Monitoring Results Natural Gas Wells Near Project Rulison Second Quarter 2014

U.S. Department of Energy Office of Legacy Management Grand Junction, Colorado

Date Sampled: March 20, 2014

Background

Project Rulison was the second Plowshare Program test to stimulate natural gas recovery from deep, low-permeability formations. On September 10, 1969, a 40-kiloton-yield nuclear device was detonated 8,426 feet (1.6 miles) below ground surface in the Williams Fork Formation at what is now the Rulison, Colorado, Site. Following the detonation, a series of production tests were conducted. Afterward, the site was shut down and then remediated, and the emplacement well (R-E) and the reentry well (R-Ex) were plugged.

Purpose

As part of the U.S. Department of Energy (DOE) Office of Legacy Management (LM) mission to protect human health and the environment, LM is monitoring natural gas wells that are near the Rulison site for radionuclides associated with the detonation. The very low permeability of the Williams Fork Formation limits contaminant migration, and institutional controls restrict subsurface access in the detonation zone. When companies apply for a permit to drill wells within 3 miles of the site, the Colorado Oil and Gas Conservation Commission notifies DOE, and the State of Colorado and DOE have an opportunity to review and comment on drilling permits and gas well development practices to help protect human health and the environment from the Rulison-related contaminants. The DOE *Rulison Monitoring Plan* (LMS/RUL/S06178) provides guidance for sample collection frequency based on distance from the Rulison detonation point, the types of analyses, and the reporting thresholds.

Summary of Results

Analytical results of production water samples collected in March 2014 were all below the screening levels specified in the *Rulison Monitoring Plan*. No gas samples were collected during this sampling event.

During the first-quarter sampling event conducted on December 19, 2013, severe weather conditions at the Rulison site affected monitoring activities; natural gas valves at a local production station were frozen and not functioning properly. The intermittent closure of the production line valves caused significantly higher-than-normal wellhead pressures. At some wells, the high wellhead pressure prevented the production water plunger from traveling up the wells to purge production water. The higher wellhead pressures also contributed to a 10- to 15-degree increase in wellhead natural gas temperatures. During the March 2014 monitoring event, pressures and line temperatures had returned to normal ranges.

The March sampling effort consisted of sampling 13 wells. Nine wells (Battlement Mesa [BM] 26-33B, 26-33C, 26-34A, 26-34B, 26-34D, 26-22C, 26-22D, 35-32A, and 36-13) produced the full volume of production water for analysis. Three wells (BM 26-34C, 26-22B, and 36-13B) each produced approximately 250 milliliters (mL) of production water, which is enough sample volume for only tritium and chloride analyses. Well BM 26-33D had no production water for analysis.

Table 1 lists the 13 wells, and Table 2 lists the sequential sample collection information.

Table 1. Sample Collection Locations

Pad	Collection Location	Well Name
26N	Wellhead separator	BM 26-33B-D, BM 26-34A-D
26K	Wellhead separator	BM 26-22B-D
35C	Wellhead separator	BM 35-32A
36L	Wellhead separator	BM36-13B
36B	Wellhead separator	BM36-13

Table 2. Samples Collected

O Bad Well				Location		Sampl	e Phase	Well	
Sequence	Pad	Name	API # 05-045-	Type	Subtype	Gas	Liquid	T (°F)	P (psi)
1	26N	BM 26-33B	15743	WL	NGSA	No	Yes	69	271
2	26N	BM 26-33C	15742	WL	NGSA	No	Yes	52	250
3	26N	BM 26-33D	15739	WL	NGSA	No	No	71.5	268
4	26N	BM 26-34A	15744	WL	NGSA	No	Yes	66.3	275
5	26N	BM 26-34B	15745	WL	NGSA	No	Yes	66.8	231
6	26N	BM 26-34C	15741	WL	NGSA	No	Yes ^a	61	262
7	26N	BM 26-34D	15748	WL	NGSA	No	Yes	63.4	261
8	26K	BM 26-22B	16086	WL	NGSA	No	Yes ^a	68	271
9	26K	BM 26-22C	16087	WL	NGSA	No	Yes	61	263
10	26K	BM 26-22D	16074	WL	NGSA	No	Yes	63	265
11	35C	BM 35-32A	10919	WL	NGSA	No	Yes	61	272
12	36L	BM 36-13B	15469	WL	NGSV	No	Yes ^a	68	279
13	36B	BM 36-13	10840	WL	NGSV	No	Yes	67	281

Notes:

Abbreviations:

API American Petroleum Institute NGSA Natural gas well—angle NGSV Natural gas well—vertical

P (psi) pressure in pounds per square inch T (°F) temperature in degrees Fahrenheit

WL well

^a Approximately 250 mL of production water.

Sample Locations

The bottom-hole locations of the 13 gas wells planned for sample collection are between 0.75 mile and 1.07 miles from the Project Rulison detonation point. All gas wells sampled are producing gas from the Williams Fork Formation at a depth near that of the Rulison detonation point.

Sample Collection

A produced-water sample is collected at the wellhead from a tap on the common line connecting two gas-liquid separators and the accumulation tank. The produced water collected from one well separator is isolated from the other well separator by valves. Lines from each of the two separators are purged of produced water and condensate prior to sample collection. Each sample is collected in a new, 1-gallon plastic container.

When a gas sample is collected, the sample is collected from a tap on the gas line at the separator output. The line between the tap and the sample bottle is purged before sample collection. Each gas sample is collected in an evacuated 18-liter bottle furnished by the laboratory.

Monitoring Protocol

The *Rulison Monitoring Plan* provides guidance regarding the type and frequency of sample collection as a function of distance and heading from the Rulison detonation point; it also specifies the types of analyses. A copy of the monitoring plan is available at http://www.lm.doe.gov/Rulison/Documents.aspx. Table 3a lists gas-phase screening concentrations for tritium and carbon-14, and Table 3b lists liquid-phase screening concentrations for tritium, gross alpha, gross beta, and the suite of radionuclides identified by high-resolution gamma spectrometry.

Table 3a. Gas-Phase Concentrations for Tritium Sample Results

Analyte	Reporting Units	Screening Concentration	Action Concentration	Comment
Tritium	TU	19,293	TBD	$5.183 \times 10^{-6} \text{ pCi cc}^{-1} \text{ TU}^{-1}$
¹⁴ Carbon	рМС	2 pMC	5 pMC	6.54×10^{-5} pCi/cc and 16.4×10^{-5} pCi/cc, respectively

Abbreviations:

pCi/cc picocuries per cubic centimeter

pCi cc⁻¹ TU⁻¹ picocuries per cubic centimeter of methane gas per tritium unit

pMC percent modern carbon
TBD to be determined
TU tritium unit

Table 3b. Liquid-Phase Screening Concentrations for Tritium and Other Radionuclides

Analyte	Reporting Units	Screening Concentration	Action Concentration	Comment					
Tritium	pCi/L	800	TBD	20,000 pCi/L = EPA drinking water standard					
	Lab Method								
Gross alpha	pCi/L	3× background	TBD						
Gross beta	pCi/L	3× background	TBD						
High-resolution gamma spectrometry	pCi/L	20	TBD	Based on cesium-137					

Notes:

See the *Rulison Monitoring Plan*, Table 2, for response scenarios to use when the screening concentrations, action concentrations, or both, are exceeded.

The derived air effluent concentration for a 50 millirem per year dose from tritium exposure is 0.10 pCi (tritium)/cc (methane).

Abbreviations:

EPA U.S. Environmental Protection Agency

pCi/L picocuries per liter TBD to be determined

Results

Twelve of the total 13 sampling locations produced enough production water to analyze for some or all of the Rulison-related contaminants. Nine locations provided enough production water for all analyses; three locations (BM 26-34C, BM 26-22B, and BM 36-13B) provided approximately 250 mL of sample, which is sufficient for only tritium and chloride analyses. One location (BM 26-33D) provided no production water.

Production water analytical results are tabulated by well in Appendix A.

Laboratory Qualifiers

A "detect" is a result greater than the laboratory's reporting threshold or minimum detectable concentration (MDC).

A "nondetect" is a result that is less than the laboratory's MDC for that sample. The laboratory assigns the qualifier "U" to a nondetect result.

Data Validation Qualifiers

A detect result less than 3 times the sample MDC is assigned the data validation qualifier "J" (estimated quantity).

A laboratory detect result less than 3 times the 1-sigma total propagated uncertainty is considered a nondetect. Data validation assigns the qualifier U to this result.

Results Summaries

Table 4a is a summary of analytical results for liquid-phase tritium, Table 4b is a summary of results for liquid-phase gross alpha and gross beta, and Table 4c shows results for potassium-40 analyses. Sample volumes not adequate for laboratory analysis are counted as not applicable (NA).

