DOE-LM/GJ896-2005

Verification Monitoring Report for the Slick Rock, Colorado, Processing Sites

June 2005

Office of Legacy Management

DOE-LM/GJ896-2005

Office of Legacy Management

Verification Monitoring Report for the Slick Rock, Colorado, Processing Sites

June 2005

Work Performed by S.M. Stoller Corporation under DOE Contract No. DE–AC01–02GJ79491 for the U.S. Department of Energy Office of Legacy Management, Grand Junction, Colorado

Contents

1.0	Introduction	1
	1.1 Purpose of Report	1
	1.2 Compliance Strategy	1
2.0	Site Conditions	1
	2.1 Hydrogeology	1
	2.2 Ground Water Quality	4
	2.2.1 SRE Site	4
	2.2.2 SRW Site	4
	2.3 Surface Water Quality	9
	2.4 Remediation Activities	9
	2.5 Land and Water Use	9
3.0	Monitoring Program	10
	3.1 Monitoring Network	10
	3.2 Results of Monitoring Program	13
	3.2.1 SRE Site	13
	3.2.2 SRW Site	15
	3.3 Surface Water	18
4.0	Conclusions	19
	4.1 Status of Site Compliance	19
	4.2 Recommendations.	19
5.0	References	19

Figures

Figure 1. Slick Rock, Colorado, Processing Sites Location Map	2
Figure 2. Aerial Photograph of the Slick Rock, Colorado, Processing Sites	3
Figure 3. Distribution of Uranium in the Alluvial Aquifer at the SRE Site	5
Figure 4. Distribution of Molybdenum in the Alluvial Aquifer at the SRW Site	6
Figure 5. Distribution of Nitrate in the Alluvial Aquifer at the SRW Site	7
Figure 6. Distribution of Selenium in the Alluvial Aquifer at the SRW Site	8
Figure 7. Ground Water and Surface Water Monitoring Locations at the SRE Site	11
Figure 8. Ground Water and Surface Water Monitoring Locations at the SRW Site	12
Figure 9. Uranium Concentrations Versus Time in the Middle of the SRE Site	14
Figure 10. Uranium Concentrations Versus Time in the Downgradient Portion of the	
SRE Site	14
Figure 11. Uranium Concentrations in Well 0305 Versus Ground Water Model Predictions at	
the SRE Site	15
Figure 12. Selenium Concentrations Versus Time at the SRW site	16
Figure 13. Molybdenum Concentrations Versus Time at the SRW site	17
Figure 14. Molybdenum Concentrations in Well 0508 Versus Ground Water Model	
Predictions at the SRW Site	17
Figure 15. Selenium Concentrations in Well 0508 Versus Ground Water Model Predictions	18

Tables

Table 1. Monitoring Program at the SRE Site	10
Table 2. Monitoring Program at the SRW Site	13
Table 3. Comparison of COPC Concentrations in the Alluvial Aquifer to Benchmark Values	16
Table 4. Comparison of COPC Concentrations in the Dolores River to CDPHE Benchmarks	18

Appendices

Appendix A—Ground Water Quality Data by Parameter Appendix B—Surface Water Quality Data by Parameter

1.0 Introduction

The Slick Rock, Colorado, Processing/Disposal Sites consist of two former uranium-ore processing facilities, which are referred to as the Slick Rock East (SRE) site (formerly the North Continent site) and the Slick Rock West (SRW) site (formerly the Union Carbide site). The Slick Rock sites are located along the banks of the Dolores River in San Miguel County, Colorado (Figure 1). Steep juniper covered hillsides and cliffs of the Dolores River Canyon surround the sites. The SRW site is approximately 1 mile downstream from the SRE site (Figure 2).

1.1 Purpose of Report

The purpose of this Verification Monitoring Report is to evaluate ground water and surface water monitoring data collected at the Slick Rock, Colorado, processing sites since 2000 and assess the status of the compliance strategy for ground water cleanup.

1.2 Compliance Strategy

The proposed compliance strategy for the Slick Rock sites is natural flushing in conjunction with institutional controls and compliance monitoring as stated in the Preliminary Final Ground Water Compliance Action Plan for the Slick Rock, Colorado, UMTRA Project Sites (GCAP) (DOE 2003). Except for manganese and selenium, constituents of potential concern (COPC) concentrations at the Slick Rock sites will be compared to their respective maximum concentration limit (MCL) to assess compliance. Because manganese does not have an MCL, manganese concentrations will be compared to the maximum background concentration (3.5 milligrams per liter [mg/L]) to assess compliance. Ground water modeling predicts that selenium concentrations at the SRW site will not be reduced to below the MCL within 100 years; therefore, a human health risk-based alternate concentration limit (ACL) of 0.18 mg/L is proposed in the GCAP for selenium. Ground water modeling predicts that natural flushing will be completed within the 100-year regulatory time-frame. Public health will be protected during the natural flushing process through institutional controls, which will restrict access to contaminated alluvial ground water. The institutional controls that will be used for the Slick Rock sites are environmental covenants between the State of Colorado, represented by the Colorado Department of Public Health and Environment (CDPHE), and the landowner, Umetco Minerals Corporation (Umetco). Umetco and CDPHE are finalizing the respective environmental covenants. The GCAP is currently being reviewed by the U.S. Nuclear Regulatory Commission (NRC), which recently requested additional information be provided for clarification of several issues.

2.0 Site Conditions

2.1 Hydrogeology

The Slick Rock sites overlay an alluvial aquifer deposited by the Dolores River. The alluvial aquifer consists of unconsolidated material ranging in thickness from 15 to 20 feet and consists primarily of silty sands and silty sandy gravels with an occasional interbedded clay lens. The

Figure 1. Slick Rock, Colorado, Processing Sites Location Map

Figure 2. Aerial Photograph of the Slick Rock, Colorado, Processing Sites

Dolores River alluvium is laterally restricted by bedrock that forms the terraces and canyon walls adjacent to the Dolores River. In addition, the Dolores River floodplain is discontinuous and pinches out in areas where the Dolores River meets the canyon wall. Depth to ground water in the unconfined alluvial aquifer ranges from 7 to 15 feet below ground surface.

The Salt Wash Member of the Jurassic Morrison Formation and the Jurassic Summerville Formation underlie the Quaternary Dolores River alluvium at the SRE site. Because the Morrison Formation and the Summerville Formation have an abundance of fine-grained, low permeability units, these formations are considered aquitards at the SRE site (DOE 2002).

