prepared by Intera Inc., December.

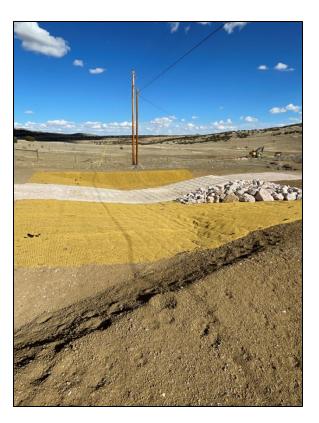
Lee, L., 2020. "NADA: Nondetects and Data Analysis for Environmental Data," R package, version 1.6-1.1, https://CRAN.R-project.org/package=NADA, accessed September 26, 2024.

McLeod, A.I., 2022. "Kendall: Kendall Rank Correlation and Mann-Kendall Trend Test," R package, version 2.2.1, https://cran.r-project.org/web/packages/Kendall/index.html, accessed September 26, 2024.

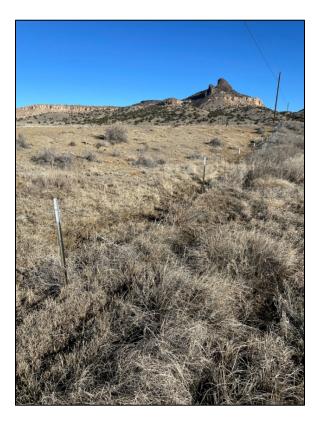
USACE (U.S. Army Corps of Engineers), 2022. *Department of Energy Legacy Management Bluewater and L-Bar Road Repairs Cibola County, New Mexico,* Albuquerque District, November.

USDA (U.S. Department of Agriculture), 2022. "PLANTS Database," Natural Resources Conservation Service, https://plants.usda.gov/home, accessed August 20, 2023.

3.9 Photographs


Photograph Location Number	Azimuth	Photograph Description	
PL-1	292	Culverts	
PL-2	112	Road Repair near Entry Gate	
PL-3	337	Broken Fence	
PL-4	180	Erosion near Perimeter Sign P30	
PL-5	337	Erosion near Fence Line	
PL-6	180	Site Marker	
PL-7	90	Boundary Marker BM-3	
PL-8	135	Quality Control Monument QC-5	
PL-9	135	New Concrete Pad at Monitoring Well 63	
PL-10	292	Degradation Feature E-004 East Extent	
PL-11	337	Degradation Feature	
PL-12	112	Sediment Trap	
PL-13	337	Runoff Control Structure F	
PL-14	0	Runoff Control Structure G	
PL-15	270	Erosion near Runoff Control Structure A	
PL-16	135	Runoff Control Structure A	
PL-17	90	Cutoff Wall Riprap	
PL-18	180	Southwest Gully Erosion	
PL-19	225	Northern Extent of Southwest Gully Erosion	
PL-20	_	Tres Hermanos Sandstone Outcrop—Dry	

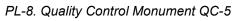
Note:

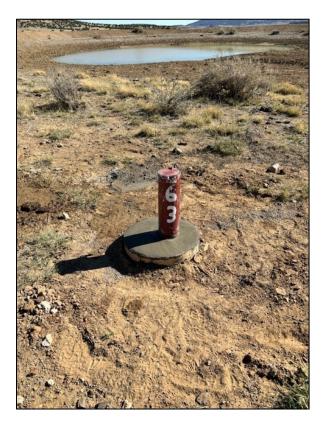

— = Photograph taken vertically from above.

PL-1. Culverts

PL-3. Broken Fence

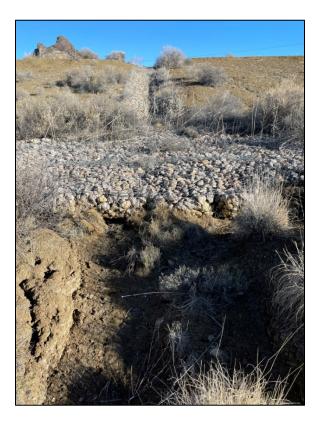
PL-5. Erosion near Fence Line




PL-6. Site Marker

PL-7. Boundary Marker BM-3

PL-9. New Concrete Pad at Monitoring Well 63



PL-11. Degradation Feature

PL-12. Sediment Trap

PL-13. Runoff Control Structure F

PL-15. Erosion near Runoff Control Structure A

PL-17. Cutoff Wall Riprap

PL-19. Northern Extent of Southwest Gully Erosion

PL-20. Tres Hermanos Sandstone Outcrop—Dry