Table 4a. Summary of Tritium Samples Based on Laboratory-Assigned Qualifiers

Collection	Total Samples	Tritium Results (gas phase)		Tritium Results (liquid phase)			Carbon-14 (gas phase)			
Location	(gas/liquid) Collected	Detect	Nondetect	NA	Detect	Nondetect	NA	Detect	Nondetect	NA
Natural gas wells	0/12	0	0	13	0	12	1	0	0	13

Notes:

As planned, no gas samples were collected during this sampling event. At the BM 36-33D well, no production water was collected, which is signified by NA. Approximately 250 mL of production water, enough for only chloride and tritium analyses, was collected at wells BM 26-34C, BM 26-22B, and BM 36-13B.

Table 4b. Summary of Gross Alpha and Gross Beta Liquid-Phase Samples Based on Laboratory-Assigned Qualifiers

	Total	Gros	s Alpha Resu	lts	Gross Beta Results			
Collection Location	Liquid Samples Collected	Detect	Nondetect	NA	Detect	Nondetect	NA	
Natural gas wells	13	4	5	4	9	0	4	

Notes:

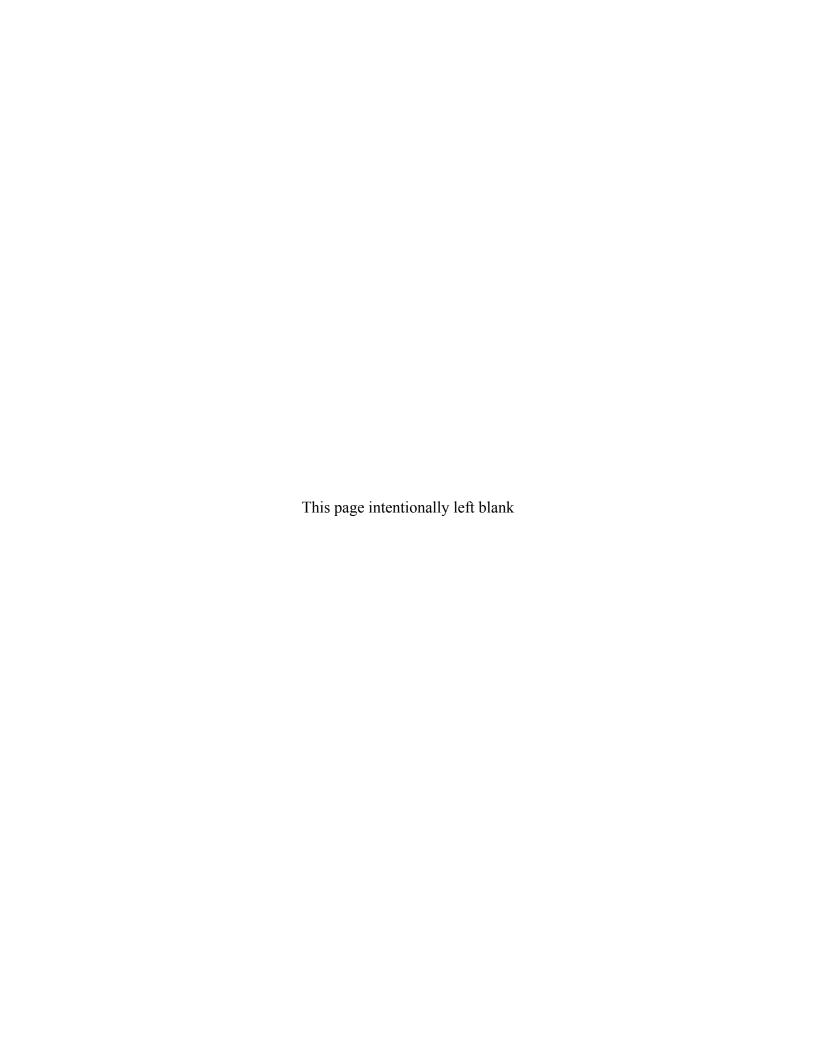
Data validation assigned a J qualifier to all four gross-alpha detect results.

Data validation assigned a J qualifier to all nine gross-beta detect results.

Three sample locations (BM 26-34C, BM 26-22B, and BM 36-13B) provided insufficient amounts of production water for gross alpha and gross beta analysis. No production water was collected from well BM 26-33D.

Table 4c. Summary of Potassium-40 Liquid-Phase Samples Based on Laboratory-Assigned Qualifiers

Collection Location	Total Liquid	Potassium-40 Results				
Conection Location	Samples Collected	Detect	Nondetect	NA		
Natural gas wells	13	2	7	4		


Notes:

Data validation assigned a J qualifier to both potassium-40 detect results. Three sample locations (BM 26-34C, BM 26-22B, and BM 36-13B) produced insufficient amounts of production water for potassium-40 analysis. No production water was collected from well BM 26-33D.

This page intentionally left blank

Rulison Monitoring Report—Second Quarter 2014 Doc. No. S12233 Page 6 of 6

Data Validation Package

March 2014 Produced Water Sampling at the Rulison, Colorado, Site

July 2014

Available for sale to the public from:

U.S. Department of Commerce National Technical Information Service 5301 Shawnee Road Alexandria, VA 22312 Telephone: 800.553.6847

Fax: 703.605.6900 E-mail: orders@ntis.gov

Online Ordering: http://www.ntis.gov/help/ordermethods.aspx

Available electronically at http://www.osti.gov/bridge

Available for a processing fee to U.S. Department of Energy and its contractors, in paper, from:

U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831-0062

Phone: 865.576.8401 Fax: 865.576.5728

Email: reports@adonis.osti.gov

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors.

Contents

Sampling Event Summary	1
Rulison, Colorado, Site, Sample Location Map	
Data Assessment Summary	
Water Sampling Field Activities Verification Checklist	
Laboratory Performance Assessment	
Sampling Quality Control Assessment	
Certification	

Attachment 1—Data Presentation

Produced Water Data

Attachment 2—Trip Report

This page intentionally left blank

Sampling Event Summary

Site:

Rulison, Colorado, Site March 20, 2014

Sampling Period:

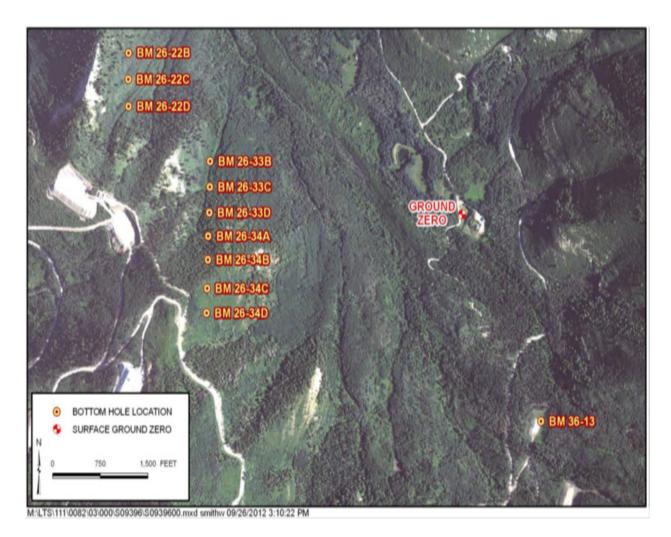
Month Day, Year

The U.S. Department of Energy Office of Legacy Management conducted sampling at the Rulison, Colorado, Site on March 20, 2013, in accordance with the 2010 *Rulison Monitoring Plan*. The Monitoring Plan provides guidance regarding the type and frequency of sample collection as a function of distance and heading from the Rulison detonation point; it also specifies the types of analyses. Produced water samples are analyzed for radionuclides to determine if contamination is migrating from the Rulison detonation zone to producing gas wells. Samples were submitted for analysis as follows:

 Produced water samples were submitted under requisition 14036004 to ALS Laboratory Group in Fort Collins, Colorado, for the determination of chloride, gross alpha/beta, gamma emitting nuclides, and tritium.

Sampling and analyses were conducted as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated).

Sample radionuclide results are compared to the screening levels listed in the Monitoring Plan to determine if any further action is merited. None of the results for the 12 wells sampled during this event exceeded the screening levels specified in the Monitoring Plan. The produced water sample results are presented in Attachment 1.