The hydrostratigraphic units at the SRW site are, in descending stratigraphic order, the Quaternary Dolores River alluvium, the Jurassic Entrada Sandstone, and the Jurassic Navajo Sandstone. The Entrada Sandstone ranges from 40 to 60 feet thick in the floodplain area, with depths to ground water ranging from 6 to 8 feet below ground surface. The thickness of the Navajo Sandstone is approximately 180 feet in the Slick Rock area (DOE 2002). Wells completed in the Navajo Sandstone and located on the floodplain at the SRW site have an upward vertical gradient with respect to the alluvial aquifer and the Entrada Sandstone; therefore, contamination in the alluvial aquifer will not cross contaminate the Navajo Sandstone aquifer.

2.2 Ground Water Quality

2.2.1 SRE Site

Alluvial ground water beneath the SRE site was contaminated as a result of former uranium processing activities. COPC in the uppermost (alluvial) aquifer at the SRE site are selenium and uranium. Uranium concentrations in the alluvial aquifer are up to two orders of magnitude greater than the MCL of 0.044 mg/L established by the U.S. Environmental Protection Agency (EPA) at title 40, *Code of Federal Regulations*, Part 192 (40 CFR 192). A snapshot of the distribution of uranium in the alluvial ground water at the SRE site is shown in Figure 3. Selenium contamination at the SRE site is confined to one well (0305) and is not considered a major contaminant at the SRE site. Ground water quality data in 2004 for selenium and uranium are provided in Appendix A.

2.2.2 SRW Site

The former uranium processing activities also contaminated the ground water beneath the SRW site. COPCs in the uppermost (alluvial) aquifer at the SRW site include manganese, molybdenum, nitrate, selenium, uranium, radium-226, radium-228, benzene, and toluene. All of these COPCs are found in concentrations greater than the MCL or background concentrations (in the case of manganese) in the alluvial aquifer. Contaminant plumes in the alluvial aquifer are all contained onsite. Radium-226, radium-228, benzene, toluene, manganese and uranium are all considered minor contaminants in the alluvial ground water. The radium-226, radium-228, benzene, and toluene contamination is isolated to one well (0319), and manganese and uranium concentrations are near background levels and the MCL, respectively. The primary contaminants in the alluvial aquifer are molybdenum, nitrate, and selenium, with concentrations one (molybdenum) to two (nitrate and selenium) orders of magnitude greater than their respective MCLs. Snapshots of the distribution of molybdenum, nitrate, and selenium in the alluvial aquifer at the SRW site are displayed in Figure 4, Figure 5, and Figure 6, respectively.

Figure 3. Distribution of Uranium in the Alluvial Aquifer at the SRE Site

Figure 4. Distribution of Molybdenum in the Alluvial Aquifer at the SRW Site

Figure 5. Distribution of Nitrate in the Alluvial Aquifer at the SRW Site

Figure 6. Distribution of Selenium in the Alluvial Aquifer at the SRW Site

Samples from wells completed in the Entrada Sandstone on the floodplain at the SRW site have contained elevated concentrations of COPCs. Historically, concentrations of molybdenum (well 0317), nitrate (well 0324), and selenium (well 0324) exceeded their respective MCLs. However, these concentrations are thought to be a product of drilling and installing monitor wells through the contaminated alluvial aquifer. This theory is supported by hydrologic data that indicate there is slight upward vertical gradient between the alluvial and Entrada aquifers and that the hydraulic conductivity in the alluvial aquifer is two orders of magnitude greater than the Entrada aquifer. These hydrologic conditions should inhibit ground water from flowing vertically downward into the Entrada aquifer. Well 0324 was not sampled in 2004 because the nitrate and selenium concentrations were below the MCLs for three consecutive rounds of sampling.

Results of the 2004 ground water monitoring program are provided in Appendix A.

2.3 Surface Water Quality

The Dolores River is the only perennial surface water feature in the vicinity of the Slick Rock sites. Results from surface-water sampling have demonstrated minimal impact to the Dolores River from site contamination. Concentrations of COPCs in samples collected from the Dolores River have not exceeded their respective CDPHE water quality benchmark (CDPHE 1998).

Results of the 2004 surface-water monitoring program are provided in Appendix B.

2.4 Remediation Activities

Surface remediation at the Slick Rock sites commenced in 1995 and was completed in 1996. Abandoned uranium mill tailings and other contaminated surface residual radioactive material associated with the former milling operations were relocated to the Slick Rock Disposal Cell (formerly the Burro Canyon disposal cell), approximately 5 miles east of the Slick Rock sites. The sites were re-graded with on-site material and subsequent revegetation efforts have been deemed successful.

2.5 Land and Water Use

The SRE and SRW sites are currently owned by Umetco. The SRE site is not fenced and is currently used for livestock grazing. The majority of the SRW site is enclosed with a barbed wire fence. Land between the two sites is privately owned. Land use between the two sites includes irrigated alfalfa fields, livestock grazing, and gravel mining operations. Water used to irrigate the alfalfa is pumped from the Dolores River.

There is no current use of alluvial ground water beneath the former processing sites. Historically, a hand dug alluvial well located between the two sites was used as a domestic source, but the well is no longer used. Recent water level measurements show the well is dry.

Ground water use from the Entrada Sandstone is limited. Water from the Entrada Sandstone is used to water livestock via a "collector system." The collector system consists of a plastic pipe installed into the cliff face formed by the Entrada Sandstone. Water discharges from the pipe into a stock tank at a rate of approximately 1 liter/minute. The collector system is located northwest and upgradient of the SRW site.

Ground water used in the Slick Rock area is primarily supplied by the Navajo Sandstone aquifer. Currently, domestic wells completed in the Navajo Sandstone provide water to three residences and their livestock. Historically, wells completed in the Navajo Sandstone provided water for the milling operations and for the mill community at the SRW site.

3.0 Monitoring Program

3.1 Monitoring Network

Monitoring is to be performed annually for the first 10 years after NRC concurrence with the GCAP to ascertain that natural flushing is progressing as predicted by ground water flow and transport modeling (DOE 2003). After 10 years, the monitoring frequency will decrease to every 5 years. At the SRE site, the monitoring network consists of five monitor wells and two surface water locations (Figure 7 and Table 1). At the SRW site, the monitoring network consists of seven monitor wells and four surface water locations (Figure 8 and Table 2).

