
Introduction
During the past two decades, stochastic studies have

shown that inadequate and insufficient data limit the ability
of ground water models to predict system behavior without
substantial uncertainty (Pohll et al. 1999; Pohlmann et al.
2000; Hassan et al. 2001). Uncertainty is always inherent in
the model prediction and is the result of the inability to
characterize fully the subsurface environment and the
processes controlling the system behavior. Full characteri-
zation is limited by access to the subsurface, which requires
extensive borehole drilling that can adversely affect the
geologic integrity of the site or be prohibitively expensive. 

Regulators and the public must accept modeling
results in order to close subsurface-contaminated sites.
Acceptance is difficult to secure, given the wide range of
uncertainty associated with the predictions of stochastic
models. A model validation process is probably the best
way to address the acceptance issue as it can achieve buy-
in for a closure process involving numerical ground water
modeling. Validation, however, is not understood equally
by all entities; there is an urgent need to unify the concepts
of validation and develop a systematic way for testing and
evaluating model predictions. A unified concept may
facilitate acceptance of model-based decisions by regula-
tors and the public, especially since many U.S. Depart-
ment of Energy (DOE) and U.S. Department of Defense
sites now undergoing closure processes require validation.
Developing and using rigorous science to define a valida-
tion process that site sponsors, regulators, and the public
can accept will be mutually beneficial.

The Central Nevada Test Area (CNTA), location of
the Faultless underground nuclear test, is currently under-
going environmental restoration and facing the issue of
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model validation. Underground nuclear tests leave a signif-
icant radionuclide source in contact with ground water,
without a technically feasible remediation technology. For
these sites, regulatory closure and stewardship restrictions
will depend on a model-generated contaminant boundary
(perimeter of an area containing contamination exceeding a
certain threshold). Confidence in the modeling results is
critical in achieving closure. A complex, three-dimensional
stochastic flow and transport model was developed for the
CNTA site (Pohlmann et al. 2000). After reviewing the
model, the state of Nevada determined that the model was
acceptable for predicting contaminant boundaries for the
CNTA, allowing a major step forward in the closure
process (Chapman et al. 2002). Acceptance, however, was
tied to a state requirement to validate the model. Thus, the
CNTA model requires a validation strategy that can with-
stand the rigors of a scientific peer review, regulatory over-
sight, and public scrutiny. 

Other sites urgently requiring effective validation
strategies include Shoal underground test area in Nevada,
DOE Hanford Site in Washington, Maxey Flats Nuclear
Disposal Site in Kentucky, Fernald Environmental Project
in Ohio, Oak Ridge National Laboratory in Tennessee, and
Nevada Test Site in Nevada. Validation is of utmost con-
cern to modelers, scientists, and regulatory agencies. A
sound validation process requires procedures and tests,
which do not currently exist, that can be easily adapted and
applied to evaluate even the simplest deterministic model.
Validation is even more difficult for predictive stochastic
models that incorporate effects of parametric uncertainty
and spatial variability. 

A general methodology for validating numerical
ground water models that addresses important issues
acknowledged in previous validation studies, conferences,
and symposia is presented in this paper. This method inte-
grates various tools and strategies for evaluating predictive
models, refining the predictions, reducing associated uncer-
tainty, and building the confidence necessary to close sites
having significant ground water contamination. The valida-
tion methodology focuses on steady-state models where the
history matching concept advocated by Bredehoeft and
Konikow (1993) is difficult to attain. Even if the system is
under transient conditions, changes occur slowly, and it
may not be feasible to establish a performance history to
use in testing the model. Additionally, the proposed
approach does not claim the model will be declared valid at
some point in the process. That is, the approach deals with
validation as a process, not an end result. The basic thrust
is aimed at building confidence in the model to cover the
crucial elements affecting the model predictions.

The remainder of the paper is organized as follows.
Following this introduction, background information about
the CNTA and the need for developing the validation
methodology are discussed. The various definitions of vali-
dation and a review of previous validation studies are pre-
sented in the third section. Critical issues addressed in the
validation process are presented in the fourth section, which
builds upon previous ground water model validation studies
and highlights important validation issues in these studies.
The proposed validation strategy, with the necessary back-
ground information, is discussed in the fifth section. Con-

clusions are then presented. The statistical tools needed for
the validation process are detailed in the appendices.

Description of the Central Nevada Test Area 
CNTA is located approximately midway between

Tonopah and Ely, Nevada (Figure 1). The study area is
located within Hot Creek Valley, which extends ~110 km
between north to south–oriented mountain ranges of the
basin and range physiographic province. The valley is a
long graben containing a thick sequence of Quaternary- and
Tertiary-age fill (up to 1200 m) underlain and bounded on
either side by Tertiary-age volcanic rocks (principally tuffs
and rhyolite lavas). Annual precipitation averages 19.4
cm/year.

The water table at the Faultless site occurs almost
200 m below land surface (bls). Faultless was the only test
performed at CNTA, and the working point is in the satu-
rated zone at a depth of 975 m. Consequently, the major
concern at the site is the transport of radioactive contami-
nants through the ground water system. This ground water
system has two components—a shallow section (defined
using data from less than 300 m bls) where flow is directed
southward, and a deeper section (defined using data from
1500 to 2100 m bls) of regional flow directed northeast-
ward. In the northern part of the valley, hydraulic head
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Figure 1. Map of Nevada showing the location of the Central
Nevada Test Area.



decreases with increasing depth, indicating a recharging
environment. In the southern part of the valley, head
increases with increasing depth and artesian conditions are
encountered, characteristic of a discharge area.

The conceptual flow model uses three principal hydro-
geologic units including alluvium; tuffaceous sediments,
bedded tuffs, and partially welded tuffs; and rhyolites and
densely welded tuffs. The rhyolites and densely welded
tuffs are assumed to be highly fractured and faulted and,
where present, are considered to be the primary pathways
for ground water flow and transport. Porous medium flow
is assumed in the alluvium and tuffaceous sediments. The
precise locations of the various units and respective values
of hydraulic conductivity (K) are only known at the few
borehole locations. The natural hydrogeologic heterogene-
ity is described in two aspects. The occurrence of the
hydrogeologic units throughout the bulk of the model is
allowed to be uncertain, and the assignment of heteroge-
neous K values to a unit is based on the variogram fitted to
the available data for each of the three units.

