Data Validation Package

January 2013 Groundwater Sampling at the Gnome-Coach, New Mexico, Site

October 2013

Available for sale to the public from:

U.S. Department of Commerce National Technical Information Service 5301 Shawnee Road Alexandria, VA 22312 Telephone: 800.553.6847 Fax: 703.605.6900 E-mail: orders@ntis.gov Online Ordering: http://www.ntis.gov/help/ordermethods.aspx

Available electronically at http://www.osti.gov/bridge

Available for a processing fee to U.S. Department of Energy and its contractors, in paper, from:

U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831-0062 Phone: 865.576.8401 Fax: 865.576.5728 Email: reports@adonis.osti.gov

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors.

Contents

Sampling Event Summary	1
Gnome-Coach, New Mexico, Sample Location Map	
Data Assessment Summary.	
Water Sampling Field Activities Verification Checklist	7
Laboratory Performance Assessment	9
Sampling Quality Control Assessment	19
Certification	21

Attachment 1—Assessment of Anomalous Data

Potential Outliers Report

Attachment 2—Data Presentation

Groundwater Quality Data Static Water Level Data Time-Concentration Graphs

Attachment 3—Sampling and Analysis Work Order

Attachment 4—Trip Report

Sampling Event Summary

Site: Gnome-Coach, New Mexico, Site

Sampling Period: January 29–30, 2013

Annual sampling was conducted January 29–30, 2013, to monitor groundwater for potential radionuclide contamination at the Gnome-Coach site in New Mexico. The sampling was performed as specified in the *Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites* (LMS/PRO/S04351, continually updated). A duplicate sample was collected from well USGS-1 and water levels were measured in all the monitoring wells onsite. Refer to the sample location map for well locations.

Samples were analyzed by GEL Laboratories in Charleston, South Carolina. Samples were analyzed for anions, metals, gamma-emitting radionuclides by high-resolution gamma spectrometry, strontium-90, and tritium. Additionally sample USGS-1 was analyzed for tritium using the enrichment method to achieve a lower minimum detectable concentration (MDC). Radionuclide contaminants were detected in wells USGS-4 and USGS-8. The detection of radionuclides in these wells was expected because the U.S. Geological Survey conducted a tracer test between these wells in 1963 using the dissolved radionuclides tritium, strontium-90, and cesium-137 as tracers. Radionuclide time-concentration graphs are included in this report for these wells.

Richard C. Findlay Site Lead, S.M. Stoller Corporation

10-30.2013

Date

M:\LTS\111\0001\16\000\S09559\S0955900-11x17.mxd smithw 01/07/2013 3:07:31 PM

Gnome-Coach, New Mexico, Sample Location Map

Data Assessment Summary

Water Sampling Field Activities Verification Checklist

Project	Gnome-Coach, New Mexico	Date(s) of Wate	r Sampling	January 29–30, 2013
Date(s) of Verification	May 31, 2013	Name of Verifie	r	Stephen Donivan
		Response (Yes, No, NA)		Comments
1. Is the SAP the primary documer	t directing field procedures?	Yes		
List any Program Directives or o	ther documents, SOPs, instructions.		Work Order letter GNO-2013-01.	r dated January 14, 2013. Program Directive
2. Were the sampling locations spe	ecified in the planning documents sampled?	Yes		
3. Were calibrations conducted as	specified in the above-named documents?	Yes	Calibration was p	performed on January 23, 2013.
4. Was an operational check of the	field equipment conducted daily?	Yes		
Did the operational checks meet	criteria?	Yes		
	alinity, temperature, specific conductance, neasurements taken as specified?	Yes		
6. Were wells categorized correctly	?	Yes		
 Were the following conditions m Was one pump/tubing volume p 		NA	Samples were co GNO-2013-01.	ellected as specified in Program Directive
Did the water level stabilize prio		NA		
	nd turbidity measurements meet criteria	NA		
Was the flow rate less than 500	mL/min?	NA		

Water Sampling Field Activities Verification Checklist (continued)

	Response (Yes, No, NA)	Comments
8. Were the following conditions met when purging a Category II well:		
Was the flow rate less than 500 mL/min?	Yes	
Was one pump/tubing volume removed prior to sampling?	Yes	
9. Were duplicates taken at a frequency of one per 20 samples?	Yes	A duplicate sample was collected from well USGS-1.
10. Were equipment blanks taken at a frequency of one per 20 samples that were collected with non-dedicated equipment?	NA	An equipment blank was not required.
11. Were trip blanks prepared and included with each shipment of VOC samples?	NA	
12. Were the true identities of the QC samples documented?	Yes	Location ID 2443 was used for the duplicate sample.
13. Were samples collected in the containers specified?	Yes	
14. Were samples filtered and preserved as specified?	Yes	
15. Were the number and types of samples collected as specified?	Yes	
16. Were chain of custody records completed and was sample custody maintained?	Yes	
17. Was all pertinent information documented on the field data sheets?	Yes	
18. Was the presence or absence of ice in the cooler documented at every sample location?	Yes	
19. Were water levels measured at the locations specified in the planning documents?	Yes	

Laboratory Performance Assessment

General Information

Report Number (RIN):	13015066
Sample Event:	January 29–30, 2013
Site(s):	Gnome-Coach Site
Laboratory:	GEL Laboratories, Charleston, South Carolina
Work Order No.:	319540, 319582
Analysis:	Metals, Wet Chemistry, Radiochemistry
Validator:	Steve Donivan
Review Date:	May 31, 2013

This validation was performed according to the *Environmental Procedures Catalog*, (LMS/POL/S04325, continually updated) "Standard Practice for Validation of Environmental Data." The procedure was applied at Level 3, Data Validation. See attached Data Validation Worksheets for supporting documentation on the data review and validation. All analyses were successfully completed. The samples were prepared and analyzed using accepted procedures based on methods specified by line item code, which are listed in Table 1.

Analyte	Line Item Code	Prep Method	Analytical Method
Bicarbonate Alkalinity	WCH-A-003	SM 2320B	SM 2320B
Chloride	MIS-A-045	EPA 300.0	EPA 300.0
Gamma Spectrometry	GAM-A-001	EPA 901.1	EPA 901.1
Metals: Ca, K, Mg, Na, SiO ₂	LMM-01	SW-846 3005	SW-846 6010B
Nitrate + Nitrite as N	WCH-A-022	EPA 353.2	EPA 353.2
Strontium-90	GPC-A-009	EPA 905.0, Modified	EPA 905.0, Modified
Sulfate	MIS-A-045	EPA 300.0	EPA 300.0
Total Dissolved Solids	WCH-A-033	SM 2540C	SM 2540C
Tritium	LSC-A-001	EPA 906.0, Modified	EPA 906.0, Modified
Tritium, enrichment method	LMR-17	DOE EML HASL 300	DOE EML HASL 300

Table	1. Analytes	and Methods
-------	-------------	-------------

Data Qualifier Summary

Analytical results were qualified as listed in Table 2. Refer to the sections below for an explanation of the data qualifiers applied.

Table 2. Data	Qualifier Summary
---------------	-------------------

Sample Number	Location	Analyte(s)	Flag	Reason
319540010	USGS-1	Potassium-40	U	Less than the decision level
319540012	USGS-8	Potassium-40	U	Less than the decision level

Sample Shipping/Receiving

GEL Laboratories in Charleston, South Carolina, received four water samples on February 4, 2013, accompanied by a Chain of Custody (COC) form. The cooler containing the metals and radiochemistry aliquots arrived on February 1, 2013. The air waybill numbers were listed on the Sample Receipt and Review Form. The COC form was checked to confirm that all of the samples were listed with sample collection dates and times, and that signatures and dates were present indicating sample relinquishment and receipt. The COC form was complete with no errors or omissions.