Monitoring is to be conducted until analytical data demonstrate that ground water contaminants in the alluvial aquifer have decreased to acceptable levels (MCLs, ACLs, or background). Natural flushing will be considered complete after a COPC is below its respective benchmark (MCL, ACL, or background) in all alluvial wells for three consecutive annual sampling events or two consecutive 5-year sampling events.

ID	Matrix	Location	Rationale	Analytes
0696	Surface Water	Upstream	Background for SRE site.	Uranium
0692	Surface Water	Adjacent to site	Predicted location where the centroid of the uranium plume intersects the river.	Uranium
0303	Ground Water	On site	Hot spot for uranium.	Uranium
0305	Ground Water	On site	Hot spot for uranium; selenium above the MCL.	Uranium, Selenium
0307	Ground Water	On site	Downgradient of hot spots, monitor plume migration.	Uranium, Selenium
0309	Ground Water	On site	Farthest downgradient well on site.	Uranium
0311	Ground Water	Downgradient	Off site across the river. Monitor migration of the uranium plume between sites.	Uranium

Table 1. Monitoring Program at the SRE Site

Figure 7. Ground Water and Surface Water Monitoring Locations at the SRE Site

Figure 8. Ground Water and Surface Water Monitoring Locations at the SRW Site

ID	Matrix	Location	Rationale	Analytes
0693	Surface Water	Upstream	Background for SRW site.	Manganese, Molybdenum, Nitrate, Selenium, and Uranium
0347	Surface Water	Adjacent to site	Predicted location where the centroid of the selenium plume intersects the river. Point of exposure for selenium.	Manganese, Molybdenum, Nitrate, Selenium, and Uranium
0349	Surface Water	Adjacent to site	Predicted location where the centroid of the contaminant plumes intersect the river.	Manganese, Molybdenum, Nitrate, Selenium, and Uranium
0694	Surface Water	Downstream	Potential for contaminant plumes to discharge to the river at this location.	Manganese, Molybdenum, Nitrate, Selenium, and Uranium
0318	Ground Water	On site	Hot spot for several COPCs.	Manganese, Molybdenum, Nitrate, Selenium, and Uranium
0508	Ground Water	On site	High selenium, nitrate, molybdenum, and uranium.	Manganese, Molybdenum, Nitrate, Selenium, and Uranium
0510	Ground Water	On site	Edge of former tailings pile, high COPC concentrations.	Manganese, Molybdenum, Nitrate, Selenium, and Uranium
0317	Ground Water	On site	Entrada Sandstone well, exceeds molybdenum MCL.	Molybdenum
0324	Ground Water	On site	Entrada Sandstone well, previously exceeded nitrate and selenium MCLs.	Removed from sampling network in 2004 because contaminant concentrations dropped below MCLs
0319	Ground Water	On site	Hot spot for benzene, toluene and radium-226/radium-228.	Benzene, Toluene, Ethylbenzene, Xylene, Radium-226, and Radium-228
0320	Ground Water	On site	Farthest downgradient well on site; monitor plume movement.	Manganese, Molybdenum, Nitrate, Selenium, and Uranium
0684	Ground Water	Off site	Verify that contaminants are not migrating off site.	Manganese, Molybdenum, Nitrate, Selenium, and Uranium

3.2 Results of Monitoring Program

3.2.1 SRE Site

At the SRE site, results of the monitoring program indicate natural flushing is progressing; however slowly, due to the continuing drought conditions and minimal recharge of the aquifer. Although concentrations of uranium in the alluvial aquifer are currently one to two orders of magnitude above the MCL (0.044 mg/L) in the middle of the site, there are indications that natural flushing is occurring. In the centroid of the plume, concentrations of uranium have decreased slightly in well 0305 in the past; however, there has been no significant change during the last three sampling events. Uranium concentrations have been decreasing at greater rates in wells 0303 and 0307 (Figure 9). Uranium concentrations in well 0309 (downgradient of the centroid of the plume) have been declining and are presently below the MCL (Figure 10). Uranium concentrations in well 0311 (across the Dolores River from the SRE site) have been increasing slightly (Figure 10), which indicates uranium is migrating (flushing) from the SRE site. The ground water flow and transport model predicts limited transport of contaminated ground water from the SRE site and under the Dolores River; therefore, uranium concentrations in well 0311 are not expected to increase significantly. Concentrations of uranium in wells 0305 versus ground water model predictions are shown in Figure 11.

Figure 9. Uranium Concentrations Versus Time in the Middle of the SRE Site

Figure 10. Uranium Concentrations Versus Time in the Downgradient Portion of the SRE Site

Figure 11. Uranium Concentrations in Well 0305 Versus Ground Water Model Predictions at the SRE Site

3.2.2 SRW Site

Results of the monitoring program from the SRW site also indicate that natural flushing is progressing. Concentrations of selenium in the alluvial ground water have generally decreased over time as shown in Figure 12. Nitrate concentrations have similarly decreased over time; however, no new data were acquired for 2004 due to quality-control problems at the laboratory. Molybdenum concentrations have decreased (by a factor of 4) over time in well 0318, but have been fairly consistent over time in wells 0508 and 0510 as shown in Figure 13. Decreasing molybdenum concentrations in well 0318 may be indicative of contaminant plume movement. The recent fluctuations of molybdenum concentrations in well 0508 and 0510 may also indicate plume movement or simply be the result of the continuing drought conditions noted for the area and the minimal recharge of the alluvial aquifer. Historically, concentrations of molybdenum in the Entrada Sandstone well (well 0317) have been slightly above the MCL and the levels continue to decrease slightly (Figure 13). Concentrations of molybdenum and selenium in well 0508 versus model predictions are displayed in Figure 14 and Figure 15, respectively. The deviation between the actual concentrations of molybdenum in well 0508 and the model predictions appears drastic and should be closely monitored over the next several sampling rounds to better understand the alluvial system. Concentrations of the COPCs in the alluvial aquifer at the SRW site have decreased significantly since 2000 as shown in Table 3.

Table 3.	Comparison	of COPC	Concentrations	in the	Alluvial	Aquifer to	Benchmark	Values
	,							

COPC	COPC Benchmark ^a		Current Concentration ^c	Well Location	Site
Benzene	0.005	19.8	3.64	0319	SRW
Manganese	3.5	12.80	2.97	0318	SRW
Molybdenum	0.10	1.83	0.459	0318	SRW
Nitrate	44.27	4,090	N/A	0318	SRW
Radium-226 + Radium-228	5	7.21	5.56	0319	SRW
Toluene	1	13.7	2.25	0319	SRW
Selenium	0.18	2.57	1.29	0318	SRW

^aBenchmark values are MCLs except for selenium (ACL) and manganese (background). Units are in mg/L, except for radium-226 and radium-228, which are in picoCuries per liter (pCi/L).

