FINAL Long-Term Groundwater **Monitoring Report**

''|||

Colonie, New York, Site—

Natural Attenuation Remedy

July 2023 Sampling Event

January 2024

This document is designed for online viewing.

Contents

Abbr	eviatio	ns	. iii					
Exec	utive S	ummary	1					
1.0	Introduction							
	1.1 Site Description							
	1.2	Site History	4					
		1.2.1 Hydrogeology	5					
		1.2.2 Groundwater Contamination	7					
		1.2.3 Target Cleanup Goals for Groundwater	8					
2.0	Long-	Term Monitoring Program Description	9					
	2.1	Previous Long-Term Monitoring Program	9					
	2.2	Current Long-Term Monitoring Program						
		2.2.1 Monitoring Well Network						
	2.3	July 2023 Long-Term Monitoring Event	.13					
		2.3.1 Well Sampling	.13					
3.0	Monit	oring Results						
	3.1	Groundwater Elevations	.14					
	3.2	Well Stability Parameters	.15					
	3.3	Contaminant Concentrations	.17					
	3.4	Temporal and Spatial Changes in COC Results	.18					
	3.5	Comparison of COC Results to TCGs	.22					
	3.6	Evaluation of the Monitoring Well Network	.22					
4.0	Conclusions and Recommendations							
	4.1	Conclusions	.22					
	4.2	Recommendations	.23					
5.0	Refere	ences	.23					

Figures

Figure 1. Colonie, New York, Site Location	2
Figure 2. Groundwater Monitoring Well Locations	
Figure 3. Geologic Cross Section	6
Figure 4. Groundwater Elevation Contours, July 2023	16
Figure 5. Groundwater Contaminant Concentrations, July 2023	
Figure 6. Graph of VOCs Versus Time at MW-41S	

Tables

Appendixes

- Appendix A Groundwater Record of Decision Figures 6 and 7
- Appendix B Groundwater Remedial Investigation Data Summary Tables
- Appendix C Well Logs and Construction Details
- Appendix D Long-Term Monitoring Data Summary Tables
- Appendix E Data Validation Memo

Abbreviations

AEC	U.S. Atomic Energy Commission
amsl	above mean sea level
bgs	below ground surface
cDCE	cis-1,2-dichloroethene
CFR	Code of Federal Regulations
COC	contaminant of concern
DO	dissolved oxygen
DOE	U.S. Department of Energy
EPA	U.S. Environmental Protection Agency
ft	feet
ft/d	feet per day
FUSRAP	Formerly Utilized Sites Remedial Action Program
Ι	gradient
Κ	hydraulic conductivity
LM	Office of Legacy Management
LTM	long-term monitoring
mg/L	milligrams per liter
μg/L	micrograms per liter
µS/cm	microsiemens per centimeter
MNA	monitored natural attenuation
mV	millivolts
ne	effective porosity
NTU	nephelometric turbidity units
NYSDEC	New York State Department of Environmental Conservation
ORP	oxidation-reduction potential
OU	operable unit
PCE	tetrachloroethene
RI	Remedial Investigation
ROD	Record of Decision
SAP	Sampling and Analysis Plan
TCE	trichloroethene
TCG	target cleanup goal

USACE	U.S. Army Corps of Engineers

- USC United States Code
- VC vinyl chloride
- VOC volatile organic compound
- VP vicinity property
- V_s groundwater seepage velocity

Executive Summary

This is the third long-term groundwater monitoring report prepared by the U.S. Department of Energy Office of Legacy Management (LM) for the Colonie, New York, Site. The U.S. Army Corps of Engineers (USACE) has completed all Remedial Investigations of soil and groundwater and completed all remedial actions at the Colonie site and 56 vicinity properties. Long-term stewardship responsibilities, including continuation of the groundwater long-term monitoring (LTM) program, were transferred from USACE to LM in September 2019. The site sold at public auction, with the act of sale being finalized in January 2023.

The Record of Decision (ROD) for site groundwater specifies the selected remedy for groundwater at the site is monitored natural attenuation. The remedial action objectives for site groundwater are designed to (1) limit exposure of potential future onsite urban residents to volatile organic compounds (VOCs) that may migrate toward homes via the vapor intrusion pathway and (2) reduce the concentrations of VOCs in onsite groundwater to levels that are protective of future onsite urban residents who may be exposed to these compounds via the vapor intrusion pathway.

The remedial action objectives are being achieved as evidenced by overall decreases in concentrations of the four groundwater contaminants of concern (COCs) and by the comparison of these concentrations to the following ROD-specified target cleanup goals (TCGs): tetrachloroethene (PCE), trichloroethene (TCE), *cis*-1,2-dichloroethene (cDCE), and vinyl chloride (VC).

The groundwater remedy includes a long-term groundwater monitoring program that will continue until natural environmental processes reduce the contamination to concentrations below cleanup levels. The Groundwater ROD specifies that the groundwater remedy will be considered complete and monitoring discontinued after four quarters of compliance for all four COCs with respect to these TCGs at each site monitoring well.

All wells show decreasing long-term trends of COCs. Only one well in the seven-well monitoring well network currently has COC concentrations above its TCG. The TCG of 5.5 μ g/L for PCE is exceeded at monitoring well MW-41S (8.6 μ g/L). All wells may be in compliance with TCGs by the next sampling event in July 2025.

1.0 Introduction

This long-term monitoring (LTM) report has been prepared by the U.S. Department of Energy (DOE) Office of Legacy Management (LM) for the Colonie, New York, Site. This is the third LTM report that LM has prepared for the site in support of the monitored natural attenuation (MNA) remedy for volatile organic compounds (VOCs), and it presents the methods, results, and evaluations of the groundwater monitoring event conducted in July 2023. The monitoring event represented in this report was completed in accordance with the *Colonie FUSRAP Site Record of Decision—Colonie Site Groundwater* (USACE 2010a), hereafter referred to as the Groundwater Record of Decision (ROD) and following the *Long-Term Surveillance and Maintenance Plan for the Colonie, New York, Site* (DOE 2022). Documents referenced in this report are available on the LM Colonie, New York, Site webpage at https://www.energy.gov/lm/colonie-new-york-site.

The purpose of this LTM report is to document progress of the groundwater natural attenuation remedy and evaluate monitoring endpoints. The progress of the remedy was evaluated by reviewing monitoring data over time. Compliance status of the remedy was ascertained by comparing groundwater analytical results to the target cleanup goals (TCGs) that were established in the Groundwater ROD. In addition, this report provides conclusions derived from the data evaluation and offers recommendations relative to the LTM program.

1.1 Site Description

The site is at 1130 Central Avenue (New York State Route 5) in the town of Colonie, Albany County, New York (Figure 1). The site comprises 11.2 acres of privately owned vacant land. The site was sold by the federal government, with the act of sale being finalized in January 2023. Central Avenue forms its northern boundary. Commercial properties are due east. CSX Transportation Inc. (CSX) and National Railroad Passenger Corporation (Amtrak) railroad tracks are on the southern boundary, and residences are on the south side of the railroad tracks. Commercial and municipal properties are on the western boundary of the site (Figure 2). The site is in an urban area consisting of residential and commercial properties in an industrial zoning district (Colonie 2007). U.S. Census Bureau data from 2019 indicated that approximately 83,000 people lived in Colonie (U.S. Census Bureau 2020). Homes and businesses in the area are supplied by the Latham Water District. Water sources are the Mohawk River and five supply wells that are greater than 4 miles away and upgradient of the site (Colonie 2020; USACE 2017a).

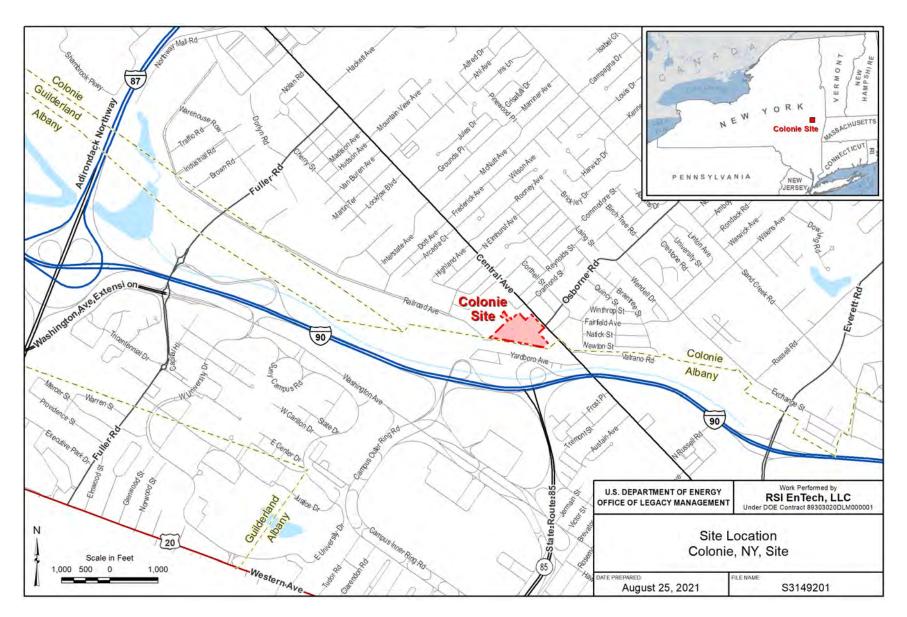


Figure 1. Colonie, New York, Site Location

Figure 2. Groundwater Monitoring Well Locations

1.2 Site History

Industrial operations at the site began in 1923, when a factory was built to manufacture wooden products. In 1927, the factory was converted to a brass foundry to manufacture rolling stock components. In 1937, National Lead (now NL Industries Inc.) purchased the foundry and began conducting electroplating operations. National Lead purchased an adjacent lot to the west that contained Patroon Lake and used it to dispose of casting sand and other industrial wastes. In 1958, National Lead began producing items manufactured from uranium and thorium under licenses issued by the U.S. Atomic Energy Commission (AEC) and the State of New York. The AEC contract was terminated in 1968; afterward, work at the plant was devoted to manufacturing shielding components, aircraft counterweights, and artillery projectiles that included depleted uranium.

The industrial operations resulted in contaminated soil, groundwater, and structures at the site and at vicinity properties (VPs). Depleted uranium was released from the plant exhaust stacks and spread across the site and 56 VPs. The New York State Supreme Court shut down the plant in 1984 due to airborne releases of depleted uranium. Congress assigned the authority for cleanup to DOE, which acquired the site for that purpose.

DOE performed cleanup actions under the Formerly Utilized Sites Remedial Action Program (FUSRAP) from 1984 to 1997. During that period, DOE investigated the VPs, onsite structures, groundwater, and surface and subsurface soils; developed a plan to remove radiologically impacted soils; remediated 53 of 56 VPs; removed onsite buildings; and stored the waste materials generated during these actions.

In 1997, Congress transferred responsibility for FUSRAP investigation and remediation to the U.S. Army Corps of Engineers (USACE). In 2003, USACE completed the Remedial Investigation (RI) of groundwater (USACE 2003). In 2007, USACE completed the large-scale soil removal action at the main site and the three remaining VPs by excavating and disposing of 135,000 cubic yards of soil contaminated with radionuclides, metals, and VOCs offsite and then backfilling with clean soil (USACE 2010c). In 2010, USACE initiated a groundwater monitoring program to measure the progress of MNA of groundwater contaminants (USACE 2010b; USACE 2014a).

From 2011 to 2014, USACE investigated depleted uranium dust contamination within VP structures (USACE 2018). All radioactive materials that were above the risk-based cleanup goals have been removed from federal property, VPs, and groundwater. No further action is required to address soil contamination. However, metals contamination remains in subsurface soils in three specific inaccessible areas near utility infrastructure. These areas are managed by an environmental easement and Site Management Plan (DOE and USACE 2020). The environmental easement areas are shown in Figure 2.

The Groundwater ROD was signed in April 2010 by USACE. The selected remedy for management of site groundwater was MNA (with temporary land use controls as an option if needed) to limit potential exposure to groundwater contaminants until TCGs are achieved. The Groundwater ROD specified a 2- to 5-year enhanced data collection period to measure the progress and compliance status of the natural attenuation remedy.

In June 2010, USACE established the LTM program, which included the enhanced data collection period consisting of an initial eight consecutive quarterly groundwater monitoring events. The initial eight quarterly events following the signing of the Groundwater ROD occurred from November 2010 to August 2012.

The response action for groundwater is complete. The selected remedy is MNA with land use controls and has been in place since 2010. Long-term groundwater monitoring will continue until TCGs are achieved for tetrachloroethene (PCE), the single remaining VOC in exceedance (DOE 2021b; USACE 2017a).

The cleanup at the site and VPs was completed in accordance with RODs for the three site operable units (OUs): the Groundwater OU (USACE 2010a), the Main Site Soils OU (USACE 2015), and the VP OU (USACE 2017b). The Site Closeout Report documenting the completion of the remedial actions was completed in February 2018 (USACE 2018). The site was transferred for long-term stewardship from USACE to LM in September 2019.

1.2.1 Hydrogeology

The following is a summary of the geological units represented at the site, starting from the uppermost unit to the lowermost unit. Most of the unconsolidated sediments above bedrock at the site were deposited in glacial Lake Albany, which was created during continental glacier advances and retreats in the Hudson Valley.

Artificial Fill and Flood Plain Sediments: This unit consists of artificial fill materials and natural flood plain sediments. Fill materials placed at the site during industrial use included gravel, sand, brick fragments, and other construction-type materials that have since been replaced by clean fill soil during the post-excavation backfill operation at the main site. Flood plain sediments are thin deposits of materials related to sedimentation in the former Patroon Lake and from floods of the unnamed tributary of Patroon Creek.

Dune Sand: This unit is fine-grained sand that is light yellow-brown and cross laminated. Based on lithologic logs, it thins from northwest to southwest across the site and occurs near the ground surface predominantly above the water table.

Upper Silt: This unit, also known as the upper aquifer, is composed of lake silt and sand and represents the uppermost water bearing zone or water table at the site. Grain size analyses showed significant silt fractions in samples collected from this unit.

Upper Clay: This is the most easily identified unit in conductivity logs and consists of a varved sequence of clay and silt. This unit separates the two uppermost water bearing zones at the site, acting as a confining layer for the lower aquifer.

Lower Silt: This unit consists predominantly of silt with some clay and lies above the lower clay. This confined water-bearing zone is known as the lower aquifer.

Lower Clay: The lower clay is approximately 100 feet (ft) thick at the site. It is olive gray and homogenous, showing few signs of silt or sand interbeds. The lower clay is the basal hydrogeologic boundary.

Till: The glacial till unit is dark gray and poorly sorted (10% sand, 40% gravel, and 50% clay). This unit is encountered at approximately 140 ft below ground surface (bgs). One site borehole penetrated the till to a depth of 160 ft bgs. Bedrock underlies the till.

The soil units are shown in Figure 3 and described below, beginning from the ground surface. Additional geological information is provided in the RI report (USACE 2003).

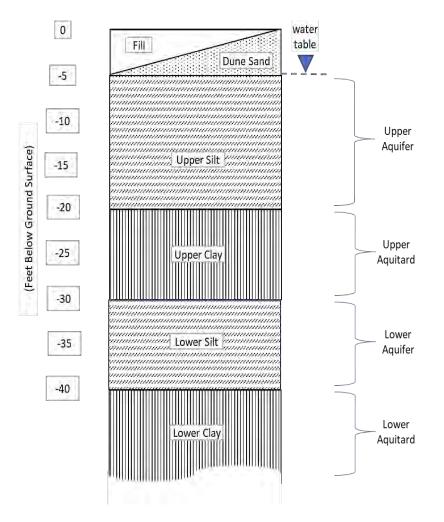


Figure 3. Geologic Cross Section

The water table is generally encountered at less than 10 ft bgs. Groundwater level measurements indicate that the saturated thickness of the upper aquifer ranges from more than 20 ft in the north to less than 15 ft in the south near the property line. The base of the upper aquifer is defined by the top of the upper clay and ranges from elevations of approximately 202 to 205 ft above mean sea level (amsl). The thickness of the upper clay ranges from approximately 12 to 15 ft. The top surface of the lower silt, in which the lower aquifer is present, is typically encountered at an elevation of approximately 190 ft amsl. The thickness of the lower aquifer ranges from 10 ft to approximately 15 ft (USACE 2003).

A review of the groundwater and geologic unit elevations indicates that the lower aquifer is a confined water-bearing unit, with depth to groundwater less than 10 ft below grade. Groundwater in the lower aquifer is under confining pressure and rises in the monitoring wells to elevations above the top of the upper clay to levels comparable to those of the upper aquifer.

Hydraulic conductivities of these units measured from field tests ranged from 0.04 to 109 feet per day (ft/d) in the upper aquifer (mean and median of 1.5 and 1.3 ft/d, respectively) to 0.29 to 31 ft/d in the lower aquifer (mean and median of 6.4 and 0.68 ft/d, respectively).

Groundwater flow across the site is generally to the south in both aquifers. The upper aquifer has a downward vertical gradient in the northern portion of the site, and an upward vertical gradient near the unnamed tributary and toward Patroon Creek.

A notable manmade feature that locally affects groundwater flow on the site is the steel sheet pile wall installed in July 2005 to maintain stability of the CSX railroad tracks during the soil excavation of the main site (Figure 2). The sheet pile wall was driven to depths of 30 and 50 ft bgs. It is approximately 260 ft long (USACE 2017a). This subsurface feature interrupts groundwater flow locally in the southeast portion of the site and elongates the flow path by diverting flow around the structure. An unnamed tributary of Patroon Creek enters the site from the west and flows southeastward, ultimately discharging into Patroon Creek, as shown in Figure 2. The tributary is enclosed in a buried culvert except in the "keyhole" area in the western side of the site. The unnamed tributary drains an area of approximately 300 acres north of the site in the town of Colonie and has been significantly channeled into culverts (USACE 2003).

1.2.2 Groundwater Contamination

Results of the groundwater RI conducted between 1999 and 2002 showed elevated concentrations of VOCs in monitoring wells in the upper aquifer. Maximum VOC concentrations of PCE, trichloroethene (TCE), *cis*-1,2-dichloroethene (cDCE), and vinyl chloride (VC) were identified in the eastern portion of the site during the RI. RI data indicated that the lower aquifer was not impacted by VOC concentrations above evaluation criteria (USACE 2003).

The originally estimated extent of the onsite VOC mass area in the upper aquifer was provided in Figures 6 and 7 of the Groundwater ROD, which are included in Appendix A. These drawings show that the historical VOC mass was largely present within the site property, with a portion of the mass overlapping onto CSX property in the general direction of groundwater flow. The leading edge of the VOC mass extended just into the CSX rail corridor at that time but did not travel farther downgradient, as evidenced by groundwater results from sentinel wells just south of the railroad tracks.

Groundwater RI data provided in Appendix B include historical groundwater analytical data for VOCs from 1998 through 2009. These results show that the highest concentrations of VOCs occurred in the early part of the record, with overall decreasing trends in VOCs occurring across the site, as can be seen in subsequent data. The decreasing trend is also attributed to removal of VOC source soils during the large-scale excavation of soil and associated dewatering at the main site.

Analytical data obtained subsequent to the RI showed that VOC concentrations have declined significantly and continue to do so. Previous analytical results show that the only VOC exceedances of TCGs (in this case, PCE) are in onsite wells MW-30S, MW-41S, and MW-44S. Since the Groundwater ROD was issued, groundwater monitoring results from 2010 to date indicate an overall decrease in VOC concentrations, further reducing the availability and the extent of the VOC mass in groundwater.

Groundwater contamination levels have consistently decreased since excavation of source zone soils was completed in 2007 (USACE 2010b). The presence of the PCE breakdown products TCE, cDCE, and VC indicates that natural degradation processes are occurring. As a result, MNA was determined to be a viable means of achieving the TCGs (USACE 2010b; USACE 2016; USACE 2017a).

1.2.3 Target Cleanup Goals for Groundwater

Site-specific remedial action objectives were developed to (1) limit exposure of potential future onsite urban residents to VOC constituents that could have migrated toward homes via the vapor intrusion pathway and (2) reduce the concentrations of VOCs in onsite groundwater to levels that are protective of future onsite urban residents who may be exposed to these compounds via the vapor intrusion pathway. The proposed action was implemented to reduce excess cancer risk from inhaling vapors that might intrude into a hypothetical onsite residence to less than 1 in 1 million (1×10^{-6}). Four chlorinated VOCs have been identified as contaminants of concern (COCs). Radiological COCs no longer need to be monitored. The remaining COCs and their TCGs are summarized in Table 1.

Contaminants of Concern	Target Cleanup Goals (µg/L)
Tetrachloroethene (PCE)	5.5
Trichloroethene (TCE)	18
cis-1,2-Dichloroethene (cDCE)	1800
Vinyl chloride (VC)	1.4

The groundwater remedy includes a long-term groundwater monitoring program that will continue until natural environmental processes reduce the contamination to concentrations below cleanup levels (USACE 2010a). The Groundwater ROD specifies that the groundwater remedy will be considered complete and monitoring discontinued after 4 quarters of compliance for all four VOCs with respect to these TCGs at each site monitoring well. In 2017, USACE estimated that contaminants would achieve cleanup standards in 15 years (i.e., by 2032) based on modeling using Monitoring and Remediation Optimization System software (USACE 2017a).

In the prior monitoring event in July 2020, there were two exceedances of TCGs. PCE exceeded the TCG of $5.5 \mu g/L$ in wells MW-30S and MW-41S (DOE 2021a).

2.0 Long-Term Monitoring Program Description

The groundwater remedy was chosen following the ROD requirements of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) as amended by the Superfund Amendments and Reauthorization Act (Title 42 *United States Code* Section 9601–9675 [42 USC 9601–9675]) and, to the extent practicable, the "National Oil and Hazardous Substances Pollution Contingency Plan," as amended (Title 40 *Code of Federal Regulations* Section 300 [40 CFR 300]). The decisions presented in the Groundwater ROD were based on information contained in the Administrative Record file for the site and have been made by USACE in conjunction with the New York State Department of Environmental Conservation (NYSDEC).

The groundwater remedy has the following elements regarding monitoring, remedy progress, and protection:

- Enhanced data collection for 2–5 years to assess the rate of natural attenuation processes and to document that geochemical conditions have returned to a state of equilibrium.
- The progress of MNA to be assessed at the end of the data collection period to refine time frames. As necessary, subsequent LTM will be implemented until compliance with the TCGs has been achieved. The time frame for compliance was initially estimated at 15 years.
- Temporary land use controls, as appropriate, to limit potential future onsite residential exposure to groundwater contaminants until TCGs are achieved. In addition, easement restrictions prohibit potable use of groundwater.