Rick Hutton

Date

Site Lead

The S.M. Stoller Corporation,

a wholly owned subsidiary of Huntington Ingalls Industries

Rulison, Colorado, Site, Sample Location Map

Data Assessment Summary

This page intentionally left blank

Water Sampling Field Activities Verification Checklist

Project Ruison, Colorado		Date(s) of water	r Sampling	March 20, 2014		
Date(s) of Verification		June 30, 2014	Name of Verifie	r	Stephen Donivan	
			Response (Yes, No, NA)		Comments	
1.	Is the SAP the primary documen	t directing field procedures?	Yes			
	List any Program Directives or ot	her documents, SOPs, instructions.				_
2.	Were the sampling locations spe	cified in the planning documents sampled?	No	collected from we	a, gamma emitting nuclide samples were not ells BM 26-22B, BM 26-34C, and BM 36-13B d volume of produced water available.	
3.	Were calibrations conducted as s	specified in the above-named documents?	NA	Field measureme	ents were not required.	
4.	Was an operational check of the	field equipment conducted daily?	NA			
	Did the operational checks meet	criteria?				
5.		alinity, temperature, specific conductance, neasurements taken as specified?	NA			
6.	Were wells categorized correctly	?	NA	This sampling ev	vent did not include groundwater.	
7.	Were the following conditions me	et when purging a Category I well:				
	Was one pump/tubing volume pu	rged prior to sampling?	NA	This sampling ev	vent did not include groundwater.	
	Did the water level stabilize prior Did pH, specific conductance, an prior to sampling?	to sampling? d turbidity measurements meet criteria				_
	Was the flow rate less than 500 r	mL/min?				_

Water Sampling Field Activities Verification Checklist (continued)

		(Yes, No, NA)	Comments
8.	Were the following conditions met when purging a Category II well:		
	Was the flow rate less than 500 mL/min?	NA	This sampling event did not include groundwater.
	Was one pump/tubing volume removed prior to sampling?		
9.	Were duplicates taken at a frequency of one per 20 samples?	No	
10	. Were equipment blanks taken at a frequency of one per 20 samples that were collected with non-dedicated equipment?	NA	
11	. Were trip blanks prepared and included with each shipment of VOC samples?	NA	
12	.Were the true identities of the QC samples documented?	Yes	
13	.Were samples collected in the containers specified?	Yes	
14	.Were samples filtered and preserved as specified?	Yes	
15	. Were the number and types of samples collected as specified?	Yes	
16	. Were chain of custody records completed and was sample custody maintained?	Yes	
17	. Was all pertinent information documented on the field data sheets?	Yes	
18	. Was the presence or absence of ice in the cooler documented at every sample location?	NA	Sample cooling was not required.
19	. Were water levels measured at the locations specified in the planning documents?	NA	

Laboratory Performance Assessment

General Information

Requisition No. (RIN): 14036004 Sample Event: March 20, 2014 Site(s): Rulison Site

Laboratory: ALS Laboratory Group, Fort Collins, Colorado

Work Order No.: 1403415

Analysis: Radiochemistry and Wet Chemistry

Validator: Stephen Donivan Review Date: June 17, 2014

This validation was performed according to the *Environmental Procedures Catalog*, (LMS/POL/S04325, continually updated) "Standard Practice for Validation of Environmental Data." The procedure was applied at Level 3, Data Validation. See attached Data Validation Worksheets for supporting documentation on the data review and validation. All analyses were successfully completed. The samples were prepared and analyzed using accepted procedures based on methods specified by line item code, which are listed in Table 1.

Table 1. Analytes and Methods

Analyte	Line Item Code	Prep Method	Analytical Method	
Chloride	WCH-B-011	EPA 300.0	EPA 300.0	
Gamma Spectrometry	GAM-A-001	PA SOP713R11	PA SOP713R11	
Gross Alpha/Beta	GPC-A-001	PA SOP702R19	PA SOP724R10	
Tritium	LCS-A-001	PA SOP700R10	PA SOP704R9	

Data Qualifier Summary

Analytical results were qualified as listed in Table 2. Refer to the sections below for an explanation of the data qualifiers applied.

Table 2. Data Qualifier Summary

Sample Number	Location	Analyte	Flag	Reason
1403415-2	BM 26-22C	Cesium-134	U	Nuclide identification criteria
1403415-2	BM 26-22C	Uranium-235	U	Nuclide identification criteria
1403415-2	BM 26-22C	Gross Alpha	J	Less than the determination limit
1403415-2	BM 26-22C	Gross Beta	J	Less than the determination limit
1403415-3	BM 26-22D	Gross Alpha	J	Less than the determination limit
1403415-4	BM 26-33B	Gross Alpha	U	Less than the decision level
1403415-4	BM 26-33B	Gross Beta	J	Less than the determination limit
1403415-5	BM 26-33C	Actinium-228	U	Nuclide identification criteria
1403415-5	BM 26-33C	Gross Beta	J Less than the determination lim	
1403415-6	BM 26-34A	Actinium-228	U	Nuclide identification criteria

Table 2 (continued). Data Qualifier Summary

Sample Number	Location	Analyte	Flag	Reason
1403415-6	BM 26-34A	Potassium-40	J	Less than the determination limit
1403415-6	BM 26-34A	Gross Beta	J	Less than the determination limit
1403415-7	BM 26-34B	Actinium-228	U	Nuclide identification criteria
1403415-7	BM 26-34B	Uranium-235	U	Nuclide identification criteria
1403415-7	BM 26-34B	Gross Alpha	J	Less than the determination limit
1403415-7	BM 26-34B	Gross Beta	J	Less than the determination limit
1403415-9	BM 26-34D	Actinium-228	U	Nuclide identification criteria
1403415-9	BM 26-34D	Gross Alpha	J	Less than the determination limit
1403415-9	BM 26-34D	Gross Beta	J	Less than the determination limit
1403415-10	BM 26-32A	Actinium-228	U	Nuclide identification criteria
1403415-11	BM 36-13	Actinium-228	U	Nuclide identification criteria
1403415-11	BM 36-13	Potassium-40	J	Less than the determination limit
1403415-11	BM 36-13	Gross Beta	J	Less than the determination limit

Sample Shipping/Receiving

ALS Laboratory Group in Fort Collins, Colorado, received 12 water samples on March 25, 2014, accompanied by a Chain of Custody form. The Chain of Custody form was checked to confirm that all of the samples were listed with sample collection dates and times, and that signatures and dates were present indicating sample relinquishment and receipt. Copies of the shipping labels were included in the receiving documentation. The Chain of Custody form was complete with no errors or omissions.

Preservation and Holding Times

The sample shipment was received intact at ambient temperature which complies with requirements. All samples were received in the correct container types and had been preserved correctly for the requested analyses. Sample analysis was completed within the applicable holding times.

Detection and Quantitation Limits

The method detection limit (MDL) was reported for all metal, organic, and wet chemical analytes as required. The MDL, as defined in 40 CFR 136, is the minimum concentration of an analyte that can be measured and reported with 99 percent confidence that the analyte concentration is greater than zero. The practical quantitation limit (PQL) for these analytes is the lowest concentration that can be reliably measured, and is defined as 5 times the MDL.

For radiochemical analytes (those measured by radiometric counting) the MDL and PQL are not applicable, and these results are evaluated using the minimum detectable concentration (MDC), Decision Level Concentration (DLC), and Determination Limit (DL). The MDC is a measure of radiochemical method performance and was calculated and reported as specified in *Quality Systems for Analytical Services*. The DLC is the minimum concentration of an analyte that can be measured and reported with 99 percent confidence that the analyte concentration is greater

than zero, and is estimated as 3 times the one-sigma total propagated uncertainty. Results that are greater than the MDC, but less than the DLC are qualified with a "U" flag (not detected). The DL for radiochemical results is the lowest concentration that can be reliably measured, and is defined as 3 times the MDC. Results not previously "U" qualified that are less than the DL are qualified with a "J" flag as estimated values.

The reported MDLs for the wet chemical analytes and MDCs for radiochemical analytes met the detection limit requirements with the following exceptions. The required detection limits were not met for several gross alpha and gross beta samples because of the elevated levels of dissolved solids in the samples.

Laboratory Instrument Calibration

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing acceptable qualitative and quantitative data for all analytes. Initial calibration demonstrates that the instrument is capable of acceptable performance in the beginning of the analytical run and of producing a linear curve. Compliance requirements for continuing calibration checks are established to ensure that the instrument continues to be capable of producing acceptable qualitative and quantitative data. All laboratory instrument calibrations were performed correctly in accordance with the cited methods. All calibration and laboratory spike standards were prepared from independent sources.

Method EPA 300.0, Chloride

Calibration for chloride was performed using five calibration standards on March 10, 2014. The calibration curve correlation coefficient values were greater than 0.995 and the absolute values of the intercepts were less than 3 times the MDL. Initial and continuing calibration verification checks were made at the required frequency with all calibration checks meeting the acceptance criteria.