^bMaximum concentration in the alluvial aquifer from September 2000 to September 2002.

^cConcentration in September 2004.

Several minor COPCs are limited to well 0319 only. Benzene and toluene concentrations in well 0319 have decreased significantly (Table 3) as predicted by published biodegradation rates (Mackay et al. 1992). Radium-226 plus radium-228 activities in well 0319 remain close to the standard of 5 pCi/L (Table 3).

Figure 12. Selenium Concentrations Versus Time at the SRW site

Figure 13. Molybdenum Concentrations Versus Time at the SRW site

Figure 14. Molybdenum Concentrations in Well 0508 Versus Ground Water Model Predictions at the SRW Site

Figure 15. Selenium Concentrations in Well 0508 Versus Ground Water Model Predictions at the SRW Site

3.3 Surface Water

Results from surface-water sampling (Appendix B) demonstrate essentially no impact to the Dolores River from site activities; no CDPHE water quality benchmarks have been exceeded as shown in Table 4.

Table 4. Comparison of COPC Concentrations	in the Dolores River to CDPHE Benchmarks.
--	---

	CDDUE	Dolores River Location									
COBC	Bonchmark ^a	SRE	site	SRW site							
COPC	(mg/L)	0696	0692	0693	0347	0349	0694				
	(9/=/	2004 Concentration (mg/L)									
Manganese ^b	0.05	-	-	0.0024	0.0019	0.0022	0.0025				
Selenium	0.005	-	-	<0.0006	<0.0006	<0.0006	<0.0006				
Uranium	0.059	0.0008	0.0007	0.0007	0.0007	0.0007	0.0008				

^aCDPHE surface water benchmark (CDPHE 1998).

^bStandard for chronic exposure.

4.0 Conclusions

4.1 Status of Site Compliance

While both the SRE and SRW sites still have concentrations of COPCs in the alluvial aquifer above the respective MCL, ACL, or background concentrations, levels are generally decreasing, which indicates natural flushing is occurring in the aquifer. In addition, concentrations of most COPCs are comparable to predictions made by the ground water model.

The molybdenum concentration in well 0508 is essentially unchanged from 2000, and represents the largest deviation from model predictions (Figure 14); however, molybdenum concentrations in other portions of the alluvial aquifer (well 0318) have decreased significantly (Figure 13). Decreasing molybdenum concentrations in well 0318 may be indicative of plume movement. Ground water modeling predicts molybdenum concentrations in the alluvial aquifer will decline as natural flushing processes continue. The recent fluctuations in molybdenum concentrations in wells 0508 and 0510 may result from the continuing drought and minimal recharge of the alluvial system.

4.2 Recommendations

To date, the natural flushing strategy has been effective in reducing the COPC concentrations in the alluvial aquifer. Verification monitoring of ground water from designated monitor wells and surface water locations will continue on an annual basis as specified in the GCAP (DOE 2003).

Special attention will be given to nitrate analysis during the next sampling event to ensure that the laboratory problems encountered in 2004 are not repeated. Additionally, molybdenum concentrations in wells 0508 and 0510 should be closely monitored against the model predictions to determine if additional modeling is required.

5.0 References

Colorado Department of Public Health and Environment, 1998. Water Quality Commission, Regulation No. 35, *Classifications and Numeric Standards for Gunnison and Lower Dolores River Basins*, Denver, Colorado.

Mackay, D., W. Y. Shiu, and K. C. Ma, 1992. *Illustrated Handbook of Physical–Chemical Properties and Environmental Fate for Organic Chemicals*, Lewis Publishers, Chelsea, Michigan.

U. S. Department of Energy, 2002. *Site Observational Work Plan for the Slick Rock, Colorado, UMTRA Project Site.* GJO-2001-257-TAR MAC-GWSKR 1.1, Grand Junction Office, Grand Junction, Colorado.

———, 2003. Preliminary Final Ground Water Compliance Action Plan for the Slick Rock, Colorado, UMTRA Project Sites. GJO-2003-448-TAC GJO-GWSKR 1.9, Grand Junction Office, Grand Junction, Colorado.

40 CFR 192. U.S. Environmental Protection Agency, "Health and Environmental Protection Standards for Uranium and Thorium Mill Tailings," *Code of Federal Regulations*, July 1, 2002.

Appendix A

Ground Water Quality Data by Parameter

· · · · · · · · · · · · · · · · · · ·												
PARAMETER	UNITS	LOCATION ID	LOCATION TYPE	SAMP DATE	LE: ID	DEPTH RANGE (FT BLS)	RESULT	QU LAB	IALIFIER DATA	S: QA	DETECTION LIMIT	UN- CERTAINTY
Alkalinity, Total (As CaCO3	mg/L	0303	WL	09/27/2004	0001	4.30 - 14.30	500		F	#		-
	mg/L	0305	WL	09/27/2004	0001	8.70 - 18.70	296		F	#		_
	mg/L	0307	WL	09/27/2004	0001	4.40 - 14.40	794		F	#	-	-
	mg/L	0309	WL	09/27/2004	0001	10.20 - 20.20	800		F	#	-	· _
	mg/L	0311	WL	09/27/2004	0001	14.10 - 19.10	280		F	#	· _	_
	mg/L	0317	WL	09/27/2004	0001	19.46 - 39.52	288		F	#	-	_
•	mg/L	0318	WL	09/27/2004	0001	4.99 - 15.02	292		F	#	-	-
	mg/L	0319	WL	09/27/2004	0001	4.55 - 14.58	1243		F	#	· _	-
	mg/L	0320	WL	09/28/2004	0001	4.92 - 9.96	333		F	#	-	-
	mg/L	0508	WL	09/27/2004	0001	1.01 - 11.01	360		F	#	-	· _
	mg/L	0510	WL	09/27/2004	0001	4.92 - 13.92	300		F	#	-	_
· · · · · · · · · · · · · · · · · · ·	mg/L	0684	WL	09/28/2004	0001	11.00 - 21.00	164		F	#	-	-
Benzene	ug/L	0319	WL	09/27/2004	N001	4.55 - 14.58	3640		F	#	50	-
	ug/L	0319	WL	09/27/2004	N002	4.55 - 14.58	3500		F	#	50	-
Ethylbenzene	ug/L	0319	WL	09/27/2004	N001	4.55 - 14.58	209		F	#	50	-
•	ug/L	0319	WL	09/27/2004	N002	4.55 - 14.58	215		F	#	50	-
Manganese	mg/L	0318	WL	09/27/2004	0001	4.99 - 15.02	2.970		F	#	0.00161	-
	mg/L	0320	WL	09/28/2004	0001	4.92 - 9.96	0.470		F	#	0.00161	-
	mg/L	0508	WL	09/27/2004	0001	1.01 - 11.01	5.390		F	#	0.00161	
	mg/L	0510	WL	09/27/2004	0001	4.92 - 13.92	5.830		F	#	0.00161	-
	mg/L	0684	WL	09/28/2004	0001	11.00 - 21.00	0.994		F	#	0.00161	-
Molybdenum	mg/L	0317	WL	09/27/2004	0001	19.46 - 39.52	0.220		F	#	0.00143	-
	mg/L	0318	WL	09/27/2004	0001	4.99 - 15.02	0.459		F	#	0.00143	-
	mg/L	0320	WL	09/28/2004	0001	4.92 - 9.96	0.0196		F	#	0.00143	-