The scope of the USACE LTM program was established after the enhanced data collection period; it included groundwater monitoring and associated site activities as well as data evaluation, as detailed in the *Final Long-Term Monitoring Work Plan, Rev. 1, Groundwater Sampling for Natural Attenuation, Colonie FUSRAP Site* (USACE 2010b). NYSDEC concurred with modifications to the LTM program; these were summarized in the *Addendum to the Final Long-Term Monitoring Work Plan, Colonie FUSRAP Site* (USACE 2014b).

2.1 Previous Long-Term Monitoring Program

As described in the Groundwater ROD, an LTM program has been implemented to assess the groundwater remedy. USACE conducted the monitoring program from November 2010 until April 2017. Well logs and construction details of the existing wells are included in Appendix C. Appendix D provides a historical data summary table that incorporates all VOC, radiological, MNA, and field data obtained over the previous LTM events from 2010 to 2021.

Site monitoring wells and piezometers no longer used in groundwater LTM were decommissioned from July to August 2015, as reported to NYSDEC in the draft final *Decommissioning Report, Monitoring Wells and Piezometers, Colonie FUSRAP Site* (CB&I 2015). The effort included the decommissioning of all lower aquifer monitoring wells. Well MW-32S was decommissioned on September 27, 2022 (DOE 2023).

Each monitoring event was documented by data summary reports that were transmitted by USACE to NYSDEC. Annual reports were also prepared to evaluate remedy progress and status. The LTM program evolved through optimization via stepwise reductions in the number of monitoring wells, constituents analyzed, groundwater zones monitored, and frequency of sampling based on remedy progress.

2010–2015 LTM Program

• The 2-year demonstration period was completed (USACE 2014b).

2015–2016 LTM Program Modifications

The 2015–2016 annual sampling report recommendations were to:

- Continue monitoring semiannually for 2 years.
- Sample monitoring well MW-08S annually for VOCs to continue monitoring upgradient groundwater conditions.
- Sample monitoring wells MW-30S, MW-34S, MW-37S, MW-41S, MW-42S, and MW-44S semiannually for VOCS and annually for MNA parameters.
- Discontinue sampling monitoring well MW-32S and decommission the well.
- Discontinue sampling for uranium.

The monitoring events of August 2016 and April 2017 were performed under the optimized LTM program, based on the recommendations from the 2015–2016 sampling events (USACE 2017a). NYSDEC preferred that monitoring well MW-32S be removed from the program but not be decommissioned.

2016–2017 LTM Program Modifications

The USACE 2016–2017 annual LTM report stated that a direct comparison of VOC results to TCGs and the graphic representation of these results over time clearly demonstrate that the MNA remedy is making progress toward TCG compliance. The report showed:

- Three monitoring wells (MW-08S, MW-37S, and MW-42S) showed no detections of any of the COCs above respective TCGs during the monitoring period.
- One monitoring well (MW-30S) had no exceedances of TCGs for the last four monitoring events.
- One monitoring well (MW-34S) showed no exceedance during the last monitoring event.
- Two monitoring wells (MW-41S and MW-44S) had one VOC (i.e., PCE) that exceeded its TCG.

The report recommended that LTM be conducted every 2 years with the following monitoring specifics:

- Continue sampling the seven active wells for PCE, TCE, cDCE, and VC concentrations.
- Retain monitoring well MW-08S as an upgradient control well.
- Sample onsite monitoring wells MW-30S, MW-41S, MW-42S, and MW-44S to bound the plume.
- Sample monitoring wells MW-34S and MW-37S to continue monitoring downgradient groundwater conditions.

2.2 Current Long-Term Monitoring Program

LM's LTM program is described in the *Long-Term Surveillance and Maintenance Plan for the Colonie, New York, Site* (DOE 2022). Groundwater sampling and analysis activities are conducted according to the *Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites* (LMS/PRO/S04351), hereafter referred to as the Sampling and Analysis Plan (SAP). Field and laboratory data were validated according to the LMS *Environmental Data Validation Procedure*, LMS/PRO/S15870. The data validation memo is included as Appendix E.

Site-specific sampling instructions are stated in a program directive included in a SAP appendix. They direct that:

- Monitoring wells will be redeveloped using the guidance in the SAP and supporting guidance in *Inspection and Maintenance of Groundwater Monitoring and Extraction Wells* (LMS/PRO/S18459).
- Sample analyses will be conducted by a laboratory that is accredited under the New York State Department of Health Environmental Laboratory Approval Program for the category of parameters analyzed.
- Investigation-derived waste groundwater will be filtered onsite using a granular activated carbon medium and released to the ground.

2020 LTM Program Modifications

USACE transferred the site to LM in September 2019, and LM produced a Long-Term Surveillance and Maintenance Plan (DOE 2019). LM conducted a sampling event in July 2020. LM sampled each well for a suite of MNA parameters and well stability parameters and determined that geochemical conditions were similar to previous measurements. The report recommended the following specifics:

- Continue redeveloping wells before sampling events as indicated by SAP parameters.
- Continue sampling for well stabilization parameters and VOCs.
- Remove the stuck pump from well MW-44S.
- Decommission offsite well MW-32S.

2021 LTM Program Modifications

NYSDEC requested a 2021 sampling event take place in order for future events to match the previously established biennial schedule. The report contained the following recommendations:

- Sample groundwater every 2 years.
- Continue sampling for well stabilization parameters and VOCs.
- Sampling for MNA parameters is no longer warranted.

2.2.1 Monitoring Well Network

The current monitoring well network consists of the seven wells indicated in Table 2. The locations of the seven wells are shown in Figure 2. Section 3.6 provides details regarding purpose of each monitoring well.

		Coordi	nates ²		Top of	Ground	Top of	Screen	Pump	Intake	Bottom	of Screen	Well Tot	al Depth ³
Well ID	Installation Date	Northing [ft]	Easting [ft]	Inner Diam- eter	(TOC) Elevation	Surface Elevation [ft msl]	Depth (ft from TOC)	Elevation (ft amsl)						
MW-08S	7/28/1988	1406050.14	679397.21	2"	230.90	228.90	8.00	222.90	10.50	220.40	13.00	217.90	15.00	215.90
MW-30S	8/2/2000	1405591.48	679047.79	2"	226.74	225.24	6.00	220.74	10.00	216.74	16.00	210.74	16.00	210.74
MW-34S	12/20/2001	1405327.12	679309.35	2"	219.84	218.33	10.01	209.83	15.01	204.83	20.01	199.83	20.01	199.83
MW-37S	1/27/2002	1405238.84	679671.42	2"	219.96	218.05	12.91	207.05	17.91	202.05	22.91	197.05	22.91	197.05
MW-41S	12/11/2006	1405453.53	679538.46	2"	224.82	223.15	11.67	213.15	16.67	208.15	21.67	203.15	23.67	201.15
MW-42S	12/12/2006	1405480.59	679426.27	2"	225.77	224.23	11.54	214.23	16.54	209.23	21.54	204.23	24.54	201.23
MW-44S ⁴	7/13/2020	1405455.84	679685.19	2"	225.11	223.36	13.91	211.20	18.91	206.20	23.91	201.20	23.91	201.20

Table 2. Monitoring Well Network

Notes:

¹ Abbreviations: ft: feet, amsI: above mean sea level, TOC: top of casing,

² Coordinates Reference: New York State Plane NAD83 East Zone, Units: US survey feet.

³ Well total depths are from boring logs/wellconstruction diagrams prepared at the time of well construction.

⁴ Well MW-44S was damaged in 2019 and repaired on July 13, 2020. Coordinates and TOC elevation were re-surveyed on July 18, 2020.

2.3 July 2023 Long-Term Monitoring Event

The following sections discuss the data from the July 2023 monitoring event. During the event, groundwater level measurements were made, and groundwater samples were collected for chemical analysis. Fieldwork began on Monday, July 10, and concluded on Tuesday, July 11, 2023. The weather was warm and there were showers early Monday morning. There was standing water in the northern part of the site. All seven wells were found to be secured by locks and in good condition.

2.3.1 Well Sampling

The sampling technicians commenced work on Monday, July 10, at well MW-08S. There was standing water in the area surrounding the well and the depth to groundwater was higher than ground surface. The next well to be sampled was well MW-30S, which did not reach the target turbidity of less than 10 nephelometric turbidity units (NTU).

On Tuesday, July 11, technicians sampled wells MW-34S and MW-37S in the morning, followed by onsite wells MW-44S, MW-42S, and MW-41S in the afternoon. The turbidity at wells MW-30S, MW-37S, and MW-42S was higher than 10 NTU. All other sampling criteria were met.

All wells were sampled using the low-flow protocol specified in the SAP, with unfiltered samples. All seven wells were sampled for the same suite of analyses. The analyses included VOCs and well stability parameters shown in Table 3.

Parameters (all are aqueous)	Analytical Method ^a	Field or Lab	Primary Samples	Field Duplicate	Waste Water ^b	Trip⁰ Blank	No. of Samples
VOCs (PCE, TCE, cDCE, VC)	SW 8260B	Lab	7	1	1	1	10
Dissolved oxygen	SM 4500-O	Field	7	0	0	0	7
Temperature	SM 2550	Field	7	0	0	0	7
Oxidation-reduction potential	ASTM D1498-00	Field	7	0	0	0	7
pН	EPA 9045C	Field	7	0	0	0	7
Specific conductance	SM 2510	Field	7	0	0	0	7
Turbidity	EPA 2130	Field	7	0	0	0	7
1	Totals		49	1	1	1	52

Table 3. Analysis Summary

Notes:

^a Test methods are described in EPA's SW-846 test methods for hazardous waste (EPA 2015).

^b Waste purge water was filtered through granular activated carbon prior to release.

^c One trip blank was used for the shipment of VOC samples.

Abbreviations:

ASTM = ASTM International

EPA = U.S. Environmental Protection Agency SM = Standard Method, SW = solid waste

All samples were shipped to the laboratory by overnight delivery in a single shipment, meaning that only a single trip blank was needed. Only dedicated sampling equipment was used, so there was no need for an equipment rinsate sample. A field duplicate was collected at well MW-44S.

3.0 Monitoring Results

Field measurements and laboratory results of the July 2023 sampling event are discussed in the following sections. The current and previous field measurements and laboratory results from long term monitoring are summarized in Appendix D.

3.1 Groundwater Elevations

Groundwater elevations were measured from all seven of the active monitoring wells within 24 hours on July 10 and 11, 2023. All measurements were taken with the same water level meter. No weather events occurred during the measuring period (weather fronts can rapidly change water table elevations). Groundwater elevations are shown in Table 4. Groundwater elevations from the LTM program dating from 2008 to present are included in Appendix D.

	Coord	Coordinates ^a		Top of	Depth Below	Groundwater	
Well ID	Northing	Easting	Surface Elevation (ft amsl)	Casing Elevation (ft amsl)	Top of Casing to Water (ft)	Elevation (ft amsl)	
MW-08S	1406050.14	679397.21	228.90	230.90	1.98	228.92	
MW-30S	1405591.48	679047.79	225.24	226.74	6.30	220.44	
MW-34S	1405327.12	679309.35	218.33	219.84	5.64	214.20	
MW-37S	1405238.84	679671.42	218.05	219.96	5.95	214.01	
MW-41S	1405453.53	679538.46	223.15	224.82	5.03	219.79	
MW-42S	1405480.59	679426.27	224.23	225.77	6.89	218.88	
MW-44S	1405455.84	679685.19	223.36	225.11	4.23	220.88	

Table 4.	Groundwater	Elevations.	Julv 1	10–11.	2023
1 4010 11	oroundination		cary .	,	2020

Note:

^a Coordinate references: New York State Plane North American Datum of 1983 (NAD 83) East Zone. Units are U.S. survey feet.

The depth to groundwater ranged from a maximum of 228.92 ft amsl at upgradient well MW-08S to a minimum of 214.01 ft amsl at offsite well MW-37S. As noted in Section 2.3.1, the water table was higher than ground surface at well MW-08S. The water table averaged 0.52 ft lower than the previous monitoring event in July 2021. As indicated in Figure 4, the groundwater flow direction was to the south-southwest, which is consistent with all previous observations. Groundwater seepage velocity (V_s) can be calculated using the site's average hydraulic conductivity (K) of 1.5 ft/d (USACE 2003) and an assumed effective porosity (n_e) of 30% (Ohio EPA 2006), where: $V_s = K \times I/n_e$. The gradient (I) was approximately 3% near well MW-41S. The seepage velocity near well MW-41S is calculated to be approximately 0.028 ft/d or approximately 10 ft per year.

3.2 Well Stability Parameters

Well stability parameters were measured after well purging once all the parameters had stabilized. Purging is an integral part of the low-flow sampling protocol immediately before groundwater samples are acquired from each well. In accordance with the SAP, the stability criteria are specific conductance: $\pm 10\%$, pH: ± 0.2 standard units, and turbidity: <10 NTU.

The stabilization parameter results are summarized in Table 5. Well stability parameters dating from the beginning of the LTM program in 2008 up to 2023 are included in Appendix D.

Well ID	MW-08S	MW-30S	MW-34S	MW-37S	MW-41S	MW-42S	MW-44S
Sample Date	7/10/23	7/10/23	7/11/23	7/11/23	7/10/23	7/10/23	7/10/23
Parameter							
Dissolved oxygen (mg/L)	1.83	16.2*	1.54	1.35	0.84	1.22	3.95
Oxidation-reduction potential (mV)	128	171	68.6	-88.6	-57.3	-112	125
pH (standard units)	6.50	6.80	6.94	7.04	6.69	7.08	6.78
Specific conductance (µS/cm)	520	420	500	439	925	428	812
Temperature (°C)	15.6	13.9	13.0	13.3	13.3	14.8	16.0
Turbidity (NTU)	2.12	16.7	nm*	nm*	36.0	14.0	9.25

Table 5. Well Stability Parameter Results

Note:

* Indicates an anomalous reading.

Abbreviations:

μS/cm = microsiemens per centimeter mg/L = milligrams per liter mV = millivolts nm = not measured NTU = nephelometric turbidity units

Figure 4. Groundwater Elevation Contours, July 2023

Dissolved oxygen (DO) concentrations ranged from 0.84 milligram per liter (mg/L) at monitoring well MW-41S to 3.95 mg/L at well MW-44S and averaged 1.53 mg/L. The theoretical maximum DO at the elevation of the Colonie site and the given groundwater temperature is approximately 10 mg/L, indicating that the DO reading at well MW-30S is an anomaly, and was not included in statistical averaging. DO readings have typically ranged from 0 to 3 mg/L during previous sampling events.

Oxidation-reduction potential (ORP) was measured using a silver/silver chloride reference electrode and ranged from -112 millivolts (mV) at well MW-42S to +171 mV at well MW-30S and averaged 33.6 mV. The measurements suggest slightly oxidizing conditions. ORP has historically been in the same range of approximately -100 to +200 mV.

The pH ranged from a minimum of 6.50 at well MW-08S to a maximum of 7.08 in well MW-42S, and the average (logarithmic mean) was 6.72. All pH results have historically been circumneutral.

Specific conductance ranged from a minimum of 420 microsiemens per centimeter (μ S/cm) at well MW-30S to a maximum of 925 μ S/cm at well MW-41S and averaged 578 μ S/cm. Drinking water typically ranges from 200 to 800 μ S/cm. The U.S. Environmental Protection Agency (EPA) secondary maximum contaminant level for total dissolved solids is 500 mg/L, which is equivalent to a specific conductance of 780 μ S/cm (EPA 2020).

Temperature of the groundwater measured in the flow-through cell ranged from a minimum of 13.0 °C at well MW-34S to a maximum of 16.0 °C at well MW-44S and averaged 14.3 °C.

Turbidity ranged from a minimum of 2.12 NTU at well MW-08S to a maximum of 36.0 NTU at well MW-41S and averaged 15.6 NTU. The turbidimeter could not be calibrated on the second day of sampling, so turbidity readings are missing from wells MW-34S and MW-37S. Although average turbidity decreased compared to the 2021 sampling event, three of the seven wells had turbidities above 10 NTU this year which was the same number as last year.

3.3 Contaminant Concentrations

All seven wells were sampled for the COC VOCs by EPA SW-846 Method 8260B (EPA 2015). Well MW-41S was sampled in duplicate. Table 6 shows VOC analysis results for the present and previous sampling events in comparison to the TCGs. Analysis results from the LTM program dating from 2008 to present are also included in Appendix D. Figure 5 shows VOC results on a map of the site.

There was one single exceedance of TCGs in July 2023; PCE exceeded the TCG of 5.5 μ g/L in well MW-41S. The PCE concentration was 8.6 μ g/L.

Upgradient well MW-08S has consistently had nondetectable results for VOCs. The apparent decrease in VOC concentrations in July 2020, as shown in Table 6, is due to the decrease in the method detection limits from 1.0 to $0.333 \mu g/L$.

Cross-gradient well MW-30S exhibited a continued decrease in PCE concentration from 6.67 μ g/L in July 2020 to 2.88 μ g/L in July 2021, to 0.8 μ g/L in July 2023.

Offsite well MW-34S continues to exhibit VOC concentrations at or near their respective detection limits. The four COCs exhibit consistently decreasing concentrations.

Offsite well MW-37S exhibited a cDCE concentration of 33.3 μ g/L, while PCE, TCE, and VC were near the detection limit.

Onsite well MW-41S exhibited a PCE concentration of 8.6 μ g/L, which exceeds the TCG of 5.5 μ g/L. The result is less than the previous sampling event in 2021, which was 12.7 μ g/L. The well exhibits a trend of decreasing concentration over time as shown in Figure 6. TCE and cDCE concentrations were slightly lower than the previous sampling event, while VC was slightly above the detection limit.

Onsite well MW-42S had no exceedances. VOC concentrations are similar to offsite well MW-37S because cDCE concentration is elevated while the other VOCs are nondetectable or near their detection limits, as shown in Table 6.

Onsite well MW-44S had no detected VOC results for this event and the previous one.

3.4 Temporal and Spatial Changes in COC Results

Most detectable COCs had lower concentrations in July 2023 compared to July 2021. Although there were two exceedances of TCGs in July 2020, there was only one exceedance in July 2021 and one exceedance in July 2023. As in previous events, PCE remains elevated near the former source zone: the southeast corner of the building formerly near well MW-41S. PCE remains near the detection limit in downgradient wells MW-34S and MW-37S. The PCE breakdown products TCE and cDCE show slight upticks in concentrations in wells MW-30S and MW-37S from July 2021 to July 2023, albeit at concentrations below the reporting limit (J flagged in Table 6).

As shown in the time-series plot of well MW-41S (Figure 6), PCE continues to decline in the single well where PCE exceeds the cleanup goal.

Table 6. VOC Analysis Results

Sample Date		ple Date	11/20	010	3/20	11	5/20	11	8/20	11	2/20	12	5/20	12	8/20	12	8/20	15	3/201	16	8/20	16	4/20	17	7/20	20	7/20	7/20	23	
Well	Analyte	Target ^{Cleanup} Goal	Result [µg/L]	Q	Result [µg/L]	Q	Result [µg/L]	Q	Result [µg/L]	Q	Result [µg/L]	Q	Result [µg/L]	Q	Result [µg/L]	Q	Result [µg/L]	Q	Result [µg/L]	Q	Result [µg/L]	Q	Result [µg/L]	٥	Result [µg/L]	Q	Result [µg/L]	Q	Result [µg/L]	٥
MW-08S	PCE	5.5	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	NS		1.0	U	1.0	U	0.333	U	0.333	U	0.333	U
	TCE	18.0	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	NS		1.0	U	1.0	U	0.333	U	0.333	U	0.333	U
	cDCE	1,800	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	NS		1.0	U	1.0	U	0.333	U	0.333	U	0.333	U
	VC	1.4	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	NS		1.0	U	1.0	U	0.333	U	0.333	U	0.333	U
MW-30S	PCE	5.5	5.6		4.7		3.6		4.4		4.5		4.6		6.0		2.8		1.5		3.9		3.1	J	6.67		2.88		0.8	J
	TCE	18.0	1.4		1.1		0.5	J	1.6		1.7		1.6		2.4		1.6		0.52	J	1.2		1.0	U	1.54		0.333	U	0.49	J
	cDCE	1,800	0.56	J	0.67	J	1.0	U	1.3		1.4		1.3		2.3		2.0		0.76	J	0.96	J	1.0	U	0.54	J	0.333	U	0.52	J
	VC	1.4	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	0.333	U	0.333	U	0.333	U
MW-34S	PCE	5.5	0.96		0.75	J	0.66	J	0.71	J	0.70	J	0.72	J	0.73	J	0.45	J	0.49	J	0.61	J	0.75	J	0.47	J	0.51	J	0.37	J
	TCE	18.0	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	0.29	J	0.333	U	0.333	U	0.333	U
	cDCE	1,800	1.6		0.96	J	0.93	J	1.2		1.1	J	0.86	J	1.5		0.91	J	0.79	J	1.3		1.2		1.34		1.09		1.04	
	VC	1.4	2.5		1.8		2.4		2.2		2.3		2.0		3.4		1.7	J	1.1		1.6		1.1		0.97	J	0.86	J	0.74	J
MW-37S	PCE	5.5	0.25	J	1.0	U	0.25	J	0.39	J	0.58	J	0.21	J	0.37	J	0.49	J	0.38	J	1.0	U	0.50	J	0.333	U	0.333	U	0.48	J
	TCE	18.0	0.36	J	0.33	J	0.41	J	0.63	J	0.68	J	0.31	J	0.53	J	0.58	J	0.62	J	0.28	J	0.42	J	0.333	U	0.333	U	0.48	J
	cDCE	1,800	17.0		27		27.0		34.0		28		39		48.0		52.0		39		51		49		45.6		41.6		33.3	
	VC	1.4	0.50	J	0.66	J	0.91	J	0.53	J	0.40	J	0.63	J	0.69	J	0.59	J	0.35	J	0.48	J	0.65	J	0.333	U	0.62	J	0.86	J
MW-41S	PCE	5.5	26.0		15		39.0		24		30.0		28		30.0		14.0		25		18		24		15.0		12.7		8.6	
	TCE	18.0	8.3		5.3		11.0		7.1		6.8		7.4		8.6		4.5		6.1		5.3		5.1		4.93		4.86		2.88	
	cDCE	1,800	1.0		3.5		6.8		5.2		4.4		5.2		5.1		4.2		4.7		4.7		4.8		5.77		6.35		4.93	
	VC	1.4	0.66	J	0.58	J	0.92	J	0.69	J	1.0		1.2		1.0		0.90	J	0.53	J	0.62	J	0.58	J	0.33	U	0.76	J	1.10	
MW-42S	PCE	5.5	0.43		0.20	J	0.37	J	0.23	J	0.22	J	1.0	U	0.34	J	0.33	U	0.33	U	0.33	U								
	TCE	18.0	1.3		1.0		0.75	J	0.73	J	0.54	J	0.73	J	0.59	J	0.65	J	0.44	J	0.45	J	0.75	J	0.52	J	0.33	U	0.33	U
	cDCE	1,800	4.3		3.4		9.2		12		6.6		7.4		11.0		13.0		7.2		8.5		7.6		7.00		5.31		4.88	
	VC	1.4	1.0	U	1.0	U	0.22	J	1.0	U	0.22	J	1.0	U	0.21	J	1.0	U	1.0	U	1.0	U			0.33	U	0.33	U	0.33	U
MW-44S	PCE	5.5															3.1		13		15		18		0.33	U	0.33	U	0.33	U
	TCE	18.0															4.0		7.7		9.9		9.9		0.33	U	0.33	U	0.33	U
	cDCE	1,800															3.1		2.8		3.5		3.3		0.51	J	0.33	U	0.33	U
	VC	1.4															1.0	U	1.0	U	1.0	U	1.0	U	0.33	U	0.33	U	0.33	U

Note:

Bold, shaded entry indicates value exceeds the target cleanup goal.