Gamma Spectrometry

Activity concentrations above the MDC were reported in some instances where minimum nuclide identification criteria were not met. Such tentative identifications result when the software attempts to calculate net activity concentrations for analytes where either one or both of the following criteria are not satisfied: one or more characteristic peaks for a nuclide must be identified above the critical level, or the minimum library peak abundance must be attained. Sample results for gamma-emitting radionuclides that do not meet the identification criteria are qualified with a "U" flag as not detected.

Method and Calibration Blanks

Method blanks are analyzed to assess any contamination that may have occurred during sample preparation. Calibration blanks are analyzed to assess instrument contamination prior to and during sample analysis. All radiochemical method blank results were below the Decision Level Concentration.

Laboratory Control Sample

Laboratory control samples were analyzed at the correct frequency to provide information on the accuracy of the analytical method and the overall laboratory performance, including sample preparation. All control sample results were acceptable.

Laboratory Replicate Analysis

Laboratory replicate sample results demonstrate acceptable laboratory precision. The relative percent difference value for the chloride matrix spike replicate met the acceptance criteria. The radiochemical relative error ratio (calculated using the one-sigma total propagated uncertainty) for the sample replicates was less than three for all duplicates.

Matrix Spike Analysis

Matrix spike and matrix spike duplicate (MS/MSD) samples are used to measure method performance in the sample matrix. The MS/MSD data are not evaluated when the concentration of the unspiked sample is greater than 4 times the spike concentration. The spike recoveries met the recovery and precision criteria for all analytes evaluated.

Completeness

Results were reported in the correct units for all analytes requested using contract-required laboratory qualifiers.

Electronic Data Deliverable (EDD) File

The EDD file arrived on April 1, 2014. The Sample Management System EDD validation module was used to verify that the EDD files were complete and in compliance with requirements. The module compares the contents of the file to the requested analyses to ensure all and only the requested data are delivered. The contents of the EDD were manually examined to verify that the sample results accurately reflect the data contained in the sample data package.

SAMPLE MANAGEMENT SYSTEM **General Data Validation Report** RIN: 14036004 _ Lab Code: PAR Validator: Stephen Donivan Validation Date: 06/17/2014 Project: Rulison Site ✓ Rad Organics # of Samples: 12 Matrix: WATER Yes Requested Analysis Completed: Chain of Custody Sample-Present: OK Dated: OK Integrity: OK Temperature: OK Signed: OK Preservation: OK **Select Quality Parameters** ✓ Holding Times All analyses were completed within the applicable holding times. ✓ Detection Limits There are 18 detection limit failures. Field/Trip Blanks Field Duplicates

SAMPLE MANAGEMENT SYSTEM

Page 1 of 1

RIN:	14036004	Lab Code:	PAR

Non-Compliance Report: Detection Limits

Validation Date: 06/17/2014

Project: Rulison Site

Ticket	Location	Lab Sample ID	Method Code	Lab Method	Analyte Name	Result	Qualifier	Reported Detection Limit	Required Detection Limit	Units
MEU 010	BM 26-22C	1403415-2	GPC-A-001	724R11	GROSS BETA	161		57	4	pCi/L
MEU 010	BM 26-22C	1403415-2	GPC-A-001	724R11	GROSS ALPHA	61.8		56	2	pCi/L
VEU 011	BM 26-22D	1403415-3	GPC-A-001	724R11	GROSS BETA	214		56	4	pCi/L
	BM 26-22D	1403415-3	GPC-A-001		GROSS ALPHA	88.4		51	2	pCi/L
ИEU 005	BM 26-33B	1403415-4	GPC-A-001	724R11	GROSS BETA	95.3	T	54	4	pCi/L
	BM 26-33B	1403415-4	GPC-A-001		GROSS ALPHA	51.4		51	2	pCi/L
VEU 006	BM 26-33C	1403415-5	GPC-A-001	724R11	GROSS BETA	119	Т	45	4	pCi/L
/IEU 006	BM 26-33C	1403415-5	GPC-A-001	724R11	GROSS ALPHA	38.1	U	47	2	pCi/L
ИEU 019	BM 26-34A	1403415-6	GPC-A-001	724R11	GROSS BETA	222		76	4	pCi/L
/IEU 019	BM 26-34A	1403415-6	GPC-A-001	724R11	GROSS ALPHA	51.1	U	74	2	pCi/L
MEU 008	BM 26-34B	1403415-7	GPC-A-001	724R11	GROSS BETA	97		56	4	pCi/L
/IEU 008	BM 26-34B	1403415-7	GPC-A-001	724R11	GROSS ALPHA	78.2		64	2	pCi/L
/EU 009	BM 26-34D	1403415-9	GPC-A-001	724R11	GROSS BETA	132		56	4	pCi/L
/IEU 009	BM 26-34D	1403415-9	GPC-A-001	724R11	GROSS ALPHA	72		58	2	pCi/L
	BM 35-32A	1403415-10	GPC-A-001	724R11	GROSS BETA	132		43	4	pCi/L
ИEU 012	BM 35-32A	1403415-10	GPC-A-001	724R11	GROSS ALPHA	29.7	U	46	2	pCi/L
	BM 36-13	1403415-11	GPC-A-001		GROSS BETA	120		57	4	pCi/L
VEU 013	BM 36-13	1403415-11	GPC-A-001	724R11	GROSS ALPHA	32.7	U	55	2	pCi/L

Page 1 of 2

SAMPLE MANAGEMENT SYSTEM Radiochemistry Data Validation Worksheet

 RIN:
 14036004
 Lab Code:
 PAR
 Date Due:
 04/22/2014

 Matrix:
 Water
 Site Code:
 RUL01
 Date Completed:
 04/02/2014

Sample	Analyte	Date Analyzed	Result	Flag	Tracer %R	LCS %R	MS %R	Duplicate
BM 26-33B	Actinium-228	03/28/2014						0.36
BM 26-33B	Americium-241	03/28/2014				Ì		0.79
Blank_Spike	Americium-241	03/29/2014				93.40		
BM 26-33B	Antimony-125	03/28/2014				ĺ		0.56
BM 26-33B	Cerium-144	03/28/2014				İ		0.26
BM 26-33B	Cesium-134	03/28/2014				Ì		0.76
BM 26-33B	Cesium-137	03/28/2014				Ì		0.08
Blank_Spike	Cesium-137	03/29/2014				103.00		
BM 26-33B	Cobalt-60	03/28/2014				Ì		1.45
Blank_Spike	Cobalt-60	03/29/2014				99.20		
BM 26-33B	Europium-152	03/28/2014				ĺ		2.10
BM 26-33B	Europium-154	03/28/2014				İ		0.43
BM 26-33B	Europium-155	03/28/2014				Ì		1.37
BM 26-33B	GROSS ALPHA	03/28/2014				Ì		0.08
Blank	GROSS ALPHA	03/29/2014	0.5270	U		Ì		
BM 26-34A	GROSS ALPHA	03/29/2014				Ì	80.2	
Blank_Spike	GROSS ALPHA	03/29/2014				104.00		
BM 26-33B	GROSS BETA	03/28/2014				ĺ		0.35
Blank_Spike	GROSS BETA	03/29/2014				99.60		
BM 26-34A	GROSS BETA	03/29/2014					102.0	
Blank	GROSS BETA	03/29/2014	0.8760	U		Ì		
BM 26-34C	H-3	03/29/2014						0.96
Blank_Spike	H-3	03/29/2014				103.00		
BM 26-34B	H-3	03/29/2014				ĺ	99.8	
Blank	H-3	03/29/2014	140.0000	U		Ì		
BM 26-33B	Lead-212	03/28/2014						0.10
BM 26-33B	Potassium-40	03/28/2014						0.20
BM 26-33B	Promethium-144	03/28/2014						0.56
BM 26-33B	Promethium-146	03/28/2014						1.79
BM 26-33B	Ruthenium-106	03/28/2014						0.25
BM 26-33B	Thorium-234	03/28/2014						0.39
BM 26-33B	Uranium-235	03/28/2014						0.49

Page 2 of 2

SAMPLE MANAGEMENT SYSTEM Radiochemistry Data Validation Worksheet

 RIN:
 14036004
 Lab Code:
 PAR
 Date Due:
 04/22/2014

 Matrix:
 Water
 Site Code:
 RUL01
 Date Completed:
 04/02/2014

Sample	Analyte	Date Analyzed	Result	Flag	Tracer %R	LCS %R	MS %R	Duplicate
BM 26-33B	Yttrium-88	03/28/2014						0.96

Page 1 of 1

SAMPLE MANAGEMENT SYSTEM Wet Chemistry Data Validation Worksheet

RIN: 14036004 Lab Code: PAR Date Due: <u>04/22/2014</u> Matrix: Water Site Code: RUL01 Date Completed: 04/02/2014

Analyte	Date Analyzed				Method	LCS %R	MS %R	MSD %R	DUP RPD	Serial Dil. %R	
	-	Int.	R^2	CCV	ССВ	Blank					
CHLORIDE	03/28/2014	0.000	1.0000	ОК	ОК	ОК	98.00				

Sampling Quality Control Assessment

The following information summarizes and assesses quality control for this sampling event.