1.01 - 11.01

1.460

GROUND WATER QUALITY DATA BY PARAMETER WITH DEPTH (USEE200) FOR SITE SRK01, Slick Rock Processing Sites REPORT DATE: 5/23/2005 8:14 am

mg/L

0508

WL

09/27/2004 0001

Page 1

0.00143

F

PARAMETER	UNITS	LOCATION ID	LOCATION TYPE	SAMP DATE	LE: ID	DEPTH RANGE (FT BLS)	RESULT	QU LAB	ALIFIEF DATA	RS: E QA	DETECTION	UN- CERTAINTY
Molybdenum	mg/L	0510	WL	09/27/2004	0001	4.92 - 13.92	0.821		F	#	0.00143	-
	mg/L	0684	WL	09/28/2004	0001	11.00 - 21.00	0.0085	В	F	#	0.00143	-
Oxidation Reduction Potent	mV	0303	WL	09/27/2004	N001	4.30 - 14.30	-127		F	#	-	
	mV	0305	WL	09/27/2004	N001	8.70 - 18.70	15		F	#	-	-
	mV	0307	WL	09/27/2004	N001	4.40 - 14.40	-85		F	#	-	-
	mV	0309	WL	09/27/2004	N001	10.20 - 20.20	-125		F	#	-	-
	mV	0311	WL	09/27/2004	N001	14.10 - 19.10	102		F	#	_	-
	mV	0317	WL	09/27/2004	N001	19.46 - 39.52	45		F	#	-	-
•	mV	0318	WL	09/27/2004	N001	4.99 - 15.02	73		F	#	-	-
	mV	0319	WL	09/27/2004	N001	4.55 - 14.58	-153		F	#	-	·
	mV	0320	WL	09/28/2004	N001	4.92 - 9.96	-59		F	#	-	-
	mV	0508	WL	09/27/2004	N001	1.01 - 11.01	84		F	#	-	-
	mV	0510	WL	09/27/2004	N001	4.92 - 13.92	83		F	#	-	_
·	mV	0684	WL	09/28/2004	N001	11.00 - 21.00	11		F	#	-	-
рН	s.u.	0303	WL	09/27/2004	N001	4.30 - 14.30	7.24		F	#	-	-
	s.u.	0305	WL	09/27/2004	N001	8.70 - 18.70	7.14		F	#	-	-
	s.u.	0307	WL	09/27/2004	N001	4.40 - 14.40	7.12		F	#		-
	s.u.	0309	WL	09/27/2004	N001	10.20 - 20.20	7.50		F	#	-	
	s.u.	0311	WL	09/27/2004	N001	14.10 - 19.10	6.94		F	#	-	
	s.u.	0317	WL	09/27/2004	N001	19.46 - 39.52	7.32		F	#	· _	-
	s.u.	0318	WL	09/27/2004	N001	4.99 - 15.02	6.80		F	#	-	-
	s.u.	0319	WL	09/27/2004	N001	4.55 - 14.58	6.91		F	#		-
	s.u.	0320	WL	09/28/2004	N001	4.92 - 9.96	7.03		F	#	-	-
	s.u.	0508	WL	09/27/2004	N001	1.01 - 11.01	6.64		F	#	-	-
	s.u.	0510	WL	09/27/2004	N001	4.92 - 13.92	6.59		F	#	-	-
	s.u.	0684	WL	09/28/2004	N001	11.00 - 21.00	7.34		F	#	-	-

PARAMETER	UNITS	LOCATION ID	LOCATION TYPE	SAMPI DATE	-E: ID	DEPTH RANGE (FT BLS)	RESULT	QU LAB	ALIFIEF DATA	RS: E QA	DETECTION LIMIT	UN- CERTAINTY
Radium-226	pCi/L	0319	WL	09/27/2004	0001	4.55 - 14.58	2.54		F	#	0.38	± 0.65
	pCi/L	0319	WL	09/27/2004	0002	4.55 - 14.58	2.53		F	#	0.627	±. 0.69
Radium-228	pCi/L	0319	WL	09/27/2004	0001	4.55 - 14.58	2.80		JF	#	1.21	± 0.74
	pCi/L	0319	WL	09/27/2004	0002	4.55 - 14.58	3.25		F	#	0.979	± 0.66
Selenium	mg/L	0305	WL	09/27/2004	0001	8.70 - 18.70	0.0248		F	#	0.00064	-
	mg/L	0307	WĹ	09/27/2004	0001	4.40 - 14.40	0.00064	U	F	#	0.00064	-
	mg/L	0318	WL	09/27/2004	0001	4.99 - 15.02	1.290		F	#	0.00064	_
	mg/L	0320	WL	09/28/2004	0001	4.92 - 9.96	0.00064	U	F	#	0.00064	-
	mg/L	0508	WL	09/27/2004	0001	1.01 - 11.01	0.666		F	#	0.00064	2
	mg/L	0510	WL	09/27/2004	0001	4.92 - 13.92	0.0977		F	#	0.00064	
	mg/L	0684	WL	09/28/2004	0001	11.00 - 21.00	0.00064	U	F	#	0.00064	· -
Specific Conductance	umhos/cm	0303	WL	09/27/2004	N001	4.30 - 14.30	3152	÷ 1	F	#	_ '	- .
	umhos/cm	0305	WL	09/27/2004	N001	8.70 - 18.70	2922		F	#	-	-
	umhos/cm	0307	WL	09/27/2004	N001	4.40 - 14.40	5715		F	#	-	_
	umhos/cm	0309	WL	09/27/2004	N001	10.20 - 20.20	2681		F	#	-	-
	umhos/cm	0311	WL	09/27/2004	N001	14.10 - 19.10	1778		F	#	-	-
	umhos/cm	0317	WL	09/27/2004	N001	19.46 - 39.52	2715		F	#		-
	umhos/cm	0318	WL	09/27/2004	N001	4.99 - 15.02	3380		F	#	-	-
	umhos/cm	0319	WL	09/27/2004	N001	4.55 - 14.58	10480		F	#	-	-
	umhos/cm	0320	WL	09/28/2004	N001	4.92 - 9.96	1069		F	#	-	-
	umhos/cm	0508	WL	09/27/2004	N001	1.01 - 11.01	5079		F	#	• –	-
	umhos/cm	0510	WL	09/27/2004	N001	4.92 - 13.92	4587		F	#	-	-
	umhos/cm	0684	WL	09/28/2004	N001	11.00 - 21.00	980		F	#		
Temperature	С	0303	WL	09/27/2004	N001	4.30 - 14.30	* 18.4		F	#	_ `	-
	С	0305	WL	09/27/2004	N001	8.70 - 18.70	16.4		F	#	- '	-

