Data Validation Package

July 2014
Natural Gas and Produced Water
Sampling at the Rulison, Colorado, Site

November 2014

Available for sale to the public from:

U.S. Department of Commerce National Technical Information Service 5301 Shawnee Road Alexandria, VA 22312 Telephone: 800.553.6847

Fax: 703.605.6900 E-mail: orders@ntis.gov

Online Ordering: http://www.ntis.gov/help/ordermethods.aspx

Available electronically at http://www.osti.gov/scitech/

Available for a processing fee to U.S. Department of Energy and its contractors, in paper, from:

U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831-0062 Phone: 865.576.8401

Phone: 865.576.8401 Fax: 865.576.5728

Email: reports@adonis.osti.gov

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors.

Contents

Sampling Event Summary	
Rulison, Colorado, Site Sample Location Map	
Data Assessment Summary	
Water Sampling Field Activities Verification Checklist	
Laboratory Performance Assessment	
Sampling Quality Control Assessment	
Certification	

Attachment 1—Data Presentation

Natural Gas Data Produced Water Data

Attachment 2—Trip Report

This page intentionally left blank

Sampling Event Summary

Site:

Rulison, Colorado, Site

Sampling Period:

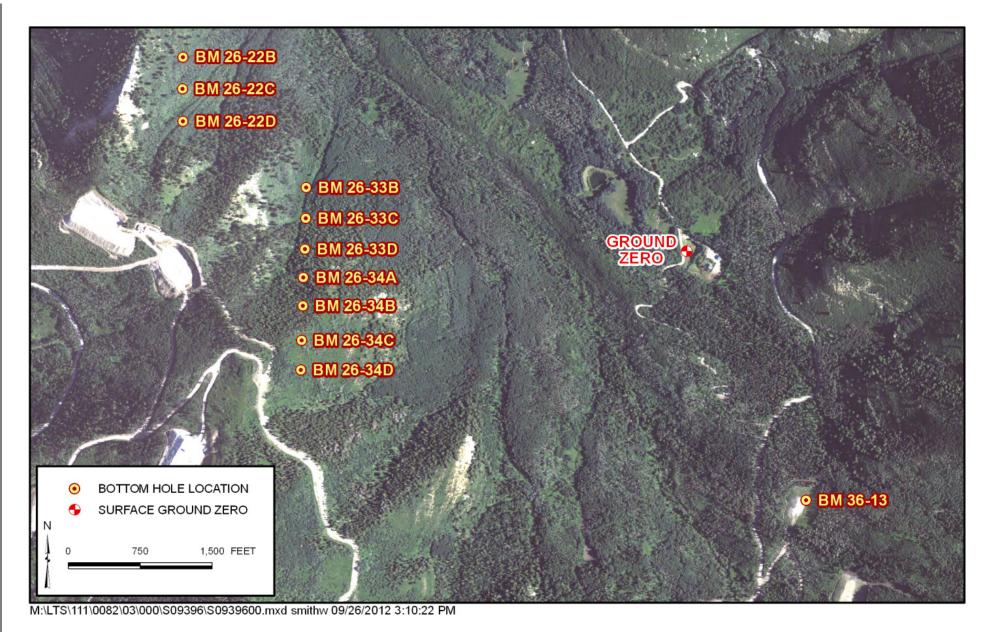
July 14, 2014

The U.S. Department of Energy Office of Legacy Management conducted sampling at the Rulison, Colorado, Site on July 14, 2014, in accordance with the 2010 Rulison Monitoring *Plan.* The Monitoring Plan provides guidance regarding the type and frequency of sample collection as a function of distance and heading from the Rulison detonation point; it also specifies the types of analyses. Natural gas and produced water samples are analyzed for radionuclides to determine if contamination is migrating from the Rulison detonation zone to producing gas wells. Samples were submitted for analysis as follows:

- Natural gas samples were submitted under requisition 14066310 to Isotech Laboratories in Champaign, Illinois, for the determination of carbon-14 and tritium.
- Produced water samples were submitted under requisition 14066311 to ALS Laboratory Group in Fort Collins, Colorado, for the determination of chloride, gross alpha/beta, gamma-emitting nuclides, and tritium.

Sampling and analyses were conducted as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). A duplicate produced water sample was collected at location 05-045-15745.

Sample radionuclide results are compared to the screening levels listed in the Monitoring Plan to determine if any further action is merited. None of the results for the 13 wells sampled during this event exceeded the screening levels specified in the Monitoring Plan. The natural gas and produced water sample results are presented in Attachment 1.


Rick Hutton

Site Lead

The S.M. Stoller Corporation,

a wholly owned subsidiary of Huntington Ingalls Industries

U.S. Department of Energy November 2014

Rulison, Colorado, Site Sample Location Map

Data Assessment Summary

This page intentionally left blank

Water Sampling Field Activities Verification Checklist

Project Rulison, Colorado		Date(s) of Wate	r Sampling	July 14, 2014			
Date(s) of Verification	October 6, 2014	Name of Verifie	r	Stephen Donivan			
		Response (Yes, No, NA)		Comments			
1. Is the SAP the primary docum	ent directing field procedures?	Yes					
List any Program Directives or	other documents, SOPs, instructions.		Program Directiv	e RUL-2013-01.			
Were the sampling locations s	pecified in the planning documents sampled?	No	Limited volume o the wells.	f produced water was available from four of			
3. Were calibrations conducted a	is specified in the above-named documents?	NA	Field measureme	ents were not required.			
4. Was an operational check of the	he field equipment conducted daily?						
Did the operational checks me	eet criteria?						
	alkalinity, temperature, specific conductance, d measurements taken as specified?						
6. Were wells categorized correct	tly?	NA	This sampling ev	ent did not include groundwater.			
7. Were the following conditions	met when purging a Category I well:						
Was one pump/tubing volume	purged prior to sampling?	NA	This sampling ev	ent did not include groundwater.			
Did the water level stabilize pr	ior to sampling?						
Did pH, specific conductance, prior to sampling?	and turbidity measurements meet criteria						
Was the flow rate less than 50	0 mL/min?						

Water Sampling Field Activities Verification Checklist (continued)

	Response (Yes, No, NA)	Comments
8. Were the following conditions met when purging a Category II well:		
Was the flow rate less than 500 mL/min?	NA	This sampling event did not include groundwater.
Was one pump/tubing volume removed prior to sampling?		
9. Were duplicates taken at a frequency of one per 20 samples?	Yes	A duplicate sample was collected at location 05-045-15745.
10. Were equipment blanks taken at a frequency of one per 20 samples that were collected with non-dedicated equipment?	NA	An equipment blank was not required.
11. Were trip blanks prepared and included with each shipment of VOC samples?	NA	
12. Were the true identities of the QC samples documented?	Yes	
13. Were samples collected in the containers specified?	Yes	
14. Were samples filtered and preserved as specified?	Yes	
15. Were the number and types of samples collected as specified?	Yes	Limited volume of produced water was available.
16. Were chain of custody records completed and was sample custody maintained?	Yes	
17. Was all pertinent information documented on the field data sheets?	Yes	
18. Was the presence or absence of ice in the cooler documented at every sample location?	NA	Sample cooling was not required.
19. Were water levels measured at the locations specified in the planning documents?	NA	

Laboratory Performance Assessment

General Information

Requisition (RIN): 14066310
Sample Event: July 14, 2014
Site(s): Rulison, Colorado
Laboratory: Isotech Laboratories

Work Order No.: 25901

Analysis: Radiochemistry
Validator: Stephen Donivan
Review Date: October 6, 2014

This validation was performed according to the *Environmental Procedures Catalog*, (LMS/POL/S04325, continually updated) "Standard Practice for Validation of Environmental Data." The procedure was applied at Level 1, Data Deliverables Examination. The data were examined to assess the completeness of the deliverables, identify any reporting errors, and assess the usability of the data based on the results of the field duplicate and the laboratory's evaluation of their data, as described in the narrative provided. The data are acceptable as received. The samples were prepared and analyzed using accepted procedures based on methods specified by line item code, which are listed in Table 1.

Table 1. Analytes and Methods

Analyte	Line Item Code	Prep Method	Analytical Method			
Natural Gas Analysis	LMG-01	NA	Gas Chromatography			
Carbon-14 and Tritium	LMG-03	Combustion	Liquid Scintillation Counting			

Data Qualifier Summary

None of the analytical results required qualification.

Sample Shipping/Receiving

Isotech Laboratories received 13 natural gas samples on July 17, 2014, accompanied by a Chain of Custody (COC) form. The COC form was checked to confirm that all of the samples were listed with sample collection dates and times, and that signatures and dates were present indicating sample relinquishment and receipt. The COC form was complete with no errors or omissions with the following exception. There was no relinquishment signature on the form.

Summary

Thirteen natural gas samples were received at Isotech Laboratories and analyzed by gas chromatography to determine the natural gas composition. The samples were then combusted with the resulting water collected for analysis. Carbon-14 and tritium were measured in the water collected by liquid scintillation counting. There were no analytical difficulties noted by the laboratory.

Completeness

The results of the gas chromatography analysis were reported in volume percent showing the average sample composition of 90 percent methane.