Using the K maps as the foundation for ground water
flow calculations, hundreds of equiprobable flow fields are
created for the site. These in turn are the basis for transport
calculations, performed using a random-walk, particle-
tracking method. Complete details can be found in
Pohlmann et al. (2000) and Chapman et al. (2002). 

Though several aspects of uncertainty were included in
the model, concerns remained regarding uncertainty in val-
ues of individual parameters. A data decision analysis
(DDA) was performed (Pohll and Mihevc 2000) to quantify
uncertainty in the existing model and determine the most
cost-beneficial activities for reducing uncertainty, if neces-
sary. The DDA indicated the overall uncertainty in the cal-
culated contaminant boundary during the 1000-year
regulatory time frame was relatively small, and only lim-
ited uncertainty reduction could be expected from expen-
sive characterization activities. With these results, the
model sponsor and the regulator determined the site model
was suitable and the corrective action process could move
forward. Key to this acceptance was the acknowledgment
that the model requires independent validation data and
requires long-term monitoring. 

The proposed validation methodology is centered
around three main themes. First is testing predictions of
numerical ground water flow, transport models, and under-
lying conceptual models to determine if the assumptions
are robust and consistent with regulatory purposes. Second
is reevaluating and refining model predictions, and reduc-
ing the uncertainty based on data collected in the proposed
field activities. Third is linking validation efforts to long-
term monitoring efforts that benefit from, and build on, the
validation-phase field activities. Though unique because of
the nature of contamination, underground nuclear tests
share much in common with other sources of ground water
contamination; in particular, the problem of uncertainty.
The proposed validation approach can therefore be adapted
and applied to other sites of ground water contamination
where predictive, site-specific models are used for deci-
sion-making purposes. The rigor of the proposed approach
is based on its simplicity, comprehensiveness, and cover-

age of many aspects of the model, rather than its mathe-
matical complexity.

Definitions of Model Validation
and Review of Previous Studies 

Definitions
Most controversies over the term validation arise from

interpretations and perceived meanings. These range from
an unachievable proof-of-truth view to more pragmatic
approaches that emphasize subjective assessment in order
to determine if models are good enough for a particular
application (Zuidema 1994). Definitions can be generally
grouped into four categories briefly summarized in the fol-
lowing paragraphs.

The first category relies on a scientific definition of
validation, which defines validation as the demonstration
that models are true representations of reality. The Nuclear
Regulatory Commission defines validation as the process
for ensuring that a model, as embodied in a computer code,
is a correct representation of the intended process or system
(NRC 1984). Anderson and Woessner (1992), Jackson et
al. (1992), Oreskes et al. (1994), and others discussed sim-
ilar views in more or less restrictive manners.

The second category is philosophical in nature and
relies on the premise that a theory or hypothesis can never
be validated, but only invalidated (Konikow and Brede-
hoeft 1992; Oreskes et al. 1994). 

Various operational definitions constitute the third cat-
egory views on model validation. Tsang (1987, 1991)
describes the validation of a model with respect to a process
or a site-specific system. In assessing the performance of
nuclear repositories, McCombie et al. (1990) and Zuidema
(1994) argue that a model is considered robust when there
is confidence that errors will either have minimal effect on
performance or yield conservative results. 

The confidence-building views of model validation
comprise the fourth category. For example, Neuman (1992)
defines the validation of safety assessment models as the
process of building scientific confidence in the methods
used to perform these assessments. Additionally, Eisenberg
et al. (1994) support the concept of confidence building.
They indicate that this term acknowledges that full scien-
tific validation of performance assessment models may be
impossible, but models should be accepted based on appro-
priate testing to show that results are reasonable. 

Previous Studies 
International cooperative projects including INTRA-

COIN (1984), HYDROCOIN (Grundfelt et al. 1990),
INTRAVAL (Nicholson 1990), and STRIPA (Herbert et al.
1990) focused on validating models. The subject was also
extensively discussed in symposia including GEOVAL87
(1987), GEOVAL90 (1990), and GEOVAL94 (1994). The
journal Advances in Water Resources dedicated two special
issues to the topic of model validation (AWR 1992a,
1992b). 

Most of these studies, international projects, and sym-
posia focused on qualitative aspects of model validation.

349A.E. Hassan GROUND WATER 42, no. 3: 347–362



Few touched on quantitative issues. In addition, some of the
studies focused on validating a single aspect or observed
phenomenon, e.g., matrix diffusion, and none addressed
how to carry quantitatively a numerical, stochastic model
through a validation process. 

Critical Issues in the Model Validation Process

Reducing Prediction Uncertainty
Validating predictive models should provide confi-

dence in the uncertainty bounds of the results where the real
outcome will fall (Zuidema 1994). Although uncertainty
cannot be eliminated, ways of making ground water mod-
els and subsequent decisions more reliable and effective are
needed. The proposed plan focuses on using validation data
to reduce uncertainty in the model and to narrow the range
of possible outcomes of stochastic numerical models. The
process will require iterative phases for collecting data,
evaluating and refining the model, and reducing uncertainty
in the model. This approach is particularly important in
radionuclide transport models, as few aspects of the trans-
port model results can actually be tested. In this case, the
proposed validation approach would focus on the other ele-
ments of the model, e.g., geology, structure, flow, etc., and

use the validation data to refine transport predictions and
reduce uncertainty. These concepts should be clearly pre-
sented to model sponsors and regulators for their under-
standing and approval.

Diverse Data and Evaluation Tests
As discussed by Ababou et al. (1992), the degree to

which a single experiment or a single set of field data can
validate a model depends on subjective weights, or proba-
bility, assigned to the particular experiment. More valida-
tion weight can be assigned if the range of aspects covered
by the experimental data set is sufficiently broad so the
overall character of the model is efficiently tested. The field
data should, therefore, be diverse and cover different
aspects of the model. For example, the data should allow
testing geologic aspects such as the existence and location
of contact between different geologic units, flow model
aspects such as head and gradient measurements, and trans-
port or contaminant release aspects such as concentration
measurements. Since a purpose of the validation task is to
determine if multiple failures and far-field transport of con-
taminants can occur, transport aspects related to failure sce-
narios should be tested. 