PARAMETER	UNITS	LOCATION ID	LOCATION TYPE	SAMP DATE	LE: ID	DEPTH RANGE (FT BLS)	RESULT	QUALIF LAB DA	IERS: D FA QA	ETECTION LIMIT	UN- CERTAINTY
Temperature	С	0307	WL	09/27/2004	N001	4.40 - 14.40	16.1	F	#	-	-
	С	0309	WL	09/27/2004	N001	10.20 - 20.20	14.0	F	#	-	-
	С	0311	WL	09/27/2004	N001	14.10 - 19.10	16.6	F	#	-	• _ •
	С	0317	WL	09/27/2004	N001	19.46 - 39.52	15.2	F	#		. <u> </u>
	С	0318	WL	09/27/2004	N001	4.99 - 15.02	18.5	F	#	-	-
	С	0319	WL	09/27/2004	N001	4.55 - 14.58	17.4	F	#	-	-
	С	0320	WL	09/28/2004	N001	4.92 - 9.96	16.8	F	#	-	· _
	С	0508	WL	09/27/2004	N001	1.01 - 11.01	19.0	F	#	-	-
	С	0510	WL	09/27/2004	N001	4.92 - 13.92	18.5	F	#	-	-
	С	0684	WL	09/28/2004	N001	11.00 - 21.00	13.8	F	#	-	-
Toluene	ug/L	0319	WL	09/27/2004	N001	4.55 - 14.58	2250	F	#	50	
	ug/L	0319	WL	09/27/2004	N002	4.55 - 14.58	2110	F	#	50	-
Total Dissolved Solids	mg/L	0303	WL	09/27/2004	0001	4.30 - 14.30	1980	F	#	3.07	-
	mg/L	0305	WL	09/27/2004	0001	8.70 - 18.70	1980	F	#	3.07	-
	mg/L	0307	WL	09/27/2004	0001	4.40 - 14.40	5040	F	#	3.07	-
	mg/L	0309	WL	09/27/2004	0001	10.20 - 20.20	1800	F	#	5.11	-
	mg/L	0311	WL	09/27/2004	0001	14.10 - 19.10	1270	. F	#	3.07	-
	mg/L	0317	WL	09/27/2004	0001	19.46 - 39.52	1570	F	#	3.07	-
	mg/L	0318	WL	09/27/2004	0001	4.99 - 15.02	3080	F	#	3.07	-
	mg/L	0319	WL	09/27/2004	0001	4.55 - 14.58	5410	F	#	3.07	-
	mg/L	0319	WL	09/27/2004	0002	4.55 - 14.58	5420	F	#	3.07	-
	mg/L	0320	WL	09/28/2004	0001	4.92 - 9.96	664	F	#	3.07	_
	mg/L	0508	WL	09/27/2004	0001	1.01 - 11.01	3940	F	#	3.07	-
	mg/L	0510	WL	09/27/2004	0001	4.92 - 13.92	4590	F	#	3.07	-
	mg/L	0684	WL	09/28/2004	0001	11.00 - 21.00	973	F	#	3.07	-
Total Xylenes	ug/L	0319	WL	09/27/2004	N001	4.55 - 14.58	4680	F	#	50	-

PARAMETER	UNITS	LOCATION I ID	LOCATION TYPE	SAMPI DATE	LE: ID	DEPTH RANGE (FT BLS)	RESULT	QUA LAB	LIFIERS: DATA Q	E A	DETECTION LIMIT	UN- CERTAINTY
Total Xylenes	ug/L	0319	WL	09/27/2004	N002	4.55 - 14.58	4670		F	#	50	-
Turbidity	NTU	0303	WL	09/27/2004	N001	4.30 - 14.30	2.16		F	#	-	_
	NTU	0305	WL	09/27/2004	N001	8.70 - 18.70	8.48		F	#	-	-
	NTU	0307	WL	09/27/2004	N001	4.40 - 14.40	7.12		F	#	-	-
	NTU	0309	WL	09/27/2004	N001	10.20 - 20.20	9.44		F	#	-	·
	NTU	0311	WL	09/27/2004	N001	14.10 - 19.10	5.81		F	#	-	-
	NTU	0317	WL	09/27/2004	N001	19.46 - 39.52	4.10		F	#	-	-
	NTU	0318	WL	09/27/2004	N001	4.99 - 15.02	4.53		F	#	-	-
	NTU	0319	WL	09/27/2004	N001	4.55 - 14.58	6.25		F	#	-	-
	NTU	0320	WL	09/28/2004	N001	4.92 - 9.96	7.84		F	#	-	-
	NTU	0508	WL	09/27/2004	N001	1.01 - 11.01	4.22		F	#	-	-
	NTU	0510	WL	09/27/2004	N001	4.92 - 13.92	2.88		F	#	-	-
	NTU	0684	WL	09/28/2004	N001	11.00 - 21.00	1.40		F,	#	-	-
Uranium	mg/L	0303	WL	09/27/2004	0001	4.30 - 14.30	0.967		F	#	0.00002	_
	mg/L	0305	WL	09/27/2004	0001	8.70 - 18.70	0.871		F.	#	0.00002	-
	mg/L	0307	WL	09/27/2004	0001	4.40 - 14.40	0.421		F	#	0.00002	
	mg/L	0309	WL	09/27/2004	0001	10.20 - 20.20	0.0396		F	#	0.00002	-
	mg/L	0311	WL	09/27/2004	0001	14.10 - 19.10	0.0812		F	#	0.00002	-
	mg/L	0318	WL	09/27/2004	0001	4.99 - 15.02	0.0392		F	#	0.00002	-
	mg/L	0320	WL	09/28/2004	0001	4.92 - 9.96	0.0253		F	#	0.00002	-
	mg/L	0508	WL	09/27/2004	0001	1.01 - 11.01	0.112		F	#	0.00002	-
	mg/L	0510	WL	09/27/2004	0001	4.92 - 13.92	0.096		F	#	0.00002	
	mg/L	0684	WL	09/28/2004	0001	11.00 - 21.00	0.0086		F	#	0.00002	-