Preservation and Holding Times

The sample shipment was received intact with the temperature inside the iced cooler at 2 °C, which complies with requirements. The samples were received in the correct container types and had been preserved correctly for the requested analyses. All samples were analyzed within the applicable holding times.

Detection and Quantitation Limits

The method detection limit (MDL) was reported for all metal and wet chemical analytes as required. The MDL, as defined in 40 CFR 136, is the minimum concentration of an analyte that can be measured and reported with 99 percent confidence that the analyte concentration is greater than zero. The practical quantitation limit (PQL) for these analytes is the lowest concentration that can be reliably measured, and is defined as 5 times the MDL.

For radiochemical analytes (those measured by radiometric counting) the MDL and PQL are not applicable, and these results are evaluated using the MDC, Decision Level Concentration (DLC), and Determination Limit (DL). The MDC is a measure of radiochemical method performance and was calculated and reported as specified in *Quality Systems for Analytical Services*. The DLC is the minimum concentration of an analyte that can be measured and reported with 99 percent confidence that the analyte concentration is greater than zero, and is estimated as 3 times the one-sigma total propagated uncertainty. Results that are greater than the MDC, but less than the DLC are qualified with a "U" flag (not detected). The DL for radiochemical results is the lowest concentration that can be reliably measured, and is defined as 3 times the MDC. Results not previously "U" qualified that are less than the DL are qualified with a "J" flag as estimated values.

The reported MDCs for radiochemical analytes demonstrate compliance with contractual requirements.

Laboratory Instrument Calibration

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing acceptable qualitative and quantitative data for all analytes. Initial calibration demonstrates that the instrument is capable of acceptable performance in the beginning of the analytical run and of producing a linear curve. Compliance requirements for continuing calibration checks are established to ensure that the instrument continues to be capable of producing acceptable qualitative and quantitative data. All laboratory instrument

calibrations were performed correctly in accordance with the cited methods. Calibration and laboratory spike standards were prepared from independent sources.

Method EPA 300.0, Chloride and Sulfate Spectrometry

Calibrations were performed using six calibration standards on January 22, 2013. The calibration curve correlation coefficient values were greater than 0.995 and the absolute values of the intercepts were less than 3 times the MDL. Initial and continuing calibration verification checks were made at the required frequency with all calibration check results within the acceptance criteria. A reporting limit verification check was made to verify the linearity of the calibration curve near the PQL and all results were acceptable.

Method EPA 353.2, Nitrate + Nitrite as N

Calibrations were performed on February 12, 2013, using five calibration standards. The absolute values of the intercepts were less than 3 times the MDL. Initial and continuing calibration verification checks were made at the required frequency with all calibration checks meeting the acceptance criteria. A reporting limit verification check was made to verify the linearity of the calibration curve near the PQL and all results were acceptable.

Method SW-846 6010B, Metals

Calibrations were performed on February 6 and 8, 2013, using three standards. The calibration curve correlation coefficient values were greater than 0.995 and the absolute values of the intercepts were less than 3 times the MDL. Initial and continuing calibration verification checks were made at the required frequency with all calibration checks meeting the acceptance criteria. Reporting limit verification checks were made at the required frequency to verify the linearity of the calibration curve near the PQL. The reporting limit check result met the acceptance criteria.

Radiochemical Analysis

Gamma Spectrometry

Annual calibration of the detectors used to analyze these samples was performed between June and August 2012. Daily calibration checks were performed on February 10 and 18, 2013.

Tritium

The tritium quench calibration curve was generated on July 30, 2012, for quench numbers ranging from 131 to 359. Sample quench values were within the calibration range for all samples. Daily calibration checks were performed on March 21 and April 4, 2013.

Strontium-90

Annual calibration of the detectors used to analyze these samples was performed on March 1, 2013. Daily calibration checks were performed on April 26 and May 2, 2013.

Method and Calibration Blanks

Method blanks are analyzed to assess any contamination that may have occurred during sample preparation. Calibration blanks are analyzed to assess instrument contamination prior to and during sample analysis. The radiochemistry method blank results were less than the DLC.

Inductively Coupled Plasma Interference Check Sample Analysis

Interference check samples were analyzed at the required frequency to verify the instrumental interelement and background correction factors. All check sample results met the acceptance criteria.

Metals Serial Dilution

Serial dilutions were prepared and analyzed for the metals analyses to monitor chemical or physical interferences in the sample matrix. Serial dilution data are evaluated when the concentration of the undiluted sample is greater than 50 times the MDL. The serial dilution data met the acceptance criteria.

Matrix Spike Analysis

Matrix spike (MS) samples are used to measure method performance in the sample matrix. The MS data are not evaluated when the concentration of the unspiked sample is greater than 4 times the spike. The spike recoveries met the acceptance criteria for all analytes evaluated.

Laboratory Replicate Analysis

Laboratory replicate analyses are used to determine laboratory precision for each sample matrix. The relative error ratio for radiochemical replicate results (calculated using the one-sigma total propagated uncertainty) was less than 3, indicating acceptable precision.

Laboratory Control Sample

Laboratory control samples were analyzed at the correct frequency to provide information on the accuracy of the analytical method and the overall laboratory performance, including sample preparation. All control sample results were acceptable.

Completeness

Results were reported in the correct units for all analytes requested using contract-required laboratory qualifiers. The analytical report included the MDLs or MDCs for all analytes and all required supporting documentation.

Electronic Data Deliverable (EDD) File

The EDD file arrived on May 13, 2013. The Sample Management System EDD validation module was used to verify that the EDD file was complete and in compliance with requirements. The module compares the contents of the file to the requested analyses to ensure all and only the requested data are delivered. The contents of the EDD were manually examined to verify that the sample results accurately reflect the data contained in the sample data package.

Anion/Cation Balance

The anion/cation balance is used to determine if major ion concentrations have been quantified correctly. The total anions should balance with (be equal to) the total cations when expressed in milliequivalents per liter (meq/L). Table 3 shows the total anion and cation results in groundwater samples from this event and the charge balance, which is a relative percent difference calculation. Typically, a charge balance difference of 10 percent is considered acceptable.

Location	Cations (meq/L)	Anions (meq/L)	Charge Balance (%)
USGS-1	55.5	57.0	1.4
USGS-4	69.8	71.3	1.1
USGS-8	72.3	69.9	1.7

Table 3. Comparison of Major Anions an	nd Cations in Groundwater Samples
--	-----------------------------------

The charge balance differences for all wells were below 10 percent.

I: 13015066 Lab Code	e: GEN Validator: Stephen Donivan Validation Date: 05/31/2013 Analysis Type: Image: Metals Image: General Chem Image: Rad Organics
of Samples: <u>4</u> Matrix:	Water Requested Analysis Completed: Yes
Chain of Custody Present: <u>OK</u> Signed: <u>OK</u>	Dated: OK Integrity: OK Preservation: OK Temperature: OK
Select Quality Parameters	
✓ Holding Times	All analyses were completed within the applicable holding times.
✓ Detection Limits	There are 0 detection limit failures.
Field/Trip Blanks	
✓ Field Duplicates	There were 4 duplicates evaluated.