Oreskes et al. (1994) postulate that by using numerous
and diverse confirming observations, it is reasonable to
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Figure 2. Schematic of a general site-specific ground water model showing conceptual and numerical components, and three
main submodels linked together.



conclude that the conceptualization embodied in the model
is not flawed. A diversified set of statistical tests and eval-
uations will therefore provide a structured approach for
evaluating the model predictions and building confidence
in the decisions based on the predictions. The proposed sys-
tematic validation approach relies on tests and evaluation
techniques to guide the decision regarding the model pre-
dictions, and support informed and grounded discussions
among the modelers, sponsors, and regulators.

Submodels
In general, if a single model is composed of two or

more submodels, the degree of confidence achieved by
evaluating the submodels individually will not be as great
as the degree of confidence achieved by evaluating the sub-
models linked together (Eisenberg et al. 1994). It is there-
fore important to conduct additional tests to validate the
combined submodels. Site-specific ground water flow and
transport models generally can be divided into three sub-
models that can be tested individually first and then in com-
bination. Figure 2 is an example of the different submodels
in a site-specific model and shows how they are linked to
each other. The figure shows both conceptual and numeri-
cal submodels.

The first submodel is a conceptualized geologic model
that identifies the different units and shows how they are
structured together within the study domain. The input to
the first submodel constitutes data types that help identify
the geologic units and their locations, e.g., lithologic data,
geophysical logs, resistivity logs, etc. Using geostatistical
tools and conditional simulation with categorical or quali-
tative data, a discretized numerical submodel of the differ-
ent categories or units can be obtained. Subsequently, the
quantitative data, e.g., hydraulic testing results, packer
tests, resistivity logs, etc., can be used to obtain the detailed
heterogeneous structure of individual units in a quantitative
manner. That is, the spatially varying hydraulic properties,
namely hydraulic conductivity, can be obtained as an out-
put of this first submodel.

For a general site-specific model and for the special
case of the CNTA model, the first submodel can be tested
in terms of the existence and location of the different units
identified in the conceptual geologic model. Contact
between the different units is also an important aspect that
can be tested with validation data. For the CNTA model,
Pohlmann et al. (2000) identify three geologic units with
significant uncertainty associated with the contact between
them. Conductivity values assigned to different layers
should also be evaluated. This evaluation will focus on
reducing uncertainty in the assigned conductivity values by
utilizing head measurements and a conditional simulation
(or inverse) approach. For example, the sequential self-cal-
ibration (SSC) approach (Gómez-Hernández et al. 1997)
can be used for this purpose. 

The second major submodel for a general site-specific
ground water model is the flow submodel, where the output
of submodel 1 is used as input. A conceptual flow model is
then formulated and used in conjunction with this input,
boundary conditions, and assumptions to derive the numer-
ical flow model and solve the flow equations. This results
in identifying the flow pattern in the simulation domain,

which is represented by discretized head values and veloc-
ity components. This velocity distribution is the output of
submodel 2 and is used as input to submodel 3.

The flow pattern at CNTA (and at many other field
sites) is complicated (Pohlmann et al. 2000), and it is cru-
cial to verify the directions of the vertical and lateral head
gradients, especially in the vicinity of the contaminant
source. Multiple head measurements at different levels can
be obtained from a single borehole. These data will be cru-
cial to testing the flow model and its underlying input data,
as well as boundary conditions. In addition to testing the
predicted heads, the head data will be used to reduce the
heterogeneity uncertainty by using an inverse method such
as the SSC approach. 

In general, the last submodel in a site-specific study is
the transport model. The conceptual transport model is
identified by determining the source size and location, the
release scenarios, and the transport processes encountered
during the migration of contaminants. Added to the veloc-
ity pattern and boundary conditions, this conceptual model
gives rise to the numerical transport model where the trans-
port equations are formulated and solved for the output of
concern. This solution yields temporal mass flux break-
through curves at certain boundaries, spatial-temporal dis-
tribution of contaminant concentrations, or contaminant
boundaries. Usually, these latter outputs are the target of
the entire modeling process when ground water contamina-
tion is the major regulatory concern.

For the CNTA transport model, the release of radionu-
clides from the test cavity and the movement away from it
are just beginning (based on a cavity infill time of 30 years
for a test conducted in 1968). An important focus of valida-
tion of the transport aspects should be verifying the presence
of fast migration channels, or failure scenarios that may
have been overlooked and would thus lead to migration dis-
tances greater than the model predictions. Measurement of
tritium concentrations in wells located sufficiently far from
the cavity, i.e., beyond the fracturing radius to separate the
possibility of fast migration pathways from prompt injection
issues, will be important to test the adequacy of the transport
model and whether the model (within its uncertainty
bounds) has covered the critical transport issues. 

After considering the different components and tests
previously described, and linking the calibration analysis to
the validation analysis, the linked submodels are evaluated.
Flow of information between the three submodels provides
a natural linkage that will enable collective evaluation of
the entire model conducted in parallel with evaluations of
individual submodels.

Subjective vs. Objective Judgment
Calculated and observed data for both calibration and

validation processes are most often presented graphically
with subjective interpretation of quality in the match
(Flavelle 1992). It is generally preferred, however, to use a
form of objective analysis in model calibration and valida-
tion. Objective quality is usually described by a goodness-
of-fit parameter that reflects how well the model results
match the observed calibration data. The goodness-of-fit
parameter is usually used to optimize the calibration of the
adjustable parameters in the model, and to serve as a
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measure for comparing alternate models. This is an inverse
problem, where the main challenge is the nonuniqueness of
the solution that yields different parametric values that pro-
vide solutions having similar accuracies (Poeter and Hill
1997; Hill et al. 1998; D’Agnese et al. 1999). The most
common goodness-of-fit parameter appears to be a form of
weighted root-mean-square error, with the error describing
the difference between calculated and measured values.
Unfortunately, the complexity of some evaluations makes
them unattractive for general use by regulators and deci-
sion-makers (Flavelle 1992). Alternatively, simple good-
ness-of-fit tests can be used to describe the calibration and
validation processes in an objective manner. The proposed
validation approach relies heavily on objective evaluations,
as well as a number of statistical measures and tests for
evaluating different aspects of the model.

A common form of objective analysis for calibrating
and validating simulation models is statistical hypothesis
testing (Balci and Sargent 1981). This form of objective
analysis can be used in addition to goodness-of-fit tests to
evaluate the quality of the comparison between model pre-
dictions and measurements for both calibration and valida-
tion. Additional background information is presented in
Appendix A (Goodness-of-Fit Measures) and Appendix B
(Hypothesis Testing).