PARA	METER	UNITS	LOCATION ID	LOCATION TYPE	SAMPLE DATE	ID	DEPTH RANGE (FT BLS)		RESULT	QUALIFIERS: LAB DATA QA	DETECTION LIMIT	UN- CERTAINTY	
RECO	RDS: SELECTED data_validati	FROM USEE200 V on_qualifiers NOT	VHERE site_cod LIKE '%X%') AN	le≕'SRK01' AND ID DATE_SAMP	quality_assurant LED between #1	ce = TRUE	ND (data_validation_ d #12/31/2004#	_qualifie	ers IS NULL OR	data_validation_qual	fiers NOT LIKE '%	%R%' AND	
SAMPL	AMPLE ID CODES: 000X = Filtered sample (0.45 µm). N00X = Unfiltered sample. X = replicate number.												
LOCAT	OCATION TYPES: WL WELL												
										•			
*	DALIFIERS. Poplicato opolucio n	ot within control lim	aita										
	Correlation coofficie	ot within control M	ins.										
, >	Result above upper	detection limit											
Δ	TIC is a suspected a	aldol-condensation	product										
В	Inorganic: Résult is	between the IDL a	nd CRDI Orga	nic: Analyte also	found in method	l hlank							
c	Pesticide result cont	firmed by GC-MS.	na oribe. orga	nic. Analyte also	Tourio in metrio	Dialik.							
D,	Analyte determined	in diluted sample.											
E	Inorganic: Estimate	value because of i	nterference, see	case narrative.	Organic: Analyte	exceeded r	alibration range of the	e GC-N	MS .				
Ĥ	Holding time expired	d, value suspect.	· · · · · · · · · · · · · · · · · · ·		ergame. / marja		anoration range of the	0.00 %	10.				
· 1 - 1	Increased detection	limit due to require	d dilution.										
J	Estimated												
M	GFAA duplicate inje	ction precision not	met.										
N	Inorganic or radioch	emical: Spike sam	ple recovery not	within control lim	its. Organic: Te	entativelv ide	ntified compund (TIC)).					
P	> 25% difference in	detected pesticide	or Arochlor conc	entrations betwe	en 2 columns.	· · · · · · · · · · · · · · · · · · ·		,.	-				
S	Result determined b	y method of standa	ard addition (MSA	۹).	-								
υJ	Analytical result belo	w detection limit.		,									
W	Post-digestion spike	outside control lim	its while sample	absorbance < 50)% of analytical s	spike absorb	ance.						
XII	Laboratory defined (USEPA CLP organ	nic) qualifier, see	case narrative.									
ΥI	Laboratory defined (USEPA CLP organ	ic) qualifier, see	case narrative.									
ΖI	Laboratory defined (USEPA CLP organ	ic) qualifier, see	case narrative.									
DATA	QUALIFIERS:												
FΙ	Low flow sampling m	nethod used.		G Possible	e arout contamin	ation nH > 9	9	.1	Estimated value	-			
Ll	Less than 3 bore vol	umes purged prior	to sampling.	Q Qualitat	ive result due to	sampling ter	, choique	R	Linusable result	5. H			
UF	Parameter analyzed	for but was not det	tected.	X Location	n is undefined.	compining to	51111400	13	Chasable result				
QA QU	ALIFIER: #=valid	ated according to C	Quality Assurance	e guidelines.									

Appendix B

Surface Water Quality Data by Parameter

SURFACE WATER QUALITY DATA BY PARAMETER (USEE800) FOR SITE SRK01, Slick Rock Processing Sites REPORT DATE: 5/23/2005 8:15 am

PARAMETER	UNITS	LOCATIC ID	N SAMPL DATE	E: ID	RESULT	QU LAB	ALIFIERS: DATA QA	DETECTION LIMIT	UN- CERTAINTY
Alkalinity, Total (As CaCO	3 mg/L	0347	09/27/2004	0001	108		#	<u> </u>	
	mg/L	0349	09/28/2004	0001	99		#	<u>.</u>	-
· · ·	mg/L	0692	09/27/2004	0001	122		#	<u> </u>	-
	mg/L	0693	09/28/2004	0001	101		#	-	-
	mg/L	0694	09/28/2004	0001	97		#	-	- ·
	mg/L	0696	09/27/2004	0001	102		#	-	-
Manganese	mg/L	0347	09/27/2004	0001	0.0019 E	3	#	0.00161	-
•	mg/L	0349	09/28/2004	0001	0.0022 E	3	#	0.00161	-
	mg/L	0693	09/28/2004	0001	0.0024 E	3	#	0.00161	-
	mg/L	0694	09/28/2004	0001	0.0025 E	3	#	0.00161	-
Molybdenum	mg/L	0347	09/27/2004	0001	0.0024 E	3	#	0.00143	_
	mg/L	0349	09/28/2004	0001	0.0025 E	3	#	0.00143	-
	mg/L	0693	09/28/2004	0001	0.0026 E	3	#	0.00143	-
·	mg/L	0694	09/28/2004	0001	0.0023 E	5	#	0.00143	-
Oxidation Reduction Poten	t mV	0347	09/27/2004	N001	28		#	-	_
	mV	0349	09/28/2004	N001	-58		#		· _
	mV	0692	09/27/2004	N001	7.5		#	-	-
	mV	0693	09/28/2004	N001	18.1		#	-	-
	mV	0694	09/28/2004	N001	11		#	-	-
•	mV	0696	09/27/2004	N001	9		#	-	-
рН	s.u.	0347	09/27/2004	N001	8.39		#	-	
	s.u.	0349	09/28/2004	N001	8.14		#	-	-
	s.u.	0692	09/27/2004	N001	8.22		#	-	-
	s.u.	0693	09/28/2004	N001	8.30		#	-	-
	s.u.	0694	09/28/2004	N001	8.37		#	-	-
	s.u.	0696	09/27/2004	N001	8.35		#	-	-
Selenium	mg/L	0347	09/27/2004	0001	0.0006 L		#	0.00064	
	mg/L	0349	09/28/2004	0001	0.0006 U		#	0.00064	-
	mg/L	0693	09/28/2004	0001	0.0006 U		#	0.00064	-
	mg/L	0694	09/28/2004	0001	0.0006 U		#	0.00064	-
Specific Conductance	umhos/cm	0347	09/27/2004	N001	415		#	-	_
	umhos/cm	0349	09/28/2004	N001	394		#	-	-
	umhos/cm	0692	09/27/2004	N001	677		#	-	-
	umhos/cm	0693	09/28/2004	N001	361		#	-	-
	umhos/cm	0694	09/28/2004	N001	346		#	-	-
	umhos/cm	0696	09/27/2004	N001	370		#	-	-
Temperature	С	0347	09/27/2004	N001	20.8		#	-	-