Abbreviations:

Abbreviations: cDCE = *cis*-1,2-dichloroethene J = estimated value below the method reporting limit µg/L = micrograms per liter NS = not sampled PCE = tetrachloroethene Q = qualifier assigned by laboratory TCE = trichloroethene U = not detected at method reporting limit VC = vinyl chloride

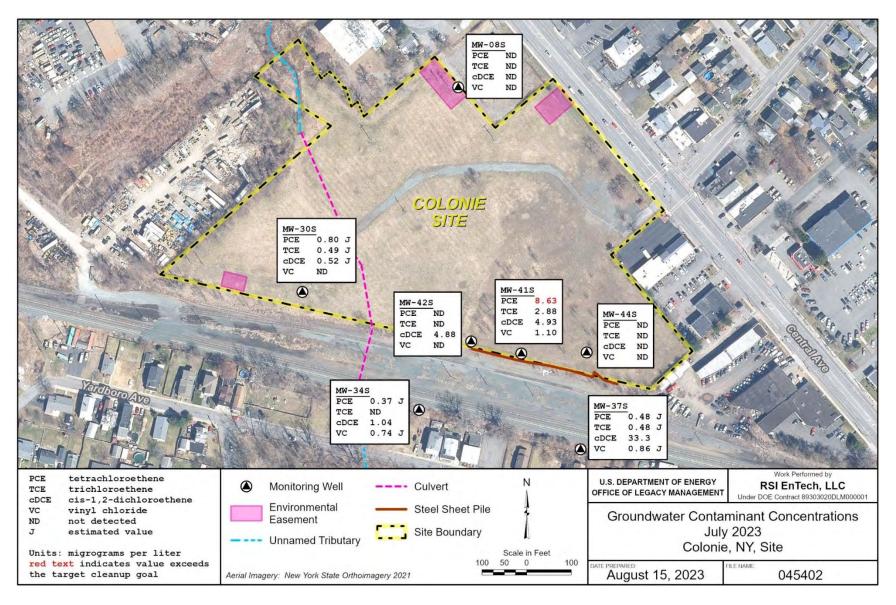


Figure 5. Groundwater Contaminant Concentrations, July 2023

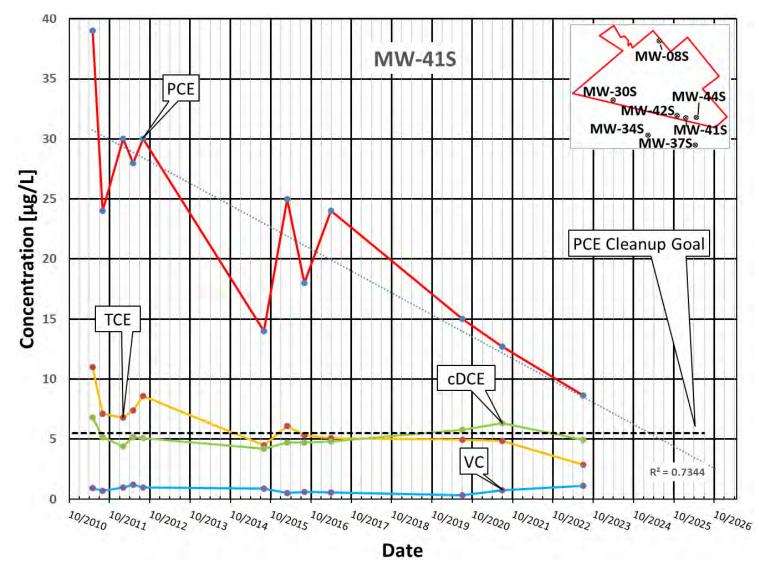


Figure 6. Graph of VOCs Versus Time at MW-41S

3.5 Comparison of COC Results to TCGs

As observed during the previous two monitoring events, PCE was the only COC to exceed its TCG. The PCE exceedances have previously occurred in three wells. The only other VOC to show exceedances was VC in well MW-34S, but this well has not exhibited an exceedance since 2016.

3.6 Evaluation of the Monitoring Well Network

The following discussion reviews the utility of each monitoring well:

- **MW-08S:** This upgradient well serves to indicate potential upgradient influences and defines much of the gradient across the site. Analysis results have been nondetectable from all sampling events.
- **MW-30S:** This onsite well shows groundwater conditions near the former landfill location.
- **MW-34S:** This offsite downgradient well serves as a sentinel to demonstrate that contaminant migration is not occurring.
- **MW-37S:** This is another sentinel well downgradient from the former building location. There has not been a TCG exceedance at this well.
- **MW-41S:** This well indicates contaminant concentrations from the former building's source zone. It exhibits the single PCE exceedance at the site, but it is decreasing.
- **MW-42S:** This well indicates contaminant concentrations from the former building's source zone. The four VOCs are below their TCGs here, and concentrations continue to decrease. This well is redundant to well MW-41S.
- **MW-44S:** This well indicates groundwater contaminant concentrations from the former building's source zone. Contaminant concentrations have been nondetectable during the last three sampling events.

4.0 Conclusions and Recommendations

4.1 Conclusions

The following conclusions were made based on the remedy evaluation:

- Groundwater flow direction remains to the southwest consistent with the previous measurements.
- The TCGs are exceeded for only one COC in a single well. PCE was the only COC to exceed its TCG. This exceedance occurred in well MW-41S but shows consistently declining concentrations.
- All wells may be in compliance with TCGs by the next sampling event in July 2025.

4.2 **Recommendations**

This section presents recommendations based on the review of groundwater data trends and comparison of analytical results to TCG concentrations. The following actions are recommended:

- Sample groundwater in 2 years (2025)
- Continue sampling for well stabilization parameters and COCs

5.0 References

40 CFR 300. U.S. Environmental Protection Agency, "National Oil and Hazardous Substances Pollution Contingency Plan," *Code of Federal Regulations*.

42 USC 9601–9675. "Comprehensive Environmental Response, Compensation, and Liability," *United States Code*.

CB&I (CB&I Federal Services LLC), 2015. *Decommissioning Report, Monitoring Wells and Piezometers, Colonie FUSRAP Site, Draft Final*, November.

Colonie (Town of Colonie, New York), 2007. *Code of the Town of Colonie – Chapter 190*, Zoning and Land Use.

Colonie (Town of Colonie, New York), 2020. "Department of Public Works Division of Latham Water," https://www.colonie.org/departments/lathamwater/.

DOE (U.S. Department of Energy), 2019. *Long-Term Surveillance and Maintenance Plan for the Colonie, New York, FUSRAP Site*, LMS/CIS/S13262-0.0, Office of Legacy Management, February.

DOE (U.S. Department of Energy), 2021a. Long-Term Groundwater Monitoring Report Colonie, New York, Site–Natural Attenuation Remedy, July 2020 Sampling Event, LMS/CIS/S31739, Office of Legacy Management, February.

DOE (U.S. Department of Energy), 2021b. Long-Term Groundwater Monitoring Report Colonie, New York, Site–Natural Attenuation Remedy, July 2021 Sampling Event, LMS/CIS/S31739, Office of Legacy Management, September.

DOE (U.S. Department of Energy), 2022. *Long-Term Surveillance and Maintenance Plan for the Colonie, New York, Site*, LMS/CLN/S13262, Office of Legacy Management, February.

DOE (U.S. Department of Energy), 2023. Decommissioning of Well MW-32S, Colonie, New York, Site, LMS/CLN/42759, Office of Legacy Management, June.

DOE (U.S. Department of Energy) and USACE (U.S. Army Corps of Engineers), 2020. *Colonie FUSRAP Site, Colonie, New York, Site Management Plan*, LMS/CIS/S29459, March.

Environmental Data Validation Procedure, LMS/PRO/S15870, continually updated, prepared by the LMS contractor for the U.S. Department of Energy Office of Legacy Management.

EPA (U.S. Environmental Protection Agency), 2015. *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods*, EPA publication SW-846, Third Edition, Final Updates I–V.

EPA (U.S. Environmental Protection Agency), 2020. "National Primary Drinking Water Regulations," https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations.

Inspection and Maintenance of Groundwater Monitoring and Extraction Wells, LMS/PRO/S18459, continually updated, prepared by the LMS contractor for the U.S. Department of Energy Office of Legacy Management.

Ohio EPA (Ohio Environmental Protection Agency), 2006. *Technical Guidance for Ground Water Investigations*, Chapter 3, "Characterization of Site Hydrogeology," October.

Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites, LMS/PRO/S04351, continually updated, prepared by the LMS contractor for the U.S. Department of Energy Office of Legacy Management.

USACE (U.S. Army Corps of Engineers), 2003. *Final Groundwater Remedial Investigation Report, Colonie FUSRAP Site,* July.

USACE (U.S. Army Corps of Engineers), 2010a. *Colonie FUSRAP Site Record of Decision—Colonie Site Groundwater*, April.

USACE (U.S. Army Corps of Engineers), 2010b. *Final Long-Term Monitoring Work Plan, Rev. 1, Groundwater Sampling for Natural Attenuation, Colonie FUSRAP Site,* August.

USACE (U.S. Army Corps of Engineers), 2010c. *Final Post Remedial Action Remedial Report, Colonie FUSRAP Site*, January.

USACE (U.S. Army Corps of Engineers), 2014a. 2011–2012 Annual Long-Term Monitoring Report, Colonie FUSRAP Site, Colonie, New York, Final, May.

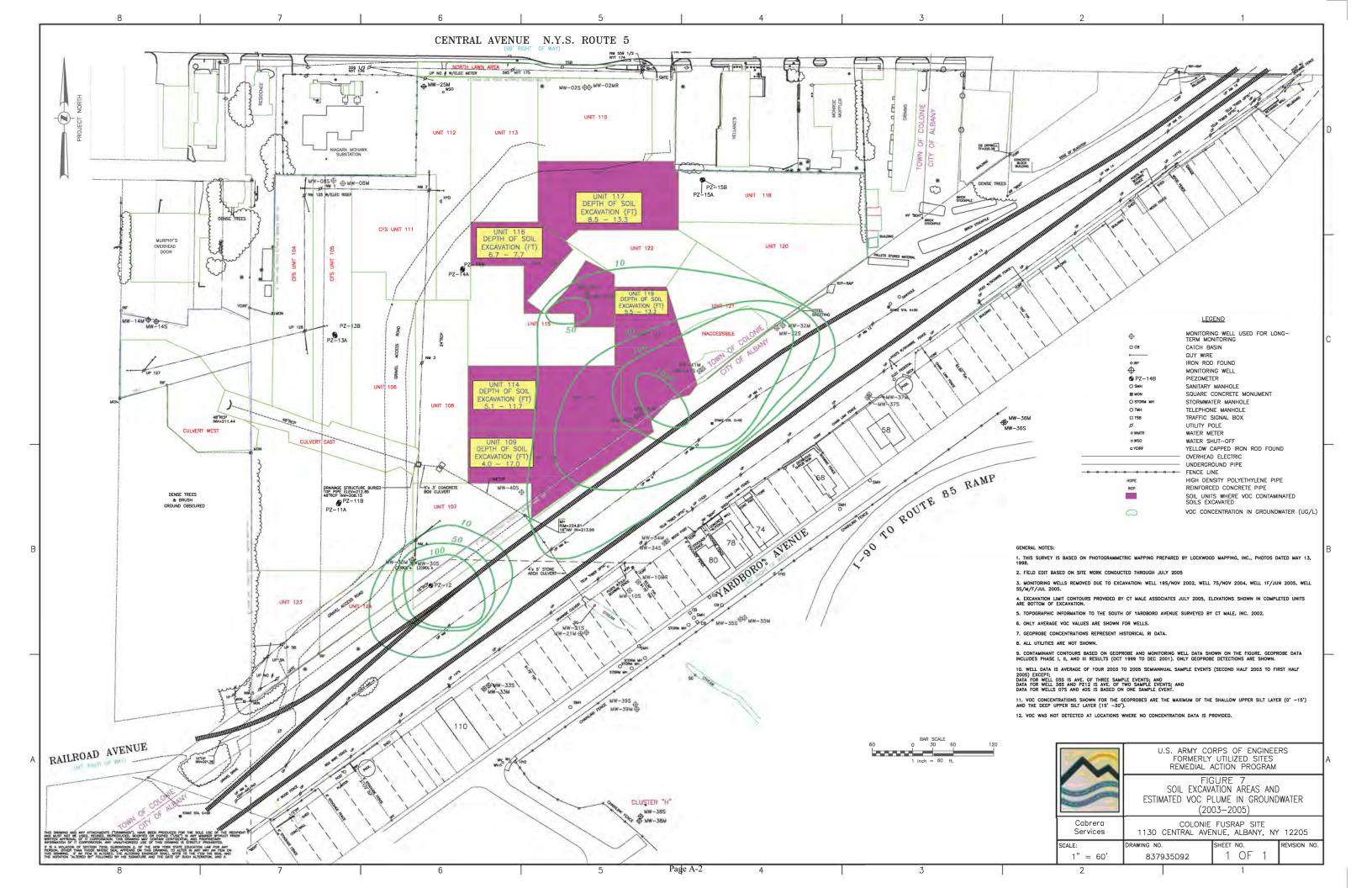
USACE (U.S. Army Corps of Engineers), 2014b. Addendum to the Final Long-Term Monitoring Work Plan, Colonie FUSRAP Site, Colonie, New York, October.

USACE (U.S. Army Corps of Engineers), 2015. *Colonie FUSRAP Site, Colonie Main Site Soils Record of Decision*, New York District, March.

USACE (U.S. Army Corps of Engineers), 2016. *Groundwater Monitoring Report, Natural Attenuation Remedy, August 2015 Sampling Event, Colonie FUSRAP Site*, Draft Final, February.

USACE (U.S. Army Corps of Engineers), 2017a. 2016–2017 Annual Report Long-Term Groundwater Monitoring, Natural Attenuation Remedy, August 2016 and April 2017 Sampling Events, New York District, October.

USACE (U.S. Army Corps of Engineers), 2017b. Vicinity Property Operable Unit Record of Decision, Colonie FUSRAP Site, New York District, September.


USACE (U.S. Army Corps of Engineers), 2018. *Final Site Closeout Report for the Colonie FUSRAP Site*, New York District, April.

U.S. Census Bureau, 2020. "QuickFacts, Colonie town, Albany County, New York," https://www.census.gov/quickfacts/colonietownalbanycountynewyork, accessed October 9, 2020.

Appendix A

Groundwater Record of Decision Figures 6 and 7

Appendix B

Groundwater Remedial Investigation Data Summary Tables

Table A-1Historical Analytical Results - Upper AquiferDOE Colonie New York, Site

Sampling Date	Units	28-Jul-0	8	29-Oct-0)8	18-Feb-(09	21-May-	09	1-Dec-9	8	1-May-9	9	1-Oct-9	9	1-Jan-00 MW-08S		
Well ID		MW-02	S	MW-02	S	MW-02	S	MW-02	S	MW-08	S	MW-085	3	MW-085	3			
VOCs	1	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	
1,1-DCE	µg/L	-		-		-		-		10	U	5	U	10	U	-		
PCE	µg/L	-		-		-		-		10	U	5	U	10	U	-		
TCE	µg/L	-		-		-		-		10	U	5	U	10	U	-		
VC	µg/L	-		-		-		-		10	U	10	U	10	U	-		
cis-1,2-DCE	µg/L	-		-		-		-		10^	U	5^	U	10^	U	-		
trans-1,2-DCE	µg/L	-		-		-		-								-		
Metals		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	
Lead (Total)	µg/L	-		-		-		-		1.7	В	2.9	U	2.1	U	-		
Lead (Dissolved)	µg/L	-		-		-		-		-		-		-		2.3	U	
Radiological Parameters		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	
Gross Alpha	pCi/L	-		-		-		-		-		-		-		-		
Gross Beta	pCi/L	-		-		-		-		-		-		-		-		
Total Uranium	µg/L	-		-		-		-		-		-		-		-		
Combined Radium 226/228	pCi/L	-		-		-		-		-		-		-		-		
Gross Alpha - Dissolved	pCi/L	-		-		-		-		-		-		-		-		
Gross Beta - Dissolved	pCi/L	-		-		-		-		-		-		-		-		
Total Uranium - Dissolved	µg/L	-		-		-		-		-		-		-		-		
Combined Radium 226/228 - Dissolved	pCi/L	-		-		-		-		-		-		-		-		
MNA Parameters		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	
TOC	mg/L	1.00	J	1.15	J	1.24	J	0.967	J	-		-		-		-		
DOC	mg/L	1.34	J	0.940	J	1.190	J	0.953	J	-		-		-		-		
Ethane	µg/L	2.0	U	2.0	U	2.0	U	2.0	U	-		-		-		-		
Ethene	µg/L	2.0	U	2.0	U	2.0	U	2.0	U	-		-		-		-		
Methane	µg/L	12.0		14		13		8.7		-		-		-		-		
Nitrate-N	mg/L	0.10	U	14	J	0.10	U	0.10	U	-		-		-		-		
Sulfate	mg/L	46.7		14		62.7		45.0		-		-		-		-		
Chloride	mg/L	84.7		14		162		92.8		-		-		-		-		
Soluble Manganese, Mn(II)	mg/L	0.43		14		0.50	U	0.40		-		-		-		-		
Ferrous Iron, Fe(II)	mg/L	1.2		14		0.6		1.4		-		-		-		-		
Field Parameters		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	
рН	SU	6.20		7.63		7.42		7.27		-		-		-		-		
Specific Conductance	mS/cm	0.510		0.494		0.702		0.461		-		-		-		-	Ĩ	
Turbidity	NTU	76.0		23.0		22.4		1.5		-		-		-		-		
Dissolved Oxygen	mg/L	3.36		NM		2.12		9.97		-		-		-		-		
Temperature	°C	14.11		13.26		10.72		11.99		-		-		-		-		
ORP	mV	-72.8		-133.0		-156.8		-106.2		-		-	1	-	1	-		

See notes at the end of the table.