McCombie and McKinley (1993) argue the amount of
effort dedicated to the validation process before the model
is considered acceptable is necessarily subjective and
depends on the complexity of the system and the initial
objective for using the model. This argument highlights the
fact that neither purely objective nor subjective judgment
should be used exclusively in the validation process. Objec-
tive and subjective judgment are necessary components in
the model validation process, and they complement each
other. Model builders, model users, and regulators should
agree that objective judgment would be complemented
with subjective judgment and hydrogeologic expertise.

Validation Cost and Confidence in the Model
The cost of collecting data and conducting analyses

should be considered in designing validation plans. As
shown in Figure 3, adapted from Sargent (1990), there is a
limit where increased investment does not significantly
increase confidence in the model. The concerned parties
must therefore agree on the level of confidence required for
decision-making purposes, while considering the cost to
achieve this level of confidence. The proposed validation
approach, discussed in the next section, includes decision
points regarding the cost of collecting the data and analyz-
ing the model predictions.

Proposed Validation Approach

General 
Mroczkowski et al. (1997) argue that validation using

multi-response data is more powerful than traditional split-
sample testing (a record of historical data is split into cali-
bration and validation samples). Their argument, however,
is based on validating conceptual catchment models where
long historical records exist for the studied parameters.

Using multi-response data could also be expected to be
more powerful than single-response data in validating a
subsurface flow and transport model. The proposed valida-
tion approach relies on both multi-response data and
diverse statistical tests and analyses to evaluate model per-
formance. By doing this, confidence can be built into model
predictions, and field activities where data are collected for
long-term monitoring can be guided. 

To determine accuracy and adequacy of the model, the
types and numbers of validation tests, degree of agreement
between model and validation tests, and conformity
between model descriptions and site-specific information
should be considered (Davis et al. 1991, 1992). These
authors emphasize rigorous development of the validation
process and the importance of providing regulators with
comprehensive information that follows a logical system-
atic approach. The proposed validation approach relies on
numerous tests and evaluations, and follows a systematic
approach. This approach, discussed in the next section, is
particularly crucial in validating stochastic numerical mod-
els that rely on Monte Carlo simulation techniques where
multiple realizations within this stochastic framework must
be systematically analyzed and evaluated. 

The CNTA validation plan is unique in that it is the first
attempt to validate a stochastic model that explicitly
accounts for spatial variability in conductivity and paramet-
ric uncertainty. The proposed validation process accounts
for the stochastic nature of the model and attempts to reduce
the realm of possibilities given by the large number of real-
izations considered in the Monte Carlo analysis. 

Many of the tests proposed in the validation approach
and their underlying principles are familiar. The power of
these tests and the integrated validation approach stems
from rigor and completeness, and not from innovation. New
theories or statistical analyses are not being developed here,
but rather available tools are being assembled to evaluate
ground water models. These tests and the proposed valida-
tion method provide a structured approach for analyzing
site-specific ground water models to build confidence in
decisions based on the model predictions. Individual deci-
sions throughout the validation stage will still be difficult,
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Figure 3. Value and validation cost of the model as functions
of the desired level of confidence (adapted from Sargent
[1990]).



requiring subjective judgment and trade-offs, but using the
proposed validation method will guide the decision and fos-
ter rational debate.

The philosophy underlying the development of the
proposed validation approach relies on a forward-looking
perspective. That is, by carrying the ground water modeling
process beyond the iterative loop of characterization, cali-
bration, modeling, prediction, and recharacterization to
reduce uncertainty, much can be gained about the site and
the model together. Unfortunately, regardless of the times
the iterative process is repeated, uncertainty about the
results of these studies will remain. Without a way to exit
the iterative loop, resources may be wasted and the problem
will remain unsolved. The flowchart shown in Figure 4
schematically represents this loop (steps 1–6) and proposes
a logical way to exit the loop.

This exit occurs through the ground water flow and
contaminant transport validation processes (the outer loop in
Figure 4 comprising steps 7–9), which present a systematic
method of determining when adequate confidence in the

ground water model has been achieved and long-term mon-
itoring should begin. It is possible, of course, that model
deficiencies can drive the process back to the inner loop of
characterization, but this would occur only after the valida-
tion and monitoring results are analyzed over time.

It is important to note that previous studies dealing
with ground water model validation (Tsang 1991) focused
only on the iterative loop shown in Figure 4. For example,
Tsang (1991) asks if the evaluation of the results indicates
the uncertainty is too large or if results with estimated
uncertainty are good enough. This question correlates to
step 5 in Figure 4. Additionally, previous studies have not
explicitly considered the stochastic nature in a Monte Carlo
fashion as considered in the proposed validation method.
Furthermore, quantitative aspects were absent in previous
studies, whereas the proposed method includes quantitative
tools such as goodness-of-fit measures, hypothesis testing,
and regression analysis. 

Proceeding with validation analysis will produce addi-
tional data that may indicate the model is adequate, while
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decision to exit the loop, begin model validation process, and design long-term monitoring plan.



staying within the small iterative loop will not produce data
to base a judgment regarding adequacy of the model. There
will never be sufficient facts or data to eliminate all uncer-
tainty or to produce a decision based solely on those facts.
It is therefore better to move forward with uncertainty and
evaluate how the model conforms to regulatory require-
ments, reevaluating decisions periodically. 

Procedure for Proposed Model Validation Process
The eight procedural steps of the proposed model vali-

dation process are discussed in the following paragraphs.
Detailed theoretical background and descriptions of the
steps are presented in the appendices. The proposed steps
are shown in the flowchart in Figure 5, which summarizes
the steps and the iterative process for building confidence in
ground water predictive models and to move toward long-
term monitoring and closure of contaminated sites.

Step 1. Identify the data needed for validation, number
and location of wells, and type of laboratory or field exper-
iment needed. The well locations can be determined based
on the existing model and should favor locations likely to
encounter fast migration pathways. There are additional fac-
tors guiding well location that are determined by the site
conditions and the nature of contamination. For example, in
the CNTA model, the first consideration is that wells should
be located far enough outside the fractured radius of the
zone impacted by the nuclear test to avoid confusing prompt
injection of radionuclides from the blast with radionuclide
migration. Second, the wells should be located around the
cavity in an orientation that will produce the most benefit in
validating and refining the model. The layout of the wells
around the contamination source should be designed to ver-
ify the lateral and vertical head gradients and flow direc-
tions. Other factors, such as safety associated with
radioactive contamination and the cost of drilling and col-
lecting data, have to be considered. Sequencing data collec-
tion is also important. Though it may be more practical and
cost-efficient to drill the wells simultaneously, drilling one
well at a time, collecting all possible data, and testing the
model to determine the next field activity may be a better
approach. Again, these choices depend on the specific prob-
lem and require a consensus among model developers and
model users.