The carbon-14 results were reported in percent modern carbon (pMC). The tritium results were reported in tritium units. Carbon-14 and tritium were not detected in any of the samples.

General Information

Requisition No. (RIN): 14066311 Sample Event: July 14, 2014 Site(s): Rulison Site

Laboratory: ALS Laboratory Group, Fort Collins, Colorado

Work Order No.: 1407289

Analysis: Radiochemistry and Wet Chemistry

Validator: Stephen Donivan Review Date: October 6, 2014

This validation was performed according to the *Environmental Procedures Catalog*, (LMS/POL/S04325, continually updated) "Standard Practice for Validation of Environmental Data." The procedure was applied at Level 3, Data Validation. See attached Data Validation Worksheets for supporting documentation on the data review and validation. All analyses were successfully completed. The samples were prepared and analyzed using accepted procedures based on methods specified by line item code, which are listed in Table 2.

Table 2. Analytes and Methods

Analyte	Line Item Code	Prep Method	od Analytical Method			
Chloride	WCH-B-011	EPA 300.0	EPA 300.0			
Gamma Spectrometry	GAM-A-001	PA SOP713R11	PA SOP713R11			
Gross Alpha/Beta	GPC-A-001	PA SOP702R19	PA SOP724R10			
Tritium	LCS-A-001	PA SOP700R10	PA SOP704R9			

Data Qualifier Summary

Analytical results were qualified as listed in Table 3. Refer to the sections below for an explanation of the data qualifiers applied.

Table 3. Data Qualifier Summary

Sample Number	Location	Analyte	Flag	Reason
1407289-2	BM 26-22C	Actinium-228	J	Less than the determination limit
1407289-3	BM 26-22D	Actinium-228	U	Nuclide identification criteria
1407289-5	BM 26-33C	Gross Alpha	J	Less than the determination limit
1407289-6	BM 26-34A	Potassium-40	J	Less than the determination limit
1407289-7	BM 26-34B	Uranium-235	U	Nuclide identification criteria
1407289-7	BM 26-34B	Gross Beta	J	Less than the determination limit
1407289-10	BM 35-32A	Actinium-228	U	Nuclide identification criteria
1407289-10	BM 35-32A	Potassium-40	J	Less than the determination limit
1407289-11	BM 36-13	Actinium-228	U	Nuclide identification criteria
1407289-12	BM 36-13B	Actinium-228	U	Nuclide identification criteria

Sample Shipping/Receiving

ALS Laboratory Group in Fort Collins, Colorado, received 12 water samples on July 16, 2014, accompanied by a Chain of Custody form. The Chain of Custody form was checked to confirm that all of the samples were listed with sample collection dates and times, and that signatures and dates were present indicating sample relinquishment and receipt. Copies of the shipping labels were included in the receiving documentation. The Chain of Custody form was complete with no errors or omissions.

Preservation and Holding Times

The sample shipment was received intact at ambient temperature which complies with requirements. All samples were received in the correct container types and had been preserved correctly for the requested analyses. Sample analysis was completed within the applicable holding times.

Detection and Quantitation Limits

The method detection limit (MDL) was reported for all metal, organic, and wet chemical analytes as required. The MDL, as defined in 40 CFR 136, is the minimum concentration of an analyte that can be measured and reported with 99 percent confidence that the analyte concentration is greater than zero. The practical quantitation limit (PQL) for these analytes is the lowest concentration that can be reliably measured, and is defined as 5 times the MDL.

For radiochemical analytes (those measured by radiometric counting) the MDL and PQL are not applicable, and these results are evaluated using the Minimum Detectable Concentration (MDC), Decision Level Concentration (DLC), and Determination Limit (DL). The MDC is a measure of radiochemical method performance and was calculated and reported as specified in *Quality Systems for Analytical Services*. The DLC is the minimum concentration of an analyte that can be measured and reported with 99 percent confidence that the analyte concentration is greater than zero, and is estimated as 3 times the one-sigma total propagated uncertainty. Results that are greater than the MDC, but less than the DLC are qualified with a "U" flag (not detected). The DL for radiochemical results is the lowest concentration that can be reliably measured, and is defined as 3 times the MDC. Results not previously "U" qualified that are less than the DL are qualified with a "J" flag as estimated values.

The reported MDLs for the wet chemical analyte and MDCs for radiochemical analytes met the detection limit requirements with the following exceptions. The required detection limits were not met for several gross alpha and gross beta samples because of elevated dissolved solids levels in the samples.

Laboratory Instrument Calibration

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing acceptable qualitative and quantitative data for all analytes. Initial calibration demonstrates that the instrument is capable of acceptable performance in the beginning of the analytical run and of producing a linear curve. Compliance requirements for continuing calibration checks are established to ensure that the instrument continues to be

capable of producing acceptable qualitative and quantitative data. All laboratory instrument calibrations were performed correctly in accordance with the cited methods. All calibration and laboratory spike standards were prepared from independent sources.

Method EPA 300.0, Chloride

Calibration for chloride was performed using five calibration standards on June 15, 2014. The calibration curve correlation coefficient values were greater than 0.995 and the absolute values of the intercepts were less than three times the MDL. Initial and continuing calibration verification checks were made at the required frequency with all calibration checks meeting the laboratory's acceptance criteria.

Gamma Spectrometry

Activity concentrations above the MDC were reported in some instances where minimum nuclide identification criteria were not met. Such tentative identifications result when the software attempts to calculate net activity concentrations for analytes where either one or both of the following criteria are not satisfied: one or more characteristic peaks for a nuclide must be identified above the critical level, or the minimum library peak abundance must be attained. Sample results for gamma-emitting radionuclides that do not meet the identification criteria are qualified with a "U" flag as not detected.

Method and Calibration Blanks

Method blanks are analyzed to assess any contamination that may have occurred during sample preparation. Calibration blanks are analyzed to assess instrument contamination prior to and during sample analysis. All radiochemical method blank results were below the Decision Level Concentration.

Laboratory Control Sample

Laboratory control samples were analyzed at the correct frequency to provide information on the accuracy of the analytical method and the overall laboratory performance, including sample preparation. All control sample results were acceptable.

Laboratory Replicate Analysis

Laboratory replicate sample results demonstrate acceptable laboratory precision. The relative percent difference value for the chloride matrix spike replicate met the acceptance criteria. The radiochemical relative error ratio (calculated using the one-sigma total propagated uncertainty) for the sample replicates was less than three for all duplicates.

Matrix Spike Analysis

Matrix spike and matrix spike duplicate (MS/MSD) samples are used to measure method performance in the sample matrix. The MS/MSD data are not evaluated when the concentration of the unspiked sample is greater than four times the spike concentration. The spike recoveries met the recovery and precision criteria for all analytes evaluated.

Completeness

Results were reported in the correct units for all analytes requested using contract-required laboratory qualifiers.

Electronic Data Deliverable (EDD) File

The EDD file arrived on August 12, 2014. The Sample Management System EDD validation module was used to verify that the EDD files were complete and in compliance with requirements. The module compares the contents of the file to the requested analyses to ensure all and only the requested data are delivered. The contents of the EDD was manually examined to verify that the sample results accurately reflect the data contained in the sample data package.

SAMPLE MANAGEMENT SYSTEM **General Data Validation Report** RIN: 14066311 Validator: Stephen Donivan _ Lab Code: PAR Validation Date: 10/06/2014 Analysis Type: Metals General Chem Project: Rulison Site ✓ Rad Organics # of Samples: 12 Matrix: WATER Requested Analysis Completed: Yes Chain of Custody Sample-Present: OK Dated: OK Integrity: OK Temperature: OK Signed: OK Preservation: OK **Select Quality Parameters** ✓ Holding Times All analyses were completed within the applicable holding times. ✓ Detection Limits There are 20 detection limit failures. Field/Trip Blanks ✓ Field Duplicates There was 1 duplicate evaluated.