Sampling Protocol

The produced water samples were collected from a tap on a common line connecting the output of two separators (each servicing a well) and the nearby accumulation tanks. The collected water sample from one separator was isolated from the other separator by valves. Lines from each of the two separators were purged before sample collection.

Equipment Blank Assessment

An equipment blank was not required.

Field Duplicate Assessment

A field duplicate was not collected.

Certification

All laboratory analytical quality control criteria were met except as qualified in this report. The data qualifiers listed on the SEEPro database reports are defined on the last page of each report. All data in this package are considered validated and available for use.

Laboratory Coordinator:

steph born

7-11-2014

Data Validation Lead:

Stephen Donivan

7-11-2014

Date

This page intentionally left blank

Attachment 1 Data Presentation

This page intentionally left blank

Produced Water Data

This page intentionally left blank

General Water Quality Data by Location (USEE105) FOR SITE RUL01, Rulison Site

REPORT DATE: 06/30/2014

Location: 05-045-10840 WELL BM 36-13

Parameter	Units	Sample		Result	(Qualifiers	6	Detection	Uncertainty
Parameter	Offics	Date	ID	Result	Lab	Data	QA	Limit	Officertainty
Actinium-228	pCi/L	03/20/2014	N001	31	TI	U	#	27	14.2
Americium-241	pCi/L	03/20/2014	N001	-7.67	U		#	23	13.6
Antimony-125	pCi/L	03/20/2014	N001	4.1	U		#	9.7	5.59
Cerium-144	pCi/L	03/20/2014	N001	8.74	U		#	17	10.6
Cesium-134	pCi/L	03/20/2014	N001	399	U		#	4.3	2.51
Cesium-137	pCi/L	03/20/2014	N001	-1.46	U		#	4.6	2.67
Chloride	mg/L	03/20/2014	N001	10000			#	200	
Cobalt-60	pCi/L	03/20/2014	N001	24	U		#	4.8	2.75
Europium-152	pCi/L	03/20/2014	N001	10.9	U		#	22	13.4
Europium-154	pCi/L	03/20/2014	N001	0.853	U		#	35	20.6
Europium-155	pCi/L	03/20/2014	N001	1.16	U		#	10	6
Gross Alpha	pCi/L	03/20/2014	N001	32.7	U		#	55	34.4
Gross Beta	pCi/L	03/20/2014	N001	120		J	#	57	40.9
Lead-212	pCi/L	03/20/2014	N001	7.05	U		#	12	7.52
Potassium-40	pCi/L	03/20/2014	N001	126		J	#	110	72.5
Promethium-144	pCi/L	03/20/2014	N001	-2.32	U		#	12	7.09
Promethium-146	pCi/L	03/20/2014	N001	-1.97	U		#	4.8	2.75
Ruthenium-106	pCi/L	03/20/2014	N001	-3.64	U		#	39	22.7

General Water Quality Data by Location (USEE105) FOR SITE RUL01, Rulison Site

REPORT DATE: 06/30/2014

Location: 05-045-10840 WELL BM 36-13

Parameter	Units	Sam Date	ple ID	Result	Qualifiers Lab Data QA		QA	Detection Limit	Uncertainty
Thorium-234	pCi/L	03/20/2014	N001	5.97	U		#	120	72.6
Tritium	pCi/L	03/20/2014	N001	-286	U		#	350	203
Uranium-235	pCi/L	03/20/2014	N001	11	U		#	17	10.6
Yttrium-88	pCi/L	03/20/2014	N001	3.99	U		#	4.6	2.93

REPORT DATE: 06/30/2014

Location: 05-045-10919 WELL BM 35-32A

Parameter	Units	Samı Date	ole ID	Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Actinium-228	pCi/L	03/20/2014	N001	26.4	NQ	U	#	17	9.66
Americium-241	pCi/L	03/20/2014	N001	1.41	U		#	5.2	3.14
Antimony-125	pCi/L	03/20/2014	N001	1.49	U		#	9.5	5.64
Cerium-144	pCi/L	03/20/2014	N001	3.78	U		#	15	9.18
Cesium-134	pCi/L	03/20/2014	N001	0.367	U		#	4.2	2.49
Cesium-137	pCi/L	03/20/2014	N001	-1.36	U		#	4.7	2.71
Chloride	mg/L	03/20/2014	N001	9200			#	100	
Cobalt-60	pCi/L	03/20/2014	N001	1.65	U		#	5.2	3.11
Europium-152	pCi/L	03/20/2014	N001	8.71	U		#	24	14.6
Europium-154	pCi/L	03/20/2014	N001	-5.49	U		#	27	15.5
Europium-155	pCi/L	03/20/2014	N001	0.762	U		#	7.3	4.36
Gross Alpha	pCi/L	03/20/2014	N001	29.7	U		#	46	28.8
Gross Beta	pCi/L	03/20/2014	N001	132			#	43	35
Lead-212	pCi/L	03/20/2014	N001	787	U		#	13	7.66
Potassium-40	pCi/L	03/20/2014	N001	109	U		#	140	86.8
Promethium-144	pCi/L	03/20/2014	N001	0.525	U		#	5	2.96
Promethium-146	pCi/L	03/20/2014	N001	-1.61	U		#	4.6	2.67
Ruthenium-106	pCi/L	03/20/2014	N001	5.67	U		#	39	23

REPORT DATE: 06/30/2014

Location: 05-045-10919 WELL BM 35-32A

Parameter	Units	Sam Date	ple ID	Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Thorium-234	pCi/L	03/20/2014	N001	11.5	U		#	76	38.2
Tritium	pCi/L	03/20/2014	N001	-237	U		#	360	210
Uranium-235	pCi/L	03/20/2014	N001	-14.6	U		#	36	21.3
Yttrium-88	pCi/L	03/20/2014	N001	-4.18	U		#	18	10.6

General Water Quality Data by Location (USEE105) FOR SITE RUL01, Rulison Site REPORT DATE: 06/30/2014

Location: 05-045-15469 WELL BM 36-13B

Parameter	Units San		ple	Result	Qualifiers			Detection	Uncertainty
	Units	Date	ID	Result	Lab	Data	QA	Limit	Officertainty
Chloride	mg/L	03/20/2014	N001	11000			#	200	
Tritium	pCi/L	03/20/2014	N001	293	U		#	360	213

REPORT DATE: 06/30/2014

Location: 05-045-15741 WELL BM 26-34C

Parameter	Units	Sam	ple	Result	(Qualifiers	;	Detection	Uncertainty
Parameter	Ullits	Date	ID	Result	Lab	Data	QA	Limit	
Chloride	mg/L	03/20/2014	N001	10000			#	200	
Tritium	pCi/L	03/20/2014	N001	-149	U		#	350	206

REPORT DATE: 06/30/2014

Location: 05-045-15742 WELL BM 26-33C

Parameter	Units	Sam _l Date	ple ID	Result	(Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Actinium-228	pCi/L	03/20/2014	N001	23.2	TI	U	#	22	11.5
Americium-241	pCi/L	03/20/2014	N001	793	U		#	4.2	2.48
Antimony-125	pCi/L	03/20/2014	N001	3.21	U		#	8.7	4.93
Cerium-144	pCi/L	03/20/2014	N001	4.9	U		#	14	8.23
Cesium-134	pCi/L	03/20/2014	N001	-2.34	U		#	3.8	2.19
Cesium-137	pCi/L	03/20/2014	N001	-2.88	U		#	3.9	2.21
Chloride	mg/L	03/20/2014	N001	9300			#	100	
Cobalt-60	pCi/L	03/20/2014	N001	0.576	U		#	3.8	2.25
Europium-152	pCi/L	03/20/2014	N001	-5.11	U		#	20	11.1
Europium-154	pCi/L	03/20/2014	N001	-3.58	U		#	22	12.7
Europium-155	pCi/L	03/20/2014	N001	1.71	U		#	5.7	3.43
Gross Alpha	pCi/L	03/20/2014	N001	38.1	U		#	47	30.2
Gross Beta	pCi/L	03/20/2014	N001	119		J	#	45	34.6
Lead-212	pCi/L	03/20/2014	N001	3.22	U		#	10	6.15
Potassium-40	pCi/L	03/20/2014	N001	53.4	U		#	110	65
Promethium-144	pCi/L	03/20/2014	N001	0404	U		#	3.7	2.18
Promethium-146	pCi/L	03/20/2014	N001	1.38	U		#	4	2.44
Ruthenium-106	pCi/L	03/20/2014	N001	9.62	U		#	33	20