Sampling Date	Units	1-Mar-0	0	1-Aug	-00	1-Dec-	00	1-Feb-0	1	1-Aug-0	1	1-Dec-	01	1-Feb-0	2	2-Jun-0)2
Well ID		MW-08	S	MW-0	8S	MW-08	3S	MW-08	S	MW-08	S	MW-08	S	MW-08	S	MW-08	S
VOCs		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
1,1-DCE	µg/L	10	U	10	U	-		1	U	0.83	U	-		0.5	U	0.5	U
PCE	µg/L	10	U	10	U	-		1	U	0.78	U	-		0.5	U	0.5	U
TCE	µg/L	10	U	10	U	-		1	U	0.49	U	-		0.5	U	0.5	U
VC	µg/L	10	U	10	U	-		2	U	1.0	U	-		0.5	U	0.5	U
cis-1,2-DCE	µg/L	10^	U	10^	U	-		1^	U	0.49	U	-		0.5	U	0.5	U
trans-1,2-DCE	µg/L					-				0.84	U	-		0.5	U	0.5	U
Metals		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
Lead (Total)	µg/L	2.3	U	1.3	U	-		4.3		1.2	U	-		2.8	U	2.8	U
Lead (Dissolved)	µg/L	-		-		1.3	U	3.2		-		1.2	U	2.8	U	2.8	U
Radiological Parameters		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
Gross Alpha	pCi/L	-		-		-		-		-		-		-		-	
Gross Beta	pCi/L	-		-		-		-		-		-		-		-	
Total Uranium	µg/L	-		-		-		-		-		-		-		-	
Combined Radium 226/228	pCi/L	-		-		-		-		-		-		-		-	
Gross Alpha - Dissolved	pCi/L	-		-		-		-		-		-		-		-	
Gross Beta - Dissolved	pCi/L	-		-		-		-		-		-		-		-	
Total Uranium - Dissolved	µg/L	-		-		-		-		-		-		-		-	
Combined Radium 226/228 - Dissolved	pCi/L	-		-		-		-		-		-		-		-	
MNA Parameters		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
TOC	mg/L	-		-		-		-		-		-		-		-	
DOC	mg/L	-		-		-		-		-		-		-		-	
Ethane	µg/L	-		-		-		-		-		-		-		-	
Ethene	µg/L	-		-		-		-		-		-		-		-	
Methane	µg/L	-		-		-		-		-		-		-		-	
Nitrate-N	mg/L	-		-		-		-		-		-		-		-	
Sulfate	mg/L	-		-		-		-		-		-		-		-	
Chloride	mg/L	-		-		-		-		-		-		-		-	
Soluble Manganese, Mn(II)	mg/L	-		-		-		-		-		-		-		-	
Ferrous Iron, Fe(II)	mg/L	-		-		-		-		-		-		-		-	
Field Parameters		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
рН	SU	-		-		-		-		-		-		-		-	
Specific Conductance	mS/cm	-		-		-		-		-		-		-		-	
Turbidity	NTU	-		-		-		-		-		-		-		-	
Dissolved Oxygen	mg/L	-		-		-		-		-		-		-		-	
Temperature	°C	-		-		-		-		-		-		-		-	
ORP	mV	-		-		-		-		-		-		-		-	

Sampling Date	Units	1-Mar-0	3	3-Dec-0)3	4-Jul-04	4	4-Dec-0)4	5-Jun-0	5	5-Dec-	05	1-Dec-	06	26-Jun	-07
Well ID		MW-085	S	MW-08	S	MW-08	S	MW-08	S	MW-085	5	MW-08	3S	MW-08	3S	MW-08	3S
VOCs		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
1,1-DCE	µg/L	0.5	U	0.5	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
PCE	µg/L	0.3	J	0.5	U	1.0	U	1.0	U	1.0	UJ	1.0	U	1.0	U	1.0	U
TCE	µg/L	0.5	U	0.5	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
VC	μg/L	0.5	U	0.5	U	2.0	U	2.0	U	2.0	U	2.0	U	2.0	U	2.0	U
cis-1,2-DCE	μg/L	0.5	U	0.5	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
trans-1,2-DCE	μg/L	0.5	U	0.5	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Metals		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
Lead (Total)	μg/L	2.2	R	2.2	U	3	U	2	UJ	2	U	2	U	2	U	2	U
Lead (Dissolved)	μg/L			2.2	U	25	U	25	U	2.2	UJ	2	U	-		-	
Radiological Parameters		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
Gross Alpha	pCi/L	-		-		-		-		-		-		-		-	
Gross Beta	pCi/L	-		-		-		-		-		-		-		-	
Total Uranium	μg/L	-		-		-		-		-		-		-		-	
Combined Radium 226/228	pCi/L	-		-		-		-		-		-		-		-	
Gross Alpha - Dissolved	pCi/L	-		-		-		-		-		-		-		-	
Gross Beta - Dissolved	pCi/L	-		-		-		-		-		-		-		-	
Total Uranium - Dissolved	μg/L	-		-		-		-		-		-		-		-	
Combined Radium 226/228 - Dissolved	pCi/L	-		-		-		-		-		-		-		-	
MNA Parameters		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
TOC	mg/L	-		-		-		-		-		-		-		-	
DOC	mg/L	-		-		-		-		-		-		-		-	
Ethane	µg/L	-		-		-		-		-		-		-		-	
Ethene	µg/L	-		-		-		-		-		-		-		-	
Methane	µg/L	-		-		-		-		-		-		-		-	
Nitrate-N	mg/L	-		-		-		-		-		-		-		-	
Sulfate	mg/L	-		-		-		-		-		-		-		-	
Chloride	mg/L	-		-		-		-		-		-		-		-	
Soluble Manganese, Mn(II)	mg/L	-		-		-		-		-		-		-		-	
Ferrous Iron, Fe(II)	mg/L	-		-		-		-		-		-		-		-	
Field Parameters		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
рН	SU	-		6.65		-		6.26		6.74		6.8		6.71		6.58	
Specific Conductance	mS/cm	-		0.452		-		0.353		0.432		0.633		0.336		0.314	
Turbidity	NTU	-		0.0		-		1.4		5.3		0.0		0.0		1.3	
Dissolved Oxygen	mg/L	-		4.58		-		0.71		2.28		0.86		1.05		0.64	
Temperature	°C	-		6.22		-		16.72		8.63		13.17		10.02		11.28	
ORP	mV	-		222.2		-		282.3		192.4		221.1		230.6		84.3	

Sampling Date	Units	28-Dec	-08	28-Jul-	08	29-Oct-	08	18-Feb	-09	21-May-	09	1-Dec-98		1-May-	99	1-Oct-9	99
Well ID		MW-08	3S	MW-08	S	MW-08	S	MW-08	3S	MW-08	S	MW-0105	;	MW-01	0S	MW-01	0S
VOCs		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
1,1-DCE	µg/L	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	10	U	5	U	10	U
PCE	µg/L	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	10	U	5	U	10	U
TCE	µg/L	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	10	U	5	U	10	U
VC	µg/L	2.0	U	1.0	U	1.0	U	1.0	U	1.0	U	10	U	10	U	10	U
cis-1,2-DCE	µg/L	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	10^	U	5^	U	10^	U
trans-1,2-DCE	µg/L	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U						
Metals		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
Lead (Total)	µg/L	-		1.0	U	1.0	U	1.0	U	1.0	U	2.4	В	2.9	U	2.1	U
Lead (Dissolved)	µg/L	-		1.0	U	1.0	U	1.0	U	1.0	U	-		-		-	
Radiological Parameters		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
Gross Alpha	pCi/L	-		-		-		-		-		-		-		-	
Gross Beta	pCi/L	-		-		-		-		-		-		-		-	
Total Uranium	µg/L	-		-		-		-		-		-		-		-	
Combined Radium 226/228	pCi/L	-		-		-		-		-		-		-		-	
Gross Alpha - Dissolved	pCi/L	-		-		-		-		-		-		-		-	
Gross Beta - Dissolved	pCi/L	-		-		-		-		-		-		-		-	
Total Uranium - Dissolved	µg/L	-		-		-		-		-		-		-		-	
Combined Radium 226/228 - Dissolved	pCi/L	-		-		-		-		-		-		-		-	
MNA Parameters		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
TOC	mg/L	-		-		-		-		-		-		-		-	
DOC	mg/L	-		-		-		-		-		-		-		-	
Ethane	µg/L	-		-		-		-		-		-		-		-	
Ethene	µg/L	-		-		-		-		-		-		-		-	
Methane	µg/L	-		-		-		-		-		-		-		-	
Nitrate-N	mg/L	-		-		-		-		-		-		-		-	
Sulfate	mg/L	-		-		-		-		-		-		-		-	
Chloride	mg/L	-		-		-		-		-		-		-		-	
Soluble Manganese, Mn(II)	mg/L	-		-		-		-									
Ferrous Iron, Fe(II)	mg/L	-		-		-		-									
Field Parameters		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
рН	SU	6.36		5.52		6.68		7.00		6.20		-		-		-	
Specific Conductance	mS/cm	0.486		0.401		0.280		0.483		0.418		-		-		-	
Turbidity	NTU	10.4		1.3		1.0		0.0		0.0		-		-		-	
Dissolved Oxygen	mg/L	0.97		0.95		0.45		0.00		4.08		-		-		-	
Temperature	°C	13.90		16.61		12.95		5.80		13.19		-		-		-	
ORP	mV	161.4		520.3		150.0		115.0		198.1		-	1	-		-	

Sampling Date	Units	1-Jan-	00	1-Mar-	00	1-Aug-	00	1-Dec-	00	1-Feb-	01	1-Aug-	01	1-Dec-0	01	1-Feb-	02
Well ID		MW-01	0S	MW-01	os	MW-01	os	MW-010)S	MW-01	0S	MW-010	0S	MW-010)S	MW-01	0S
VOCs		Results	Q														
1,1-DCE	µg/L	-		10	U	10	U	-		1	U	0.83	U	-		0.5	U
PCE	µg/L	-		10	U	10	U	-		1	U	0.78	U	-		0.5	U
TCE	µg/L	-		10	U	10	U	-		1	U	0.49	U	-		0.5	U
VC	µg/L	-		10	U	10	U	-		2	U	1.0	U	-		0.5	U
cis-1,2-DCE	µg/L	-		10^	U	10^	U	-		1^	U	0.49	U	-		0.5	U
trans-1,2-DCE	µg/L	-						-				0.84	U	-		0.5	U
Metals		Results	Q														
Lead (Total)	µg/L	-		2.3	U	1.3	UV	-		10		1.2	U	-		2.8	U
Lead (Dissolved)	µg/L	2.3	U	-		-		3.6	V	3.4		-		1.2	U	2.8	U
Radiological Parameters		Results	Q														
Gross Alpha	pCi/L	-		-		-		-		-		-		-		-	
Gross Beta	pCi/L	-		-		-		-		-		-		-		-	
Total Uranium	µg/L	-		-		-		-		-		-		-		-	
Combined Radium 226/228	pCi/L	-		-		-		-		-		-		-		-	
Gross Alpha - Dissolved	pCi/L	-		-		-		-		-		-		-		-	
Gross Beta - Dissolved	pCi/L	-		-		-		-		-		-		-		-	
Total Uranium - Dissolved	µg/L	-		-		-		-		-		-		-		-	
Combined Radium 226/228 - Dissolved	pCi/L	-		-		-		-		-		-		-		-	
MNA Parameters		Results	Q														
TOC	mg/L	-		-		-		-		-		-		-		-	
DOC	mg/L	-		-		-		-		-		-		-		-	
Ethane	µg/L	-		-		-		-		-		-		-		-	
Ethene	µg/L	-		-		-		-		-		-		-		-	
Methane	µg/L	-		-		-		-		-		-		-		-	
Nitrate-N	mg/L	-		-		-		-		-		-		-		-	
Sulfate	mg/L	-		-		-		-		-		-		-		-	
Chloride	mg/L	-		-		-		-		-		-		-		-	
Soluble Manganese, Mn(II)	mg/L																
Ferrous Iron, Fe(II)	mg/L																
Field Parameters		Results	Q														
рН	SU	-		-		-		-		-		-		-		-	
Specific Conductance	mS/cm	-		-		-		-		-		-		-		-	
Turbidity	NTU	-		-		-		-		-		-		-		-	
Dissolved Oxygen	mg/L	-		-		-		-		-		-		-		-	
Temperature	°C	-		-		-		-		-		-		-		-	
ORP	mV	-		-		-		-		-		-		-		-	

Sampling Date	Units	1-Jun-	02	1-Mar-(03	3-Dec-	03	4-Jul-()4	4-Dec-	04	5-Jun-	05	5-Dec-	05	1-Dec-	06	26-Jun	-07
Well ID		MW-01	0S	MW-01	OS	MW-01	0S	MW-01	0S	MW-01	0S								
VOCs		Results	Q																
1,1-DCE	µg/L	0.5	U	0.5	U	0.5	U	1.0	U										
PCE	µg/L	0.5	U	0.5	U	0.5	U	1.0	U	1.0	U	1.0	UJ	1.0	U	1.0	U	1.0	U
TCE	µg/L	0.5	U	0.5	U	0.5	U	0.21	J	1.0	U								
VC	µg/L	0.5	U	0.5	U	0.5	U	2.0	U										
cis-1,2-DCE	µg/L	0.5	U	0.5	U	0.5	U	1.0	U										
trans-1,2-DCE	µg/L	0.5	U	0.5	U	0.5	U	1.0	U										
Metals		Results	Q																
Lead (Total)	µg/L	2.8	U	2.2	U	2.2	U	3	U	3	U	2	U	2	U	2	U	2	U
Lead (Dissolved)	µg/L	10	U	2.2	U	2.2	U	25	U	25	U	25	U	2	U	-		-	
Radiological Parameters		Results	Q																
Gross Alpha	pCi/L	-		-		-		-		-		-		-		-		-	
Gross Beta	pCi/L	-		-		-		-		-		-		-		-		-	
Total Uranium	µg/L	-		-		-		-		-		-		-		-		-	
Combined Radium 226/228	pCi/L	-		-		-		-		-		-		-		-		-	
Gross Alpha - Dissolved	pCi/L	-		-		-		-		-		-		-		-		-	
Gross Beta - Dissolved	pCi/L	-		-		-		-		-		-		-		-		-	
Total Uranium - Dissolved	µg/L	-		-		-		-		-		-		-		-		-	
Combined Radium 226/228 - Dissolved	pCi/L	-		-		-		-		-		-		-		-		-	
MNA Parameters		Results	Q																
TOC	mg/L	-		-		-		-		-		-		-		-		-	
DOC	mg/L	-		-		-		-		-		-		-		-		-	
Ethane	µg/L	-		-		-		-		-		-		-		-		-	
Ethene	µg/L	-		-		-		-		-		-		-		-		-	
Methane	µg/L	-		-		-		-		-		-		-		-		-	
Nitrate-N	mg/L	-		-		-		-		-		-		-		-		-	
Sulfate	mg/L	-		-		-		-		-		-		-		-		-	
Chloride	mg/L	-		-		-		-		-		-		-		-		-	
Soluble Manganese, Mn(II)	mg/L																		
Ferrous Iron, Fe(II)	mg/L																		
Field Parameters		Results	Q																
рН	SU	-		7.95		-		7.98		8		7.91		7.74		8.00		6.90	
Specific Conductance	mS/cm	-		0.224		-		0.331		0.385		0.355		0.242		0.227		0.347	
Turbidity	NTU	-		3.8		-		0		0.5		0.2		3.2		0.0		5.2	
Dissolved Oxygen	mg/L	-		3.8		-		1.7		1.48		2.13		2.72		1.46		0.22	
Temperature	°C	-		10.06		-		12.26		10.43		11.25		9.78		10.76		16.58	
ORP	mV	-		-14.7		-		-79.9		-69.2		101.3		-42.5		-94.1		201.3	t

See notes at the end of the table.

Appendix B Table B-1.xlsx

Sampling Date	Units	28-Jul-	08	29-Oct-	·08	18-Feb	-09	21-May	-09	1-Dec-9	8	1-May-9	9	1-Oct-9	9	1-Jan-0	0
Well ID		MW-01	0S	MW-01	0S	MW-01	0S	MW-01	0S	MW-21	S	MW-21	S	MW-21	s	MW-21	S
VOCs		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
1,1-DCE	µg/L	1.0	U	1.0	U	1.0	U	1.0	U	10	U	5	U	10	U	-	
PCE	µg/L	1.0	U	1.0	U	1.0	U	1.0	U	10	U	5	U	10	U	-	
TCE	µg/L	1.0	U	1.0	U	1.0	U	1.0	U	10	U	5	U	10	U	-	
VC	µg/L	1.0	U	1.0	U	1.0	U	1.0	U	10	U	10	U	10	U	-	
cis-1,2-DCE	µg/L	1.0	U	1.0	U	1.0	U	1.0	U	10^	U	5^	U	10^	U	-	
trans-1,2-DCE	µg/L	1.0	U	1.0	U	1.0	U	1.0	U							-	
Metals		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
Lead (Total)	µg/L	0.588	J	1.0	U	1.0	U	1.0	U	2.3	В	2.9	U	2.1	U	-	
Lead (Dissolved)	µg/L	1.0	U	1.0	U	1.0	U	1.0	U	-		-		-		2.3	U
Radiological Parameters		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
Gross Alpha	pCi/L	-		-		-		-		-		-		-		-	
Gross Beta	pCi/L	-		-		-		-		-		-		-		-	
Total Uranium	µg/L	-		-		-		-		-		-		-		-	
Combined Radium 226/228	pCi/L	-		-		-		-		-		-		-		-	
Gross Alpha - Dissolved	pCi/L	-		-		-		-		-		-		-		-	
Gross Beta - Dissolved	pCi/L	-		-		-		-		-		-		-		-	
Total Uranium - Dissolved	µg/L	-		-		-		-		-		-		-		-	
Combined Radium 226/228 - Dissolved	pCi/L	-		-		-		-		-		-		-		-	
MNA Parameters		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
TOC	mg/L	-		-		-		-		-		-		-		-	
DOC	mg/L	-		-		-		-		-		-		-		-	
Ethane	µg/L	-		-		-		-		-		-		-		-	
Ethene	µg/L	-		-		-		-		-		-		-		-	
Methane	µg/L	-		-		-		-		-		-		-		-	
Nitrate-N	mg/L	-		-		-		-		-		-		-		-	
Sulfate	mg/L	-		-		-		-		-		-		-		-	
Chloride	mg/L	-		-		-		-		-		-		-		-	
Soluble Manganese, Mn(II)	mg/L																
Ferrous Iron, Fe(II)	mg/L																
Field Parameters		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
рН	SU	5.71		7.94		7.82		7.80		-		-		-		-	
Specific Conductance	mS/cm	0.297		0.255		0.355		0.266		-		-		-		-	
Turbidity	NTU	NM		0.0		1.2		0.0		-		-		-		-	
Dissolved Oxygen	mg/L	2.91		0.74		7.38		-		-		-		-		-	
Temperature	°C	20.78		12.92		7.51		14.07		-		-		-		-	
ORP	mV	411.7	1	-117.8		-95.6		-9.0		-		-		-		-	

Sampling Date	Units	1-Mar-0	0	1-Aug-0	00	1-Dec-0	0	1-Feb-0)1	1-Aug-	01	1-Dec-	01	1-Feb-0)2	2-Jun-0)2
Well ID		MW-21	s	MW-21	S	MW-21	s	MW-21	S	MW-21	S	MW-21	S	MW-21	S	MW-21	S
VOCs		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
1,1-DCE	µg/L	10	U	10	U	-		1	U	0.83	U	-		0.5	U	0.5	U
PCE	µg/L	10	U	10	U	-		1	U	0.78	U	-		240	D	41	D
TCE	µg/L	10	U	10	U	-		1	U	0.49	U	-		23	V	3	
VC	µg/L	10	U	10	U	-		2	U	1.0	U	-		0.5	U	0.5	U
cis-1,2-DCE	µg/L	10^	U	10^	U	-		1^	U	0.49	U	-		0.5	U	0.5	U
trans-1,2-DCE	µg/L					-				0.84	U	-		0.5	U	0.5	U
Metals		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
Lead (Total)	µg/L	2.3	U	1.3	U	-		2.1	В	1.2	U	-		2.8	U	2.8	U
Lead (Dissolved)	µg/L	-		-		1.3	U	1.9	В	-		1.2	U	2.8	U	2.8	U
Radiological Parameters		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
Gross Alpha	pCi/L	-		-		-		-		-		-		-		-	
Gross Beta	pCi/L	-		-		-		-		-		-		-		-	
Total Uranium	µg/L	-		-		-		-		-		-		-		-	
Combined Radium 226/228	pCi/L	-		-		-		-		-		-		-		-	
Gross Alpha - Dissolved	pCi/L	-		-		-		-		-		-		-		-	
Gross Beta - Dissolved	pCi/L	-		-		-		-		-		-		-		-	
Total Uranium - Dissolved	µg/L	-		-		-		-		-		-		-		-	
Combined Radium 226/228 - Dissolved	pCi/L	-		-		-		-		-		-		-		-	
MNA Parameters		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
TOC	mg/L	-		-		-		-		-		-		-		-	
DOC	mg/L	-		-		-		-		-		-		-		-	
Ethane	µg/L	-		-		-		-		-		-		-		-	
Ethene	µg/L	-		-		-		-		-		-		-		-	
Methane	µg/L	-		-		-		-		-		-		-		-	
Nitrate-N	mg/L	-		-		-		-		-		-		-		-	
Sulfate	mg/L	-		-		-		-		-		-		-		-	
Chloride	mg/L	-		-		-		-		-		-		-		-	
Soluble Manganese, Mn(II)	mg/L																
Ferrous Iron, Fe(II)	mg/L																
Field Parameters		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
рН	SU	-		-		-		-		-		-		-		-	
Specific Conductance	mS/cm	-		-		-		-		-		-		-		-	
Turbidity	NTU	-		-		-		-		-		-		-		-	
Dissolved Oxygen	mg/L	-		-		-		-		-		-		-		-	
Temperature	°C	-		-		-		-		-		-		-		-	
ORP	mV	-	I	-	I	-		-		-		-		-		-	

Sampling Date	Units	1-Mar-(03	4-Dec-0	03	4-Jul-0	4	4-Dec-0)4	5-Jun-	05	30-Nov-	05	1-Dec-	05	1-Dec-0	06
Well ID		MW-21	s	MW-21	s	MW-21	S	MW-21	s	MW-21	S	MW-21	S	MW-2	IS	MW-21	s
VOCs		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
1,1-DCE	µg/L	0.5	U	0.5	U	1.0	U	1.0	U	1.0	U	-		1.0	U	1.0	U
PCE	µg/L	7		3		2.5		1.7		1.5	J	-		1.0	U	0.5	J
TCE	µg/L	0.5		0.5	U	1.0	U	1.0	U	1.0	U	-		1.0	U	1.0	U
VC	µg/L	0.5	U	0.5	U	2.0	U	2.0	U	2.0	U	-		2.0	U	2.0	U
cis-1,2-DCE	µg/L	0.5	U	0.5	U	1.0	U	1.0	U	1.0	U	-		1.0	U	1.0	U
trans-1,2-DCE	µg/L	0.5	U	0.5	U	1.0	U	1.0	U	1.0	U	-		1.0	U	1.0	U
Metals		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
Lead (Total)	µg/L	2.2	U	2.2	U	3	U	3	U	2	U	-		2	U	2	U
Lead (Dissolved)	µg/L	2.2	U	2.2	U	25	U	25	U	25	U	2	U	-		-	
Radiological Parameters		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
Gross Alpha	pCi/L	-		-		-		-		-		-		-		-	
Gross Beta	pCi/L	-		-		-		-		-		-		-		-	
Total Uranium	µg/L	-		-		-		-		-		-		-		-	
Combined Radium 226/228	pCi/L	-		-		-		-		-		-		-		-	
Gross Alpha - Dissolved	pCi/L	-		-		-		-		-		-		-		-	
Gross Beta - Dissolved	pCi/L	-		-		-		-		-		-		-		-	
Total Uranium - Dissolved	µg/L	-		-		-		-		-		-		-		-	
Combined Radium 226/228 - Dissolved	pCi/L	-		-		-		-		-		-		-		-	
MNA Parameters		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
TOC	mg/L	-		-		-		-		-		-		-		-	
DOC	mg/L	-		-		-		-		-		-		-		-	
Ethane	µg/L	-		-		-		-		-		-		-		-	
Ethene	µg/L	-		-		-		-		-		-		-		-	
Methane	µg/L	-		-		-		-		-		-		-		-	
Nitrate-N	mg/L	-		-		-		-		-		-		-		-	
Sulfate	mg/L	-		-		-		-		-		-		-		-	
Chloride	mg/L	-		-		-		-		-		-		-		-	
Soluble Manganese, Mn(II)	mg/L																
Ferrous Iron, Fe(II)	mg/L																
Field Parameters		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
рН	SU	7.48		7.46		7.17		7.75	1	7.36		7.84				4.77	
Specific Conductance	mS/cm	0.253		0.426		0.446		0.437	Ī	0.320		0.288				0.551	
Turbidity	NTU	1.0		1.6		1.8		0.4		5.3		1.4				166.0	Ī
Dissolved Oxygen	mg/L	2.14		1.83		0.78		0.78	Ī	1.59		0.81				0.30	
Temperature	°C	8.52		15.23		10.97		11.7		11.47		9.90				14.55	
ORP	mV	-38.3		-128.5		28.8		-186.8	1	-123.4		-149.3		İ		114.3	