Step 2. Install the wells and collect as much data as
possible from the wells. The data should include geophysi-
cal logging; resistivity logs; head measurements; concen-
trations, e.g., checking for tritium; and other information,
e.g., temperature logs, conductivity measurements, that
could be used to test the model structure, input, or output.
The major portion of cost for deep ground water contami-
nation, e.g., nuclear testing sites, is associated with drilling
the wells. It is a good investment, therefore, to collect as
much data as possible from the wells, because the extra cost
for collecting additional data in the short-run will be mar-
ginal in comparison to drilling costs. 

Step 3. Evaluate calibration accuracy for each realiza-
tion using different goodness-of-fit measures in addition to
the generalized likelihood uncertainty estimator (GLUE)
(Freer et al. 1996; Franks and Beven 1997). This evaluation
assumes that initially the model was qualitatively calibrated
to minimize the deviation between model prediction and

observed calibration data based mainly on visual inspec-
tion. A detailed discussion of the GLUE analysis is pre-
sented in Appendix C (Generalized Likelihood Uncertainty
Estimate). Other tools, such as linear regression analysis,
goodness-of-fit tests, and hypothesis testing, can be used to
provide additional objective means to evaluate the relative
strength of each realization in terms of reproducing the
field calibration data. That relative strength will be linked
later to the ability of individual realizations to match the
validation data.

Step 4. Conduct validation tests to evaluate the com-
ponents of the model and submodels. A promising stochas-
tic validation approach was proposed by Luis and
McLaughlin (1992) and was applied to a two-dimensional,
deterministic, unsaturated flow model for predicting mois-
ture movement during a field experiment conducted near
Las Cruces, New Mexico. A detailed description of this
approach is summarized from Luis and McLaughlin (1992)
and presented in Appendix D (Stochastic Validation
Approach). This approach can be adapted and used to test
the flow model output (heads) under saturated conditions.
Other objective tests, e.g., goodness-of-fit tests, can be used
for the heads to complement this stochastic approach,
which is based on hypothesis testing. Similar tests will be
performed to test model structure and/or input depending
on the type of data obtained in the field. Some data will be
used to check the occurrence or absence of failure scenar-
ios, e.g., at CNTA, verify if tritium exists farther from the
cavity than predicted by any realization of the stochastic
model. The intent is to evaluate individual realizations with
as many diverse tests (in terms of the statistical nature of
the test and the tested aspect of the model) as possible and
to quantitatively measure the adequacy of each realization
in capturing the main features of the modeled system. 

Step 5. Link the results of the calibration accuracy
evaluations and the validation tests for all realizations.
Realizations can then be sorted based on adequacy and
closeness to the field data. A subjective element may be
invoked in the sorting process based on expert judgments
and hydrogeologic understanding. The objective is to filter
out the realizations that show a major deviation or inade-
quacy in the tested aspects and focus on realizations that
passed the majority of the tests and evaluations. Conse-
quently, the range of output uncertainty is reduced, and the
subsequent effort can be focused on the most representative
realizations and scenarios. To continue reducing the level
of uncertainty, the conductivity distribution can be refined
by using the SSC method described in Appendix E
(Sequential Self-Calibration Method). In the SSC method,
head (and concentration) measurements can be used to con-
dition the generation of the conductivity field, so that the
uncertainty in the conductivity heterogeneity pattern
around each measurement location is reduced. The conduc-
tivity distribution for each original conductivity realization
retained in the analysis can be updated.

Step 6. The results of step 5 will determine how the
validation process continues. The number of realizations
that attained a satisfactorily high score as compared to the
number of realizations that attained a low score must be
sufficient for further analysis.
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If the number of realizations having low scores is very
large as compared to the total number of model realiza-
tions, the model probably has a major deficiency or con-
ceptual problem or the input is incorrect. The conceptual
model should be revised and the model structure updated

based only on the original calibration data, if possible. The
validation data should not be used. The validation data are
set aside to avoid collecting new validation data when the
previous analyses indicate the model is inadequate at this
stage. If this is difficult, a compromise solution could be
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Figure 5. Flowchart of proposed validation approach and associated iterative refinement loops.



used where the validation data set is split and part of it is
used in the model refinement process and the other part is
saved for the next round of validation tests and analyses.

If the number of realizations having high scores is
found sufficient, the model probably does not have major
deficiencies or conceptual problems and the process can
proceed forward.

Step 7. Once the rightmost loop in Figure 5 is com-
pleted successfully and a sufficient number of model real-
izations show acceptable performance (this decision will
probably be based on the hydrologic expertise and judg-
ment of the researchers), the model sponsors and regula-
tors, in collaboration with the model developers, must
determine whether the validation results meet the regula-
tory objectives. As suggested by Anderson and Woessner
(1992), regulators should be content with some degree of
partial validation and should further shift the focus from
demands for validation to demands for a good modeling
protocol that includes a complete description of the design,
a thorough assessment of the calibration process, and an
uncertainty analysis. 

If more data are needed to build confidence in the
model, then the decision loop on the left side in Figure 5
gives rise to a new iteration of model refinement, data col-
lection, and re-evaluation. In this case, all available data
become calibration data, and new validation data will prob-
ably need to be collected from new wells. Steps 1 through
6 will be repeated with the collection of new data based on
the analysis of the refined model. The new wells for this
round should be selected to serve two purposes—sources
for new validation data and location targets for long-term
monitoring. 

If the answer to the question is yes, validation is
deemed sufficient, the model is considered adequate or
robust, and the process proceeds to Step 8. 

Step 8. Design a long-term plan that includes setting
and clarifying monitoring objectives; designing monitoring
networks; and determining frequency, location, content,
and schedule for sampling. 

The preceding eight steps outline the proposed
approach to use in validating stochastic numerical ground
water models that rely on Monte Carlo simulations. The
approach is general, and the application to the CNTA
model may be the first attempt to validate a stochastic
model for a nuclear testing site. The iterative nature of the
proposed approach is one of its greatest strengths. Numeri-
cal ground water models and, in particular, stochastic mod-
els are very complex; modifying or changing any aspect
may produce unanticipated consequences in another aspect
of the model. To optimize the results of the validation
process, one needs to separately consider the various details
and take the broader view of the entire model while work-
ing systematically through the decisions and trade-offs. 