SAMPLE MANAGEMENT SYSTEM Non-Compliance Report: Detection Limits

Page 1 of 1

RIN:	14066311	Lab Code:	PAR	
	11000011		. ,	

Project: Rulison Site

Validation Date: 10/06/2014

Ticket	Location	Lab Sample ID	Method Code	Lab Method	Analyte Name	Result	Qualifier	Reported Detection Limit	Required Detection Limit	Units	
MIZ 162	2657	1407289-1	GPC-A-001	724R11	GROSS ALPHA	3.5	U	30	2	pCi/L	
VIZ 162	2657	1407289-1	GPC-A-001	724R11	GROSS BETA	66.3		21	4	pCi/L	
VHW 502	BM 26-22C	1407289-2	GPC-A-001	724R11	GROSS BETA	170	Т	42	4	pCi/L	
инW 502	BM 26-22C	1407289-2	GPC-A-001	724R11	GROSS ALPHA	19.4	U	43	2	pCi/L	
MHW 503	BM 26-22D	1407289-3	GPC-A-001	724R11	GROSS ALPHA	29.4	U	38	2	pCi/L	
иHW 503	BM 26-22D	1407289-3	GPC-A-001	724R11	GROSS BETA	195	İ	41	4	pCi/L	
MHW 498	BM 26-33C	1407289-5	GPC-A-001	724R11	GROSS ALPHA	36.2	T	26	2	pCi/L	
иHW 498	BM 26-33C	1407289-5	GPC-A-001	724R11	GROSS BETA	123		21	4	pCi/L	
MHW 508	BM 26-34A	1407289-6	GPC-A-001	724R11	GROSS BETA	368		110	4	pCi/L	
MHW 508	BM 26-34A	1407289-6	GPC-A-001	724R11	GROSS ALPHA	-31	U	120	2	pCi/L	
MHW 500	BM 26-34B	1407289-7	GPC-A-001	724R11	GROSS BETA	64.7	T	22	4	pCi/L	
MHW 500	BM 26-34B	1407289-7	GPC-A-001	724R11	GROSS ALPHA	25.9	U	26	2	pCi/L	
MHW 501	BM 26-34D	1407289-9	GPC-A-001	724R11	GROSS BETA	134		44	4	pCi/L	
MHW 501	BM 26-34D	1407289-9	GPC-A-001	724R11	GROSS ALPHA	18.6	U	44	2	pCi/L	
MHW 504	BM 35-32A	1407289-10	GPC-A-001	724R11	GROSS ALPHA	25.8	U	38	2	pCi/L	
MHW 504	BM 35-32A	1407289-10	GPC-A-001	724R11	GROSS BETA	199		43	4	pCi/L	
MHW 505	BM 36-13	1407289-11	GPC-A-001	724R11	GROSS BETA	164		42	4	pCi/L	
VHW 505	BM 36-13	1407289-11	GPC-A-001	724R11	GROSS ALPHA	20.7	U	38	2	pCi/L	
	BM 36-13B	1407289-12	GPC-A-001	724R11	GROSS BETA	170		44	4	pCi/L	
MHW 506	BM 36-13B	1407289-12	GPC-A-001	724R11	GROSS ALPHA	25.1	U	43	2	pCi/L	

Page 1 of 2

SAMPLE MANAGEMENT SYSTEM Radiochemistry Data Validation Worksheet

 RIN:
 14066311
 Lab Code:
 PAR
 Date Due:
 08/13/2014

 Matrix:
 Water
 Site Code:
 RUL01
 Date Completed:
 08/13/2014

Sample	Analyte	Date Analyzed	Result	Flag	Tracer %R	LCS %R	MS %R	Duplicate RER
BM 26-34A	Actinium-228	08/08/2014						0.07
BM 26-34A	Americium-241	08/08/2014				Ì		0.34
Blank_Spike	Americium-241	08/08/2014				97.80		
BM 26-34A	Antimony-125	08/08/2014				ĺ		0.27
BM 26-34A	Cerium-144	08/08/2014				İ		0.87
BM 26-34A	Cesium-134	08/08/2014				Ì		1.10
BM 26-34A	Cesium-137	08/08/2014				Ì		0.62
Blank_Spike	Cesium-137	08/08/2014				103.00		
BM 26-34A	Cobalt-60	08/08/2014				Ì		0.07
Blank_Spike	Cobalt-60	08/08/2014				98.90		
BM 26-34A	Europium-152	08/08/2014				ĺ		1.76
BM 26-34A	Europium-154	08/08/2014				İ		1.88
BM 26-34A	Europium-155	08/08/2014				Ì		1.51
BM 26-34D	GROSS ALPHA	07/24/2014				Ì		0.39
Blank_Spike	GROSS ALPHA	07/24/2014				115.00		
2657	GROSS ALPHA	07/24/2014				Ì	112.0	
Blank	GROSS ALPHA	07/24/2014	0.0080	U				
BM 26-34D	GROSS BETA	07/24/2014				ĺ		0.46
Blank_Spike	GROSS BETA	07/24/2014				109.00		
2657	GROSS BETA	07/24/2014					106.0	
Blank	GROSS BETA	07/24/2014	0.7800	U		Ì		
BM 26-34A	H-3	07/23/2014				Ì		0.41
Blank_Spike	H-3	07/23/2014				107.00		
BM 26-34D	H-3	07/23/2014				ĺ	107.0	
Blank	H-3	07/23/2014	15.0000	U		ĺ		
BM 26-34A	Lead-212	08/08/2014				İ		0.54
BM 26-34A	Potassium-40	08/08/2014				ĺ		0.60
BM 26-34A	Promethium-144	08/08/2014				Ì		0.20
BM 26-34A	Promethium-146	08/08/2014						0.39
BM 26-34A	Ruthenium-106	08/08/2014				Ì		2.31
BM 26-34A	Thorium-234	08/08/2014						0.28
BM 26-34A	Uranium-235	08/08/2014						2.22

Page 2 of 2

SAMPLE MANAGEMENT SYSTEM Radiochemistry Data Validation Worksheet

 RIN:
 14066311
 Lab Code:
 PAR
 Date Due:
 08/13/2014

 Matrix:
 Water
 Site Code:
 RUL01
 Date Completed:
 08/13/2014

Sample	Analyte	Date Analyzed	Result	Flag	Tracer %R	LCS %R	MS %R	Duplicate RER
BM 26-34A	Yttrium-88	08/08/2014						0.85

Page 1 of 1

SAMPLE MANAGEMENT SYSTEM Wet Chemistry Data Validation Worksheet

 RIN: 14066311
 Lab Code: PAR
 Date Due: 08/13/2014

 Matrix: Water
 Site Code: RUL01
 Date Completed: 08/13/2014

Analyte	Date Analyzed	yzed CALIBRATION				Method	LCS %R	MS %R	MSD %R	DUP RPD	Serial Dil. %R
	-	Int.	R^2	ccv	ССВ	Blank					
CHLORIDE	07/21/2014	0.000	1.0000	ОК	ОК	ОК	98.00				

Sampling Quality Control Assessment

The following information summarizes and assesses quality control for this sampling event.

Sampling Protocol

The produced water samples were collected from a tap on a common line connecting the output of two separators (each servicing a well) and the nearby accumulation tanks. The collected water sample from one separator was isolated from the other separator by valves. Lines from each of the two separators were purged before sample collection.

Natural gas samples were collected as specified in Program Directive RUL-2013-01 in an evacuated 17.8-liter gas cylinder provided by Isotech Laboratories, Inc. Each sampling container was filled to approximately 25 pounds per square inch with natural gas from each well.

Equipment Blank Assessment

An equipment blank was not required.

Field Duplicate Analysis

Field duplicate samples are collected and analyzed as an indication of overall precision of the measurement process. The precision observed includes both field and laboratory precision and has more variability than laboratory duplicates, which measure only laboratory performance. A duplicate sample was collected from location BM 26-34B. For non-radiochemical measurements, the relative percent difference for duplicate results that are greater than five times the practical quantitation limit (PQL) should be less than 20 percent. For results less than five times the PQL, the range should be no greater than the PQL. For radiochemical measurements, the relative error ratio (the ratio of the absolute difference between the sample and duplicate results and the sum of the 1-sigma uncertainties) is used to evaluate duplicate results and should be less than 3. All duplicate results met these criteria demonstrating acceptable precision.

SAMPLE MANAGEMENT SYSTEM

Page 1 of 1

Validation Report: Field Duplicates

 RIN:
 14066311
 Lab Code:
 PAR
 Project:
 Rulison Site
 Validation Date:
 10/06/2014

Duplicate: 2657

Sample: BM 26-34B

	_ Sample —				Duplicate —						
Analyte	Result	Flag	Error	Dilution	Result	Flag	Error	Dilution	RPD	RER	Units
Actinium-228	4.12	U	19.6	1	15.6	U	17.1	1		0.9	pCi/L
Americium-241	3.2	U	18.4	1	17.5	U	31.2	1		0.8	pCi/L
Antimony-125	0.0052	U	6.81	1	11.2	U	7.63	1		2.1	pCi/L
Cerium-144	-1.66	U	14.4	1	0.407	U	15.3	1		0.2	pCi/L
Cesium-134	-1.23	U	3.22	1	-2.04	U	3.41	1		0.3	pCi/L
Cesium-137	0.921	U	2.81	1	2.88	U	3.26	1		0.9	pCi/L
CHLORIDE	8200			500	8500			500	3.59		MG/L
Cobalt-60	-0.16	U	3.25	1	1.28	U	3.41	1		0.6	pCi/L
Europium-152	-0.132	U	15.9	1	-5.64	U	17	1		0.5	pCi/L
Europium-154	10.8	U	16.8	1	-3.92	U	18.5	1		1.2	pCi/L
Europium-155	8.18	U	7.28	1	-0.766	U	9.08	1		1.5	pCi/L
GROSS ALPHA	25.9	U	17.4	1	3.5	U	17.8	1		1.8	pCi/L
GROSS BETA	64.7		17.9	1	66.3		17.2	1		0.1	pCi/L
H-3	-84.3	U	194	1	-23.8	U	201	1		0.4	pCi/L
Lead-212	-0.289	U	8.41	1	-0.0942	U	8.06	1		0	pCi/L
Potassium-40	80.1	U	77	1	84.7	U	101	1		0.1	pCi/L
Promethium-144	2.07	U	3.31	1	4.36	U	3.64	1		0.9	pCi/L
Promethium-146	-0.21	U	3.3	1	-0.695	U	3.61	1		0.2	pCi/L
Ruthenium-106	3.82	U	26.8	1	-13.2	U	31.2	1		0.8	pCi/L
Thorium-234	13.6	U	81.4	1	5.1	U	106	1		0.1	pCi/L
Uranium-235	22.1		13.6	1	-7.74	U	26.5	1		2.0	pCi/L
Yttrium-88	4.14	U	3.92	1	-0.115	U	3.92	1		1.5	pCi/L

Certification

All laboratory analytical quality control criteria were met except as qualified in this report. The data qualifiers listed on the SEEPro database reports are defined on the last page of each report. All data in this package are considered validated and available for use.