Sampling Date	Units	1-Jun-	07	28-Jul-	08	29-Oct	-08	18-Feb	-09	21-May	-09	1-Feb-0	1	1-Aug-0	1	1-Feb-0)2
Well ID		MW-21	S	MW-21	IS	MW-21	S	MW-2	IS	MW-2	1S	MW-30	S	MW-303	5	MW-30	S
VOCs		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
1,1-DCE	µg/L	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1	U	0.83	U	0.5	U
PCE	µg/L	1.6		1.0	U	1.0	U	1.0	U	1.0	U	67	D	42		23	V
TCE	µg/L	0.12	J	1.0	U	1.0	U	1.0	U	1.0	U	19		15		8	
VC	µg/L	2.0	U	1.0	U	1.0	U	1.0	U	1.0	U	2	U	1.0	U	0.5	U
cis-1,2-DCE	µg/L	0.15	J	1.0	U	1.0	U	1.0	U	1.0	U	2.4^		0.49	U	1	
trans-1,2-DCE	µg/L	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U			0.84	U	0.5	U
Metals		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
Lead (Total)	µg/L	1	В	1.0	U	1.0	U	1.0	U	1.0	U	30.5			R	2.8	U
Lead (Dissolved)	µg/L	-		1.0	U	1.0	U	1.0	U	1.0	U	26.5		R		2.8	U
Radiological Parameters		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
Gross Alpha	pCi/L	-		-		-		-		-		47.39		1.24	U	-	
Gross Beta	pCi/L	-		-		-		-		-		83.31		8.28		-	
Total Uranium	μg/L	-		-		-		-		-		0.54		0.0551		0.1919	В
Combined Radium 226/228	pCi/L	-		-		-		-		-		-		-		-	T
Gross Alpha - Dissolved	pCi/L	-		-		-		-		-		-		-		-	
Gross Beta - Dissolved	pCi/L	-		-		-		-		-		-		-		-	
Total Uranium - Dissolved	μg/L	-		-		-		-		-		-		-		-	
Combined Radium 226/228 - Dissolved	pCi/L	-		-		-		-		-		-		-		-	
MNA Parameters		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
TOC	mg/L	-		-		-		-		-		-		-		-	T
DOC	mg/L	-		-		-		-		-		-		-		-	T
Ethane	µg/L	-		-		-		-		-		-		-		-	
Ethene	µg/L	-		-		-		-		-		-		-		-	
Methane	µg/L	-		-		-		-		-		-		-		-	
Nitrate-N	mg/L	-		-		-		-		-		-		-		-	
Sulfate	mg/L	-		-		-		-		-		-		-		-	
Chloride	mg/L	-		-		-		-		-		-		-		-	
Soluble Manganese, Mn(II)	mg/L																
Ferrous Iron, Fe(II)	mg/L																
Field Parameters		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
рН	SU	6.85		9.04		8.55		8.54		5.71		-		-		-	
Specific Conductance	mS/cm	0.195		0.179		0.183		0.147		0.409		-		-		-	
Turbidity	NTU	0.3		0.0		46.8		4.5		0.0		-		-		-	
Dissolved Oxygen	mg/L	3.91		1.89		4.53		47.34		10.11		-		-		-	
Temperature	°C	14.21		12.05		9.24		11.29		11.32		-		-		-	
ORP	mV	205.7		59.8		-87.0		-48.5		-32.7		-		-		-	

Sampling Date	Units	2-Jun-0	2	1-Mar-03	3	3-Dec-0	3	4-Jul-0	4	1-Dec-0)4	5-Jun-0	5	1-Dec-0	05
Well ID		MW-30	S	MW-30S	;	MW-305	S	MW-30	S	MW-30	S	MW-30	S	MW-30	S
VOCs		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
1,1-DCE	µg/L	0.5	U	0.5	U	0.5	U	1.0	U	1.0	U	1.0	U	1.0	U
PCE	µg/L	29	D	23		21		33.0		20.0		21.0	J	23.0	1
TCE	µg/L	5		3		3		11.0		3.5		8.8		4.3	1
VC	µg/L	0.5	U	0.5	U	0.5	U	2.0	U	2.0	U	2.0	U	2.0	U
cis-1,2-DCE	µg/L	0.3	JJ	0.5	U	0.6		1.7		0.5	J	2.2		1.1	
trans-1,2-DCE	µg/L	0.5	U	0.5	U	0.5	U	1.0	U	1.0	U	1.0	U	1.0	U
Metals		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
Lead (Total)	µg/L	2.8	U		R	2.2	U	2	U	3	UJ	2	U	2	U
Lead (Dissolved)	µg/L	2.8	U			2.2	U	25	U	25	U	25	U	2	U
Radiological Parameters		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
Gross Alpha	pCi/L	-		-		-		-0.02	U	0.50	UJ	1.70	UJ	3.80	UJ
Gross Beta	pCi/L	-		-		-		5.70		5.10	J	4.80	J	35.00	J
Total Uranium	µg/L	0.2897	В	1.2897	В	0.16565	J	0.30		0.14	U	0.21	U	0.27	U
Combined Radium 226/228	pCi/L	-		-		-		0.78	U	0.92	UJ	0.86	UJ	1.34	J
Gross Alpha - Dissolved	pCi/L	-		-		-		-		-		-		-	
Gross Beta - Dissolved	pCi/L	-		-		-		-		-		-		-	
Total Uranium - Dissolved	µg/L	-		-		-		-		-		-		-	
Combined Radium 226/228 - Dissolved	pCi/L	-		-		-		-		-		-		-	
MNA Parameters		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
TOC	mg/L	-		-		-		-		-		-		-	
DOC	mg/L	-		-		-		-		-		-		-	
Ethane	µg/L	-		-		-		-		-		-		-	1
Ethene	µg/L	-		-		-		-		-		-		-	
Methane	µg/L	-		-		-		-		-		-		-	
Nitrate-N	mg/L	-		-		-		-		-		-		-	
Sulfate	mg/L	-		-		-		-		-		-		-	
Chloride	mg/L	-		-		-		-		-		-		-	
Soluble Manganese, Mn(II)	mg/L														
Ferrous Iron, Fe(II)	mg/L														
Field Parameters		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
рН	SU	-		6.44	1	-		6.22		6.39		6.34	1	6.30	1
Specific Conductance	mS/cm	-		0.991	1	-		0.777		0.903		0.741	İ	0.527	1
Turbidity	NTU	-		18	1	-		3.7		3		2	Ī	12.2	T
Dissolved Oxygen	mg/L	-		10.31		-		2.1		5.8		6.88	I	2.83	1
Temperature	°C	-		7.36		-		16.61		10.84		12.93	I	12.96	1
ORP	mV	-		226.7		-		222.6		212.9		191.6		187.8	1

Sampling Date	Units	1-Dec-0)6	1-Jun-0)7	29-Jul-(08	6-Nov-0	08	17-Feb-	09	18-May-	09	1-Feb-02	2	2-Jun-0)2
Well ID		MW-30	s	MW-30	s	MW-30	s	MW-30	s	MW-30	S	MW-30	S	MW-32S		MW-32	S
VOCs		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
1,1-DCE	µg/L	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	0.5	U	2	
PCE	µg/L	20.0		9.7		14.0		12.0		9.0		7.8		1200	D	490	D
TCE	µg/L	8.7		3.1		5.8		5.4		2.9		3.1		420	D	190	D
VC	µg/L	2.0	U	2.0	U	1.0	U	1.0	U	1.0	U	1.0	U	23		11	
cis-1,2-DCE	µg/L	2.0		0.94	J	3.2		2.7		1.4		2.4		940	D	440	D
trans-1,2-DCE	µg/L	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	14		9	
Metals		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
Lead (Total)	µg/L	2.9		1.6	В	0.529	J	0.881	J	1.91		1.0	U	2.8	U	2.8	U
Lead (Dissolved)	µg/L	-		-		1.0	U	1.0	U	1.0	U	1.0	U	2.8	U	2.8	U
Radiological Parameters		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
Gross Alpha	pCi/L	5.30		1.20	U	0.944	U	2.89	U	2.75	U	0.600	U	-		-	
Gross Beta	pCi/L	8.60		5.90	U	8.90		8.35	J	9.61	J	6.37	J	-		-	
Total Uranium	µg/L	0.14	U	0.41		0.56		0.54		0.48		0.475	J	3.7454		28.163	
Combined Radium 226/228	pCi/L	0.51	U	0.48	J	1.755		1.769	J	0.991	J	3.296	U				
Gross Alpha - Dissolved	pCi/L	-		-1.60	U	0.303	U	1.68	U	0.212	U	-0.162	U	-		-	
Gross Beta - Dissolved	pCi/L	-		0.40	U	5.85	J	9.42	J	8.34	J	9.91	J	-		-	
Total Uranium - Dissolved	µg/L	-		0.22	U	0.46		0.49		0.43		0.587	J	-		-	
Combined Radium 226/228 - Dissolved	pCi/L	-		0.65	J	1.203		1.197	U	0.407	U	0.512	U	-		-	
MNA Parameters		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
TOC	mg/L	-		-		-		-		-		-		-		-	
DOC	mg/L	-		-		-		-		-		-		-		-	
Ethane	µg/L	-		-		-		-		-		-		-		-	
Ethene	µg/L	-		-		-		-		-		-		-		-	
Methane	µg/L	-		-		-		-		-		-		-		-	
Nitrate-N	mg/L	-		-		-		-		-		-		-		-	
Sulfate	mg/L	-		-		-		-		-		-		-		-	
Chloride	mg/L	-		-		-		-		-		-		-		-	
Soluble Manganese, Mn(II)	mg/L																
Ferrous Iron, Fe(II)	mg/L																
Field Parameters		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
рН	SU	6.07		6.29		5.80		6.22		6.31		6.37		-		-	
Specific Conductance	mS/cm	0.581		0.597		1.114		0.869		0.807		0.956		-		-	
Turbidity	NTU	146.8		110.1		5.0		16.0		0.0		60.5		-		-	
Dissolved Oxygen	mg/L	3.49		5.41		0.93		2.23		4.80		9.67		-		-	
Temperature	°C	12.41		13.72		18.08		14.56		7.49		9.14		-		-	
ORP	mV	102.1		160		452.2		273.6		110.0		239.0		-	1	-	1

Sampling Date	Units	1-Mar-0	3	3-Dec-0	3	4-Jul-04	4	4-Dec-	04	5-Jun-0	5	1-Dec-0	5	1-Dec-0	06	1-Jun-(07
Well ID		MW-323	S	MW-328	5	MW-325	3	MW-32	2S	MW-328	5	MW-325	;	MW-32	S	MW-32	S
VOCs		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
1,1-DCE	µg/L	2		2		1.0		0.9	J	1.0	U	0.31	J	0.31	J	1.00	J
PCE	µg/L	660	D	440		420.0	J	360.0	J	200	J	140		18		9.4	
TCE	µg/L	310	D	230		200.0	J	170.0	J	150		89		6		4.1	
VC	µg/L	6		5		2.8		2.5	J	2.3		2.4		0.4	J	0.53	J
cis-1,2-DCE	µg/L	550	D	390		9.5	J	230.0	J	240		260		27		18	
trans-1,2-DCE	µg/L	9		9		5.2		5.3		4.0		4.2		0.7	J	0.48	J
Metals		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
Lead (Total)	µg/L	3.5	В	2.2	U	3	U	2	U	2	UJ	1.2	J	2.9		2	U
Lead (Dissolved)	µg/L	3.2	В	2.2	U	25	U	25	U	1.3	U	2	U	-		-	Ι
Radiological Parameters		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
Gross Alpha	pCi/L	-		-		221	J	322		535	J	296	J	53.40		81	
Gross Beta	pCi/L	-		-		112		128		376	J	163	J	34.70		21.30	
Total Uranium	µg/L			275.83		700	J	641		896		592		181		177	
Combined Radium 226/228	pCi/L					1.24	J	1.00	J	3.17	J	0.48	UJ	0.50		0.44	U
Gross Alpha - Dissolved	pCi/L	-		-		-		-		-		-		-		64	
Gross Beta - Dissolved	pCi/L	-		-		-		-		-		-		-		19.10	
Total Uranium - Dissolved	µg/L	-		-		-		-		-		-		-		17.60	
Combined Radium 226/228 - Dissolved	pCi/L	-		-		-		-		-		-		-		0.66	U
MNA Parameters		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
TOC	mg/L	-		-		-		-		-		-		-		-	
DOC	mg/L	-		-		-		-		-		-		-		-	
Ethane	µg/L	-		-		-		-		-		-		-		-	
Ethene	µg/L	-		-		-		-		-		-		-		-	
Methane	µg/L	-		-		-		-		-		-		-		-	
Nitrate-N	mg/L	-		-		-		-		-		-		-		-	
Sulfate	mg/L	-		-		-		-		-		-		-		-	
Chloride	mg/L	-		-		-		-		-		-		-		-	
Soluble Manganese, Mn(II)	mg/L																
Ferrous Iron, Fe(II)	mg/L																
Field Parameters		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
pН	SU	6.52		-	I	5.86	I	6.62		6.61		6.48		6.63		6.49	1
Specific Conductance	mS/cm	0.606		-		0.975	İ	0.795		0.981		0.795	1	0.285	1	0.236	1
Turbidity	NTU	115.1		-		1.8	I	51.8		4.7		15.9		13.8		9.8	
Dissolved Oxygen	mg/L	1.59		-		0.66	I	0.35		0.35		0.32		4.50		1.42	
Temperature	°C	6.14		-		16.4	Ī	11.49		12.93		10.74		10.35		13.65	1
ORP	mV	78		-		212		86.8		118.9		108.4		157.4		107.9	1

Sampling Date	Units	6-Aug-0	08	4-Nov-	08	23-Feb-0)9	19-May	-09	1-Feb-	02	2-Jun-	02	1-Mar-	03	3-Dec-	•03	4-Jul-	04
Well ID		MW-32	S	MW-32	S	MW-323	S	MW-32	2S	MW-34	4S	MW-34	4S	MW-34	1S	MW-34	4S	MW-34	4S
VOCs		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
1,1-DCE	µg/L	1.0	U	1.0	U	1.0	U	1.0	U	0.5	U	0.5	U	0.5	U	0.5	U	1.0	U
PCE	µg/L	72.0		21.0		21		9.9		250	D	10		1		2		1.3	
TCE	µg/L	23.0		7.7		6.3		4.5		0.5	U	0.5	U	0.3	J	0.5	U	0.27	J
VC	µg/L	0.93	J	0.91	J	0.59	J	0.65	J	2		1		0.5	U	2		1.8	J
cis-1,2-DCE	µg/L	23.0		20.0		13		11		2		2		1		2		1.1	
trans-1,2-DCE	µg/L	0.98	J	0.64	J	0.42	J	0.44	J	0.5	U	0.5	U	0.5	U	0.5	U	1.0	U
Metals		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
Lead (Total)	µg/L	1.0	U	1.0	U	1.0	U	1.0	U	-		-		-		-		-	
Lead (Dissolved)	µg/L	1.0	U	1.0	U	1.0	U	1.0	U	-		-		-		-		-	
Radiological Parameters		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
Gross Alpha	pCi/L	60	J	50.20		59.6		35.3	J	-		-		-		-		-	
Gross Beta	pCi/L	31.1		32.80		37.7		27.0		-		-		-		-		-	
Total Uranium	µg/L	160		110.00		157	J	95.2	J	-		-		-		-		-	
Combined Radium 226/228	pCi/L	0.752		2.13	J	0.461	J	1.21	U	-		-		-		-		-	
Gross Alpha - Dissolved	pCi/L	68.3	J	43.3		65.5		36.2	J	-		-		-		-		-	
Gross Beta - Dissolved	pCi/L	31.9		29.4		30.3		25.8	J	-		-		-		-		-	
Total Uranium - Dissolved	µg/L	170	J	108		185	J	111	J	-		-		-		-		-	
Combined Radium 226/228 - Dissolved	pCi/L	0.692		0.728	U	0.701	J	1.581	J	-		-		-		-		-	
MNA Parameters		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
TOC	mg/L	1.80	J	-		1.44	J	1.44	J	-		-		-		-		-	
DOC	mg/L	1.95	J	-		1.62	J	1.59		-		-		-		-		-	
Ethane	µg/L	2.0	U	-		2.0	U	2.0	U	-		-		-		-		-	
Ethene	µg/L	2.0	υ	-		2.0	U	2.0	U	-		-		-		-		-	
Methane	µg/L	150		-		180		120		-		-		-		-		-	
Nitrate-N	mg/L	0.0864	J	-		0.116	J	0.202	J	-		-		-		-		-	
Sulfate	mg/L	16.3		-		13.5		17.9		-		-		-		-		-	
Chloride	mg/L	7.71		-		5.63		6.71		-		-		-		-		-	
Soluble Manganese, Mn(II)	mg/L	0.70				0.70		0.20		-		-		-		-		-	
Ferrous Iron, Fe(II)	mg/L	0.2	U			0.2	U	0.2	U	-		-		-		-		-	
Field Parameters		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
рН	SU	4.09		6.38		7.11		6.06		-		-		6.98		6.86		6.86	
Specific Conductance	mS/cm	0.225		0.198		0.292		0.379		-		-		0.68		1.123		1.123	
Turbidity	NTU	63.0		1.0		116.0		0.0		-		-		176		6.6		6.6	
Dissolved Oxygen	mg/L	1.00		0.66		0.00		0.60		-		-		0.68		0.25		0.25	
Temperature	°C	18.02		14.95		6.70		10.74		-		-		8.55		13.93		13.93	
ORP	mV	425.3		111.6		107.0	Ī	237.0		-		-		115.3		141.5		141.5	

Sampling Date	Units	4-Dec-	04	5-Jun-	•05	1-Dec-	05	1-Dec-	•06	1-Jun-	07	1-Aug-	08	30-Oct	-08	19-Feb	-09	26-May-	-09
Well ID		MW-34	1S	MW-34	4S	MW-34	4S	MW-34	4S	MW-34	1S	MW-34	1S	MW-34	4S	MW-34	4S	MW-34	S
VOCs		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
1,1-DCE	µg/L	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
PCE	µg/L	1.1		0.6	J	1.1		1.9		0.41	J	0.92	J	1.0		0.94	J	0.85	J
TCE	µg/L	0.2	J	1.0	U	1.0	U	0.4	J	0.16	J	1.0	U	1.0	U	1.0	U	1.0	U
VC	µg/L	1.7	J	1.3	J	1.8	J	1.0	J	1.3	J	1.6		1.8		1.6		2.0	
cis-1,2-DCE	µg/L	1.0		0.6	J	1.3		2.1		0.75	J	0.93	J	1.3		0.89	J	0.85	J
trans-1,2-DCE	µg/L	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Metals		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
Lead (Total)	µg/L	-		-		-		-		-		-		-		-		-	
Lead (Dissolved)	µg/L	-		-		-		-		-		-		-		-		-	
Radiological Parameters		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
Gross Alpha	pCi/L	-		-		-		-		-		-		-		-		-	
Gross Beta	pCi/L	-		-		-		-		-		-		-		-		-	
Total Uranium	µg/L	-		-		-		-		-		-		-		-		-	
Combined Radium 226/228	pCi/L	-		-		-		-		-		-		-		-		-	
Gross Alpha - Dissolved	pCi/L	-		-		-		-		-		-		-		-		-	
Gross Beta - Dissolved	pCi/L	-		-		-		-		-		-		-		-		-	
Total Uranium - Dissolved	µg/L	-		-		-		-		-		-		-		-		-	
Combined Radium 226/228 - Dissolved	pCi/L	-		-		-		-		-		-		-		-		-	
MNA Parameters		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
TOC	mg/L	-		-		-		-		-		2.31	J	2.25	J	2.16		2.19	J
DOC	mg/L	-		-		-		-		-		3.13	J	2.55	J	2.4		2.65	J
Ethane	µg/L	-		-		-		-		-		2	U	2	U	2	U	2	U
Ethene	µg/L	-		-		-		-		-		2	U	2	U	2	U	2	U
Methane	µg/L	-		-		-		-		-		13		13		13		15	
Nitrate-N	mg/L	-		-		-		-		-		0.161		0.13	J	0.239		0.229	
Sulfate	mg/L	-		-		-		-		-		92		95		79		84	
Chloride	mg/L	-		-		-		-		-		96		108		73		109	
Soluble Manganese, Mn(II)	mg/L	-		-		-		-		-		1		1		0	U	1	
Ferrous Iron, Fe(II)	mg/L	-		-		-		-		-		0		0		0		0	U
Field Parameters		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
рН	SU	6.74		7.16		7.05		6.87		7.91		6.42		6.91		7.15		7.10	
Specific Conductance	mS/cm	0.707		0.833		0.500		0.353		0.620		0.414		0.507		0.582		0.527	
Turbidity	NTU	67.2		33.3		86.0		24.1		0.0		0.0		0.0		>1000		1287.0	
Dissolved Oxygen	mg/L	0.82		0.53		0.35		0.62		0.09		0.48		0.31		0.00		0.61	
Temperature	°C	11.65		10.96		11.72		11.98		13.51		13.58		13.78		8.90		10.73	
ORP	mV	181.9		50		101.3		89.2		259.4		283.0		13.1		150.0		121.8	