Discussion
The process of validating a site-specific ground water

model is difficult. It is not possible through the validation
process to definitively confirm that the correct path is being
followed. The author believes that confirmation is achieved
from incremental information cumulatively collected
through the various stages of the validation process. While

it may not be possible to reach a conclusive outcome, the
combined results and evaluations strongly improve the
likelihood of an appropriate decision about model perfor-
mance.

The proposed validation approach of site-specific
ground water models is based on quantitative measures and
statistical tests that are simple in design, yet diverse, so
many aspects of the model can be tested. The approach must
be implemented at an actual field site before it can be fully
evaluated and all aspects analyzed. This validation approach
is currently under discussion among the researchers who
created the CNTA model (Pohlmann et al. 2000), the model
sponsor (DOE), and the state regulator. The results will
determine future direction in validating the model.

Results are essentially dictated by the conceptualization
of the model. A portion of the proposed validation tests will
be devoted to evaluating the conceptualization while other
tests will be used to evaluate the results. For example, at
CNTA, the conceptualization dictates that certain geologic
layers exist in the modeled domain; the concept will be tested
and verified through the validation data set. This conceptual-
ization leads to the results, which show most radionuclide
migration occurs in a particular geologic unit. If the valida-
tion data indicate the absence of the particular unit, then the
conceptual model must be revised and results updated. 

It is important to distinguish between model calibration
and validation. Model calibration is a process whereby the
model is tuned to identify the independent input parameters
by fitting the model results to field or experimental data that
usually represent the dependent system parameters. The cal-
ibration process can be quantitatively described by a good-
ness-of-fit measure. When the model is used to make
long-term predictions, e.g., thousands of years at under-
ground nuclear testing sites, the model is often calibrated
using short-term data. Calibration cannot replace validation,
and can only be considered as part of the site characteriza-
tion and model formulation processes. In some situations,
the validation task may become a calibration task whereby
the experimental data collected for the validation purpose
are used during the modeling effort. Although this type of
calibration builds confidence in the model results, especially
if the calibration fit is good, calibration by itself is not vali-
dation because the input parameters of the model are found
based on the experimental results that can no longer be con-
sidered as validation data (Davis et al. 1991). 

In the proposed validation approach, some of the vali-
dation data may eventually be used as calibration data, i.e.,
the rightmost and the leftmost loops in Figure 5. In each
round of model validation or evaluation, however, a distinc-
tion is made between calibration data and associated cali-
bration tests, i.e., the GLUE analysis, and validation data
and associated validation tests, i.e., hypothesis testing and
stochastic validation approach. These two independent sets
of tests will be compared and linked together to derive the
composite score that describes each realization of the model.

Conclusions
Common to most previous studies addressing ground

water model validation is the absence of quantitative objec-
tive tools used in the proposed approaches, making it difficult
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to adapt the approach to different situations. Additionally,
these studies present a consensus that absolute validity
(accurate or exact representation of reality) is neither a theo-
retical possibility nor a regulatory requirement. Building
confidence in the modeling process, and in the subsequent
evaluation and validation process, is viewed as the best way
to achieve model validation objectives and to instill accep-
tance by regulators and the public.

Building on previous studies, a ground water model
validation strategy for stochastic numerical models is out-
lined. The proposed strategy accounts for important issues
recognized in previous efforts. These issues include reduc-
ing prediction uncertainty, increasing diversity of data and
evaluation tests, relying on objective measures whenever
possible and capitalizing on subjective judgment and
hydrogeologic insights, testing submodels separately and
jointly, and recognizing that the cost element of the valida-
tion process will significantly impact decisions throughout
the process. Consideration of these issues, and the fact that
the confidence-building process is a long-term and iterative
process, yield a systematic approach for the general case of
a stochastic numerical model that relies on Monte Carlo
simulations. 

One of the main objectives of this study was to develop
an integrated validation approach that relies on an iterative
calibration-modeling-monitoring-evaluation-refinement
cycle, thereby increasing confidence in the model predic-
tions and reducing the level of uncertainty. This proposed
validation approach will be implemented for a ground
water flow and transport model of an underground nuclear
testing site located at CNTA. The model has been accepted
by the state of Nevada regulators with one condition—val-
idating the model predictions. The validation methodology
proposed in this paper will be fully developed, tested, and
enhanced during the implementation and application to the
CNTA underground nuclear testing site. 
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Appendices: Background
and Theoretical Concepts

This background information is compiled from the
cited studies. The tools discussed within the appendices are
just examples of many statistical techniques that may be
used to achieve similar goals of the proposed validation
methodology. 

Appendix A: Goodness-of-Fit Measures
Legates and McCabe (1999) argue that correlation and

correlation-based measures, e.g., coefficient of determina-
tion R2, are oversensitive to extreme values or outliers, and
insensitive to additive and proportional differences between
model predictions and observations. They conclude that
additional evaluations such as summary statistics and
absolute error measures should supplement these goodness-
of-fit measures to evaluate the model. They also present use-
ful alternative goodness-of-fit and relative error measures,
e.g., coefficient of efficiency, index of agreement, that over-
come many of the limitations of correlation-based measures.
The remainder of this appendix is a summary of the presen-
tation of Legates and McCabe (1999) relevant to model
evaluation tools.

Coefficient of Determination R2

The coefficient of determination, R2, describes the pro-
portion of the total variance in the observed data that can be
explained by the model and ranges from 0.0 to 1.0, with
higher values indicating better agreement:

(A1)

where the overbar denotes the mean, P denotes predicted
variable, O indicates observed values, and N is the number
of available pairs of predicted vs. measured values. If Pi =
(AOi + B) for any nonzero value of A and any value of B,
then R2 = 1.0. Thus, R2 is insensitive to additive and pro-
portional differences between the model predictions and
observations. It is also more sensitive to outliers than to
observations near the mean.

Coefficient of Efficiency E
The coefficient of efficiency, which ranges from minus

infinity to 1.0, is defined as 

(A2)

The coefficient of efficiency represents an improvement
over R2 for model evaluation purposes in that it is sensitive
to differences in the observed and model-simulated means
and variances; that is, if Pi = (AOi + B), then E decreases
as A and B vary from 1.0 and 0.0, respectively. Because of
the squared differences, however, E is overly sensitive to
extreme values as is R2.