Laboratory Coordinator:

Stephen Donivan

Onto

Data Validation Lead:

Stephen Donivan

Date

Attachment 1 Data Presentation

This page intentionally left blank

Natural Gas Data

This page intentionally left blank

REPORT DATE: 10/28/2014

Location: 05-045-10840 WELL, Natural Gas Well - Angle, BM 36-13

Parameter	Units	Sample Date	e ID	Ticket Number	Elev. Range (Ft)	Matrix Subtype	Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Carbon-14	рМС	07/14/2014	N002	MHW 495	8683 - 8683		0.2	U		#		
Tritium	pCi/L	07/14/2014	N002	MHW 495	8683 - 8683		0.0514	U		#		

Gas Matrix Chemistry Data by Location (USEE510) FOR SITE RUL01, Rulison Site REPORT DATE: 10/28/2014

Location: 05-045-10919 WELL, Natural Gas Well - Angle, BM 35-32A

Parameter	Units	Sample Date	e ID	Ticket Number	Elev. Range (Ft)	Matrix Subtype	Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Carbon-14	рМС	07/14/2014	N002	MHW 494	9236 - 9236		0.2	U		#		
Tritium	pCi/L	07/14/2014	N002	MHW 494	9236 - 9236		0.0514	U		#		

REPORT DATE: 10/28/2014

Location: 05-045-15469 WELL, Natural Gas Well - Angle, BM 36-13B

Parameter	Units	Sample Date	e ID	Ticket Number	Elev. Range (Ft)	Matrix Subtype	Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Carbon-14	рМС	07/14/2014	N002	MHW 496	8901 - 8901		0.2	U		#		
Tritium	pCi/L	07/14/2014	N002	MHW 496	8901 - 8901		0.0514	U		#		

Gas Matrix Chemistry Data by Location (USEE510) FOR SITE RUL01, Rulison Site REPORT DATE: 10/28/2014

Location: 05-045-15739 WELL, Natural Gas Well - Angle, BM 26-33D

Parameter	Units	Sampl Date	e ID	Ticket Number	Elev. Range	(Ft)	Matrix Subtype	Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Carbon-14	рМС	07/14/2014	N001	MHW 486	8963.5 -	8963.5		0.2	U		#		
Tritium	pCi/L	07/14/2014	N001	MHW 486	8963.5 -	8963.5		0.0514	U		#		

Gas Matrix Chemistry Data by Location (USEE510) FOR SITE RUL01, Rulison Site REPORT DATE: 10/28/2014

Location: 05-045-15741 WELL, Natural Gas Well - Angle, BM 26-34C

Parameter	Units	Sample Date	e ID	Ticket Number	Elev. Range	(Ft)	Matrix Subtype	Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Carbon-14	рМС	07/14/2014	N002	MHW 489	8963.5 - 8	8963.5		0.2	U		#		
Tritium	pCi/L	07/14/2014	N002	MHW 489	8963.5 - 8	8963.5		0.0514	U		#		_

REPORT DATE: 10/28/2014

Location: 05-045-15742 WELL, Natural Gas Well - Angle, BM 26-33C

Parameter Units	Unite	Sample		Ticket	Elev. Range	Matrix Subtype	Result	(Qualifiers		Detection	Uncertainty
	Ullits	Date	ID	Number	(Ft)	Matrix Subtype	Result	Lab	Data	QA	Limit	Uncertainty
Carbon-14	рМС	07/14/2014	N002	MHW 485	8963.5 - 8963.5		0.2	U		#		
Tritium	pCi/L	07/14/2014	N002	MHW 485	8963.5 - 8963.5		0.0514	U		#		

REPORT DATE: 10/28/2014

Location: 05-045-15743 WELL, Natural Gas Well - Angle, BM 26-33B

Parameter	Units	Sample Date	e ID	Ticket Number	Elev. Range (Ft)	Matrix Subtype	Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Carbon-14	рМС	07/14/2014	N002	MHW 484	8963.5 - 8963.5		0.2	U		#		
Tritium	pCi/L	07/14/2014	N002	MHW 484	8963.5 - 8963.5		0.0514	U		#		

REPORT DATE: 10/28/2014

Location: 05-045-15744 WELL, Natural Gas Well - Angle, BM 26-34A

Parameter	Units	Sample		Ticket	Elev. Range	Matrix Subtype	Result		Qualifiers		Detection	Uncertainty
		Date	טו	Number	(Ft)			Lab	Data	QA	Limit	•
Carbon-14	рМС	07/14/2014	N002	MHW 487	8963.5 - 8963.5		0.2	U		#		
Tritium	pCi/L	07/14/2014	N002	MHW 487	8963.5 - 8963.5		0.0514	U		#		

Gas Matrix Chemistry Data by Location (USEE510) FOR SITE RUL01, Rulison Site

REPORT DATE: 10/28/2014

Location: 05-045-15745 WELL, Natural Gas Well - Angle, BM 26-34B

Parameter	Units	Sample Date	e ID	Ticket Number	Elev. Range (Ft)	Matrix Subtype	Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Carbon-14	рМС	07/14/2014	N003	MHW 488	8963.5 - 8963.5		0.2	U		#		
Tritium	pCi/L	07/14/2014	N003	MHW 488	8963.5 - 8963.5		0.0514	U		#		

Gas Matrix Chemistry Data by Location (USEE510) FOR SITE RUL01, Rulison Site

REPORT DATE: 10/28/2014

Location: 05-045-15748 WELL, Natural Gas Well - Angle, BM 26-34D

Parameter	Units	Sampl Date	e ID	Ticket Number	Elev. Range (Ft)	Matrix Subtype	Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Carbon-14	рМС	07/14/2014	N002	MHW 490	8963.5 - 8963.5		0.2	U		#		
Tritium	pCi/L	07/14/2014	N002	MHW 490	8963.5 - 8963.5		0.0514	U		#		

Gas Matrix Chemistry Data by Location (USEE510) FOR SITE RUL01, Rulison Site REPORT DATE: 10/28/2014

Location: 05-045-16074 WELL, Natural Gas Well - Angle, BM 26-22D

Parameter	Unito	Sampl	le	Ticket	Elev. Range	Matrix Subtype	Docult	(Qualifiers		Detection	Uncertainty
Parameter	Units	Date	ID	Number	(Ft)	watrix Subtype	Result	Lab	Data	QA	Limit	Unicertainty
Carbon-14	рМС	07/14/2014	N002	MHW 493	8983.5 - 8983.5		0.2	U		#		
Tritium	pCi/L	07/14/2014	N002	MHW 493	8983.5 - 8983.5		0.0514	U		#		

Gas Matrix Chemistry Data by Location (USEE510) FOR SITE RUL01, Rulison Site REPORT DATE: 10/28/2014

Location: 05-045-16086 WELL, Natural Gas Well - Angle, BM 26-22B

Parameter	Units	Sampl Date	e ID	Ticket Number	Elev. Range (Ft)	Matrix Subtype	Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Carbon-14	рМС	07/14/2014	N001	MHW 491	8983.5 - 8983.5		0.2	U		#		
Tritium	pCi/L	07/14/2014	N001	MHW 491	8983.5 - 8983.5		0.0514	U		#		

Gas Matrix Chemistry Data by Location (USEE510) FOR SITE RUL01, Rulison Site

REPORT DATE: 10/28/2014

Location: 05-045-16087 WELL, Natural Gas Well - Angle, BM 26-22C

Parameter	Units	Sample Date	e ID	Ticket Number	Elev. Range (Ft)	Matrix Subtype	Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Carbon-14	рМС	07/14/2014	N002	MHW 492	8983.5 - 8983.5		0.2	U		#		
Tritium	pCi/L	07/14/2014	N002	MHW 492	8983.5 - 8983.5		0.0514	U		#		

SAMPLE ID CODES: $000X = Filtered sample (0.45 \mu m)$. N00X = Unfiltered sample. X = replicate number.

LAB QUALIFIERS:

- * Replicate analysis not within control limits.
- > Result above upper detection limit.
- A TIC is a suspected aldol-condensation product.
- B Inorganic: Result is between the IDL and CRDL. Organic: Analyte also found in method blank.
- C Pesticide result confirmed by GC-MS.
- D Analyte determined in diluted sample.
- E Inorganic: Estimate value because of interference, see case narrative. Organic: Analyte exceeded calibration range of the GC-MS.
- H Holding time expired, value suspect.
- I Increased detection limit due to required dilution.
- J Estimated
- N Inorganic or radiochemical: Spike sample recovery not within control limits. Organic: Tentatively identified compound (TIC).
- > 25% difference in detected pesticide or Aroclor concentrations between 2 columns.
- U Analytical result below detection limit.
- W Post-digestion spike outside control limits while sample absorbance < 50% of analytical spike absorbance.
- X,Y,Z Laboratory defined qualifier, see case narrative.