Page 1 of 1

SAMPLE MANAGEMENT SYSTEM

Metals Data Validation Worksheet

RIN: 1	3015066
---------------	---------

Lab Code: GEN

Date Due: 05/05/2013

Matrix: Water

Site Code: <u>GNO01</u> Date Completed: <u>05/13/2013</u>

ompleted. 03/13/2013

Analyte	Analyte Type Date Analyzed					Method	LCS %R	MS %R	MSD %R	Dup. RPD	ICSAB %R	Serial Dil. %R	CRI %R	
			Int.	R^2	CCV	ССВ	Blank							
Calcium	ICP/ES	02/08/2013	0.0000	1.0000	OK	OK	OK	99.5			2.0		0.1	106.0
Magnesium	ICP/ES	02/06/2013	0.0000	1.0000	OK	OK	OK	99.0	92.0		0.0	94.0	1.9	105.0
Potassium	ICP/ES	02/06/2013	0.0000	1.0000	OK	OK	OK	99.5	93.5		2.0	109.0	4.9	111.0
Silica	ICP/ES	02/06/2013	0.0000	1.0000	OK	OK	OK	95.8	95.4		0.0	102.0	2.6	102.0
Sodium	ICP/ES	02/08/2013	0.0000	1.0000	OK	OK	OK	103.0			1.0		0.9	88.0

Page 1 of 2

SAMPLE MANAGEMENT SYSTEM Radiochemistry Data Validation Worksheet

Matrix: Water		Site Code: /		D -t- O -mailet-d, 05/(10/0010)								
	Water	Site Code:	<u>3NOUT</u>	Date Completed: <u>05/13/2013</u>								
Sample	Analyte	Date Analyzed				LCS %R	MS %R	Duplicat				
USGS-1	Actinium-228	02/10/2013						0.20				
JSGS-1	Americium-241	02/10/2013				ĺ		1.21				
Blank_Spike	Americium-241	02/11/2013				96.90						
USGS-1	Antimony-125	02/10/2013						0.89				
JSGS-1	Cerium-144	02/10/2013				ĺ		1.97				
Blank_Spike	Cerium-144	02/11/2013										
JSGS-1	Cesium-134	02/10/2013				ĺ		0.85				
USGS-1	Cesium-137	02/10/2013						2.15				
Blank_Spike	Cesium-137	02/11/2013				106.00						
USGS-1	Cobalt-60	02/10/2013				ĺ		0.44				
Blank_Spike	Cobalt-60	02/11/2013				98.10						
JSGS-1	Europium-152	02/10/2013				Ì		1.66				
JSGS-1	Europium-154	02/10/2013				Ì		0.74				
Blank_Spike	Europium-154	02/11/2013				Ì						
JSGS-1	Europium-155	02/10/2013						2.41				
JSGS-1	Lead-212	02/10/2013				ĺ		0.57				
Blank_Spike	Lead-212	02/11/2013										
JSGS-1	Potassium-40	02/10/2013						1.02				
JSGS-1	Promethium-144	02/10/2013				ĺ		1.30				
Blank_Spike	Promethium-144	02/11/2013										
JSGS-1	Promethium-146	02/10/2013		ĺ		Ì		1.14				
JSGS-1	Ruthenium-106	02/10/2013						0.57				
Blank_Spike	Ruthenium-106	02/11/2013				ĺ						
JSGS-1	Strontium-90	04/26/2013			80.0							
2443	Strontium-90	04/26/2013			90.0			2.28				
Blank_Spike	Strontium-90	04/26/2013		Ĩ	88.0	101.00						
2443	Strontium-90	04/26/2013			97.0		88.2					
2443	Strontium-90	04/27/2013			76.0							
Blank	Strontium-90	04/27/2013	-0.0400	U	87.0							
JSGS-4	Strontium-90	05/02/2013			73.0	Ì						
JSGS-8	Strontium-90	05/02/2013			77.0							
USGS-1	Thorium-234	02/10/2013		<u> </u>		ĺ		0.53				

Page 2 of 2

SAMPLE MANAGEMENT SYSTEM Radiochemistry Data Validation Worksheet

RIN: <u>13</u>	015066	Lab Code: 🧕	Date Due: 05/05/2013							
Matrix: V	Vater	Site Code:	<u>GNO01</u>	Date Completed: 05/13/2013						
Sample	Analyte	Date Analyzed	Result	Flag	Tracer %R	LCS %R	MS %R	Duplicate		
2443	Tritium	03/21/2013						1.63		
Blank	Tritium	03/21/2013	145.0000	U						
2443	Tritium	03/21/2013					94.7			

99.30

96.20

0.87

0.53

0.43

69.0

69.0

69.0

03/21/2013

04/03/2013

04/04/2013

04/04/2013

02/10/2013

02/11/2013

02/10/2013

02/10/2013

02/11/2013

Blank_Spike

Blank_Spike

Blank_Spike

Blank_Spike

USGS-1

USGS-1

USGS-1

USGS-1

Blank

Tritium

Tritium

Tritium

Tritium

Uranium-235

Uranium-235

Uranium-238

Yttrium-88

Yttrium-88

Page 1 of 1

SAMPLE MANAGEMENT SYSTEM

Wet Chemistry Data Validation Worksheet

RIN:	13015066
Matrix:	Water

 Lab Code:
 GEN
 Date Due:
 05/05/2013

trix:	Water	Site	Code:	<u>GN001</u>

Date Completed: 05/13/2013

Analyte	Date Analyzed	-	ALIBRA	TION		Method	LCS %R	MS %R	MSD %R	DUP RPD	Serial Dil. %R
	Dute Analyzeu	Int.	R^2	CCV	ССВ	Blank					
ALKALINITY, Total as CaCO3	02/07/2013						104.00				
ALKALINITY, Total as CaCO3	02/13/2013						106.00	89.9			
Bicarbonate alkalinity (CaCO3	02/07/2013									1.00	
Bicarbonate alkalinity (CaCO3	02/13/2013									2.00	
Chloride	02/19/2013	0.000	0.9996	OK	OK	OK	95.90				
Chloride	02/19/2013						95.60				
NO2+NO3 as N	02/12/2013	0.000	1.0000	OK	OK	OK	97.30	97.1		1.00	
Sulfate	02/19/2013	0.000	0.9999	OK	OK	OK	98.00				
Sulfate	02/19/2013						98.10				
Total Dissolved Solids	02/05/2013					OK	98.10			0	

Sampling Quality Control Assessment

The following information summarizes and assesses quality control for this sampling event.

Sampling Protocol

Wells USGS-4 and USGS-8 were sampled using dedicated bladder pumps. Data from these wells are qualified with an "F" flag in the database indicating the well was purged and sampled using the low-flow sampling method, and with a "Q" because these are Category II wells. Well USGS-1 was sampled with a high flow dedicated submersible pump. The data from this well were not qualified.

Equipment Blank Assessment

An equipment blank was not required

Field Duplicate Assessment

Field duplicate samples are collected and analyzed as an indication of overall precision of the measurement process. The precision observed includes both field and laboratory precision and has more variability than laboratory duplicates, which measure only laboratory performance. A duplicate sample was collected from location USGS-1. For non-radiochemical measurements, the relative percent difference for duplicate results that are greater than 5 times the PQL should be less than 20 percent. For results less than 5 times the PQL, the range should be no greater than the PQL. For radiochemical measurements, the relative error ratio (the ratio of the absolute difference between the sample and duplicate results and the sum of the 1-sigma uncertainties) is used to evaluate duplicate results and should be less than 3. All duplicate results met these criteria demonstrating acceptable precision.