		LOCATIO	N SAMPL	.E:		QU	ALIFIER	S:	DETECTION	UN-
PARAMETER	UNITS	ID	DATE	ID	RESULT	LAB	DATA	QA	LIMIT	CERTAINTY
Temperature	C	0349	09/28/2004	N001	15.3			#	-	-
	С	0692	09/27/2004	N001	17 .6			#	-	-
	С	0693	09/28/2004	N001	16.3			#	-	-
	С	0694	09/28/2004	N001	14 .5			#	-	-
	С	0696	09/27/2004	N001	19.9			#	-	-
Turbidity	NTU	0347	09/27/2004	N001	75.7			#	-	-
	NTU	0349	09/28/2004	N001	64.3			#	-	-
	NTU	0692	09/27/2004	N001	86.9			#	-	-
	NTU	0693	09/28/2004	N001	56.8			#	-	-
	NTU	0694	09/28/2004	N001	58.2			#	-	-
	NTU	0696	09/27/2004	N001	82.8			#	-	-
Uranium	mg/L	0347	09/27/2004	0001	0.0007		- 73 P.4	#	0.00002	-
	mg/L	0349	09/28/2004	0001	0.0007			#	0.00002	-
	mg/L	0692	09/27/2004	0001	0.0007			#	0.00002	-
	mg/L	0693	09/28/2004	0001	0.0007			#	0.00002	-
	mg/L	0694	09/28/2004	0001	0.0008			#	0.00002	
	mg/L	0696	09/27/2004	0001	8000.0			#	0.00002	-

SURFACE WATER QUALITY DATA BY PARAMETER (USEE800) FOR SITE SRK01, Slick Rock Processing Sites REPORT DATE: 5/23/2005 8:15 am

SURFACE WATER QUALITY DATA BY PARAMETER (USEE800) FOR SITE SRK01, Slick Rock Processing Sites REPORT DATE: 5/23/2005 8:15 am

PARAN	METER	UNITS	LOCATION ID	SAMPLE DATE	E: ID	RE	SULT	QU, LAB	ALIFIER DATA	S: QA	DETECTIO LIMIT	N UN- CERTAINTY
RECOR	DS: SELECTED FR OR data_valida #1/1/2004# and	ROM USEE800 Ition_qualifiers I #12/31/2004	0 WHERE site_(NOT LIKE '%R #	code='SRK01 .%' AND data	' AND qu _validati	iality_a on_qui	issurance alifiers NC	= TRU DT LIKE	E AND (d E '%X%')	ata_v AND	alidation_qual DATE_SAMPI	ifiers IS NULL LED between
SAMPLE	E ID CODES: 000X	= Filtered san	nple (0.45 μm).	N00X = Unfi	Itered sa	imple.	X = repl	icate nu	umber.			
LAB QU * F + C > F	IALIFIERS: Replicate analysis not Correlation coefficient Result above upper de	within control for MSA < 0.9 tection limit.	limits. 95.									
АТ	IC is a suspected ald	ol-condensatio	on product.									
B Ir	B Inorganic: Result is between the IDL and CRDL. Organic: Analyte also found in method blank.											
С Р	2 Pesticide result confirmed by GC-MS.											
D A	nalyte determined in o	diluted sample	e.									•
E Ir	Inorganic: Estimate value because of interference, see case narrative. Organic: Analyte exceeded calibration range of the GC-MS											
нн	lolding time expired, v	alue suspect.									-	
l Ir	ncreased detection lim	nit due to requi	red dilution.									
JE	stimated											
MG	FAA duplicate injection	on precision ne	ot met.									
N In	organic or radiochem	ical: Spike sa	imple recovery r	not within conf	rol limits	. Orga	nic: Tent	atively i	identified	comp	und (TIC).	
P >	25% difference in det	tected pesticid	e or Arochlor co	oncentrations	between	2 colu	mns.					
SR	esult determined by n	nethod of stan	dard addition (N	1SA).								
UA	nalytical result below	detection limit	•									
W P	ost-digestion spike ou	Itside control I	imits while sam	ole absorbanc	e < 50%	of ana	lytical spil	ke abso	orbance.			
X La	aboratory defined (US	EPA CLP org	anic) qualifier, s	ee case narra	tive.							
Y La	Laboratory defined (USEPA CLP organic) qualifier, see case narrative.											
Z Lá	aboratory defined (US	EPA CLP org	anic) qualifier, s	ee case narra	tive.							
DATA QI	UALIFIERS:											
F Lo	ow flow sampling met	hod used.				G	Possible	arout c	ontamina	tion. r)H > 9.	
J E:	stimated value.					L	Less than	n 3 bore	e volumes	pura	ed prior to sar	nnling
QQ	ualitative result due to	sampling tec	hnique			P	Unucoble	rogult		, · 9		

- Qualitative result due to sampling technique
- U Parameter analyzed for but was not detected.
- QA QUALIFIER: # = validated according to Quality Assurance guidelines.
- R Unusable result.
- X Location is undefined.