DATA QUALIFIERS:

- F Low flow sampling method used.
 - Less than 3 bore volumes purged prior to sampling.
- U Parameter analyzed for but was not detected.
- G Possible grout contamination, pH > 9. J Estimated value.
- Q Qualitative result due to sampling technique R Unusable result.
- X Location is undefined.

QA QUALIFIER:

L

Validated according to quality assurance guidelines.

This page intentionally left blank

Produced Water Data

This page intentionally left blank

Location: 05-045-10840 WELL BM 36-13

Parameter	Units	Sam _l Date	ple ID	Result	C Lab	Qualifiers Data QA	Detection Limit	Uncertainty
Actinium-228	pCi/L	07/14/2014	N001	20.8		U #	19	8.44
Americium-241	pCi/L	07/14/2014	N001	0.307	U	#	25	14.9
Antimony-125	pCi/L	07/14/2014	N001	-1.95	U	#	13	7.68
Cerium-144	pCi/L	07/14/2014	N001	7.21	U	#	22	13.6
Cesium-134	pCi/L	07/14/2014	N001	-6.27	U	#	5.9	3.36
Cesium-137	pCi/L	07/14/2014	N001	-1.66	U	#	6.1	3.53
Chloride	mg/L	07/14/2014	N001	11000		#	200	
Cobalt-60	pCi/L	07/14/2014	N001	-0.753	U	#	7.6	4.37
Europium-152	pCi/L	07/14/2014	N001	3.92	U	#	32	18.6
Europium-154	pCi/L	07/14/2014	N001	-1.78	U	#	33	19.1
Europium-155	pCi/L	07/14/2014	N001	-2.92	U	#	13	7.6
Gross Alpha	pCi/L	07/14/2014	N001	20.7	U	#	38	23.5
Gross Beta	pCi/L	07/14/2014	N001	164		#	42	38.3
Lead-212	pCi/L	07/14/2014	N001	-3.01	U	#	14	8.51
Potassium-40	pCi/L	07/14/2014	N001	160	U	#	170	106
Promethium-144	pCi/L	07/14/2014	N001	-1.66	U	#	29	17.3
Promethium-146	pCi/L	07/14/2014	N001	0.739	U	#	5.8	3.47
Ruthenium-106	pCi/L	07/14/2014	N001	1.1	U	#	56	33.1
Thorium-234	pCi/L	07/14/2014	N001	53.4	U	#	140	79.5
Tritium	pCi/L	07/14/2014	N001	-23.5	U	#	350	205
Uranium-235	pCi/L	07/14/2014	N001	7.94	U	#	14	8.31

REPORT DATE: 10/06/2014

Location: 05-045-10840 WELL BM 36-13

Parameter	Units	Sam	ole	Result	(Qualifiers		Detection	Uncertainty
Parameter	UIIIIS	Date	ID	Result	Lab	Data	QA	Limit	Uncertainty
Yttrium-88	pCi/L	07/14/2014	N001	2.22	U		#	7.1	4.25

Location: 05-045-10919 WELL BM 35-32A

Parameter	Units	Sam _l Date	ole ID	Result	(Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Actinium-228	pCi/L	07/14/2014	N001	21.9		U	#	21	11.1
Americium-241	pCi/L	07/14/2014	N001	0.0753	U		#	4.5	2.67
Antimony-125	pCi/L	07/14/2014	N001	3.02	U		#	10	5.21
Cerium-144	pCi/L	07/14/2014	N001	-4.88	U		#	24	14.1
Cesium-134	pCi/L	07/14/2014	N001	1.63	U		#	2.8	1.75
Cesium-137	pCi/L	07/14/2014	N001	-1.72	U		#	4.1	2.32
Chloride	mg/L	07/14/2014	N001	10000			#	200	
Cobalt-60	pCi/L	07/14/2014	N001	-0.814	U		#	4.5	2.59
Europium-152	pCi/L	07/14/2014	N001	12.5	U		#	20	12.3
Europium-154	pCi/L	07/14/2014	N001	-1.29	U		#	23	13.4
Europium-155	pCi/L	07/14/2014	N001	1.22	U		#	6.1	3.66
Gross Alpha	pCi/L	07/14/2014	N001	25.8	U		#	38	24.2
Gross Beta	pCi/L	07/14/2014	N001	199			#	43	43
Lead-212	pCi/L	07/14/2014	N001	0.515	U		#	11	6.46
Potassium-40	pCi/L	07/14/2014	N001	162		J	#	110	73.1
Promethium-144	pCi/L	07/14/2014	N001	2.68	U		#	2.8	1.8
Promethium-146	pCi/L	07/14/2014	N001	-1.31	U		#	4.4	2.57
Ruthenium-106	pCi/L	07/14/2014	N001	-25.9	U		#	39	22.4
Thorium-234	pCi/L	07/14/2014	N001	19.2	U		#	72	43.6
Tritium	pCi/L	07/14/2014	N001	-14	U		#	310	185
Uranium-235	pCi/L	07/14/2014	N001	17	U		#	18	10.3

Location: 05-045-10919 WELL BM 35-32A

Parameter	Units	Sam	ple	Result	(Qualifiers		Detection	Uncertainty
Parameter	Ullits	Date	ID	Result	Lab	Data	QA	Limit	Uncertainty
Yttrium-88	pCi/L	07/14/2014	N001	-1.84	U		#	10	6.07

Location: 05-045-15469 WELL BM 36-13B

Parameter	Units	Sam _l Date	ole ID	Result		alifiers Data QA	Detection Limit	Uncertainty
Actinium-228	pCi/L	07/14/2014	N001	35		U #	23	12
Americium-241	pCi/L	07/14/2014	N001	-9.9	U	#	110	64.4
Antimony-125	pCi/L	07/14/2014	N001	1.69	U	#	11	6.25
Cerium-144	pCi/L	07/14/2014	N001	0.525	U	#	26	15.8
Cesium-134	pCi/L	07/14/2014	N001	-1.32	U	#	4.7	2.76
Cesium-137	pCi/L	07/14/2014	N001	-1.38	U	#	4.5	2.62
Chloride	mg/L	07/14/2014	N001	12000		#	200	
Cobalt-60	pCi/L	07/14/2014	N001	-1.38	U	#	4.4	2.5
Europium-152	pCi/L	07/14/2014	N001	10.5	U	#	22	13.1
Europium-154	pCi/L	07/14/2014	N001	-2.49	U	#	23	13.5
Europium-155	pCi/L	07/14/2014	N001	0	U	#	17	10.1
Gross Alpha	pCi/L	07/14/2014	N001	25.1	U	#	43	26.5
Gross Beta	pCi/L	07/14/2014	N001	170		#	44	39.7
Lead-212	pCi/L	07/14/2014	N001	3.04	U	#	13	8.06
Potassium-40	pCi/L	07/14/2014	N001	110	U	#	120	73
Promethium-144	pCi/L	07/14/2014	N001	0.0605	U	#	4.5	2.69
Promethium-146	pCi/L	07/14/2014	N001	0.0462	U	#	4.9	2.93
Ruthenium-106	pCi/L	07/14/2014	N001	11.3	U	#	41	24.6
Thorium-234	pCi/L	07/14/2014	N001	30.4	U	#	200	120
Tritium	pCi/L	07/14/2014	N001	-105	U	#	340	197
Uranium-235	pCi/L	07/14/2014	N001	3.07	U	#	25	14.8

REPORT DATE: 10/06/2014

Location: 05-045-15469 WELL BM 36-13B

Parameter	Units	Sam	ple	Result	(Qualifiers		Detection	Uncertainty
Parameter	Ullits	Date	ID	Result	Lab	Data	QA	Limit	Uncertainty
Yttrium-88	pCi/L	07/14/2014	N001	2.62	U		#	4.2	2.59

Location: 05-045-15741 WELL BM 26-34C

Parameter	Units	Sam	ple	Result	(Qualifiers	;	Detection	Uncertainty
Parameter	Units	Date	ID	Result	Lab	Data	QA	Limit	Uncertainty
Chloride	mg/L	07/14/2014	N001	8200			#	100	
Tritium	pCi/L	07/14/2014	N001	-115	U		#	330	195