SAMPLE MANAGEMENT SYSTEM

Page 1 of 1

Validation Report: Field Duplicates

RIN: 13015066

Lab Code: GEN

Project: Gnome-Coach Site

Validation Date: 05/31/2013

Duplicate: 2443	5.040 AAAA	Sample: USGS-1									
					– Duplicate –						
Analyte	Result	Flag	Error	Dilution	Result	Flag	Error	Dilution	RPD	RER	Units
Actinium-228	-1.01	U	15.1	1.00	6.34	U	13.2	1.00		0.7	pCi/L
Americium-241	-7.67	U	26.0	1.00	-16.6	U	31.2	1.00		0.4	pCi/L
Antimony-125	3.73	U	8.74	1.00	1.46	U	7.89	1.00		0.4	pCi/L
Bicarbonate alkalinity (CaCO3)	84.7			1.00	85.7			1.00	1.17		mg/L
Calcium	592000			10.00	603000			10.00	1.84		ug/L
Cerium-144	-14	U	26.3	1.00	-11.4	U	21.6	1.00		0.1	pCi/L
Cesium-134	-1.43	U	3.52	1.00	0.423	U	2.42	1.00		0.9	pCi/L
Cesium-137	-1.35	U	2.67	1.00	-2.57	U	4.20	1.00		0.5	pCi/L
Chloride	501			100.00	511			100.00	1.98		mg/L
Cobalt-60	1.47	U	3.80	1.00	-2.08	U	3.52	1.00		1.3	pCi/L
Europium-152	-3.13	U	10.8	1.00	-2.39	U	8.79	1.00		0.1	pCi/L
Europium-154	8.00	U	10.2	1.00	0.160	U	6.36	1.00		1.3	pCi/L
Europium-155	14.0	U	13.8	1.00	-8.05	U	12.6	1.00		2.3	pCi/L
Lead-212	6.16	U	8.07	1.00	6.40	U	9.14	1.00		0	pCi/L
Magnesium	122000			1.00	124000			1.00	1.63		ug/L
NO2+NO3 as N	4.66			5.00	4.84			5.00	3.79		mg/L
Potassium	10700			1.00	11200			1.00	4.57		ug/L
Potassium-40	0.00	UI	42.1	1.00	-32.6	U	40.7	1.00		1.1	pCi/L
Promethium-144	0.115	U	2.37	1.00	-1.01	U	2.55	1.00		0.6	pCi/L
Promethium-146	-2.48	U	4.25	1.00	3.44	U	4.44	1.00		1.9	pCi/L
Ruthenium-106	-7.35	U	29.2	1.00	6.05	U	28.1	1.00		0.6	pCi/L
Silica	34100			1.00	34400			1.00	0.88		ug/L
Sodium	395000			10.00	402000			10.00	1.76		ug/L
Strontium-90	-0.261	U	0.436	1.00	-0.315	U	0.314	1.00		0.2	pCi/L
Sulfate	1890			100.00	1930			100.00	2.09		mg/L
Thorium-234	126	U	344	1.00	108	U	253	1.00		0.1	pCi/L
Total Dissolved Solids	3900			1.00	3860			1.00	1.03		mg/L
Tritium	-92.7	U	205	1.00	151	U	220	1.00		1.6	pCi/L
Uranium-235	-17	U	25.4	1.00	-8.74	U	23.1	1.00		0.5	pCi/L
Uranium-238	126	U	344	1.00	108	U	253	1.00		0.1	pCi/L
Yttrium-88	-0.768	U	3.91	1.00	-1.88	U	3.78	1.00		0.4	pCi/L

Certification

All laboratory analytical quality control criteria were met except as qualified in this report. The data qualifiers listed on the database reports are defined on the last page of each report. All data in this package are considered validated and available for use.

Laboratory Coordinator:

ann 11-4-2013 Stephen Donivan

Data Validation Lead:

toph Donino 11-41-2013 Stephen Donivan

Attachment 1 Assessment of Anomalous Data

Potential Outliers Report

Potential Outliers Report

Potential outliers are measurements that are extremely large or small relative to the rest of the data and, therefore, are suspected of misrepresenting the population from which they were collected. Potential outliers may result from transcription errors, data-coding errors, or measurement system problems. However, outliers may also represent true extreme values of a distribution and indicate more variability in the population than was expected.

Statistical outlier tests give probabilistic evidence that an extreme value does not "fit" with the distribution of the remainder of the data and is therefore a statistical outlier. These tests should only be used to identify data points that require further investigation. The tests alone cannot determine whether a statistical outlier should be discarded or corrected within a data set.

There are three steps involved in identifying extreme values or outliers:

- 1. Identify extreme values that may be potential outliers by generating the Outliers Report using the Sample Management System from data in the environmental database. The application compares the new data set (in standard environmental database units) with historical data and lists the new data that fall outside the historical data range. A determination is also made if the data are normally distributed using the Shapiro-Wilk Test.
- 2. Apply the appropriate statistical test. Dixon's Extreme Value test is used to test for statistical outliers when the sample size is less than or equal to 25. This test considers both extreme values that are much smaller than the rest of the data (case 1) and extreme values that are much larger than the rest of the data (case 2). This test is valid only if the data without the suspected outlier are normally distributed. Rosner's Test is a parametric test that is used to detect outliers for sample sizes of 25 or more. This test also assumes that the data without the suspected outliers are normally distributed.
- 3. Scientifically review statistical outliers and decide on their disposition. The review should include an evaluation of any notable trends in the data that may indicate the outliers represent true extreme values.

There were no potential outliers identified, and the data for this event are acceptable as qualified.

Attachment 2 Data Presentation

Groundwater Quality Data

Parameter	Units	Samp Date	le ID	Result	C Lab	Qualifiers Data QA	Detection Limit	Uncertainty
Actinium-228	pCi/L	01/29/2013	N001	-1.01	U	#	27.8	15.1
Actinium-228	pCi/L	01/29/2013	N002	6.34	U #		24.8	13.2
Alkalinity, Bicarbonate (as CaCO ₃)	mg/L	01/29/2013	N001	84.7		#	0.725	
Alkalinity, Bicarbonate (as CaCO ₃)	mg/L	01/29/2013	N002	85.7		#	0.725	
Alkalinity, Total (as CaCO ₃)	mg/L	01/29/2013	N001	63		#		
Americium-241	pCi/L	01/29/2013	N001	-7.67	U	#	40	26
Americium-241	pCi/L	01/29/2013	N002	-16.6	U	#	52.9	31.2
Antimony-125	pCi/L	01/29/2013	N001	3.73	U	#	14.8	8.74
Antimony-125	pCi/L	01/29/2013	N002	1.46	U	#	14.8	7.89
Calcium	mg/L	01/29/2013	N001	592		#	0.5	
Calcium	mg/L	01/29/2013	N002	603		#	0.5	
Cerium-144	pCi/L	01/29/2013	N001	-14	U	#	37	26.3
Cerium-144	pCi/L	01/29/2013	N002	-11.4	U	#	35.5	21.6
Cesium-134	pCi/L	01/29/2013	N001	-1.43	U	#	6.18	3.52
Cesium-134	pCi/L	01/29/2013	N002	0.423	U	#	4.97	2.42
Cesium-137	pCi/L	01/29/2013	N001	-1.35	U	#	4.68	2.67
Cesium-137	pCi/L	01/29/2013	N002	-2.57	U	#	5.97	4.2
Chloride	mg/L	01/29/2013	N001	501		#	6.7	