Sampling Date	Units	Feb-0	2	Jun-0	2	Mar-0)3	Dec-0)3	Jul-0	4	Dec-0	4	Jun-0	5	Dec-0)5	Dec-0	06
Well ID		MW-3	5S	MW-35	5S	MW-35	5S	MW-3	5S	MW-38	5S	MW-35	5S	MW-35	5S	MW-3	5S	MW-3	5S
VOCs		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
1,1-DCE	µg/L	0.5	U	0.5	U	0.5	U	0.5	U	1.0	U								
PCE	µg/L	0.2	J	0.5	U	0.5	U	0.5	U	1.0	U	1.0	U	1.0	UJ	1.0	U	1.0	U
TCE	µg/L	0.5	U	0.5	U	0.5	U	0.5	U	1.0	U								
VC	µg/L	0.5	U	0.5	U	0.5	U	0.5	U	2.0	U								
cis-1,2-DCE	µg/L	0.5	U	0.5	U	0.5	U	0.5	U	1.0	U								
trans-1,2-DCE	µg/L	0.5	U	0.5	U	0.5	U	0.5	U	1.0	U								
Metals		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
Lead (Total)	µg/L	-		-		-		-		-		-		-		-		-	
Lead (Dissolved)	µg/L	-		-		-		-		-		-		-		-		-	
Radiological Parameters		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
Gross Alpha	pCi/L	-		-		-		-		-		-		-		-		-	
Gross Beta	pCi/L	-		-		-		-		-		-		-		-		-	
Total Uranium	µg/L	-		-		-		-		-		-		-		-		-	
Combined Radium 226/228	pCi/L	-		-		-		-		-		-		-		-		-	
Gross Alpha - Dissolved	pCi/L	-		-		-		-		-		-		-		-		-	
Gross Beta - Dissolved	pCi/L	-		-		-		-		-		-		-		-		-	
Total Uranium - Dissolved	µg/L	-		-		-		-		-		-		-		-		-	
Combined Radium 226/228 - Dissolved	pCi/L	-		-		-		-		-		-		-		-		-	
MNA Parameters		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
TOC	mg/L	-		-		-		-		-		-		-		-		-	
DOC	mg/L	-		-		-		-		-		-		-		-		-	
Ethane	µg/L	-		-		-		-		-		-		-		-		-	
Ethene	µg/L	-		-		-		-		-		-		-		-		-	
Methane	mg/L	-		-		-		-		-		-		-		-		-	
Nitrate-N	mg/L	-		-		-		-		-		-		-		-		-	
Sulfate	mg/L	-		-		-		-		-		-		-		-		-	
Chloride	mg/L	-		-		-		-		-		-		-		-		-	
Soluble Manganese, Mn(II)	mg/L	-		-		-		-		-		-		-		-		-	
Ferrous Iron, Fe(II)	mg/L	-		-		-		-		-		-		-		-		-	
Field Parameters		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
рН	SU	- 1		- 1		7.11		6.97		7.25		6.58		6.02		6.54		6.70	
Specific Conductance	mS/cm	-		-		0.308		0.995		4.37		0.948		0.311		0.397		0.777	
Turbidity	NTU	-		-		1.4		2.2		74.3		6.5		0.0		19.5		18.6	
Dissolved Oxygen	mg/L	-		-		10.82		4.05		4.31		2.37		5.36		3.32		2.19	
Temperature	°C	-		-		7.41		12.72		10.37		11.88		11.76		10.65		12.90	
ORP	mV	-		-		120.4		179.6		231.1		206.6		226.7		64.2		82.7	

Sampling Date	Units	Jun-0	7	Aug-0	8	Oct-0	8	Feb-0	9	May-0)9	Feb-0)2	Jun-0	2	Mar-0)3	Dec-0	03
Well ID		MW-3	5S	MW-35	5S	MW-3	5S	MW-38	5S	MW-3	5S	MW-37	7S	MW-37	7S	MW-3	7S	MW-3	7S
VOCs		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
1,1-DCE	µg/L	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	0.5	U	0.5	U	0.5	U	0.5	U
PCE	µg/L	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	0.5	U	0.5	U	0.5	U	0.5	U
TCE	µg/L	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	0.5	U	0.5	U	0.5	U	0.5	U
VC	µg/L	2.0	U	1.0	U	1.0	U	1.0	U	1.0	U	0.5	U	0.5	U	0.5	U	0.5	U
cis-1,2-DCE	µg/L	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	0.5	U	0.5	U	0.4	J	0.7	
trans-1,2-DCE	µg/L	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	0.5	U	0.5	U	0.5	U	0.5	U
Metals		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
Lead (Total)	µg/L	-		-		-		-		-		-		-		-		-	
Lead (Dissolved)	µg/L	-		-		-		-		-		-		-		-		-	
Radiological Parameters		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
Gross Alpha	pCi/L	-		-		-		-		-									
Gross Beta	pCi/L	-		-		-		-		-									
Total Uranium	µg/L	-		-		-		-		-		1.5309	В	0.6003	В			0.2418	J
Combined Radium 226/228	pCi/L	-		-		-		-		-									
Gross Alpha - Dissolved	pCi/L	-		-		-		-		-									I
Gross Beta - Dissolved	pCi/L	-		-		-		-		-									
Total Uranium - Dissolved	µg/L	-		-		-		-		-									l
Combined Radium 226/228 - Dissolved	pCi/L	-		-		-		-		-									I
MNA Parameters		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
TOC	mg/L	-		1.01	J	1.53		1.13	J	0.847	J	-		-		-		-	
DOC	mg/L	-		1.32	J	1.6		1.06	J	1.22	J	-		-		-		-	
Ethane	µg/L	-		2	U	2	U	2	U	2	U	-		-		-		-	
Ethene	µg/L	-		2	U	2	U	2	U	2	U	-		-		-		-	I
Methane	mg/L	-		2	U	2	U	2	U	2	U	-		-		-		-	
Nitrate-N	mg/L	-		0.1	U	0.0571	J	0.0588	J	0.1	U	-		-		-		-	
Sulfate	mg/L	-		11		12		10		18		-		-		-		-	
Chloride	mg/L	-		115		50		35		136		-		-		-		-	
Soluble Manganese, Mn(II)	mg/L	-		0		0	U	0	U	0	U	-		-		-		-	
Ferrous Iron, Fe(II)	mg/L	-		0	U	0	U	0	U	0	U	-		-		-		-	
Field Parameters		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
рН	SU	5.16		6.65		6.75		6.56		6.56		-		-		7.22		-	
Specific Conductance	mS/cm	0.383		0.237		0.184		0.446		0.446		-		-		0.863		-	
Turbidity	NTU	10.8		1.0		9.2		0.0		0.0		-		-		1.7		-	
Dissolved Oxygen	mg/L	6.22		9.41		13.13		3.00		3.00		-		-		0.65		-	
Temperature	°C	15.73		13.76		7.12		10.78		10.78		-		-		10.09		-	
ORP	mV	545.2		192.7		68.8		61.0		61.0		-		- 1		-95.7		-	

Sampling Date	Units	Jul-04	4	Dec-04	4	Jun-0)5	Dec-0)5	Dec-0)6	Jun-0	7	Aug-0)8	Oct-0	8	Feb-0	9
Well ID		MW-37	'S	MW-37	S	MW-3	7S	MW-37	7S	MW-3	7S	MW-37	7S	MW-37	7S	MW-3	7S	MW-37	7S
VOCs		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
1,1-DCE	µg/L	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
PCE	µg/L	1.0	U	0.6	J	0.4	J	1.0	U	0.3	J	1.0	U	0.22	J	0.23	J	0.51	J
TCE	µg/L	0.18	J	0.28	J	0.4	J	1.0	U	0.9	J	0.3	J	0.33	J	0.38	J	0.71	J
VC	µg/L	0.41	J	0.7	J	1.0	J	1.0	J	1.1	J	2.0	U	0.99	J	1.1	J	0.85	J
cis-1,2-DCE	µg/L	0.98	J	0.98	J	3.1	J	2.7		5.5		2.1		1.6		2.3		3.6	
trans-1,2-DCE	µg/L	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Metals		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
Lead (Total)	µg/L	-		-		-		-		-		-		-		-		-	
Lead (Dissolved)	µg/L	-		-		-		-		-		-		-		-		-	
Radiological Parameters		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
Gross Alpha	pCi/L	2.4	U	10	J	0	UJ	3.2	UJ	6.9	υ	4.2	U	1.26	U	1.9	J	1.26	U
Gross Beta	pCi/L	13		13.4		11.2	J		R	18		19.9		22.3		13.5		14.1	
Total Uranium	µg/L	0.5		0.24		0.61		0.21	U	0.27	U	NA	U	0.24		0.21	U	1.1	
Combined Radium 226/228	pCi/L	0.81	U	1.55	J	0.98	UJ	4.58	J	1.92	U	1.36	J	2.013		2.13	J	2.596	J
Gross Alpha - Dissolved	pCi/L											0.06	U	1.78	J	0.974	U	0.443	U
Gross Beta - Dissolved	pCi/L											11.6		16.1		9.05	J	11.2	
Total Uranium - Dissolved	µg/L											0	U	0		0	U	0	J
Combined Radium 226/228 - Dissolved	pCi/L											1	J	2		2	J	1	J
MNA Parameters		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
TOC	mg/L	-		-		-		-		-		-		1.01	J	1.53		1.13	J
DOC	mg/L	-		-		-		-		-		-		1.32	J	1.6		1.06	J
Ethane	µg/L	-		-		-		-		-		-		2	U	2	U	2	U
Ethene	µg/L	-		-		-		-		-		-		2	U	2	U	2	U
Methane	mg/L	-		-		-		-		-		-		2	U	2	U	2	U
Nitrate-N	mg/L	-		-		-		-		-		-		0.1	U	0.0571	J	0.0588	J
Sulfate	mg/L	-		-		-		-		-		-		11		12		10	
Chloride	mg/L	-		-		-		-		-		-		115		50		35	
Soluble Manganese, Mn(II)	mg/L	-		-		-		-		-		-		0		0	U	0	U
Ferrous Iron, Fe(II)	mg/L	-		-		-		-		-		-		0	U	0	U	0	U
Field Parameters		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
pН	SU	7.12		7.04		6.99		7.12		6.99		6.83		6.67		7.25		7.05	
Specific Conductance	mS/cm	0.919		0.987		1.066		0.755		0.659		0.611		0.676		0.630		0.565	
Turbidity	NTU	22.6		29.9		6.2		318.4		91.0		53.5		54.2		6.5		2085.8	
Dissolved Oxygen	mg/L	7.34		1.3		0.3		2.36		0.47		1.68		1.71		5.10		0.94	
Temperature	℃	13.82		11.3		11.6		10.29		11.76		12.32		12.30		12.62		10.09	
ORP	mV	-83.6		-33.8		-74.3		-66.5		-83.8		-85.9		-77.9		-96.4		-48.9	

Sampling Date	Units	26-May-	09	2-Jun-	02	1-Mar-	03	3-Dec-	03	4-Jul-	04	4-Dec-	•04	5-Jun-	05	1-Dec-	05
Well ID		MW-37	s	MW-39	9S	MW-3	9S	MW-39	9S	MW-39	9S	MW-39	9S	MW-39	9S	MW-39)S
VOCs		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
1,1-DCE	µg/L	1.0	U	0.5	U	0.5	U	0.5	U	1.0	U	1.0	U	1.0	U	1.0	U
PCE	µg/L	0.27	J	0.5	U	0.5	U	0.5	U	1.0	U	1.0	U	1.0	UJ	1.0	U
TCE	µg/L	0.36	J	0.5	U	0.5	U	0.5	U	1.0	U	1.0	U	1.0	U	1.0	U
VC	µg/L	1.2	J	0.5	U	0.5	U	0.5	U	2.0	U	2.0	U	2.0	U	2.0	U
cis-1,2-DCE	µg/L	1.9		0.5	U	0.5	U	0.5	U	1.0	U	1.0	U	1.0	U	1.0	U
trans-1,2-DCE	µg/L	1.0	U	0.5	U	0.5	U	0.5	U	1.0	U	1.0	U	1.0	U	1.0	U
Metals		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
Lead (Total)	µg/L	-		-		-		-		-		-		-		-	
Lead (Dissolved)	μg/L	-		-		-		-		-		-		-		-	
Radiological Parameters		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
Gross Alpha	pCi/L	1.47	J	-		-		-		-		-		-		-	
Gross Beta	pCi/L	11.8		-		-		-		-		-		-		-	
Total Uranium	µg/L	0.285		-		-		-		-		-		-		-	
Combined Radium 226/228	pCi/L	2.74	U	-		-		-		-		-		-		-	
Gross Alpha - Dissolved	pCi/L	2.29	J	-		-		-		-		-		-		-	
Gross Beta - Dissolved	pCi/L	1.58	J	-		-		-		-		-		-		-	
Total Uranium - Dissolved	µg/L	0		-		-		-		-		-		-		-	
Combined Radium 226/228 - Dissolved	pCi/L	0	U	-		-		-		-		-		-		-	
MNA Parameters		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
TOC	mg/L	0.847	J	-		-		-		-		-		-		-	
DOC	mg/L	1.22	J	-		-		-		-		-		-		-	
Ethane	µg/L	2	U	-		-		-		-		-		-		-	
Ethene	µg/L	2	U	-		-		-		-		-		-		-	
Methane	mg/L	2	U	-		-		-		-		-		-		-	
Nitrate-N	mg/L	0.1	U	-		-		-		-		-		-		-	1
Sulfate	mg/L	18		-		-		-		-		-		-		-	1
Chloride	mg/L	136		-		-		-		-		-		-		-	
Soluble Manganese, Mn(II)	mg/L	0	U	-		-		-		-		-		-		-	
Ferrous Iron, Fe(II)	mg/L	0	U	-		-		-		-		-		-		-	
Field Parameters		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
рН	SU	6.41		-		7.96		-		7.6		7.62		7.34		8	
Specific Conductance	mS/cm	0.717		-		0.254		-		0.754		0.514		1.603		0.448	
Turbidity	NTU	76.0		-		721.6		-		194		745.1		854		701	
Dissolved Oxygen	mg/L	1.14		-		2.06		-		1.58		3		2.13		4.57	
Temperature	°C	11.48		-		7.83		-		11.25		10.37		10.88		12.67	
ORP	mV	-56.3		-		71.1		-		167.1		59.8		90		-71.5	

Sampling Date	Units	1-Dec-	06	1-Jun-	07	1-Aug-	08	30-Oct	-08	19-Feb	-09	May-0)9
Well ID		MW-39	9S	MW-39	9S	MW-39	S	MW-39	9S	MW-39	S	MW-39	9S
VOCs		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
1,1-DCE	µg/L	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
PCE	µg/L	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
TCE	µg/L	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
VC	µg/L	2.0	U	2.0	U	1.0	U	1.0	U	1.0	U	1.0	U
cis-1,2-DCE	µg/L	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
trans-1,2-DCE	µg/L	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Metals		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
Lead (Total)	µg/L	-		-		-		-		-		-	
Lead (Dissolved)	µg/L	-		-		-		-		-		-	
Radiological Parameters		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
Gross Alpha	pCi/L	-		-		-		-		-		-	
Gross Beta	pCi/L	-		-		-		-		-		-	
Total Uranium	µg/L	-		-		-		-		-		-	
Combined Radium 226/228	pCi/L	-		-		-		-		-		-	
Gross Alpha - Dissolved	pCi/L	-		-		-		-		-		-	
Gross Beta - Dissolved	pCi/L	-		-		-		-		-		-	
Total Uranium - Dissolved	µg/L	-		-		-		-		-		-	
Combined Radium 226/228 - Dissolved	pCi/L	-		-		-		-		-		-	
MNA Parameters		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
TOC	mg/L	-		-		-		-		-		-	
DOC	mg/L	-		-		-		-		-		-	
Ethane	µg/L	-		-		-		-		-		-	
Ethene	µg/L	-		-		-		-		-		-	
Methane	mg/L	-		-		-		-		-		-	
Nitrate-N	mg/L	-		-		-		-		-		-	
Sulfate	mg/L	-		-		-		-		-		-	
Chloride	mg/L	-		-		-		-		-		-	
Soluble Manganese, Mn(II)	mg/L	-		-		-		-		-		-	
Ferrous Iron, Fe(II)	mg/L	-		-		-		-		-		-	
Field Parameters		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
рН	SU	7.9		3.38		7.12		7.65		7.89		7.64	
Specific Conductance	mS/cm	0.335		2.074		0.427		0.384		0.418		0.703	
Turbidity	NTU	681		335.0		1350.3		473.0		559.6		495.0	
Dissolved Oxygen	mg/L	3.81		0.12		1.60		1.23		10.77		5.05	
Temperature	°C	10.78		11.31		12.66		9.86		8.59		8.96	
ORP	mV	-10.2		369.2		351.5		25.2		-152.7		38.2	

Sampling Date	Units	Dec-98	В	May-9	9	Oct-99		Mar-0	0	Aug-0	0	Feb-0	1	Aug-0	01	Feb-0	2
Well ID		MW-40	s	MW-40	s	MW-40	s	MW-40	S	MW-40	S	MW-40	S	MW-40	0S	MW-40	S
VOCs		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
1,1-DCE	µg/L	10	U	5	U	0.5	U	10	U	20	U	2	U	0.83	U	0.5	U
PCE	µg/L	1	J	1	J	3		2	J	6	JD	2	U	0.78	U	0.5	U
TCE	µg/L	2	J	5	U	1		10	U	20	U	2	U	0.49	U	0.5	U
VC	µg/L	14		4	J	10		8	J	20	U	2.3	J	1.0	U	3	1
cis-1,2-DCE	µg/L	14^		8^		10^		6^	J	20^	U	2^	J	2	J	2	
trans-1,2-DCE	µg/L													0.84	U	0.5	U
Metals		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
Lead (Total)	µg/L	16		3,120		151		339		701		1,180		133		95.1	NV
Lead (Dissolved)	µg/L	-		-		-		-		-		-		-		-	
Radiological Parameters		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
Gross Alpha	pCi/L	-		-		-		-		-		-		-		-	
Gross Beta	pCi/L	-		-		-		-		-		-		-		-	
Total Uranium	µg/L	-		-		-		-		-		-		-		-	
Combined Radium 226/228	pCi/L	-		-		-		-		-		-		-		-	
Gross Alpha - Dissolved	pCi/L	-		-		-		-		-		-		-		-	
Gross Beta - Dissolved	pCi/L	-		-		-		-		-		-		-		-	
Total Uranium - Dissolved	µg/L	-		-		-		-		-		-		-		-	
Combined Radium 226/228 - Dissolved	pCi/L	-		-		-		-		-		-		-		-	
MNA Parameters		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
TOC	mg/L	-		-		-		-		-		-		-		-	
DOC	mg/L	-		-		-		-		-		-		-		-	
Ethane	µg/L	-		-		-		-		-		-		-		-	
Ethene	µg/L	-		-		-		-		-		-		-		-	
Methane	µg/L	-		-		-		-		-		-		-		-	
Nitrate-N	mg/L	-		-		-		-		-		-		-		-	
Sulfate	mg/L	-		-		-		-		-		-		-		-	
Chloride	mg/L	-		-		-		-		-		-		-		-	
Soluble Manganese, Mn(II)	mg/L	-		-		-		-		-		-		-		-	
Ferrous Iron, Fe(II)	mg/L	-		-		-		-		-		-		-		-	
Field Parameters		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
рН	SU	-		-		-		-		-		-		-		-	
Specific Conductance	mS/cm	-		-		-		-		-		-		-		-	
Turbidity	NTU	-		-		-		-		-		-		-		-	
Dissolved Oxygen	mg/L	-		-		-		-		-		-		-		-	
Temperature	°C	-		-		-		-		-		-		-		-	
ORP	mV	-		-		-		-		-		-		-	İ	-	1

Sampling Date	Units	Jun-0	2	Jul-04	4	Dec-04	4	Jun-0	5	Dec-05	5	Dec-00	6	Jun-07	,	Aug-08	;
Well ID		MW-40	S	MW-40)S	MW-40	S	MW-40	S	MW-40	S	MW-40	S	MW-40	S	MW-405	3
VOCs		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
1,1-DCE	µg/L	0.5	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
PCE	µg/L	0.5	U	1.0	U	1.0	U	1.0	UJ	1.0	U	1.0	U	1.0	U	1.0	U
TCE	µg/L	0.5	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
VC	µg/L	3		2.0	U	2.0	U	2.0	U	2.0	UJ	2.0	U	2.0	U	1.0	U
cis-1,2-DCE	µg/L	4		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
trans-1,2-DCE	µg/L	0.5	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Metals		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
Lead (Total)	µg/L	206		61.7		247	J	125		3.9		424		170		77.5	
Lead (Dissolved)	µg/L	-		-		-		-		-		-		-		0.541	J
Radiological Parameters		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
Gross Alpha	pCi/L	-		0.37	U	8.80	J	4.70	J	1.00	UJ	3.70		4.70		25.3	
Gross Beta	pCi/L	-		0.80	U	4.20	U	5.10	J	1.30	U	3.50	J	3.10	U	52.2	
Total Uranium	µg/L	-		0.50		0.50		0.42	J	-		0.20	U	0.87		2.3	
Combined Radium 226/228	pCi/L	-		0.32	U	0.73	UJ	0.10	UJ	-		0.39	U	0.54	J	2.083	
Gross Alpha - Dissolved	pCi/L	-		-		-		-		-		-		0.40	U	2.85	J
Gross Beta - Dissolved	pCi/L	-		-		-		-		-		-		0.90	U	10.6	
Total Uranium - Dissolved	µg/L	-		-		-		-		-		-		1.00		0.51	J
Combined Radium 226/228 - Dissolved	pCi/L	-		-		-		-		-		-		0.53	U	1.235	
MNA Parameters		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
TOC	mg/L	-		-		-		-		-		-		-		0.801	
DOC	mg/L	-		-		-		-		-		-		-		1.12	J
Ethane	µg/L	-		-		-		-		-		-		-		0.680	J
Ethene	µg/L	-		-		-		-		-		-		-		2.0	U
Methane	µg/L	-		-		-		-		-		-		-		53.0	
Nitrate-N	mg/L	-		-		-		-		-		-		-		0.243	
Sulfate	mg/L	-		-		-		-		-		-		-		13.8	J
Chloride	mg/L	-		-		-		-		-		-		-		38.0	
Soluble Manganese, Mn(II)	mg/L	-		-		-		-		-		-		-		0.35	
Ferrous Iron, Fe(II)	mg/L	-		-		-		-		-		-		-		0.2	U
Field Parameters		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
рН	SU	-		7.02		7.84		7.95		8.16		7.73		7.64		6.91	
Specific Conductance	mS/cm	-		0.399		0.326		0.321		0.224		0.211		0.223		0.201	
Turbidity	NTU	-		16.7		146.8		83		18.9		97.1		64.7		1555.0	
Dissolved Oxygen	mg/L	-		0.82		0.9		5.99		2.21		1.75		2.38		1.68	
Temperature	°C	-		37.97		12.94		12.56		11.92		13.29		13.07		18.00	
ORP	mV	-		-23.9		87.1		29.3		-113.8		-47.9		-78.9		389.5	