Location: 05-045-15742 WELL BM 26-33C

Parameter	Units	Sam Date	ple ID	Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Actinium-228	pCi/L	07/14/2014	N001	19	U		#	38	17.3
Americium-241	pCi/L	07/14/2014	N001	18.3	U		#	44	26.7
Antimony-125	pCi/L	07/14/2014	N001	5.18	U		#	13	7.35
Cerium-144	pCi/L	07/14/2014	N001	3.42	U		#	26	15.4
Cesium-134	pCi/L	07/14/2014	N001	3.82	U		#	7.9	4.9
Cesium-137	pCi/L	07/14/2014	N001	3.01	U		#	5.4	3.31
Chloride	mg/L	07/14/2014	N001	8600			#	100	
Cobalt-60	pCi/L	07/14/2014	N001	1.46	U		#	6.4	3.8
Europium-152	pCi/L	07/14/2014	N001	18.9	U		#	28	17.6
Europium-154	pCi/L	07/14/2014	N001	0.521	U		#	31	18.1
Europium-155	pCi/L	07/14/2014	N001	2	U		#	15	9.11
Gross Alpha	pCi/L	07/14/2014	N001	36.2		J	#	26	18.4
Gross Beta	pCi/L	07/14/2014	N001	123			#	21	24.5
Lead-212	pCi/L	07/14/2014	N001	-2.87	U		#	14	8.08
Potassium-40	pCi/L	07/14/2014	N001	66.6	U		#	150	89.7
Promethium-144	pCi/L	07/14/2014	N001	2.03	U		#	5.6	3.4
Promethium-146	pCi/L	07/14/2014	N001	-2.91	U		#	6.8	3.91
Ruthenium-106	pCi/L	07/14/2014	N001	-14.6	U		#	53	30.8
Thorium-234	pCi/L	07/14/2014	N001	4.3	U		#	130	80.3
Tritium	pCi/L	07/14/2014	N001	10.6	U		#	300	177
Uranium-235	pCi/L	07/14/2014	N001	1.08	U		#	25	14.8

Location: 05-045-15742 WELL BM 26-33C

Parameter	Unito	Sam	ple	Result	(Qualifiers		Detection	Uncertainty
Parameter	Units	Date	ID	Result	Lab	Data	QA	Limit	Officertainty
Yttrium-88	pCi/L	07/14/2014	N001	-1.12	U		#	9.9	5.79

Location: 05-045-15743 WELL BM 26-33B

Parameter	Units	Sam	ple	Result	(Qualifiers	i	Detection	Uncertainty
	Ullits	Date	ID	Result	Lab	Data	QA	Limit	Officertainty
Chloride	mg/L	07/14/2014	N001	9400			#	100	
Tritium	pCi/L	07/14/2014	N001	-44.7	U		#	340	199

Location: 05-045-15744 WELL BM 26-34A

Parameter	Units	Sam _l Date	ole ID	Result	Quali Lab Da		Detection Limit	Uncertainty
Actinium-228	pCi/L	07/14/2014	N001	19.3	U	#	20	13
Americium-241	pCi/L	07/14/2014	N001	10.8	U	#	29	17.7
Antimony-125	pCi/L	07/14/2014	N001	-0.734	U	#	16	9.47
Cerium-144	pCi/L	07/14/2014	N001	2.38	U	#	27	16
Cesium-134	pCi/L	07/14/2014	N001	0.924	U	#	9.2	5.51
Cesium-137	pCi/L	07/14/2014	N001	0.0375	U	#	6.6	3.88
Chloride	mg/L	07/14/2014	N001	30000		#	1000	
Cobalt-60	pCi/L	07/14/2014	N001	-3.64	U	#	9.3	5.24
Europium-152	pCi/L	07/14/2014	N001	20.1	U	#	39	24.1
Europium-154	pCi/L	07/14/2014	N001	26.9	U	#	37	23.1
Europium-155	pCi/L	07/14/2014	N001	6.62	U	#	15	9.01
Gross Alpha	pCi/L	07/14/2014	N001	-31	U	#	120	67.5
Gross Beta	pCi/L	07/14/2014	N001	368		#	110	93.2
Lead-212	pCi/L	07/14/2014	N001	-2.78	U	#	15	9.07
Potassium-40	pCi/L	07/14/2014	N001	425	J	#	180	127
Promethium-144	pCi/L	07/14/2014	N001	1.46	U	#	29	17.4
Promethium-146	pCi/L	07/14/2014	N001	-1.12	U	#	7	4.05
Ruthenium-106	pCi/L	07/14/2014	N001	-43	U	#	66	37.5
Thorium-234	pCi/L	07/14/2014	N001	31.2	U	#	140	84.5
Tritium	pCi/L	07/14/2014	N001	-22.2	U	#	300	180
Uranium-235	pCi/L	07/14/2014	N001	18.6	U	#	25	15.6

Location: 05-045-15744 WELL BM 26-34A

Parameter	Units Sa		ple	Result	(Qualifiers		Detection	Uncertainty
Farailletei	Ullits	Date	ID	Result	Lab	Data	QA	Limit	Uncertainty
Yttrium-88	pCi/L	07/14/2014	N001	0.6	U		#	8.6	5.02

Location: 05-045-15745 WELL BM 26-34B

Actinium-228		Date	ID					Uncertainty
	- C:/I	07/44/0044		4.40	Lab Dat		Limit	40.0
Actinium-220	pCi/L	07/14/2014	N001	4.12	U	#	33	19.6
Actinium-228	pCi/L	07/14/2014	N002	15.6	U	#	37	17.1
Americium-241	pCi/L	07/14/2014	N001	3.2	U	#	31	18.4
Americium-241	pCi/L	07/14/2014	N002	17.5	U	#	52	31.2
Antimony-125	pCi/L	07/14/2014	N001	0.0052	U	#	12	6.81
Antimony-125	pCi/L	07/14/2014	N002	11.2	U	#	13	7.63
Cerium-144	pCi/L	07/14/2014	N001	-1.66	U	#	24	14.4
Cerium-144	pCi/L	07/14/2014	N002	0.407	U	#	26	15.3
Cesium-134	pCi/L	07/14/2014	N001	-1.23	U	#	5.5	3.22
Cesium-134	pCi/L	07/14/2014	N002	-2.04	U	#	5.9	3.41
Cesium-137	pCi/L	07/14/2014	N001	0.921	U	#	4.7	2.81
Cesium-137	pCi/L	07/14/2014	N002	2.88	U	#	5.3	3.26
Chloride	mg/L	07/14/2014	N001	8200		#	100	
Chloride	mg/L	07/14/2014	N002	8500		#	100	
Cobalt-60	pCi/L	07/14/2014	N001	-0.16	U	#	5.7	3.25
Cobalt-60	pCi/L	07/14/2014	N002	1.28	U	#	5.8	3.41
Europium-152	pCi/L	07/14/2014	N001	-0.132	U	#	28	15.9
Europium-152	pCi/L	07/14/2014	N002	-5.64	U	#	30	17
Europium-154	pCi/L	07/14/2014	N001	10.8	U	#	28	16.8
Europium-154	pCi/L	07/14/2014	N002	-3.92	U	#	32	18.5
Europium-155	pCi/L	07/14/2014	N001	8.18	U	#	12	7.28

Location: 05-045-15745 WELL BM 26-34B

Parameter	Units	Sam _l Date	ple ID	Result	C Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Europium-155	pCi/L	07/14/2014	N002	-0.766	U		#	15	9.08
Gross Alpha	pCi/L	07/14/2014	N001	25.9	U		#	26	17.4
Gross Alpha	pCi/L	07/14/2014	N002	3.5	U		#	30	17.8
Gross Beta	pCi/L	07/14/2014	N001	64.7		J	#	22	17.9
Gross Beta	pCi/L	07/14/2014	N002	66.3			#	21	17.2
Lead-212	pCi/L	07/14/2014	N001	-0.289	U		#	14	8.41
Lead-212	pCi/L	07/14/2014	N002	-0.0942	U		#	14	8.06
Potassium-40	pCi/L	07/14/2014	N001	80.1	U		#	120	77
Potassium-40	pCi/L	07/14/2014	N002	84.7	U		#	160	101
Promethium-144	pCi/L	07/14/2014	N001	2.07	U		#	5.5	3.31
Promethium-144	pCi/L	07/14/2014	N002	4.36	U		#	5.8	3.64
Promethium-146	pCi/L	07/14/2014	N001	-0.21	U		#	5.6	3.3
Promethium-146	pCi/L	07/14/2014	N002	-0.695	U		#	6.2	3.61
Ruthenium-106	pCi/L	07/14/2014	N001	3.82	U		#	45	26.8
Ruthenium-106	pCi/L	07/14/2014	N002	-13.2	U		#	54	31.2
Thorium-234	pCi/L	07/14/2014	N001	13.6	U		#	140	81.4
Thorium-234	pCi/L	07/14/2014	N002	5.1	U		#	180	106
Tritium	pCi/L	07/14/2014	N001	-84.3	U		#	330	194
Tritium	pCi/L	07/14/2014	N002	-23.8	U		#	340	201
Uranium-235	pCi/L	07/14/2014	N001	22.1		U	#	22	13.6
Uranium-235	pCi/L	07/14/2014	N002	-7.74	U		#	44	26.5

Location: 05-045-15745 WELL BM 26-34B

Parameter	Units Sample		ple	Result	(Qualifiers		Detection	Uncertainty
	Office	Date	ID	Result	Lab	Data	QA	Limit	Uncertainty
Yttrium-88	pCi/L	07/14/2014	N001	4.14	U		#	6.3	3.92
Yttrium-88	pCi/L	07/14/2014	N002	-0.115	U		#	6.8	3.92