REPORT DATE: 06/30/2014

Location: 05-045-15742 WELL BM 26-33C

Parameter	Units	Sam Date	ple ID	Result	(Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Thorium-234	pCi/L	03/20/2014	N001	10.9	U		#	72	43.6
Tritium	pCi/L	03/20/2014	N001	-282	U		#	360	209
Uranium-235	pCi/L	03/20/2014	N001	4.02	U		#	20	11.9
Yttrium-88	pCi/L	03/20/2014	N001	1.8	U		#	3.9	2.36

REPORT DATE: 06/30/2014

Location: 05-045-15743 WELL BM 26-33B

Parameter	Units	Samլ Date	ole ID	Result	Q Lab	ualifiers Data QA	Detection Limit	Uncertainty
Actinium-228	pCi/L	03/20/2014	N001	12.9	U	#	35	21.3
Americium-241	pCi/L	03/20/2014	N001	-4.43	U	#	7.2	4.06
Antimony-125	pCi/L	03/20/2014	N001	3.87	U	#	14	8.11
Cerium-144	pCi/L	03/20/2014	N001	4.08	U	#	22	13.2
Cesium-134	pCi/L	03/20/2014	N001	-1.98	U	#	6.1	3.49
Cesium-137	pCi/L	03/20/2014	N001	221	U	#	6	3.47
Chloride	mg/L	03/20/2014	N001	9500		#	200	
Cobalt-60	pCi/L	03/20/2014	N001	-3.01	U	#	7	3.73
Europium-152	pCi/L	03/20/2014	N001	-15.3	U	#	35	18.6
Europium-154	pCi/L	03/20/2014	N001	4.48	U	#	35	20.1
Europium-155	pCi/L	03/20/2014	N001	256	U	#	9.3	5.44
Gross Alpha	pCi/L	03/20/2014	N001	51.4		U #	51	33.8
Gross Beta	pCi/L	03/20/2014	N001	95.3		J #	54	37.4
Lead-212	pCi/L	03/20/2014	N001	4.94	U	#	11	6.92
Potassium-40	pCi/L	03/20/2014	N001	20.1	U	#	120	73.3
Promethium-144	pCi/L	03/20/2014	N001	-2.42	U	#	6.8	3.86
Promethium-146	pCi/L	03/20/2014	N001	-4.66	U	#	11	6.25
Ruthenium-106	pCi/L	03/20/2014	N001	-3.69	U	#	56	32.1

REPORT DATE: 06/30/2014

Location: 05-045-15743 WELL BM 26-33B

Parameter	Units	Sam Date	ple ID	Result	Q Lab	ualifiers Data	QA	Detection Limit	Uncertainty
Thorium-234	pCi/L	03/20/2014	N001	-21.1	U		#	81	48
Tritium	pCi/L	03/20/2014	N001	-29.6	U		#	360	212
Uranium-235	pCi/L	03/20/2014	N001	151	U		#	27	16
Yttrium-88	pCi/L	03/20/2014	N001	1.2	U		#	6.5	3.81

REPORT DATE: 06/30/2014

Location: 05-045-15744 WELL BM 26-34A

Parameter	Units	Samր Date	ole ID	Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Actinium-228	pCi/L	03/20/2014	N001	28	NQ	U	#	18	10.7
Americium-241	pCi/L	03/20/2014	N001	625	U		#	5.3	3.14
Antimony-125	pCi/L	03/20/2014	N001	4.39	U		#	9.4	5.45
Cerium-144	pCi/L	03/20/2014	N001	-4.65	U		#	16	9.14
Cesium-134	pCi/L	03/20/2014	N001	-2.43	U		#	4.3	2.45
Cesium-137	pCi/L	03/20/2014	N001	-3.23	U		#	4.5	2.53
Chloride	mg/L	03/20/2014	N001	14000			#	200	
Cobalt-60	pCi/L	03/20/2014	N001	-1.28	U		#	5.4	3.08
Europium-152	pCi/L	03/20/2014	N001	-5.5	U		#	25	14.3
Europium-154	pCi/L	03/20/2014	N001	-7.06	U		#	26	15.1
Europium-155	pCi/L	03/20/2014	N001	3.87	U		#	7.3	4.46
Gross Alpha	pCi/L	03/20/2014	N001	51.1	U		#	74	46.7
Gross Beta	pCi/L	03/20/2014	N001	222		J	#	76	60.4
Lead-212	pCi/L	03/20/2014	N001	-2.12	U		#	12	7.37
Potassium-40	pCi/L	03/20/2014	N001	138		J	#	140	86.6
Promethium-144	pCi/L	03/20/2014	N001	-1.2	U		#	5	2.9
Promethium-146	pCi/L	03/20/2014	N001	807	U		#	4.6	2.65
Ruthenium-106	pCi/L	03/20/2014	N001	-20.8	U		#	41	23.7

REPORT DATE: 06/30/2014

Location: 05-045-15744 WELL BM 26-34A

Parameter	Units	Sam Date	ple ID	Result	Q Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Thorium-234	pCi/L	03/20/2014	N001	10.3	U		#	78	39.2
Tritium	pCi/L	03/20/2014	N001	-172	U		#	350	205
Uranium-235	pCi/L	03/20/2014	N001	10.5	U		#	16	9.7
Yttrium-88	pCi/L	03/20/2014	N001	-2.36	U		#	18	10.6

REPORT DATE: 06/30/2014

Location: 05-045-15745 WELL BM 26-34B

Parameter	Units	Sam _l Date	ole ID	Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Actinium-228	pCi/L	03/20/2014	N001	20.3	TI	U	#	19	11
Americium-241	pCi/L	03/20/2014	N001	-10.2	U		#	23	13.5
Antimony-125	pCi/L	03/20/2014	N001	0.065	U		#	9.7	5.39
Cerium-144	pCi/L	03/20/2014	N001	0.879	U		#	17	10.3
Cesium-134	pCi/L	03/20/2014	N001	266	U		#	4.2	2.47
Cesium-137	pCi/L	03/20/2014	N001	528	U		#	4.7	2.73
Chloride	mg/L	03/20/2014	N001	11000			#	200	
Cobalt-60	pCi/L	03/20/2014	N001	-1.16	U		#	4.8	2.76
Europium-152	pCi/L	03/20/2014	N001	13.9	U		#	20	12.7
Europium-154	pCi/L	03/20/2014	N001	-10.7	U		#	26	14.5
Europium-155	pCi/L	03/20/2014	N001	2.88	U		#	10	6.05
Gross Alpha	pCi/L	03/20/2014	N001	78.2		J	#	64	43.6
Gross Beta	pCi/L	03/20/2014	N001	97		J	#	56	38.2
Lead-212	pCi/L	03/20/2014	N001	5.09	U		#	12	7.22
Potassium-40	pCi/L	03/20/2014	N001	28.9	U		#	110	69
Promethium-144	pCi/L	03/20/2014	N001	-2.99	U		#	12	7.07
Promethium-146	pCi/L	03/20/2014	N001	-2.83	U		#	4.6	2.63
Ruthenium-106	pCi/L	03/20/2014	N001	-9.54	U		#	38	22.3

REPORT DATE: 06/30/2014

Location: 05-045-15745 WELL BM 26-34B

Parameter	Units	Sam	ple	Result	(Qualifiers	i	Detection	Uncertainty
r arameter	Onits	Date	ID	Nesuit	Lab	Data	QA	Limit	
Thorium-234	pCi/L	03/20/2014	N001	17.1	U		#	120	70.5
Tritium	pCi/L	03/20/2014	N001	-90.7	U		#	360	210
Uranium-235	pCi/L	03/20/2014	N001	13.4	TI	U	#	12	7.9
Yttrium-88	pCi/L	03/20/2014	N001	2.64	U		#	4.4	2.7

REPORT DATE: 06/30/2014

Location: 05-045-15748 WELL BM 26-34D

Parameter	Units	Sam _l Date	ole ID	Result	(Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Actinium-228	pCi/L	03/20/2014	N001	24.8		U	#	20	11
Americium-241	pCi/L	03/20/2014	N001	187	U		#	4.3	2.57
Antimony-125	pCi/L	03/20/2014	N001	4.56	U		#	8.6	4.85
Cerium-144	pCi/L	03/20/2014	N001	4.03	U		#	14	8.34
Cesium-134	pCi/L	03/20/2014	N001	-3.07	U		#	3.9	2.25
Cesium-137	pCi/L	03/20/2014	N001	354	U		#	3.7	2.15
Chloride	mg/L	03/20/2014	N001	12000			#	200	
Cobalt-60	pCi/L	03/20/2014	N001	496	U		#	3.9	2.21
Europium-152	pCi/L	03/20/2014	N001	2.05	U		#	20	11.9
Europium-154	pCi/L	03/20/2014	N001	-5.37	U		#	22	12.9
Europium-155	pCi/L	03/20/2014	N001	0.821	U		#	5.7	3.39
Gross Alpha	pCi/L	03/20/2014	N001	72		J	#	58	39.9
Gross Beta	pCi/L	03/20/2014	N001	132		J	#	56	41.3
Lead-212	pCi/L	03/20/2014	N001	7.01	U		#	10	6.33
Potassium-40	pCi/L	03/20/2014	N001	81.9	U		#	110	66.7
Promethium-144	pCi/L	03/20/2014	N001	-1.33	U		#	3.9	2.25
Promethium-146	pCi/L	03/20/2014	N001	276	U		#	4.1	2.41
Ruthenium-106	pCi/L	03/20/2014	N001	-5.93	U		#	33	19.3