Sampling Date	Units	Nov-08		Feb-09		May-09		Dec-0	6	Jan-0	7	Jun-0	7	Aug-08	;	Nov-08	3
Well ID		MW-405	;	MW-405	S	MW-405	;	MW-41	s	MW-41	S	MW-41	IS	MW-415	5	MW-41	S
VOCs		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
1,1-DCE	µg/L	1.0	U	1.0	U	1.0	U	1.0	U	-		1.0	U	1.0	U	1.0	U
PCE	µg/L	1.0	U	1.0	U	1.0	U	53	D	-		45	Е	33.0		31.0	
TCE	µg/L	1.0	U	1.0	U	1.0	U	8.3		-		10.0		7.3		6.7	
VC	µg/L	1.0	U	1.0	U	1.0	U	0.6	J	-		0.6	J	0.78	J	0.77	J
cis-1,2-DCE	µg/L	1.0	U	1.0	U	1.0	U	6.4		-		8.3		4.7		4.6	
trans-1,2-DCE	µg/L	1.0	U	1.0	U	1.0	U	1.0	U	-		0.2	J	1.0	U	1.0	U
Metals		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
Lead (Total)	µg/L	129		41.8		110		20.3		-		6.2		13.8		3.16	
Lead (Dissolved)	µg/L	3.38		0.654	J	1.0	U	-		-		-		1.0	U	1.0	U
Radiological Parameters		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
Gross Alpha	pCi/L	7	J	38.9		40.7	J	-		56		4.60	J	17.5		4.58	J
Gross Beta	pCi/L	10		72.1		55.5	J	-		103		9.60	J	51.2	J	15.1	
Total Uranium	µg/L	1		0.87		3.55		-		3.50		0.90		1.7		0.81	
Combined Radium 226/228	pCi/L	1.182	U	1.07	J	3.13	U	-		1.69		0.93	J	1.285		1.889	J
Gross Alpha - Dissolved	pCi/L	1.110	U	1.36	U	1.73	J	-		-		2.00	U	1.55	U	2	U
Gross Beta - Dissolved	pCi/L	1.200	U	-0.395	U	1.33	U	-		-		4.40		6.63	J	4.75	J
Total Uranium - Dissolved	µg/L	0.190	J	0.31		2.57		-		-		0.30	U	0.38		0.28	
Combined Radium 226/228 - Dissolved	pCi/L	0.897	U	0.826	J	0.775	U	-		-		1.16	J	0.901		0.743	U
MNA Parameters		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
TOC	mg/L	0.678	J	0.677	J	0.713	J	-		-		-		2.89		2.64	J
DOC	mg/L	0.962	J	0.698	J	0.882	J	-		-		-		3.21		3.09	J
Ethane	µg/L	0.63	J	2.0	U	12		-		-		-		1.4	J	0.84	J
Ethene	µg/L	2.0	U	2.0	U	2.0	U	-		-		-		2.0	U	2.0	U
Methane	µg/L	57		55		190		-		-		-		78.0		56	
Nitrate-N	mg/L	0.117	J	0.0839	J	0.10	U	-		-		-		0.114	J	0.106	J
Sulfate	mg/L	15.4		14.4		13.8		-		-		-		75.6		80.1	
Chloride	mg/L	42.1		43.2		45		-		-		-		49.0		63.1	
Soluble Manganese, Mn(II)	mg/L	0.25		0.025		0.025		-		-		-		0.68		0.68	
Ferrous Iron, Fe(II)	mg/L	0.2	U	0.2	U	0.2	U	-		-		-		0.6		0.6	
Field Parameters		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
рН	SU	7.88		7.88		7.50		7.14		-		7.08		3.89		7.12	
Specific Conductance	mS/cm	0.176		0.261		0.255		0.484		-		0.390		0.471		0.415	
Turbidity	NTU	491		202.4		1866.0		910.1		-		48.3		676.0		378	
Dissolved Oxygen	mg/L	1.79		8.16		5.93		2.70		-		1.40		2.37		0.31	
Temperature	°C	15.14		11.21		10.52		12.83		-		13.48		14.44		14.17	
ORP	mV	78.8		-88.5		-52.0		16.8		-		-50.0		413.1		-33.7	

Sampling Date	Units	Feb-0	Э	May-09	Ð	Dec-0	6	1-Jan-	07	1-Jun-0)7	5-Aug-	08	4-Nov-	08	17-Feb	-09
Well ID		MW-41	s	MW-41	s	MW-42	S	MW-42	2S	MW-42	s	MW-42	S	MW-42	S	MW-42	2S
VOCs		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
1,1-DCE	µg/L	1.0	U	1.0	U	1.0	U	-		1.0	U	1.0	U	1.0	U	1.0	U
PCE	µg/L	37		37		0.8	J	-		1.0	U	0.51	J	0.34	J	0.30	J
TCE	µg/L	6.9		6.5		0.3	J	-		1.0	U	1.1		1.0	J	1.0	
VC	µg/L	1.0	U	0.56	J	2.0	U	-		2.0	U	1.0	U	1.0	U	1.0	U
cis-1,2-DCE	µg/L	4.7		4.7		2.9		-		2.2		2.2		2.3		2.0	
trans-1,2-DCE	µg/L	1.0	U	0.24	J	1.0	U	-		1.0	U	1.0	U	1.0	U	1.0	U
Metals		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
Lead (Total)	µg/L	2.02		2.96		2.4		-		1.6	В	3.56		3.26		3.69	
Lead (Dissolved)	µg/L	1.0	U	1.0	U	-		-		-		1.0	U	1.0	U	1.0	U
Radiological Parameters		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
Gross Alpha	pCi/L	2.86	U	11.8		-		1.40	U	1.10	U	4.51	J	2.95	J	12.1	
Gross Beta	pCi/L	6.26		31.3		-		8.00	U	0.20	U	15.5		2.08	U	27.1	
Total Uranium	µg/L	0.49		2.01	J	-		0.90		0.37		0.59		0.43		0.44	
Combined Radium 226/228	pCi/L	0.586	J	2.183	U	-		1.20	J	0.87	J	1.622		1.501	U	1.97	
Gross Alpha - Dissolved	pCi/L	-0.063	U	1.80	J	-		-		2.30	U	1.17	U	2.9	J	0.0717	U
Gross Beta - Dissolved	pCi/L	5.56	J	5.11		-		-		1.30	U	14.4		2.71	U	1.65	U
Total Uranium - Dissolved	µg/L	0.33		2.93	J	-		-		0.69		0.23	J	0.27		0.40	
Combined Radium 226/228 - Dissolved	pCi/L	0.772	J	0.952	U	-		-		0.41	U	0.751		0.89	U	0.638	J
MNA Parameters		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
TOC	mg/L	2.72		2.88		-		-		-		14.5		12.1		9.53	
DOC	mg/L	2.48		2.79		-		-		-		14.9		12.7		9.48	
Ethane	µg/L	2.0	U	0.65	J	-		-		-		1.2	J	2.0	U	2.0	U
Ethene	µg/L	2.0	U	2.0	U	-		-		-		2.0	U	2.0	U	2.0	U
Methane	µg/L	66		110		-		-		-		230		400		510	
Nitrate-N	mg/L	0.112	J	0.10	U	-		-		-		0.10	U	0.118	J	0.0789	J
Sulfate	mg/L	74.2		70.8		-		-		-		98.6		96.1		75.2	
Chloride	mg/L	68.1		90.4		-		-		-		55		69.5		87.4	
Soluble Manganese, Mn(II)	mg/L	0.05		0.68		-		-		-		0.70		0.70		0.05	
Ferrous Iron, Fe(II)	mg/L	0.8		1.8		-		-		-		2.2		2.2		2.6	
Field Parameters	<u> </u>	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
pН	SU	6.94		6.92		6.89		-		6.75		6.10		6.83		6.93	
Specific Conductance	mS/cm	0.545		0.773		0.703		-		0.691		0.592		0.603		0.674	
Turbidity	NTU	154.3		17.6		32.1		-		29.4		466.0		155		261.0	
Dissolved Oxygen	mg/L	2.74		3.18		0.41		-		3.12		1.11		6.38		0.89	
Temperature	°C	9.11		10.19		12.56		-		13.57		15.82		14.66		9.49	
ORP	mV	-8.1		18.0		-60.1				-83.7		-173.3		-62.7		-87.1	┢───┤

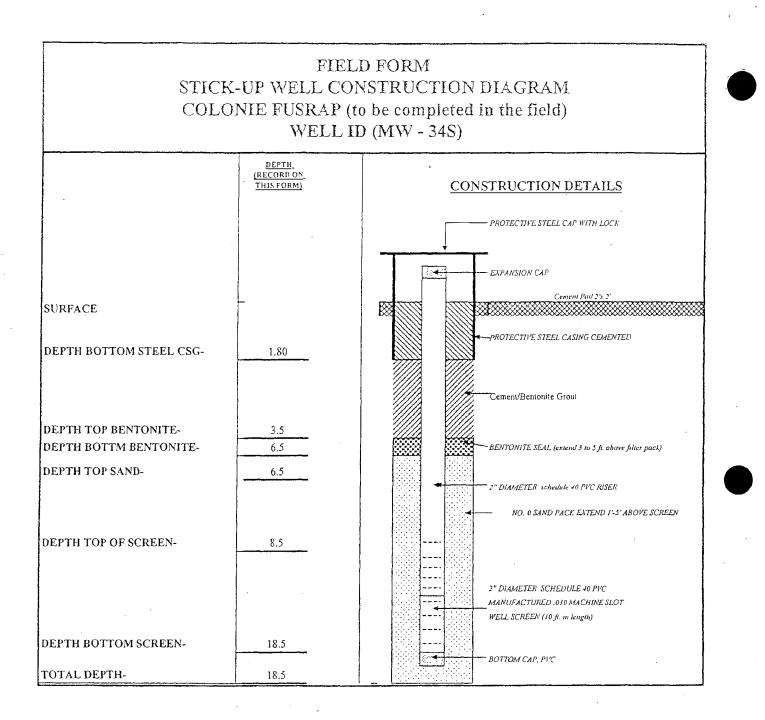
Sampling Date	Units	19-May-	09	1-Dec-(06	1-Jan-	07	1-Jun-0	7	5-Aug-0)8	4-Nov-(8	17-Feb	-09	19-May	-09
Well ID		MW-42	S	MW-43	S	MW-43	3S	MW-43	s	MW-43	s	MW-43	s	MW-43	3S	MW-43	s
VOCs		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
1,1-DCE	µg/L	1.0	U	1.0	U	-		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
PCE	µg/L	0.28	J	1.0	U	-		1.0	U	1.0	U	0.22	J	1.0	U	1.0	U
TCE	µg/L	0.78	J	1.0	U	-		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
VC	µg/L	1.0	U	2.0	U	-		2.0	U	1.0	U	1.0	U	1.0	U	1.0	U
cis-1,2-DCE	µg/L	1.5		1.0	U	-		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
trans-1,2-DCE	µg/L	1.0	U	1.0	U	-		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Metals		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
Lead (Total)	µg/L	3.59		1.0	В	-		2.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Lead (Dissolved)	µg/L	1.0	U	-		-		-		1.0	U	1.0	U	1.0	U	1.0	U
Radiological Parameters		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
Gross Alpha	pCi/L	10.7	J	-		13.60		4.10	U	-0.0578	U	1.1	U	-0.343	U	-0.0199	U
Gross Beta	pCi/L	20.1	J	-		11.20		5.20	U	14.0		7.4	J	3.62	J	2.11	J
Total Uranium	µg/L	0.834		-		7.40		1.09		0.74		0.86		0.64		0.449	J
Combined Radium 226/228	pCi/L	1.749	U	-		1.38	J	0.85	J	0.82035		1.019	U	0.258	U	0.653	U
Gross Alpha - Dissolved	pCi/L	1.78	J	-		-		1.90	U	1.57	U	1.79	U	0.237	U	-0.245	U
Gross Beta - Dissolved	pCi/L	1.93	J	-		-		4.10	U	5.71	J	4.64	J	2.72	J	2.76	J
Total Uranium - Dissolved	µg/L	0.344		-		-		0.70		0.74		0.78		0.89		0.507	J
Combined Radium 226/228 - Dissolved	pCi/L	0.931	J	-		-		0.62	J	1.206		1.445	U	0.465	U	0.947	J
MNA Parameters		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
TOC	mg/L	8.79		-		-		-		1.68	J	1.64		1.66		1.09	J
DOC	mg/L	8.90		-		-		-		1.93	J	1.74		1.49	J	1.19	J
Ethane	µg/L	1.2	J	-		-		-		2.0	U	2.0	U	2.0	U	2.0	U
Ethene	µg/L	2.0	U	-		-		-		2.0	U	2.0	U	2.0	U	2.0	U
Methane	µg/L	470		-		-		-		6.6		1.8	J	5.8		6.5	
Nitrate-N	mg/L	0.10	U	-		-		-		0.345		0.320		0.135	J	0.164	
Sulfate	mg/L	66.3		-		-		-		44.3		45.0		46.1		37.2	
Chloride	mg/L	101		-		-		-		108		94.2		71.5		97.6	
Soluble Manganese, Mn(II)	mg/L	0.68		-		-		-		0.50		0.46		0.175		0.500	
Ferrous Iron, Fe(II)	mg/L	1.2		-		-		-		0.2	U	0.2	U	0.2	U	0.0	
Field Parameters		Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q	Results	Q
рН	SU	4.84		7.07		-		7.01		5.90		7.15		7.34		8.56	
Specific Conductance	mS/cm	0.681		1.100		-		0.824		0.560		0.371		0.458		0.150	
Turbidity	NTU	66.5		43.4		-		41.5		28.0		14		20.0		1305.0	
Dissolved Oxygen	mg/L	17.39		1.52		-		1.41		NM		2.54		2.24		1.32	
Temperature	°C	9.77		10.29		-		12.43		14.23		13.05		7.18		12.59	
ORP	mV	-28.5		42.9	1	-		-14.9		176.1		58.2		12.0	1	84.4	

Notes:

Q = data qualifier ^ = total value of cis-1,2-Dichloroethene and trans-1,2-Dichloroethene μ g/L = micrograms per liter mg/L = milligrams per liter pCi/L = picoCuries per liter mS/cm = microSiemens per centimeter NTU = Nephelometric Turbidity Units SU - Standard Units mV = millivolts Boldface text = result was detected above the method detection limits * = standard applies to each isomer individually U = non-detect as less than method reporting limit J = estimated value B = blank E = exceeding the calibration range N = spiked sample recovery not within control limits V = presumptive evidence of a compound UJ = estimated, not detected

JB = estimated, blank value NM = analyte not measured Appendix C

Well Logs and Construction Details

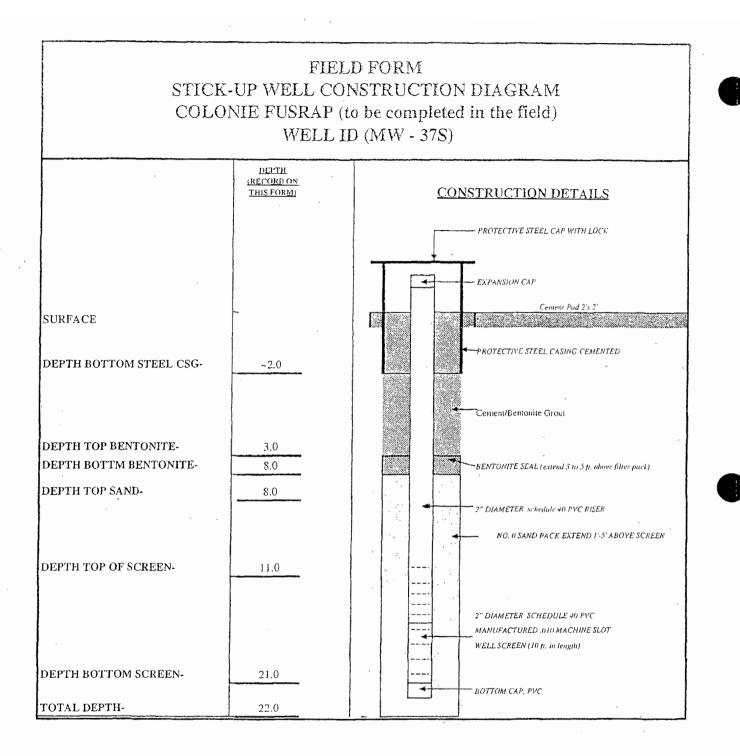

	PROJECT	NO. SHEET NO. KOLE NO.
GEOLOGIC DRILL LO	G Colonie Interim Storage Site 4	501-139 1 DF 1 B39W08S
	CTORDINATES	ANGLE FROM HORIZ BEARING
CISS BEGAN COMPLETED PAILLER	N 1776 E 1122 PRILL RAKE AND MODEL SIZE FOVEREN	RDEN ROCK (FT.) DOTAL DEPTH
11-7-84 11-7-84 Empire S	Salle Ackar AB-2 7-1/2"	1
THE RECOVERY (FT./%) THE BOXESSAMPLE		ER DEPTH/EL. TOP OF ROCK
/		1
SAMPLE HANNER WEIGHT/FALL CASING LEF	FT IN HOLE: DIA./LENGTH LOGGED BT:	. Lundeen
	ELEV. H H H DESCRIPTION AND CLASS	NOTES ON-
	ELEV. H H H DESCRIPTION AND CLASS	
SARP D Server Baress Contered		HATER RETURN, CHARACTER DF
	775 0	DRILLING, ETC.
	0.3 - 10.8 Ft. <u>SAND</u> (SP). Light t medium- to coarse-grained, well so rounded to subangular, frosted par silt. Noncohasive. Dry to saturate	rted,
	silt. Noncohesive. Dry to saturate	d at 3.5 Ft.
	(DUNE SAND)	
	5-	
		/
	218.1 10-	
	10.8 - 14.0 Ft. Clayor SILT (ML), dark gray noncoheave to slightly c slightly plastic material. Rapid to	Gray to obsisive,
	dilatancy.	moderate
	114.9 (UPPER SAND)	•
		nitor well
	Bottom of borehole at 14.0 Ft. Mo installed and acreened at 6.0 to 11.	D FL.,
	11/7/84.	
		2
		#1
		0
		7. T
		10 M
		C ≪
		^
		1
		HOLE NO.
S . SPLIT SPOON; ST . SHELBY TUBE; SIT	CISS	B39W08S

مریک ک^{رو} سر سر س

			Drilling Log	
	ORPORATIC			Monitoring Web 30-S
	ISAAP Site		Dwner <u>USACE</u>	See Site Kap For Bering Location
	Total Hole	e Depth <u>14.5</u>	Froj. Nc. <u>866724</u> <u>It.</u> Diameter	COMMENTS:
Screen: Dia 2 in	Length 10) <u>ff</u>	Static Type/Size <u>Sch 40PVC in</u>	Alcosphere & samples monitored by EC.
Casing: Dia 2 in.	Length 6	<u>1t.</u>	Type <u>Sch 40PVC</u>	
Orill Co. <u>Maxim Tech</u>	noicay Me	thod <u>HSA</u>	Date <u>08/01/00</u> Permit #	
Checkec By		License r		
	PID (ppm) Sample ID Blow Count/ % Recovery	phic og Class.	Descr	iption [.]
	PID (ppm) Sampte 1 Blow Coun % Recove	Graphic Log SCS Clas	(Color, Textur Trace < 10%, Little 10% to 20%, S	e, Structure) ome 20% to 35% And 35% to 50%
2-	× <u> </u>			
- 0				
			0–101: Dark prowri-brown, mediul content w/depth, increased moi	
- 2 -				vel, content decreases w/deptn.
- 4				
		SM		
			Z	
- 10 - 1			10-12': Brown, seturated, sandy :	
·	2/2/2/2 80%	1 . SM	grained send, trade diay, medium	i dense.
- 12 - 12				5
- 14 - =		. 54		
-				
- 16				
- 13 -				
			· · ·	
- 212				
22 -				
- 27 -				

Colonie FUSRAP Site				boring number MW 34S				
COMPANY NAME	DRILL SUBCONTRA Corporation Parratt Wolff					ACTOR SHEET		
PROJECT NAME			Parrati Wolli	f 1 of 2				
TERC CONTRACT NO. D	DACA31-9	5-Ď-0083		1130 Central Ave. Albany, NY				
NAME OF DRILLER					DCATION			
Mickey Marshall					site map URE OF GEOLOGIST			
Marc Flanagan								
TYPE AND SIZE OF DRILLING AND SAN			TARTED	DATE COMPLE				
Hollow Stem Auger / Split	mpier		12/20/2001 12/20/2001 SURFACE ELEVATION					
			218.3					
				DEPTH	TO FIRST ENCOUNTE	RED WATER	···· ····	
	· · · · · · · · · · · · · · · · · · ·			NA		0.00		
DEPTH TO REFUSAL NA				DEPTH NA	U WATER AND ELAP	SED TIME AFTER	DRILLING COMPLETED	
DEPTH DRILLED INTO BEDROCK		······		OTHER	WATER LEVEL MEAS	UREMENTS (SPEC	IFY)	
NA				NA				
TOTAL DEPTH OF HOLE 18.5'				TOTAL F	LUID LOSSES			
GEOTECHNICAL SAMPLES	<u>-</u>	SAMPLE DEPTH	UNDISTURBED/DISTURB		TOTAL NUMBER OF	CORE BOXES	· · · · · · · · · · · · · · · · · · ·	
-				-				
			ļ					
ENVIRONMENTAL SAMPLES		SAMPLE DEPTH	ANALYTES				TOTAL CORE RECOVERY ?	
			-					
······································		<u> </u>						
DISPOSITION OF HOLE		1 2	MONITORING WELL	CAS	ING TYPE	WELL DEPTH	SCREENED INTERVAL	
Monitoring well installed	THICL TO P	#0 Morie	MW - 34S		2" PVC	18.5' DESCRIPTION	8.5'-18.5'	
	INISH TIME	DRILLI	NG DEPTH			DESCRIPTION		
DATE START TIME F								
	······	·			·····			
					······			
		· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	i	· · · · · · · · · · · · · · · · · · ·	
	ΟΓΑΤΙΟΛ				CALE			
SKETCH OF DRILLING L	OCATION	I/ADDITIONA	L COMMENTS	S	CALE:			
	OCATION	I/ADDITIONA	L COMMENTS	S	CALE:			
	OCATION	I/ADDITIONA	L COMMENTS	S	CALE:		· · · · · · · · · · · · · · · · · · ·	
	OCATION	i/additiona	L COMMENTS	S	CALE:			
	OCATION	i/additiona	L COMMENTS	S	CALE:			
	OCATION	ADDITIONA	L COMMENTS	S	CALE:			
	OCATION	J/ADDITIONA	L COMMENTS	S	CALE:			
	OCATION	ADDITIONA	L COMMENTS	S	CALE:			
	OCATION	ADDITIONA	L COMMENTS	S	CALE:			
	OCATION	ADDITIONA	L COMMENTS	S	CALE:			
	OCATION	ADDITIONA	L COMMENTS	S	CALE:			
	OCATION	ADDITIONA	L COMMENTS	S	CALE:			
SKETCH OF DRILLING L	OCATION	I/ADDITIONA	L COMMENTS	S	-			
				S	CALE: BORING. MW – 34S			

	LING L		(CONTINUATION SHEET)	BORING NUMBER MW – 34S			
DJECT	AME: COLON	IE FUSRAP SI	TE	GEOLOGIST: M.Flanagan SHEET:			
JEPTH	BLOW COUNT	USCS SYMBOL	DESCRIPTION OF MATERIALS	FIELD SCREENING RESULTS	SAMPLE ID/DEPTH	REMARKS	
		-			······································	Augered down to a No split spoons collected.	
	5 3 4 2	ML .	Brown to brown-gray silt, trace clay content, slight density, Wet	7.0		-	
-	3 3 2 3	ML	Gray-brown silt, trace clay content, slight density, Wet.	6.0			
	2 3 2 2 2	ML	Gray-brown silt, trace clay content, slight density, Last ~4" gray silt, some clay, medium density, Wet.	10.0		-	
- - 16	2 3 3 3	CL	Gray-brown clay, medium density, some silt interbedded, Wet.	15.0		-	
-	3 3 5	CL	Gray-brown clay, medium density, trace silt in 2 horizons, Wet.	15.0		- - -	
	• •					-	
	-		·				
				۰.			