Index of Agreement d
The index of agreement, d, was developed to over-

come the insensitivity of correlation-based measures to
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additive and proportional differences between observations
and model simulations. It is expressed as 

(A3)

The index of agreement varies from 0.0 to 1.0 and repre-
sents an improvement over R2, but it is also sensitive to
extreme values owing to the squared differences.

The sensitivity of R2, E, and d to extreme values led to
the suggestion that a more generic index of agreement
could be used in the form

(A4)

where j represents an arbitrary power, i.e., a positive inte-
ger. The original index of agreement d given in Equation
A3 becomes d2 using this notation. For j = 1, the resulting
index, d1, has the advantage that errors and differences are
given their appropriate weighting, not inflated by their
squared values. Similarly, the coefficient of efficiency can
be adjusted as

(A5)

In addition to E and d measures, absolute error mea-

sures should be considered, which include the root mean

square error (RMSE = ) and the mean absolute

error . These additional mea-

sures describe the differences between the model simula-

tions and observations in the units of the predicted variable. 

The analyses of Legates and McCabe (1999) were
based on analyses of time-series models where large data
sets are available to test prediction models. In the subsur-
face, however, availability of such abundant data is not
common. Some of the preceding measures, therefore, may
not be usable for such limited data. It is thus important to
use as many measures as possible to get a better evaluation
of the model predictions. 
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Appendix B: Hypothesis Testing
Statistical hypothesis testing can be used as a quantita-

tive tool for evaluating predictive models. The test usually
postulates a null hypothesis (H0) and a complementary
hypothesis (H1). The null hypothesis postulates the
assumption or result that requires testing, e.g., the model is
valid or the linear regression line has a slope of unity, while
the complementary hypothesis postulates the opposite.
Two types of errors can occur in hypothesis testing with
certain probabilities—Type I errors and Type II errors. The
probability of Type I error is called the model builder’s risk
(α), whereas the probability of Type II error is called the
model user’s risk (β). In model validation, the model user’s
risk is extremely important and must be kept small (Sargent
1990). These probabilities and those for making the right
decisions are shown in Table 1, adapted from Balci and
Sargent (1981). Both Type I and Type II errors must be
considered in using hypothesis testing for model validation,
and the risks resulting from these errors can be decreased at
the expense of increasing the sample sizes of observations.

There is a direct relation among model builder’s risk,
model user’s risk, acceptable validity range (amount of
acceptable accuracy required for the model to be valid
under a given set of experimental conditions), and sample
size of observations (equivalent to a cost parameter). The
model sponsor, model user, and model builder for the
intended application of the model can make a trade-off
among these parameters (Balci and Sargent 1981).

Appendix C: Generalized
Likelihood Uncertainty Estimate

To honor site-specific data during calibration and sub-
sequent modeling, the generalized likelihood uncertainty
estimator (GLUE) algorithm can be used (Freer et al. 1996;
Franks and Beven 1997). The GLUE procedure is an exten-
sion of Monte Carlo random sampling to incorporate the
goodness-of-fit measure for each simulation. A likelihood
measure is an evaluation of the quantitative goodness-of-
fit. For example, the likelihood estimator for the solution of
the flow equation can be defined as

(C1)

where

(C2)e 5 h*
j 2 ĥj

L(Y|Θ) 5 c    a (e)2 d  
2M
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Table 1
Outcomes of Hypothesis Testing

Actual Status of Model

Result of Model Is Valid Model Is Invalid
Hypothesis Null Hypotheis, Complementary Hypothesis,
Testing H0 Is True H1 Is True

Do not reject H0 Correct decision Model user’s risk β
Reject H0 Model builder’s risk α Correct decision

(Adapted from Balci and Sargent [1981])



and L(Y�Θ)s the likelihood of the vector of outputs, Y,
knowing Θ, the vector of random inputs; h^j the simulated
head at the point j; h*

j is the observed head at that point; and
M is a likelihood shape factor. Although the choice of the
M factor is subjective, its value defines its relative function.
As M approaches zero, likelihood approaches unity, and
each simulation has equal weight as is the case with tradi-
tional Monte Carlo analysis. As M approaches infinity,
simulations with the lowest sum of squared errors (the sim-
ulations that best fit the field data) receive essentially all the
weight, which is analogous to an inverse solution. The like-
lihood weights calculated for each realization based on
Equation C1 can be used in subsequent modeling to give
more weight to those realizations that best fit the field data
during the calibration process. Additionally, these weights
can be used later in the validation stage to compare the per-
formance of individual realizations when acquiring new
field data for validation analysis. 

Appendix D: Stochastic Validation
Approach (Luis and McLaughlin 1992)

Luis and McLaughlin (1992) proposed and applied a
stochastic approach that relied on hypothesis testing to val-
idate a two-dimensional, deterministic, unsaturated flow
model for predicting moisture movement at a field site near
Las Cruces, New Mexico. The approach began by identify-
ing the factors that contributed to the differences between
model predictions and observations (for simplicity, the pre-
dicted parameter is assumed to be the hydraulic head in a
saturated system). 

These differences were attributed to the following
three sources of error. First are measurement errors, which
represented the differences between the true values and the
small-scale values of the hydraulic head. Second is the spa-
tial heterogeneity, which represented the difference
between the large-scale trend (or smoothed head) that the
model was intended to predict and the true small-scale val-
ues of head. Third is model error, which represented the
difference between the model prediction and the actual
smoothed trend. Figure D1a shows schematic representa-
tions of these error sources where an actual, hj, fluctuating
(due to heterogeneity) head distribution with a large-scale
trend, h

_
j , is shown in conjunction with a hypothesized step-

wise distribution representing model prediction, h^j. Mea-
surement errors are only dependent on the measurement
protocol and accuracy of the device that is used, which are
not related to the model. The spatial heterogeneity effect is
embedded in the difference between the small-scale mea-
surements and the large-scale trend, and this difference is
not really an error, but a reflection of the difference in scale
between the measured and predicted quantities (Luis and
McLaughlin 1992). Model error is a reflection of the abil-
ity of the model to predict the large-scale trend, which is the
primary quantity of interest in this case and could be due to
conceptual deficiencies or erroneous inputs. 