Location: 05-045-15748 WELL BM 26-34D

Parameter	Units	Sam _l Date	ole ID	Result		lifiers ata QA	Detection Limit	Uncertainty
Actinium-228	pCi/L	07/14/2014	N001	19.3	U	#	19	9.33
Americium-241	pCi/L	07/14/2014	N001	0.94	U	#	5	2.97
Antimony-125	pCi/L	07/14/2014	N001	3.62	U	#	11	5.62
Cerium-144	pCi/L	07/14/2014	N001	3.06	U	#	23	13.9
Cesium-134	pCi/L	07/14/2014	N001	-1.17	U	#	4.6	2.67
Cesium-137	pCi/L	07/14/2014	N001	-1.42	U	#	4.5	2.57
Chloride	mg/L	07/14/2014	N001	12000		#	200	
Cobalt-60	pCi/L	07/14/2014	N001	-0.128	U	#	5	2.86
Europium-152	pCi/L	07/14/2014	N001	-1.9	U	#	25	14.2
Europium-154	pCi/L	07/14/2014	N001	-0.832	U	#	25	14.7
Europium-155	pCi/L	07/14/2014	N001	1.08	U	#	6.8	4.05
Gross Alpha	pCi/L	07/14/2014	N001	18.6	U	#	44	27
Gross Beta	pCi/L	07/14/2014	N001	134		#	44	35.6
Lead-212	pCi/L	07/14/2014	N001	3.42	U	#	11	6.45
Potassium-40	pCi/L	07/14/2014	N001	53.3	U	#	110	67.1
Promethium-144	pCi/L	07/14/2014	N001	-1.1	U	#	4.8	2.77
Promethium-146	pCi/L	07/14/2014	N001	0.602	U	#	4.8	2.86
Ruthenium-106	pCi/L	07/14/2014	N001	5.83	U	#	38	22.8
Thorium-234	pCi/L	07/14/2014	N001	20.6	U	#	70	42.6
Tritium	pCi/L	07/14/2014	N001	27.6	U	#	310	187
Uranium-235	pCi/L	07/14/2014	N001	7.57	U	#	16	8.73

Location: 05-045-15748 WELL BM 26-34D

Parameter	Units 5		ple	Result	(Qualifiers		Detection	Uncertainty
Farailletei	Ullits	Date	ID	Result	Lab	Data	QA	Limit	Uncertainty
Yttrium-88	pCi/L	07/14/2014	N001	1.73	U		#	9.7	5.81

REPORT DATE: 10/06/2014

Location: 05-045-16074 WELL BM 26-22D

Parameter	Units	Samր Date	ole ID	Result	(Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Actinium-228	pCi/L	07/14/2014	N001	26.5		U	#	20	11.9
Americium-241	pCi/L	07/14/2014	N001	-17.3	U		#	45	26.4
Antimony-125	pCi/L	07/14/2014	N001	-2.29	U		#	13	7.35
Cerium-144	pCi/L	07/14/2014	N001	13.2	U		#	25	15.4
Cesium-134	pCi/L	07/14/2014	N001	-3.74	U		#	5.8	3.37
Cesium-137	pCi/L	07/14/2014	N001	-0.319	U		#	5.3	3.1
Chloride	mg/L	07/14/2014	N001	11000			#	200	
Cobalt-60	pCi/L	07/14/2014	N001	-1.27	U		#	6.3	3.62
Europium-152	pCi/L	07/14/2014	N001	10.6	U		#	31	18.7
Europium-154	pCi/L	07/14/2014	N001	9.92	U		#	30	18.2
Europium-155	pCi/L	07/14/2014	N001	1.54	U		#	15	8.77
Gross Alpha	pCi/L	07/14/2014	N001	29.4	U		#	38	24.4
Gross Beta	pCi/L	07/14/2014	N001	195			#	41	42
Lead-212	pCi/L	07/14/2014	N001	-0.441	U		#	15	8.88
Potassium-40	pCi/L	07/14/2014	N001	89.3	U		#	160	97
Promethium-144	pCi/L	07/14/2014	N001	1.44	U		#	5.8	3.49
Promethium-146	pCi/L	07/14/2014	N001	-1.99	U		#	6.4	3.75
Ruthenium-106	pCi/L	07/14/2014	N001	-6.6	U		#	52	30.6
Thorium-234	pCi/L	07/14/2014	N001	-5.5	U		#	140	87
Tritium	pCi/L	07/14/2014	N001	7.49	U		#	300	177
Uranium-235	pCi/L	07/14/2014	N001	18.8	U		#	23	11.8

REPORT DATE: 10/06/2014

Location: 05-045-16074 WELL BM 26-22D

Parameter	Unito	Samp	ole	Result	(Qualifiers		Detection	Uncertainty
Farameter	Units	Date	ID	Result	Lab	Data	QA	Limit	Uncertainty
Yttrium-88	pCi/L	07/14/2014	N001	-0.275	U		#	10	6.21

REPORT DATE: 10/06/2014

Location: 05-045-16087 WELL BM 26-22C

Parameter	Units	Samր Date	ole ID	Result	Qı Lab	ualifiers Data	QA	Detection Limit	Uncertainty
Actinium-228	pCi/L	07/14/2014	N001	35.1		J	#	32	16.1
Americium-241	pCi/L	07/14/2014	N001	-17	U		#	78	46.3
Antimony-125	pCi/L	07/14/2014	N001	3.96	U		#	19	11.5
Cerium-144	pCi/L	07/14/2014	N001	-11.1	U		#	39	23
Cesium-134	pCi/L	07/14/2014	N001	-6.96	U		#	8.8	5.01
Cesium-137	pCi/L	07/14/2014	N001	-3.5	U		#	8.5	4.86
Chloride	mg/L	07/14/2014	N001	11000			#	200	
Cobalt-60	pCi/L	07/14/2014	N001	-3.88	U		#	8.9	4.92
Europium-152	pCi/L	07/14/2014	N001	-10.2	U		#	45	25.5
Europium-154	pCi/L	07/14/2014	N001	-2.81	U		#	46	26.6
Europium-155	pCi/L	07/14/2014	N001	3.4	U		#	22	13.3
Gross Alpha	pCi/L	07/14/2014	N001	19.4	U		#	43	26.3
Gross Beta	pCi/L	07/14/2014	N001	170			#	42	38.9
Lead-212	pCi/L	07/14/2014	N001	7.88	U		#	24	14.4
Potassium-40	pCi/L	07/14/2014	N001	35	U		#	280	167
Promethium-144	pCi/L	07/14/2014	N001	5.39	U		#	9.2	5.66
Promethium-146	pCi/L	07/14/2014	N001	-1.96	U		#	9.1	5.31
Ruthenium-106	pCi/L	07/14/2014	N001	-13.8	U		#	81	47

REPORT DATE: 10/06/2014

Location: 05-045-16087 WELL BM 26-22C

Parameter	Units	Sample		Result	Qualifiers			Detection	Uncertainty
. a. amotor	• • • • • • • • • • • • • • • • • • •	Date	ID		Lab	Data	QA	Limit	oncontaining
Thorium-234	pCi/L	07/14/2014	N001	68.3	U		#	300	183
Tritium	pCi/L	07/14/2014	N001	45.2	U		#	330	197
Uranium-235	pCi/L	07/14/2014	N001	0.39	U		#	74	44.3
Yttrium-88	pCi/L	07/14/2014	N001	6.71	U		#	8.1	5.15

SAMPLE ID CODES: 000X = Filtered sample (0.45 μm). N00X = Unfiltered sample. X = replicate number.

LAB QUALIFIERS:

- Replicate analysis not within control limits.
- Result above upper detection limit. >
- Α TIC is a suspected aldol-condensation product.
- Inorganic: Result is between the IDL and CRDL. Organic: Analyte also found in method blank.
- Pesticide result confirmed by GC-MS. С
- Analyte determined in diluted sample. D
- Inorganic: Estimate value because of interference, see case narrative. Organic: Analyte exceeded calibration range of the GC-MS.
- Holding time expired, value suspect.
- Increased detection limit due to required dilution.
- Inorganic or radiochemical: Spike sample recovery not within control limits. Organic: Tentatively identified compound (TIC).
- > 25% difference in detected pesticide or Aroclor concentrations between 2 columns.
- Analytical result below detection limit. IJ
- W Post-digestion spike outside control limits while sample absorbance < 50% of analytical spike absorbance.
- Laboratory defined qualifier, see case narrative. X,Y,Z

DATA QUALIFIERS:

- F Low flow sampling method used.
- Less than 3 bore volumes purged prior to sampling. L
- U Parameter analyzed for but was not detected.
- G Possible grout contamination, pH > 9.
- J Estimated value. Q Qualitative result due to sampling technique. R Unusable result.
- X Location is undefined.

QA QUALIFIER:

#Validated according to quality assurance guidelines.