REPORT DATE: 06/30/2014

Location: 05-045-15748 WELL BM 26-34D

Parameter	Units	Sam Date	ple ID	Result	C Lab	ualifiers Data	QA	Detection Limit	Uncertainty
Thorium-234	pCi/L	03/20/2014	N001	-4.92	U		#	72	43.7
Tritium	pCi/L	03/20/2014	N001	123	U		#	360	219
Uranium-235	pCi/L	03/20/2014	N001	4.72	U		#	14	8.27
Yttrium-88	pCi/L	03/20/2014	N001	2	U		#	3.9	2.4

REPORT DATE: 06/30/2014

Location: 05-045-16074 WELL BM 26-22D

Parameter	Units	Sam _l Date	ple ID	Result	Quali Lab Da		Detection Limit	Uncertainty
Actinium-228	pCi/L	03/20/2014	N001	18.5	U	#	22	11.7
Americium-241	pCi/L	03/20/2014	N001	-20.4	U	#	28	16.2
Antimony-125	pCi/L	03/20/2014	N001	0.52	U	#	10	6.17
Cerium-144	pCi/L	03/20/2014	N001	-3.6	U	#	20	12
Cesium-134	pCi/L	03/20/2014	N001	-2.13	U	#	4.6	2.69
Cesium-137	pCi/L	03/20/2014	N001	0.935	U	#	4	2.42
Chloride	mg/L	03/20/2014	N001	12000		#	200	
Cobalt-60	pCi/L	03/20/2014	N001	1.42	U	#	4.6	2.76
Europium-152	pCi/L	03/20/2014	N001	-2.84	U	#	24	13.9
Europium-154	pCi/L	03/20/2014	N001	3.72	U	#	24	14.2
Europium-155	pCi/L	03/20/2014	N001	0.375	U	#	10	6.13
Gross Alpha	pCi/L	03/20/2014	N001	88.4	J	#	51	37.9
Gross Beta	pCi/L	03/20/2014	N001	214		#	56	50.2
Lead-212	pCi/L	03/20/2014	N001	8.4	U	#	12	7.34
Potassium-40	pCi/L	03/20/2014	N001	106	U	#	130	79.2
Promethium-144	pCi/L	03/20/2014	N001	-5.87	U	#	18	10.8
Promethium-146	pCi/L	03/20/2014	N001	0.902	U	#	4.8	2.86
Ruthenium-106	pCi/L	03/20/2014	N001	-14.4	U	#	40	23.1

REPORT DATE: 06/30/2014

Location: 05-045-16074 WELL BM 26-22D

Parameter	Units	Sam	ple	Result	Qualifiers			Detection	Uncertainty
- uramotor	Omto	Date	ID	Nooun	Lab	Data	QA	Limit	Oncortainty
Thorium-234	pCi/L	03/20/2014	N001	-28.2	U		#	130	76.5
Tritium	pCi/L	03/20/2014	N001	-24.2	U		#	360	213
Uranium-235	pCi/L	03/20/2014	N001	13.9	U		#	19	9.65
Yttrium-88	pCi/L	03/20/2014	N001	2.23	U		#	4.9	3

General Water Quality Data by Location (USEE105) FOR SITE RUL01, Rulison Site REPORT DATE: 06/30/2014

Location: 05-045-16086 WELL BM 26-22B

Parameter	Units	Sam	ple	Result	(Qualifiers	;	Detection	Uncertainty
Parameter	Ullits	Date	ID	Result	Lab	Data	QA	Limit	Uncertainty
Chloride	mg/L	03/20/2014	N001	9000			#	200	
Tritium	pCi/L	03/20/2014	N001	-83.8	U		#	360	213

REPORT DATE: 06/30/2014

Location: 05-045-16087 WELL BM 26-22C

Parameter	Units	Samր Date	ole ID	Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Actinium-228	pCi/L	03/20/2014	N001	17.3	U		#	30	18.3
Americium-241	pCi/L	03/20/2014	N001	27.9	U		#	130	80.4
Antimony-125	pCi/L	03/20/2014	N001	7.47	U		#	9.8	5.22
Cerium-144	pCi/L	03/20/2014	N001	7.69	U		#	23	14
Cesium-134	pCi/L	03/20/2014	N001	4.5	NQ	U	#	3.2	2.13
Cesium-137	pCi/L	03/20/2014	N001	323	U		#	4	2.35
Chloride	mg/L	03/20/2014	N001	10000			#	200	
Cobalt-60	pCi/L	03/20/2014	N001	1.09	U		#	4.1	2.41
Europium-152	pCi/L	03/20/2014	N001	4.33	U		#	19	11.1
Europium-154	pCi/L	03/20/2014	N001	268	U		#	20	11.8
Europium-155	pCi/L	03/20/2014	N001	7.23	U		#	16	10
Gross Alpha	pCi/L	03/20/2014	N001	61.8		J	#	56	37.8
Gross Beta	pCi/L	03/20/2014	N001	161		J	#	57	45
Lead-212	pCi/L	03/20/2014	N001	10.5	U		#	11	6.77
Potassium-40	pCi/L	03/20/2014	N001	85.6	U		#	120	75.6
Promethium-144	pCi/L	03/20/2014	N001	168	U		#	4.1	2.44
Promethium-146	pCi/L	03/20/2014	N001	344	U		#	4.8	2.83
Ruthenium-106	pCi/L	03/20/2014	N001	-12.6	U		#	72	42.9

REPORT DATE: 06/30/2014

Location: 05-045-16087 WELL BM 26-22C

Parameter	Units	Sam Date	ple ID	Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Thorium-234	pCi/L	03/20/2014	N001	-42.7	U		#	200	123
Tritium	pCi/L	03/20/2014	N001	-94.3	U		#	360	211
Uranium-235	pCi/L	03/20/2014	N001	24.5	NQ	U	#	22	14
Yttrium-88	pCi/L	03/20/2014	N001	-1.1	U		#	8.4	4.96

SAMPLE ID CODES: $000X = Filtered sample (0.45 \mu m)$. N00X = Unfiltered sample. X = replicate number.

LAB QUALIFIERS:

- * Replicate analysis not within control limits.
- > Result above upper detection limit.
- A TIC is a suspected aldol-condensation product.
- B Inorganic: Result is between the IDL and CRDL. Organic: Analyte also found in method blank.
- C Pesticide result confirmed by GC-MS.
- D Analyte determined in diluted sample.
- E Inorganic: Estimate value because of interference, see case narrative. Organic: Analyte exceeded calibration range of the GC-MS.
- H Holding time expired, value suspect.
- I Increased detection limit due to required dilution.
- J Estimated
- N Inorganic or radiochemical: Spike sample recovery not within control limits. Organic: Tentatively identified compound (TIC).
- P > 25% difference in detected pesticide or Aroclor concentrations between 2 columns.
- U Analytical result below detection limit.
- W Post-digestion spike outside control limits while sample absorbance < 50% of analytical spike absorbance.
- X,Y,Z Laboratory defined qualifier, see case narrative.

DATA QUALIFIERS:

- F Low flow sampling method used.
- L Less than 3 bore volumes purged prior to sampling.
- U Parameter analyzed for but was not detected.
- G Possible grout contamination, pH > 9. J Estimated value.
- Q Qualitative result due to sampling technique. R Unusable result.
- X Location is undefined.

QA QUALIFIER:

Validated according to quality assurance guidelines.