The jth measurement residual, εj, observed at location
xj (for j = 1, . . . N) where N is the total number of head mea-
surements used for validation can be written as

(D1)

where h*
j = h* (xj) is the head measurement at xj, and h^j = h^

(xj�η
^ ) is the model prediction at the same location obtained

by using a set of estimated model parameters, , hj = h (xj)
is the true head value at xj, and is the
smoothed value of the large-scale trend or the expected
value of hj. The first term between the square brackets in
Equation D1 represents measurement error, the second
bracketed term represents the effect of geologic hetero-
geneity, and the last term represents the model error. These
errors are schematically shown in Figure D1b. It is assumed
here that the mathematical expectation of the head repre-
sents the large-scale, e.g., at the 50 m grid scale of the
CNTA model, values of head that govern the flow pattern
and the transport velocities. 

If the model prediction is equal to the smoothed, large-
scale values, the model error term in Equation D1 is zero. In
statistical terms, the following null hypothesis is considered:

(D2)H1: Model error is significant, h
^

j (η^) 2 h2j

H0: Model error is negligible, h
^

j (η^) 5 h2j
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Figure D1. (a) Schematic of actual head distribution, large-
scale trend, and stepwise model prediction, and (b) decompo-
sition of measurement residual into three error components.



To apply this hypothesis-testing technique to the model val-
idation problem, one must find test statistics that can be
used to check the hypothesis defined in Equation D2. These
statistics should depend on available head measurements
and should be designed to minimize the risk associated with
making erroneous decisions about hypothesis testing (see
Appendix B on hypothesis testing and associated errors). If
one designs a stringent test, the model user’s risk, β, will be
small, and the model builder’s risk, α, will be large (tend-
ing incorrectly to reject acceptable models). If, on the other
hand, the test is less stringent, it will have a large β and a
small α (tending incorrectly to accept defective models).

When the hypothesis in Equation D2 is true, the vari-
ance of the measurement residual, , can be written as
(Luis and McLaughlin 1992)

(D3)

where is the measurement error variance and is the
head variance. This head variance, , plays a key role in
this approach since it defines the amount of variability one 
should expect in the model’s predictions when the model
structure and measurements are both perfect. In other
words, this variance establishes a type of lower bound on
the ability of the model to predict point values of head (Luis
and McLaughlin 1992). If the head variance can be derived
directly from the numerical results of the flow model, e.g.,
using Monte Carlo simulations, Equation D3 can be used to
evaluate the measurement residual variance to be expected
when hypothesis H0 in Equation D2 is true. 

If the actual residual variance is much larger, it can be
presumed that H0 is not true, i.e., model errors are signifi-
cant. Luis and McLaughlin (1992) suggest a number of
tests that focus on testing whether the mean residual is zero,
testing whether the mean squared residual is smaller than a
certain tolerance, and analyzing the spatial structure of the
residuals. These tests can be applied to all available mea-
surements or to selected subsets. 

In their application to the Las Cruces experiment,
which has an unusually extensive set of soil data and vali-
dation measurements collected over horizontal and vertical
distances of several meters and over time scales of a few
years, Luis and McLaughlin (1992) could not reach a con-
clusion regarding the ability of the model to predict the
observed moisture content at later times. In addition,
Ababou et al. (1992) assert that this approach, although
very valuable, is not complete since the hypothesis that the
model is false remains untested, and the probability of
accepting a false model cannot be evaluated by this tech-
nique. To evaluate this possibility, one would need to pos-
tulate another complementary model, or class of models,
known to be always true if the model is false. 

This critique of the Luis and McLaughlin (1992)
approach and the incompleteness of hypothesis-testing
techniques emphasize the need for conducting as many
tests as possible to evaluate model performance. Since
these statistical tests are not exact, it is beneficial to con-
sider all tests together and link the calibration results to the
results of the validation tests for each individual realization
as was shown in Figure 5. Although the possibility exists
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theoretically, it is highly unlikely for an individual realiza-
tion to pass the majority of tests and represent a false
model. If this realization is accepted as valid based on the
results of numerous tests, it is reasonable to assume that the
model user’s risk, β, is very small. On the other hand, if an
individual realization fails to pass a large number of the
tests, then rejecting this realization as invalid is not
expected to represent a large Type I error. 

Appendix E: Sequential Self-Calibration Method
To continue reducing the uncertainty level, a refine-

ment in conductivity distribution can be made using the
sequential self-calibration (SSC) method. In this method,
new head measurements (and old ones) can be used to con-
dition the generation of the conductivity field in a way that
the uncertainty in the conductivity heterogeneity pattern
around each measurement location is reduced. 

Several new geostatistically based inverse approaches
have been developed to generate the hydraulic conductivity
fields by conditioning on both the hydraulic head and con-
ductivity measurements (Zimmerman et al. 1998). Among
these new approaches, the SSC method (Gómez-Hernández
et al. 1997; Capilla et al. 1998; Wen et al. 1999) is an itera-
tive, geostatistically based inverse technique that allows
generation of multiple, equiprobable realizations of hetero-
geneous fields that match the dynamic data in addition to the
typical geostatistical constraints. In the validation process,
we can use this method in the refinement portion of the iter-
ative loop of modeling, validation, and refinement. This, or
similar methods, can be systematically used to refine the
model predictions and reduce their uncertainty bounds. 

The main steps in the SSC method are adapted and
summarized here within the application to the validation
approach. The process begins with the original hydraulic
conductivity fields that were generated for the model to be
evaluated and validated. Using the flow and transport solu-
tions provided by the original model for individual realiza-
tions, the realizations are processed one at a time using the
new (as well as old) data collected for validation purposes.
An objective function that measures the mismatch between
predicted and observed head and concentration data can
then be written as (Wen et al. 1999)

(E1)

where are the weights assigned to the
concentration and head-sampling well, nw, according to
sampling accuracy. Matching the head and concentration
data is achieved by minimizing the objective function. A
gradient-based method is used for optimization, which
requires calculating sensitivity coefficients, the derivatives
of concentration and head with respect to the hydraulic con-
ductivity perturbation:

(E2) 
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where N is the number of blocks in the model. The optimal
changes of conductivity are determined at selected master
points (Gómez-Hernández et al. 1997) and then smoothly
interpolated by kriging to all grid blocks. One would then
go back and evaluate the objective function until it is suffi-
ciently close to zero, or less than a predetermined tolerance
value. Fewer than 20 iterations are normally required (Wen
et al. 1999).
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