Parameter	Units	Samp Date	le ID	Result	Lab	Qualifiers Data QA	Detection Limit	Uncertainty
Chloride	mg/L	01/29/2013	N002	511		#	6.7	
Cobalt-60	pCi/L	01/29/2013	N001	1.47	U #		7.76	3.8
Cobalt-60	pCi/L	01/29/2013	N002	-2.08	U	#	6.05	3.52
Dissolved Oxygen	mg/L	01/29/2013	N001	1.29		#		
Enriched Tritium	pCi/L	01/29/2013	N001	1.9	U	#	2.18	1.51
Europium-152	pCi/L	01/29/2013	N001	-3.13	U	#	16.5	10.8
Europium-152	pCi/L	01/29/2013	N002	-2.39	U	#	15.7	8.79
Europium-154	pCi/L	01/29/2013	N001	8	U	#	21.3	10.2
Europium-154	pCi/L	01/29/2013	N002	0.16	U	#	13.7	6.36
Europium-155	pCi/L	01/29/2013	N001	14	U	#	21.1	13.8
Europium-155	pCi/L	01/29/2013	N002	-8.05	U	#	20.4	12.6
Lead-212	pCi/L	01/29/2013	N001	6.16	U	#	10.5	8.07
Lead-212	pCi/L	01/29/2013	N002	6.4	U	#	8.23	9.14
Magnesium	mg/L	01/29/2013	N001	122		#	0.11	
Magnesium	mg/L	01/29/2013	N002	124		#	0.11	
Nitrate + Nitrite as Nitrogen	mg/L	01/29/2013	N001	4.66		#	0.085	
Nitrate + Nitrite as Nitrogen	mg/L	01/29/2013	N002	4.84		#	0.085	
Oxidation Reduction Potential	mV	01/29/2013	N001	45		#		

Parameter	Units	Samp Date	le ID	Result	Lab	Qualifiers Data QA	Detection Limit	Uncertainty
рН	s.u.	01/29/2013	N001	7.06		#		
Potassium	mg/L	01/29/2013	N001	10.7		#	0.05	
Potassium	mg/L	01/29/2013	N002	11.2		#	0.05	
Potassium-40	pCi/L	01/29/2013	N001	0	UI	#	34.2	42.1
Potassium-40	pCi/L	01/29/2013	N002	-32.6	U	#	72.8	40.7
Promethium-144	pCi/L	01/29/2013	N001	0.115	U	#	4.14	2.37
Promethium-144	pCi/L	01/29/2013	N002	-1.01	U	#	4.61	2.55
Promethium-146	pCi/L	01/29/2013	N001	-2.48	U	#	6.59	4.25
Promethium-146	pCi/L	01/29/2013	N002	3.44	U	#	8.18	4.44
Ruthenium-106	pCi/L	01/29/2013	N001	-7.35	U	#	48.4	29.2
Ruthenium-106	pCi/L	01/29/2013	N002	6.05	U	#	52.4	28.1
Silica	mg/L	01/29/2013	N001	34.1		#	0.053	
Silica	mg/L	01/29/2013	N002	34.4		#	0.053	
Sodium	mg/L	01/29/2013	N001	395		#	1	
Sodium	mg/L	01/29/2013	N002	402		#	1	
Specific Conductance	umhos /cm	01/29/2013	N001	4570		#		
Strontium-90	pCi/L	01/29/2013	N001	261	U	#	0.909	0.436
Strontium-90	pCi/L	01/29/2013	N002	315	U	#	0.716	0.314

Parameter	Units	Samp Date	le ID	Result		lifiers ata QA	Detection Limit	Uncertainty
Sulfate	mg/L	01/29/2013	N001	1890		#	13.3	
Sulfate	mg/L	01/29/2013	N002	1930		#	13.3	
Temperature	С	01/29/2013	N001	19.8		#		
Thorium-234	pCi/L	01/29/2013	N001	126	U	#	358	344
Thorium-234	pCi/L	01/29/2013	N002	108	U	#	442	253
Total Dissolved Solids	mg/L	01/29/2013	N001	3900		#	3.4	
Total Dissolved Solids	mg/L	01/29/2013	N002	3860		#	3.4	
Tritium	pCi/L	01/29/2013	N001	-92.7	U	#	371	205
Tritium	pCi/L	01/29/2013	N002	151	U	#	371	220
Turbidity	NTU	01/29/2013	N001	2.39		#		
Uranium-235	pCi/L	01/29/2013	N001	-17	U	#	33.9	25.4
Uranium-235	pCi/L	01/29/2013	N002	-8.74	U	#	34.1	23.1
Uranium-238	pCi/L	01/29/2013	N001	126	U	#	358	344
Uranium-238	pCi/L	01/29/2013	N002	108	U	#	442	253
Yttrium-88	pCi/L	01/29/2013	N001	768	U	#	7.42	3.91
Yttrium-88	pCi/L	01/29/2013	N002	-1.88	U	#	6.54	3.78

Parameter	Units	Samp		Result		Qualifiers		Detection	Uncertainty
		Date	ID		Lab	Data	QA	Limit	,
Actinium-228	pCi/L	01/30/2013	0001	-3.27	U	FQ	#	25.8	14.5
Alkalinity, Bicarbonate (as CaCO ₃)	mg/L	01/30/2013	0001	53.3		FQ	#	0.725	
Alkalinity, Total (as CaCO ₃)	mg/L	01/30/2013	0001	82		FQ	#		
Americium-241	pCi/L	01/30/2013	0001	5.09	U	FQ	#	42.3	25.5
Antimony-125	pCi/L	01/30/2013	0001	-2.99	U	FQ	#	15.1	8.79
Calcium	mg/L	01/30/2013	0001	620		FQ	#	0.5	
Cerium-144	pCi/L	01/30/2013	0001	6.4	U	FQ	#	43	24.5
Cesium-134	pCi/L	01/30/2013	0001	2.06	U	FQ	#	7.5	4.53
Cesium-137	pCi/L	01/30/2013	0001	831	U	FQ	#	5.33	2.95
Chloride	mg/L	01/30/2013	0001	998		FQ	#	6.7	
Cobalt-60	pCi/L	01/30/2013	0001	0.422	U	FQ	#	6.98	3.59
Dissolved Oxygen	mg/L	01/30/2013	N001	0.31		FQ	#		
Europium-152	pCi/L	01/30/2013	0001	-2.88	U	FQ	#	17.1	9.79
Europium-154	pCi/L	01/30/2013	0001	1.41	U	FQ	#	18.1	9.07
Europium-155	pCi/L	01/30/2013	0001	-7.16	U	FQ	#	24.6	15.2
Lead-212	pCi/L	01/30/2013	0001	6.06	U	FQ	#	12.5	8.4
Magnesium	mg/L	01/30/2013	0001	134		FQ	#	0.11	
Nitrate + Nitrite as Nitrogen	mg/L	01/30/2013	0001	0.0204	J	FQ	#	0.017	
Oxidation Reduction Potential	mV	01/30/2013	N001	-15		FQ	#		
pH	s.u.	01/30/2013	N001	6.7		FQ	#		