This page intentionally left blank

Attachment 2 Trip Report This page intentionally left blank

Trip Report Natural Gas Wells Near Project Rulison Second Quarter 2014

U.S. Department of Energy Office of Legacy Management Grand Junction, Colorado

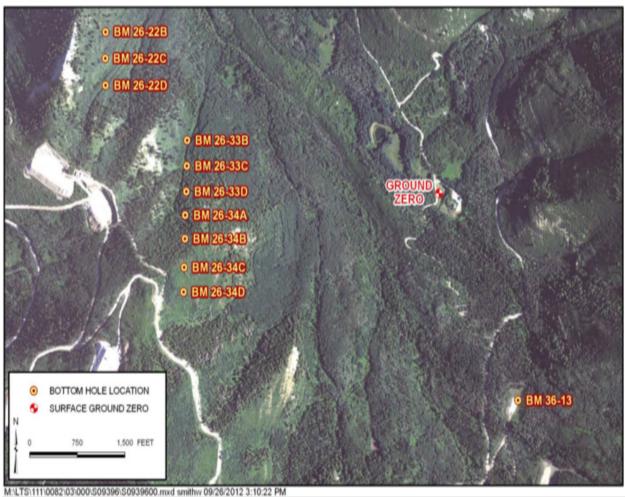
Date Sampled:

March 20, 2014

Background:

Project Rulison was the second Plowshare Program test to investigate using a nuclear device to stimulate natural gas recovery from deep and low-permeability formations. On September 10, 1969, a 40-kiloton-yield nuclear device was detonated 8,426 feet (1.6 miles) below the ground surface in the Williams Fork Formation at what is now the Rulison, Colorado, Site. Following the detonation, a series of production tests were conducted. Afterward, the site was shut down and later remediated, and the emplacement well (R-E) and reentry well (R-Ex) were plugged.

Purpose:


As part of the U.S. Department of Energy (DOE) Office of Legacy Management (LM) mission to protect human health and the environment, LM is monitoring natural gas wells that are near the Rulison site for radionuclides associated with the detonation. Even though the very low permeability of the Williams Fork Formation limits migration, institutional control restrictions limit subsurface access in the detonation zone. Oversight is permitted for wells within 3 miles of the site, which allows the State of Colorado and DOE to review drilling permits and gas well development practices to help protect human health and the environment from the Rulison-related contaminants. The DOE *Rulison Monitoring Plan* (LMS/RUL/S06178) provides guidance for sample collection frequency based on distance from the Rulison detonation point, the types of analyses, and the reporting thresholds. The purpose of this trip was to collect natural gas and production water from producing natural gas wells in the Battlement Mesa (BM) field. The sampled wells collect natural gas from the formation horizon where the Project Rulison detonation occurred. The well locations are within 1.5 miles of the detonation location.

Summary of Results:

The following wells were sampled: seven producing gas wells on Pad 26N, three gas wells on Pad 26K, one well on Pad 35C, one well on Pad 36L, and one well on Pad 36B.

For the 10 wells sampled on Pads 26N and 26K, the bottom-hole locations are between 0.76 mile and 1.1 miles from the Project Rulison vertical emplacement well 25-95 (R-E). Wells on Pads

35C and 36L are approximately 0.95 mile from the detonation point. The well on Pad 36B is approximately 0.55 mile southeast of well 25-95 (R-E). Surface projections of the bottom-hole well locations and Project Rulison surface ground zero at well 25-95 (R-E) (i.e., the detonation point) are shown in Figure 1.

Notes

All wells sampled have been previously sampled by DOE.

The first two numerals in the well name designate the section number of the bottom-well location in the Battlement Mesa (BM) field.

The Project Rulison emplacement well, 25-95 (R-E) (i.e., ground zero), is located in Lot 11, Section 25.

Figure 1. Wells Sampled and Well 25-95 (R-E)

The wells are listed by sample-collection sequence in Table 1. Before sample collection at each well, each individual well's pressure and temperature (see Table 1) were read and recorded from surface transducers in the wells. Latitude and longitude values (not shown in Table 1) were compiled from survey plats included with the applications for permits to drill and from Colorado Oil and Gas Conservation Commission scout cards.

During the December 2013 monitoring event, weather conditions caused several production stations to freeze and cause higher than normal line pressures to be observed. At some wells the high wellhead pressure prohibited the production water plunger from traveling up the wells to purge production water. During the March, 2014 monitoring event, pressures and line temperatures returned to normal ranges.

A total of 9 production water samples for total analysis were collected. At three locations 26-34C, 26-22B and 36-13B, only 250 mL of production water were collected. At well location 26-33D no production water was collected. At the three locations where 250 ml of production water was collected, which is only enough material for tritium analysis. A duplicate sample was collected from well and is noted in Table 1. All other well functions were performing normally, so no impact to contaminant analysis data is expected.

Table 1. Samples Collected

Sample	Pad	Well	Location			Sampl	e Phase	W	Well		
Collection Sequence		Name	API # 05-045-	Туре	Subtype	Gas	Liquid	T (°F)	P (psi)		
1	26N	BM 26-33B	15739	WL	NGSA	No	Yes	69	271		
2	26N	BM 26-33C	15742	WL	NGSA	No	Yes	52	250		
3	26N	BM 26-33D	15743	WL	NGSA	No	No	71.5	268		
4	26N	BM 26-34A	15744	WL	NGSA	No	Yes	66.3	275		
5	26N	BM 26-34B	15745	WL	NGSA	No	Yes	66.8	231		
6	26N	BM 26-34C	15741	WL	NGSA	No	Yes ¹	61	262		
7	26N	BM 26-34D	15748	WL	NGSA	No	Yes	63.4	261		
8	26K	BM 26-22B	16086	WL	NGSA	No	Yes ¹	68	271		
9	26K	BM 26-22C	16087	WL	NGSA	No	Yes	61	263		
10	26K	BM 26-22D	16074	WL	NGSA	No	Yes	63	265		
11	35C	BM 35-32A	10919	WL	NGSV	No	Yes	61	272		
12	36L	BM 36-13B	15469	WL	NGSV	No	Yes ¹	68	279		
13	36B	BM 36-13	10840	WL	NGSV	No	Yes	67	281		

Notes:

Abbreviations:

API American Petroleum Institute

BM Battlement Mesa
NGSA natural gas well–angle
NGSV natural gas well–vertical

P (psi) pressure in pounds per square inch T (°F) temperature in degrees Fahrenheit

WL well

The produced water samples were collected from a tap on a common line connecting the output of two separators (each servicing a well) and the nearby accumulation tanks. The collected water sample from one separator was isolated from the other separator by valves. Lines from each of the two separators were purged before sample collection.

¹ BM 26-34C, BM 26-22B, and BM36-13B produced approximately 250 mL of production water, which is enough sample volume for only tritium analysis.

Water condensation is variable and often not desired for the planned analytes. Collected sample volumes (Table 2) varied due to the water vapor concentration in the gas, temperature, age of the well, the cycle times of the well plunger, and transfer to the accumulation tank. Analyses priorities are tritium, gross alpha/beta, technetium-99, and high-resolution gamma spectrometry.

If condensate was collected with a sample, which happens for most samples, the condensate naturally separated from water after a short time in the sample bottle. The condensate was decanted in the field and returned to the operator. Table 2 lists the estimated sample volumes before decanting.

Table 2. Collected Water Sample Volumes (Before Decanting)

Sample Ticket	Well Name	Planned Analytes	Sample Volume (L)
1	BM 26-33B	³ H, Gross α/β, Gamma spec, CΓ, ⁹⁹ Tc	≈ 2.5 L
2	BM 26-33C	³ H, Gross α/β, Gamma spec, CΓ, ⁹⁹ Tc	≈ 2.5L
3	BM 26-33D	NA	No Sample
4	BM 26-34A	³ H, Gross α/β, Gamma spec, CΓ, ⁹⁹ Tc	≈ 2.5 L
5	BM 26-34B	³ H, Gross α/β, Gamma spec, CΓ, ⁹⁹ Tc	≈ 2.5 L
6	BM 26-34C	³ H, only	≈ 250mLL
7	BM 26-34D		No Sample
8	BM 26- 22B	NA	No Sample
9	BM 26-22C	NA	No Sample
10	BM 26-22CD	NA	No Sample
11	BM 26-22D	NA	No Sample
12	BM 35-32A	³ H, Gross α/β, Gamma spec, Cl ⁻ , ⁹⁹ Tc	≈ 2.5 L
13	BM 36-13B	NA	No Sample
14	BM 36-13	³ H, Gross α/β, Gamma spec, Cl ⁻ , ⁹⁹ Tc	≈ 2.5 L

Notes:

Water sample information is listed in the order of collection.

The sample volume of water may include some condensate.

Wells BM 26-22B and BM 26-34A did not produce water for laboratory analyses; (historically these wells have not produced water during the sample collection).

Abbreviations:

Cl⁻ chloride

Gamma spec high-resolution gamma spectrometry analysis

Gross α/β gross alpha and beta analyses

³H tritium L liter

NA not applicable 99Tc technetium-99

Equipment:

Each produced-water sample was collected in a new 1-gallon plastic bottle. After decanting, each water sample was poured into white high-density polyethylene bottles of appropriate volumes for analysis.