This page intentionally left blank

Attachment 2 Trip Report This page intentionally left blank

Trip Report Natural Gas Wells near Project Rulison Third Quarter 2014

U.S. Department of Energy Office of Legacy Management Grand Junction, Colorado

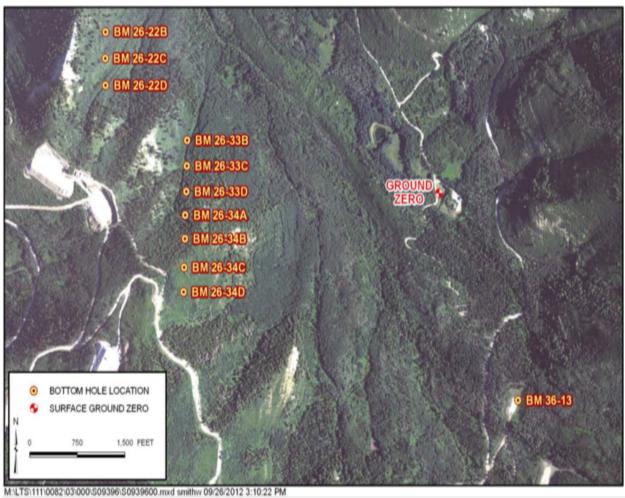
Date Sampled

July 1, 2014

Background

Project Rulison was the second Plowshare Program test to investigate using a nuclear detonation to stimulate natural gas recovery from deep, low-permeability formations. On September 10, 1969, a 40-kiloton-yield nuclear device was detonated 8,426 feet (1.6 miles) below ground surface in the Williams Fork Formation, at what is now the Rulison, Colorado, Site. A series of production tests followed the detonation, and the site was subsequently shut down, the emplacement well (R-E) and reentry well (R-Ex) were plugged, and the surface soils were remediated.

Purpose


As part of the U.S. Department of Energy (DOE) Office of Legacy Management (LM) mission to protect human health and the environment, LM is monitoring natural gas wells near the Rulison site for radionuclides associated with the detonation. The very low permeability of the Williams Fork Formation limits contaminant migration in the subsurface and institutional controls limit subsurface access near the detonation zone. The Colorado Oil and Gas Conservation Commission notifies DOE of any drilling permit activity within 3 miles of the site. The State and DOE review drilling permits and gas well development practices within this boundary to ensure that drilling activities maintain a safe distance from the detonation zone. The DOE *Rulison Monitoring Plan* (LMS/RUL/S06178) provides guidance for sample collection frequency based on distance from the Rulison detonation point, the types of analyses, and the reporting thresholds. The purpose of this trip was to collect natural gas and production water from producing natural gas wells in the Battlement Mesa (BM) field. The sampled wells collect natural gas from the formation horizon where the Project Rulison detonation occurred. The well locations are within 1.5 miles of the detonation location (surface ground zero on Figure 1).

Summary of Results

The following wells were sampled: seven producing gas wells on Pad 26N, three gas wells on Pad 26K, one well on Pad 35C, one well on Pad 36L, and one well on Pad 36B.

For the 10 wells sampled on Pads 26N and 26K, the bottom-hole locations are between 0.76 mile and 1.1 miles from the Project Rulison vertical emplacement well 25-95 (R-E). Wells on

Pads 35C and 36L are approximately 0.95 mile from the detonation point. The well on Pad 36B is approximately 0.55 mile southeast of well 25-95 (R-E). Surface projections of the bottom-hole well locations and Project Rulison surface ground zero, at well 25-95 (R-E) (i.e., the detonation point), are shown in Figure 1.

Notes

All wells sampled have been previously sampled by DOE.

The first two numerals in the well name designate the section number of the bottom-well location in the BM field. The Project Rulison emplacement well, 25-95 (R-E) (i.e., ground zero), is located in Lot 11, Section 25.

Figure 1. Wells Sampled and Well 25-95 (R-E)

Table 1 lists the wells by sample-collection sequence. Before sample collection occurs at each well, each well's pressure and temperature (see Table 1) were read and recorded from surface transducers in the wells. Latitude and longitude values (not shown in Table 1) were compiled from survey plats included with the applications for permits to drill and from Colorado Oil and Gas Conservation Commission scout cards.

All planned wellheads were available for sampling, and wellhead pressures and temperatures were within the normal range. A total of seven 1-gallon production-water samples were collected

for total analysis. At two locations, 26-33C and 26-22D, approximately 0.5–0.75 gallon of production water was collected. At four locations—26-33B, 26-33D, 26-34C, and 26-22B—no production water was collected. A duplicate sample was collected from 26-34B and is noted in Table 1. All other well functions were performing normally, so no impact to the analytical data is expected.

Table 1. Samples Collected

Sample		Well	Location			Sample	Phase	Well	
Collection Sequence	Pad	Name	API # 05-045-	Туре	Subtype	Gas	Liquid	T (°F)	P (psi)
1	26N	BM 26-33B	15739	WL	NGSA	Yes	No	68.8	262
2	26N	BM 26-33C	15742	WL	NGSA	Yes	Yes ^a	68.1	286
3	26N	BM 26-33D	15743	WL	NGSA	Yes	No	69.1	288
4	26N	BM 26-34A	15744	WL	NGSA	Yes	Yes	62.9	280
5	26N	BM 26-34B	15745	WL	NGSA	Yes	Yes	62.3	284
Duplicate	26N	BM 26-34B	15741	WL	NGSA	No	Yes	62.3	284
6	26N	BM 26-34C	15741	WL	NGSA	Yes	No	61.9	281
7	26N	BM 26-34D	15748	WL	NGSA	Yes	Yes	63.9	267
8	26K	BM 26-22B	16086	WL	NGSA	Yes	No	69.3	257
9	26K	BM 26-22C	16087	WL	NGSA	Yes	Yes	68.1	260
10	26K	BM 26-22D	16074	WL	NGSA	Yes	Yes ¹	68.8	260
11	35C	BM 35-32A	10919	WL	NGSV	Yes	Yes	74.6	268
12	36L	BM 36-13B	15469	WL	NGSV	Yes	Yes	78	282
13	36B	BM 36-13	10840	WL	NGSV	Yes	Yes	80	279

^a BM 26-33C included approximately 0.75 gallon of produced water, and BM-22D included approximately 0.5 gallon of produced water, which should be enough sample volume for total analysis from both wells.

Abbreviations:

API American Petroleum Institute

NGSA natural gas well-angle

NGSV natural gas well–vertical P (psi) pressure in pounds per squar

P (psi) pressure in pounds per square inch T (°F) temperature in degrees Fahrenheit

WL well

The produced-water samples were collected from a tap on a common line connecting the output of two separators (each servicing a well) and the nearby accumulation tanks. The collected water sample from one separator was isolated from the other separator by valves. Lines from each of the two separators were purged before sample collection.

Water condensation is variable and often not desired for the planned analytes. Collected sample volumes (Table 2) varied due to the water vapor concentration in the gas, temperature, age of the well, the cycle times of the well plunger, and transfer to the accumulation tank. Analysis priorities are tritium, gross alpha/beta, technetium-99, and high-resolution gamma spectrometry.

If condensate was collected with a sample, which happens for most samples, the condensate naturally separated from water after a short time in the sample bottle. The condensate was decanted in the field and returned to the operator. Table 2 lists the estimated sample volumes (including the condensate).

Table 2. Collected Water Sample Volumes (Before Decanting)

Sample Ticket	Well Name	Planned Analytes	Sample Volume (L)	
1	BM 26-33B	NA	No Sample	
2	BM 26-33C	³ H, Gross α/β, Gamma spec, CΓ, ⁹⁹ Tc	≈ 2.0 L	
3	BM 26-33D	NA	No Sample	
4	BM 26-34A	³ H, Gross α/β, Gamma spec, CΓ, ⁹⁹ Tc	≈ 2.5 L	
5	BM 26-34B	³ H, Gross α/β, Gamma spec, CΓ, ⁹⁹ Tc	≈ 2.5 L	
Duplicate	BM 26-34B	³ H, Gross α/β, Gamma spec, CΓ, ⁹⁹ Tc	≈ 2.5 L	
6	BM 26-34C	NA	No Sample	
7	BM 26-34D	³ H, Gross α/β, Gamma spec, CΓ, ⁹⁹ Tc	≈ 2.5 L	
8	BM 26-22B	NA	No Sample	
9	BM 26-22C	³ H, Gross α/β, Gamma spec, CΓ, ⁹⁹ Tc	≈ 2.5 L	
10	BM 26-22D	³ H, Gross α/β, Gamma spec, CΓ, ⁹⁹ Tc	≈ 1.75 L	
11	BM 35-32A	³ H, Gross α/β, Gamma spec, CΓ, ⁹⁹ Tc	≈ 2.5 L	
12	BM 36-13B	³ H, Gross α/β, Gamma spec, CΓ, ⁹⁹ Tc	≈ 2.5 L	
13	BM 36-13	³ H, Gross α/β, Gamma spec, Cl ⁻ , ⁹⁹ Tc	≈ 2.5 L	

Notes:

Water sample information is listed in the order of collection.

Wells BM 26-33B, BM 26-33D, BM 26-34C, and BM 26-22B did not produce water for laboratory analyses.

Abbreviations:

Cl⁻ chloride

Gamma spec high-resolution gamma spectrometry analysis

Gross α/β gross alpha and beta analyses

³H tritium L liter

NA not applicable ⁹⁹Tc technetium-99

Equipment

Each produced-water sample was collected in a new, 1-gallon plastic bottle. After decanting, each water sample was poured into white, high-density polyethylene bottles of appropriate volumes for analysis.