Parameter	Units	Samp Date	le ID	Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Potassium	mg/L	01/30/2013	0001	16.2		FQ	#	0.05	
Potassium-40	pCi/L	01/30/2013	0001	-6.52	U	FQ	#	91.4	44.2
Promethium-144	pCi/L	01/30/2013	0001	-1.94	U	FQ	#	5.41	3.27
Promethium-146	pCi/L	01/30/2013	0001	0.329	U	FQ	#	7.6	4.22
Ruthenium-106	pCi/L	01/30/2013	0001	12.3	U	FQ	#	59	30.9
Silica	mg/L	01/30/2013	0001	18.3		FQ	#	0.053	
Sodium	mg/L	01/30/2013	0001	665		FQ	#	1	
Specific Conductance	umhos /cm	01/30/2013	N001	5900		FQ	#		
Strontium-90	pCi/L	01/30/2013	0001	987		FQ	#	1.54	166
Sulfate	mg/L	01/30/2013	0001	1950		FQ	#	13.3	
Temperature	С	01/30/2013	N001	19.6		FQ	#		
Thorium-234	pCi/L	01/30/2013	0001	25	U	FQ	#	426	321
Total Dissolved Solids	mg/L	01/30/2013	0001	4600		FQ	#	3.4	
Tritium	pCi/L	01/30/2013	0001	10200		FQ	#	367	2040
Turbidity	NTU	01/30/2013	N001	30.2		FQ	#		
Uranium-235	pCi/L	01/30/2013	0001	-15.3	U	FQ	#	43.2	26.8
Uranium-238	pCi/L	01/30/2013	0001	25	U	FQ	#	426	321
Yttrium-88	pCi/L	01/30/2013	0001	2.72	U	FQ	#	8.34	3.84

Parameter	Units	Samp Date	le ID	Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Actinium-228	pCi/L	01/29/2013	N001	9.88	U	FQ	#	23.6	12.8
Alkalinity, Bicarbonate (as CaCO ₃)	mg/L	01/29/2013	N001	34.5		FQ	#	0.725	
Alkalinity, Total (as CaCO ₃)	mg/L	01/29/2013	N001	31		FQ	#		
Americium-241	pCi/L	01/29/2013	N001	-5.29	U	FQ	#	57.3	31.9
Antimony-125	pCi/L	01/29/2013	N001	-2	U	FQ	#	16.9	9.5
Calcium	mg/L	01/29/2013	N001	592		FQ	#	0.5	
Cerium-144	pCi/L	01/29/2013	N001	13.2	U	FQ	#	44.6	25.5
Cesium-134	pCi/L	01/29/2013	N001	0.563	U	FQ	#	5.63	3.12
Cesium-137	pCi/L	01/29/2013	N001	174		FQ	#	5.18	21.2
Chloride	mg/L	01/29/2013	N001	1040		FQ	#	6.7	
Cobalt-60	pCi/L	01/29/2013	N001	-1.9	U	FQ	#	4.74	2.84
Dissolved Oxygen	mg/L	01/29/2013	N001	0.38		FQ	#		
Europium-152	pCi/L	01/29/2013	N001	7.75	U	FQ	#	19.3	10.6
Europium-154	pCi/L	01/29/2013	N001	141	U	FQ	#	15.1	7.27
Europium-155	pCi/L	01/29/2013	N001	2.79	U	FQ	#	25.6	14.4
Lead-212	pCi/L	01/29/2013	N001	7.66	U	FQ	#	13	8.13
Magnesium	mg/L	01/29/2013	N001	96.8		FQ	#	0.11	
Nitrate + Nitrite as Nitrogen	mg/L	01/29/2013	N001	0.017	U	FQ	#	0.017	
Oxidation Reduction Potential	mV	01/29/2013	N001	25		FQ	#		
рН	s.u.	01/29/2013	N001	7.35		FQ	#		

Parameter	Units	Samp Date	le ID	Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Potassium	mg/L	01/29/2013	N001	16.7		FQ	#	0.05	
Potassium-40	pCi/L	01/29/2013	N001	62.9		UFQ	#	50.2	42.1
Promethium-144	pCi/L	01/29/2013	N001	0.0618	U	FQ	#	5.1	2.88
Promethium-146	pCi/L	01/29/2013	N001	0.0393	U	FQ	#	8.61	4.77
Ruthenium-106	pCi/L	01/29/2013	N001	-6.81	U	FQ	#	48	27.4
Silica	mg/L	01/29/2013	N001	3.62		FQ	#	0.053	
Sodium	mg/L	01/29/2013	N001	735		FQ	#	1	
Specific Conductance	umhos /cm	01/29/2013	N001	5865		FQ	#		
Strontium-90	pCi/L	01/29/2013	N001	1580		FQ	#	1.08	249
Sulfate	mg/L	01/29/2013	N001	2030		FQ	#	13.3	
Temperature	С	01/29/2013	N001	18.9		FQ	#		
Thorium-234	pCi/L	01/29/2013	N001	-36.8	U	FQ	#	494	281
Total Dissolved Solids	mg/L	01/29/2013	N001	4610		FQ	#	3.4	
Tritium	pCi/L	01/29/2013	N001	20900		FQ	#	374	4120
Turbidity	NTU	01/29/2013	N001	2.39		FQ	#		
Uranium-235	pCi/L	01/29/2013	N001	-11.8	U	FQ	#	40.5	24.9
Uranium-238	pCi/L	01/29/2013	N001	-36.8	U	FQ	#	494	281
Yttrium-88	pCi/L	01/29/2013	N001	617	U	FQ	#	6.66	3.38

SAMPLE ID CODES: 000X = Filtered sample (0.45 µm). N00X = Unfiltered sample. X = replicate number.

LAB QUALIFIERS:

- Replicate analysis not within control limits.
- Result above upper detection limit. >
- TIC is a suspected aldol-condensation product. А
- В Inorganic: Result is between the IDL and CRDL. Organic: Analyte also found in method blank.
- Pesticide result confirmed by GC-MS. С
- D Analyte determined in diluted sample.
- Inorganic: Estimate value because of interference, see case narrative. Organic: Analyte exceeded calibration range of the GC-MS. Е
- Holding time expired, value suspect. Н
- Increased detection limit due to required dilution. L
- Estimated J
- Ν Inorganic or radiochemical: Spike sample recovery not within control limits. Organic: Tentatively identified compound (TIC).
- > 25% difference in detected pesticide or Aroclor concentrations between 2 columns. Ρ
- U Analytical result below detection limit.
- Post-digestion spike outside control limits while sample absorbance < 50% of analytical spike absorbance. W
- X,Y,Z Laboratory defined qualifier, see case narrative.

DATA QUALIFIERS:

- F Low flow sampling method used.
- Less than 3 bore volumes purged prior to sampling. L U Parameter analyzed for but was not detected.
- G Possible grout contamination, pH > 9. Q Qualitative result due to sampling technique. R Unusable result.

X Location is undefined.

- J Estimated value.

- QA QUALIFIER:
- # Validated according to quality assurance guidelines.

Static Water Level Data

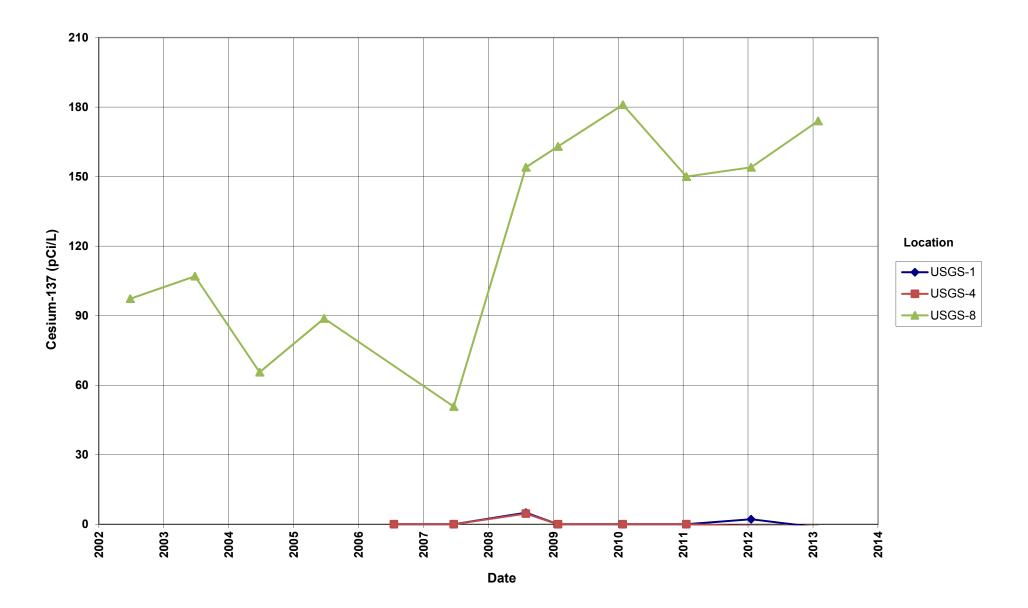
STATIC WATER LEVELS (USEE700) FOR SITE GNO01, Gnome-Coach Site **REPORT DATE: 10/04/2013**

Location Code	Flow Code	Top of Casing Elevation (Ft)	Measure Date	ement Time	Depth From Top of Casing (Ft)	Water Elevation (Ft)	Water Level Flag
USGS-1		3425.78	01/29/2013	10:00:12	NA	NA	F
USGS-4		3415.25	01/30/2013	13:10:55	425.31	2989.94	
USGS-8		3412.96	01/29/2013	14:30:30	417.88	2995.08	
FLOW CC	DES: B N	BACKGROUND UNKNOWN	C CROS O ON SI	S GRADIENT TE		N GRADIENT RADIENT	F OFF S

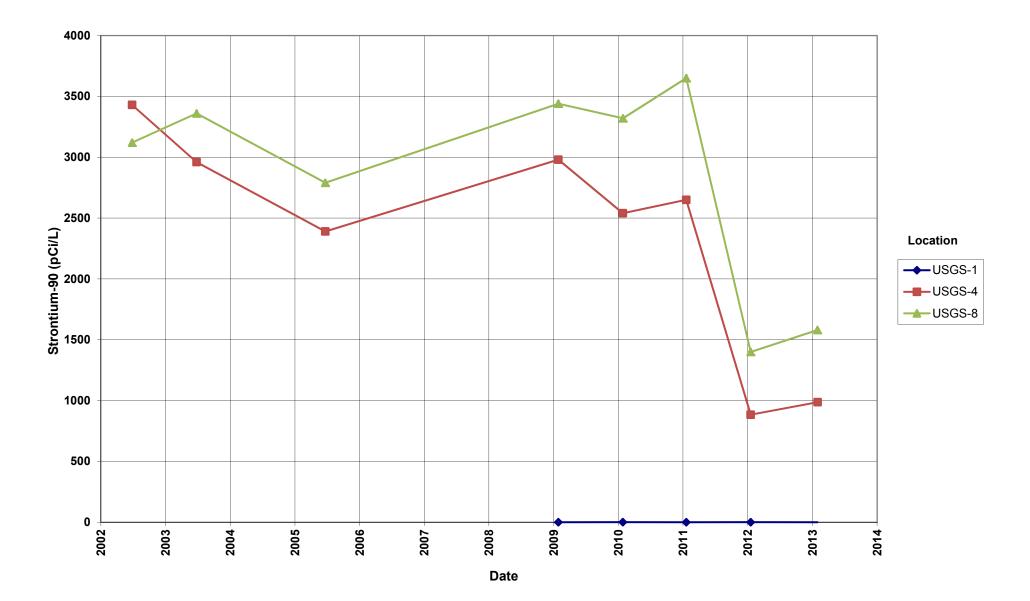
WATER LEVEL FLAGS: D Dry	F Flowing	B Below top of pump
--------------------------	-----------	---------------------

Water Level Measurements

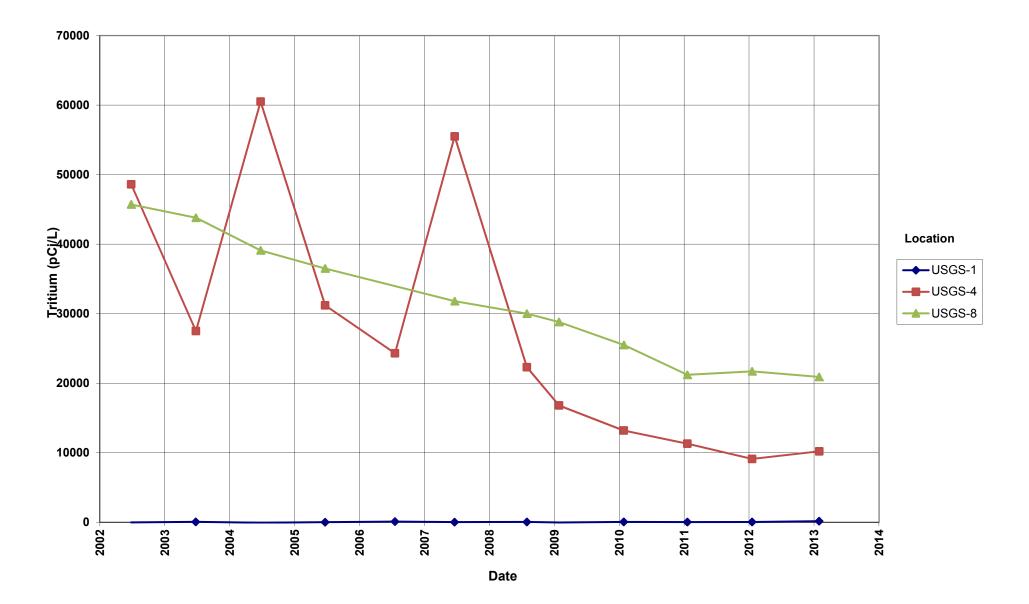
Site Code	Well ID	Date	DTW (ft)	Comments
GNO01	USGS-4	1/30/13	425.31	Installed second access tube for bladder pump.
GNO01	USGS-8	1/29/13	417.88	
GNO01	USGS-8	1/30/13	418.21	
GNO01	LRL-7	1/29/13	465.22	
GNO01	LRL-7	1/30/13	465.22	
GNO01	USGS-1	1/30/13	435.00	Pump running – modified measuring point
GNO01	DD-1	1/29/13	1013.82	
GNO01	DD-1	1/30/13	1014.12	


DTW = Depth to Water (all measurements obtained from north top of casing)

= Feet


ft ID = Identification

Time-Concentration Graphs


Gnome-Coach Site Cesium-137 Concentration

Gnome-Coach Site Strontium-90 Concentration

Gnome-Coach Site Tritium Concentration

Attachment 3 Sampling and Analysis Work Order

established 1959

Task Order LM00-502 Control Number 13-0234

January 14, 2013

U.S. Department of Energy Office of Legacy Management ATTN: Jalena Dayvault Site Manager 2597 Legacy Way Grand Junction, CO 81503

Stoller

SUBJECT: Contract No. DE-AM01-07LM00060, S.M. Stoller Corporation (Stoller) January 2013 Environmental Sampling at the Gnome-Coach, New Mexico Site

REFERENCE: Task Order LM-502-07-617, Gnome-Coach, New Mexico, Site

Dear Ms. Dayvault:

The purpose of this letter is to inform you of the upcoming sampling event at the Gnome-Coach, New Mexico, site. Enclosed are the map and tables specifying sample locations and analytes for routine monitoring. Water quality data will be collected from monitoring wells at this site as part of the routine environmental sampling currently scheduled to begin the week of January 28, 2013.

The following list shows the monitoring wells scheduled to be sampled during this event.

Monitoring Wells

USGS-1 USGS-4 USGS-8

All samples will be collected as directed in the *Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites.* Well and property owners have been notified of the scheduled sampling event.

If you have any questions, please call me at 970-248-6419.

Sincerely,

Richard C. L. Oly 2013.01.14 13:13:08

Rick Findlay Site Lead

RF/lcg/dc

Grand Junction, CO 81503

Jalena Dayvault Control Number 13-0234 Page 2

Enclosures (3)

cc: (electronic) Karl Stoeckle, DOE Steve Donivan, Stoller Rick Findlay, Stoller Bev Gallagher, Stoller Lauren Goodknight, Stoller EDD Delivery rc-grand.junction File: GNO 410.02(A)

2597 B ¾ Road

Grand Junction, CO 81503

(970) 248-6000

Fax: (970) 248-6040

Sampling Frequencies for Locations at Gnome-Coach, New Mexico

Location ID	Quarterly	Semiannually	Annually	Biennially	Not Sampled	Notes
Monitoring Wells						
LRL-7					х	Bladder pump; not sampled per R. Findlay, 1/11/12
USGS-1			х			Electric pump; add a sample port to the plumbing
USGS-4			Х			Bladder pump
USGS-8			Х			Bladder pump

Annual sampling conducted in January

Site Gnome-Coach						
		Surface	Required Detection	Analytical	Line Item	
Analyte	Groundwater	Water	Limit (mg/L)	Method	Code	
Approx. No. Samples/yr	3	0				
Field Measurements						
Alkalinity	Х					
Dissolved Oxygen	Х					
Redox Potential	Х					
pH	Х					
Specific Conductance	х					
Turbidity	х					
Temperature	Х					
Laboratory Measurements						
Alkalinity (bicarbonate)	х		10	SM 2320B	WCH-A-003	
Aluminum						
Ammonia as N (NH3-N)						
Calcium	х		5	SW-846 6010	LMM-01	
Chloride	x		0.5	SW-846 9056	MIS-A-039	
Chromium	Λ		0.5	011-040 3030	MIG-A-000	
Chioman				Gamma		
Gamma Spec	Х		10 pCi/L	Spectrometry	GAM-A-001	
Gross Alpha						
Gross Beta						
Iron						
Lead						
Magnesium	х		5	SW-846 6010	LMM-01	
Manganese						
Molybdenum						
Nickel						
Nickel-63						
Nitrate + Nitrite as N (NO ₃ +NO ₂)-N	х		0.05	EPA 353.1	WCH-A-022	
Potassium	x		5	SW-846 6010	LMM-01	
	^		5	300-840 0010	LIVINI-01	
Radium-226						
Radium-228						
Selenium	X		<u> </u>	014/04/0 004/0		
Silica	X		0.2	SW-846 6010	LMM-01	
Sodium	Х		5	SW-846 6010 Gas Proportional	LMM-01	
Strontium-90	х		1 pCi/L	Counter	GPC-A-009	
Sulfate	х		0.5	SW-846 9056	MIS-A-044	
Sulfide						
Total Dissolved Solids	х		10	SM2540 C	WCH-A-033	
Total Organic Carbon						
Tritium	х		400 pCi/L	Liquid Scintillation	LSC-A-001	
Enriched Tritium	USGS-1 only		10 pCi/L	Liquid Scintillation	LMR-15	
Uranium			10 0012		2.0.1 (10	
Vanadium				1		
Zinc						
	10	0				
Total No. of Analytes	13	0				

Constituent Sampling Breakdown

Note: All private well samples are to be unfiltered. The total number of analytes does not include field parameters.

Attachment 4 Trip Report

established 1959

Memorandum

Control Number N/A

DATE: February 6, 2013

TO: Rick Findlay

FROM: Jeff Price

SUBJECT: Trip Report (LTHMP Sampling)

Site: Gnome/Coach, NM

Dates of Sampling Event: January 28-31, 2013

Team Members: David Atkinson and Jeff Price.

Number of Locations Sampled/Analysis: Samples collected from 3 onsite monitoring wells will be analyzed for gamma spectrometry, tritium, enriched tritium (USGS-1 only), strontium-90, NO₂NO₃-N, a select set of cations and metals, and a select set of anions, alkalinity, and total dissolved solids. Samples were collected and monitoring well purge water was contained as specified in the program directive.

Locations Not Sampled/Reason: LRL-7 was not sampled per instruction of site lead.

Quality Control Sample Cross Reference: The following is the false identification assigned to the quality control sample:

False ID	True ID	Sample Type	Associated Matrix	Ticket Number
2443	USGS-1	Duplicate	Groundwater	LCR 567

RIN Number Assigned: RIN 13015066.

Sample Shipment: Samples were shipped to GEL Laboratories on January 31, 2013.

Site Code	Well ID	Date	DTW (ft)	Comments
GNO01	USGS-4	1/30/13	425.31	Installed second access tube for bladder pump.
GNO01	USGS-8	1/29/13	417.88	
GNO01	USGS-8	1/30/13	418.21	
GNO01	LRL-7	1/29/13	465.22	
GNO01	LRL-7	1/30/13	465.22	
GNO01	USGS-1	1/30/13	435.00	Pump running – modified measuring point
GNO01	DD-1	1/29/13	1013.82	
GNO01	DD-1	1/30/13	1014.12	

Water Level Measurements: Water levels for wells are presented in the following table.

DTW = Depth to Water (all measurements obtained from north top of casing)

ft = Feet

ID = Identification

Site Specific Information: Another schedule 80 PVC two inch access tube was installed in USGS-4 to a depth of 500 feet (blank casing to 480 with 20 feet of screen). The water level access tube in USGS-1 (2-inch schedule 40 PVC), which had been broken at the surface and had fallen about 60 feet into the well, was recovered by Gene Kincade. The recovered PVC was reinstalled after removing the top 17 feet of PVC. The water access tube is now set at a depth of approximately 483 feet bgs and a new none vented transducer with barometer were installed in the water level access tube on stainless steel wire. Pyeatt was onsite to survey water level measuring point (or top of casing) elevations for the wells USGS-1, USGS-4, USGS-8, and LRL-7 because of recent well head modifications.

cc: (electronic) Jalena Dayvault, DOE

Steve Donivan, Stoller EDD Delivery