GEOLOGIST: M.Flanagan DATE INSTALLED: 12-20-01 DATE COMPLETED:12-20-01 BOREHOLE DIAMETER: 8 in. TYPE OF DRILLING:Hollow Stem Auger DRILLER/RIG: M.Marshall/Parrat Wolff

LOCATION DESCRIPTION: "C"

Colonie FUSRAP Site Battingre Buttingre Colonie FUSRAP Site Battingre MM - 37S Colonie Fusion Parati Wolf Mit Cockey Settingre Colonie Fusion Parati Wolf Mit Cockey Settingre TERC CONTRACT NO. DACA31-95-D-0083 HIG Cockey Marshall Set Site map Mickey Marshall Set Site map Batter map Mars Protocolist Batter Marshall Set Site map Mars Protocolist Batter Model Marshall Set Site map Mars Protocolist Batter Model Marshall Set Site map Mars Protocolist Batter Model Marshall Set Site map Mars Protocolist Batter Model Marshall Set Site map Mars Protocolist Batter Model Marshall Set Site map Mars Protocolist Marshall Set Site map Mars Protocolist Marshall Set Site map Batter Marshall Marshall Set Site Marshall Mars Protocolist Marshall Set Site Marshall Mars Protocolist Marshall Set Site Marshall Marshall Marshall<					DISTRICT			J F	ORING NUMBER	
Commany Made	Colon	Colonie FUSRAP Site Baltimore								
PROJECT MARE TO DECATION OF FOLK PROVIDENT MARE OF DRULES OF DRUE AND A DRUG OF THE OFFICE OF THE ATTENDED OF							CTOR SHEET			
TEREC CONTRACT NO. DACA31-95-D-0083 III30 Central Ave. Albany. NY Mickey Marshall See site map Mickey Marshall See site map Marce Fanagan III30 Central Ave. Albany. NY Marce Fanagan III30 Central Ave. Albany. Marce Fanagan IIII0 Central Ave. Albany. Marce Fanagan IIII0 Central Ave. Albany. Marce Fanagan IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	IT Corpora	ation			Parratt Wolff	1 of 2				
NAME OF PALLER MICKEY MATSHall See Site map SANATURE OF GELOGIST MARE CF Tanggon TYPE AN ERG OF ORLING AND SAMPLING EDUFFENT Hollow Stem Auger / Spit spoon sampler 1/27/2002 SINATURE ELEVATION 2/2 (st.) LEVATOR 2/2 (st.) 2/2 (st.) LEVATOR 2/2 (st.) 2/2 (st	s · · · · ·									
Mickey Marshall See site map approximately solve of solucians in advance of solucins in advance of solucians in advance of sol	TERC CO	TERC CONTRACT NO. DACA31-95-D-0083						entral Ave. A	bany. NY	
AMA OF GEOLOUIST WATE Flangan View AND SARE OF DERLUKE AND SAMPLING EQUIPMENT VIEW AND SARE OF DERLUKE AND SAMPLING EQUIPMENT Hollow Stem Auger / Split spoon sampler LIZI/2002 SAMPLEE EVENTS DEPTH TO REFUSAL DEPTH TO REF										
Marc Flanggan out State and SameLine Boundary (1974) Out State Communication (1974) Out State Communication (1974) Out State Communication (1974) Out State Communication (1974) Out Communication (Mickey Ma							-		
Hollow Stem Auger / Split spoon sampler 1/27/2002 1/27/2002 Sterrate ELEVEN 220 (est.) 220 (est.) DEPTN TO REPUSAL NA NA Status of the watter and elapset time after pattern p	NAME OF GEOLOGIST						URE OF GEOLOGIST			
Hollow Stem Auger / Split spoon sampler 1/27/2002 1/27/2002 Sterrate ELEVEN 220 (est.) 220 (est.) DEPTN TO REPUSAL NA NA Status of the watter and elapset time after pattern p	TYPE AND SIZE	AUAN	SAMPLING FOLLIPM	ÊNT.		LATE S	TARTED	DATE COMPLE	rên	
SUPPORTE LEVATION SUPPORTE LEVATION DEPTH TO REFUSA. NA DEPTH TO REFUSA. NA DEPTH TO REFUSA. NA DEPTH TO REFUSA. NA DEPTH TO TO REFUSA. NA DEPTH TO TO REFUSA. NA DEPTH TO TO REFUSA. NA DEPTH TO POLE NA ENVIRONMENTAL SAMPLES SAMPLE DEPTH ANALYTES TOTAL FUNDERS SAMPLE DEPTH ANALYTES TOTAL CORE RECOVERY % DEPTATION OF HOLE DEPTH TIME DECONTON OF HOLE	Hollow Stem Auger / Split spoon sampler									
DEPTH TO REFUSAL NA DEPTH TO REFUSAL NA NA DEPTH TO REFUSAL NA NA DEPTH TO WHER AND ELAPSED TIME AFTER DRILING COMPLETED NA DEPTH OF NOTO BEDROCK NA DEPTH OF NOTO BEDROCK NA TOTAL DEPTH OF NOTO BEDROCK NA DEPTH OF NOTO BEDROCK NA STORE WATCH WITH DEPTH OF NOTE TOTAL RUB LOBSEE NA SAMPLE DEPTH UNDISTURBEDIDISTURBED TOTAL NUMBER OF CORE BOXES TOTAL CORE RECOVERY % DEPOSITION OF NOLE BACRILLED MONITORING WELL DEPOSITION OF NOLE START TIME DISTORERON ADDITIONAL COMMENTS SKETCH OF DRILLING LOCATION/ADDITIONAL COMMENTS SCALE: PROJECT 1053, DC 55HOOLS	nonow Stern Auger / Spin spoon sampler									
DEPTH TO REFUSAL NA DEPTH TO REFUSAL NA NA DEPTH TO REFUSAL NA NA DEPTH TO WHER AND ELAPSED TIME AFTER DRILING COMPLETED NA DEPTH OF NOTO BEDROCK NA DEPTH OF NOTO BEDROCK NA TOTAL DEPTH OF NOTO BEDROCK NA DEPTH OF NOTO BEDROCK NA STORE WATCH WITH DEPTH OF NOTE TOTAL RUB LOBSEE NA SAMPLE DEPTH UNDISTURBEDIDISTURBED TOTAL NUMBER OF CORE BOXES TOTAL CORE RECOVERY % DEPOSITION OF NOLE BACRILLED MONITORING WELL DEPOSITION OF NOLE START TIME DISTORERON ADDITIONAL COMMENTS SKETCH OF DRILLING LOCATION/ADDITIONAL COMMENTS SCALE: PROJECT 1053, DC 55HOOLS						220 (est.)			
DEPT TO VATER AND ELAPSED TIME ATER DRILLING COMPLETED NA DIPTIONALED INTO BEDROCK NA TOTAL DEPTH OF HOLE LEVEL MEASUREMENTS (SPECIPY) NA TOTAL DEPTH OF HOLE 22 NA DE						DEPTH		ERED WATER		
NA NA NA NA NA NA NA NA NA NA NA NA NA N			_		· .					
DEPTIORULED INTO BEDROOK NA OTHER WATER LEVEL MEASUREMENTS (SPECIPY NA NA NA TOTAL PETITO OF HOLE 22 OTAL PETITO O	8	JSAL					TO WATER AND ELA	PSED TIME AFTER I	DRILLING COMPLETED	
NA INA INA INA INA INA INA INA INA INA I										
TOTAL DEPTH OF HOLE 22' CENTRICAL SAMPLES SAMPLE DEPTH UNDISTURBEDUDISTURBED TOTAL HUMBER OF CORE BOXES TOTAL NUMBER OF CORE BOXES ENVIRONMENTAL SAMPLES ENVIRONMENTS START TIME ENVIRONMENTAL SAMPLES ENVIRONMENTS SKETCH OF DRILLING LOCATION/ADDITIONAL COMMENTS SCALE: PROJECT TO 32, DC SCHOOLS ENVIRONMENTAL SAMPLES ENVIRONMENTAL SAMPLES ENVIRONMENTS ENVIRONMENTAL SAMPLES ENVIRONMENTAL SAMPLES ENVIRONMENTAL SAMPLES ENVIRONMENTAL SAMPLES ENVIRONMENTS ENVIRONMENTAL SAMPLES ENVIRONMENTS ENVIRONMENTAL SAMPLES ENVIRONMENTS ENVIRONMENTAL SAMPLES ENVIRONMENTAL SAMPLES ENVIRONMENTAL SAMPLES ENVIRONMENTAL SAMPLES ENVIRONMENTAL SAMPLES ENVIRONMENTAL SAMPLES ENVIRONMENTAL SAMPLES ENVIRONMENTAL SAMPLES ENVIRONMENTAL SAMPLES ENVIRONMENTAL SAMPLES ENVIRONMENTAL SAMPLES ENVIRONMENTAL SAMPLES ENVIRONMENTAL SAMPLES ENVIRONMENTAL SAMPLES ENVIRONMENTAL SAMPLES ENVIR	11	INTO BEDROCK			,		WATER LEVEL MEA	SUREMENTS (SPEC	IFY)	
22 NA CECTECHNICAL SAMPLES SAMPLE DEPTH UNDISTURBED/DISTURBED TOTAL NUMBER OF CORE BOXES ENVIRONMENTAL SAMPLES SAMPLE DEPTH ANALYTES TOTAL CORE RECOVERY % DISPOSITION OF HOLE BACKFILLED MONITORING WELL CASING TYPE WELL DEPTH DISPOSITION OF HOLE BACKFILLED MONITORING WELL CASING TYPE WELL DEPTH DISPOSITION OF HOLE BACKFILLED MONITORING WELL CASING TYPE VELL DEPTH DISPOSITION OF HOLE BACKFILLED MONITORING WELL CASING TYPE VELL DEPTH SKETCH OF DRILLING LOCATION/ADDITIONAL COMMENTS SCALE: SCALE:		E HOLE						·····		
DIEPOSITION OF HOLE ENVIRCIMMENTAL SAMPLES SAMPLE DEPTH ANALYTES INTAL NUMBER OF CORE BOXES INTAL NUMBER OF CORE BOXES INTAL CORE RECOVERY % INTAL SAMPLES SAMPLE DEPTH ANALYTES INTAL SAMPLES SAMPLE DEPTH ANALYTES INTAL SAMPLES SAMPLE DEPTH ANALYTES INTAL SAMPLES SAMPLE DEPTH ANALYTES INTAL SAMPLES SAMPLE DEPTH ANALYTES INTAL SAMPLES SAMPLE DEPTH ANALYTES INTAL SAMPLES SAMPLE DEPTH ANALYTES INTAL SAMPLES SAMPLE DEPTH ANALYTES INTAL SAMPLES SAMPLE DEPTH ANALYTES INTAL SAMPLES SAMPLE DEPTH ANALYTES INTAL SAMPLES SAMPLE DEPTH ANALYTES INTAL SAMPLES SAMPLE DEPTH ANALYTES INTAL SAMPLES SAMPLE DEPTH ANALYTES INTAL SAMPLES SAMPLE DEPTH ANALYTES INTAL SAMPLES SAMPLE DEPTH ANALYTES INTAL SAMPLES SAMPLE DEPTH ANALYTES INTAL SAMPLES SAMPLE DEPTH ANALYTES INTAL SAMPLES SAMPLE DEPTH ANALYTES INTAL SAMPLES INTERVAL INTAL SAMPLES INTAL SAMPLES INTAL SAMPLES INTERVAL INTAL SAMPLES INTERVAL INTAL SAMPLES INTERVAL IN		IF HOLE					1000 100010			
ENVIRONMENTAL SAMPLES SAMPLE DEPTH ANALYTES IDTAL CORE RECOVERY % DESPOSITION OF HOLE BACKFILLED MONITORING WELL CASING TYPE WELL DEPTH SCREENED INTERVAL DATE START TIME FINISH TIME DIRLING DEPTH DESCRIPTION SKETCH OF DRILLING LOCATION/ADDITIONAL COMMENTS SCALE: PROJECT TO 32, DC SCHOOLS		SAMPLES	······	SAMPLE DEPTH	UNDISTURBED/DISTURB	_	TOTAL NUMBER O	F CORE BOXES	······································	
DISPOSITION OF HOLE DISPOSITION OF HOLE DISPOSITION OF HOLE DISPOSITION OF HOLE DISPOSITION WELL DISPOSITION										
DISPOSITION OF HOLE DISPOSITION OF HOLE DISPOSITION OF HOLE DISPOSITION OF HOLE DISPOSITION WELL DISPOSITION										
DISPOSITION OF HOLE DISPOSITION OF HOLE DISPOSITION OF HOLE DISPOSITION OF HOLE DISPOSITION WELL DISPOSITION										
DISPOSITION OF HOLE DISPOSITION OF HOLE DISPOSITION OF HOLE DISPOSITION OF HOLE DISPOSITION WELL DISPOSITION										
DISPOSITION OF HOLE DISPOSITION OF HOLE DISPOSITION OF HOLE DISPOSITION OF HOLE DISPOSITION WELL DISPOSITION		A SAMPLES							TOTAL CORE RECOVERY %	
Monitoring well installed #0 Morie MW – 37S 2" PVC 22' 10'-20' DATE START TIME FINISH TIME DRILLING DEPTH DESCRIPTION SKETCH OF DRILLING LOCATION/ADDITIONAL COMMENTS SCALE:	ENVIRONMENT	AL SAMPLES		SAMPLE DEFTR	ANALTIES				TOTAL CORE RECOVERT %	
Monitoring well installed #0 Morie MW – 37S 2" PVC 22' 10'-20' DATE START TIME FINISH TIME DRILLING DEPTH DESCRIPTION SKETCH OF DRILLING LOCATION/ADDITIONAL COMMENTS SCALE:										
Monitoring well installed #0 Morie MW – 37S 2" PVC 22' 10'-20' DATE START TIME FINISH TIME DRILLING DEPTH DESCRIPTION SKETCH OF DRILLING LOCATION/ADDITIONAL COMMENTS SCALE:										
Monitoring well installed #0 Morie MW – 37S 2" PVC 22' 10'-20' DATE START TIME FINISH TIME DRILLING DEPTH DESCRIPTION SKETCH OF DRILLING LOCATION/ADDITIONAL COMMENTS SCALE:										
Monitoring well installed #0 Morie MW – 37S 2" PVC 22' 10'-20' DATE START TIME FINISH TIME DRILLING DEPTH DESCRIPTION SKETCH OF DRILLING LOCATION/ADDITIONAL COMMENTS SCALE:										
Monitoring well installed #0 Morie MW – 37S 2" PVC 22' 10'-20' DATE START TIME FINISH TIME DRILLING DEPTH DESCRIPTION SKETCH OF DRILLING LOCATION/ADDITIONAL COMMENTS SCALE:										
Monitoring well installed #0 Morie MW – 37S 2" PVC 22' 10'-20' DATE START TIME FINISH TIME DRILLING DEPTH DESCRIPTION SKETCH OF DRILLING LOCATION/ADDITIONAL COMMENTS SCALE:										
Monitoring well installed #0 Morie MW – 37S 2" PVC 22' 10'-20' DATE START TIME FINISH TIME DRILLING DEPTH DESCRIPTION SKETCH OF DRILLING LOCATION/ADDITIONAL COMMENTS SCALE:										
				BACKFILLED	MONITORING WELL	CA			1	
SKETCH OF DRILLING LOCATION/ADDITIONAL COMMENTS SCALE:	Monitoring	well installe	d	#0 Morie	MW - 37S		2" PVC	22'	10'-20'	
SKETCH OF DRILLING LOCATION/ADDITIONAL COMMENTS SCALE:	DATE	START TIME	FINISH TIME	DRILL	ING DEPTH			DESCRIPTION		
SKETCH OF DRILLING LOCATION/ADDITIONAL COMMENTS SCALE:										
PROJECT TO 32, DC SCHOOLS							•			
PROJECT TO 32, DC SCHOOLS										
PROJECT TO 32, DC SCHOOLS	1							-		
PROJECT TO 32, DC SCHOOLS	SKETCH		GLOCATION		L COMMENTS		CALE			
	SKEIGH		6 LOCA NOI	MADDITIONA		C	CALL.			
	1									
									,	
		ι								
							-			
		DC SCHOOLS				•	PORING			
NOTE: ATTACH WELL CONSTRUCTION DIAGRAM MW – 37S										
	NOTE: AT	TACH WELL	CONSTRUC	CTION DIAGE	RAM		MW – 37S			
	l								اور در در در در در در روی ور روی و در در در در در در در در در در در در در 	

PROJECT	NAME: COLON	IE FUSRAP SI	NUMBER MW - 37S GEOLOGIST: M. Flanagan SHEET: 2			
DEPTH	BLOW COUNT	USCS SYMBOL	DESCRIPTION OF MATERIALS	FIELD SCREENING RESULTS	SAMPLE ID/DEPTH	REMARKS
						Augered down to 10'. No split spoon collected.
10 - -	4 4 6 4	ML	Brown-gray silt, trace fine grain sand, slight density, Wet.	<1.0		
12 - - -	4 4 5	ML	Brown-gray silt, slight density, Wet.	<1.0		- . ·
14 - -	1 . 3 . 2	ML	Brown-gray silt, slight density, Wet.	<1.0		
16 - - 18	3 3 2 3 2	ML	Brown-gray silt, slight density, trace brown-gray clay in 2" lens at bottom of spoon, Wet.	<1.0		
	2 3 2 3 3	CL	Brown-gray silt, some clay, interbedded throughout spoon, medium density, Wet.	<1.0		
- - - 22	5 4 5	ML	Brown-gray silt, slight density, ~1" brown-gray clay lens, interbedded at bottom of spoon, Wet.	<1.0		
				-		
-						

GEOLOGIST: M. Flanagan DATE INSTALLED: 1-27-02 DATE COMPLETED:1-27-02 BOREHOLE DIAMETER: 8 in. TYPE OF DRILLING:Hollow Stem Auger DRILLER/RIG: M.Marshall/Parrat Wolff

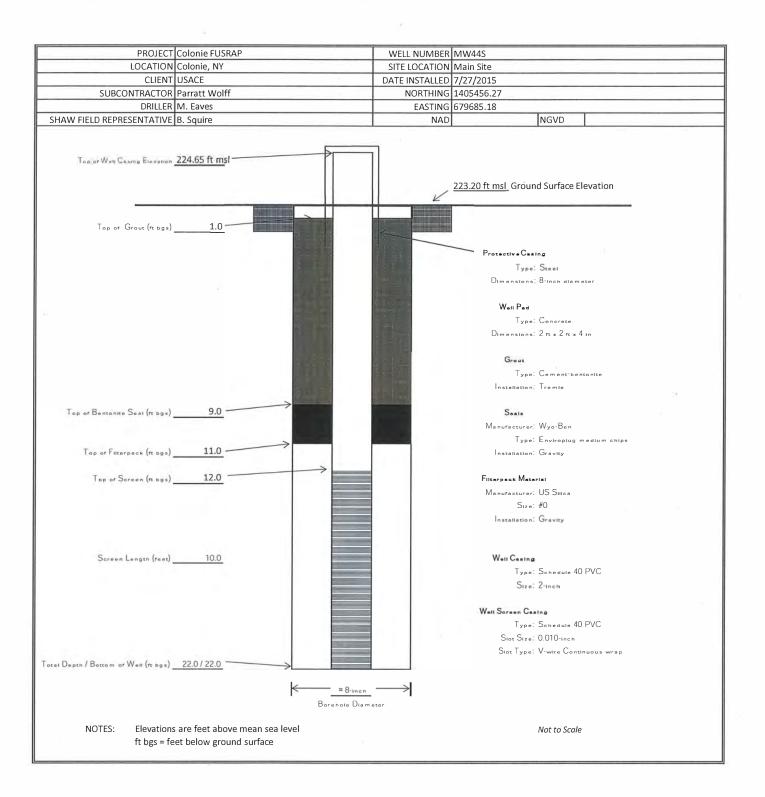
LOCATION DESCRIPTION: "F"

\bigwedge		Drilling Log	
Shaw		Monitoring Well	MW-41S Page: 1 of 1
Location <u>Central Ave., Color</u> Surface Elev. <u>223.0 ft.</u> Top of Casing <u>NA</u> Screen: Dia <u>2 in.</u> Casing: Dia <u>2 in.</u> Fill Material <u>Morie Sand #1</u>	<u>nie, NY</u> Total Hole Depth _ <u>23.0 ft.</u> Water Level Initial _ <u>↓ 14.0 ft</u> Length <u>10 ft.</u> Length <u>11 ft.</u>	J/Core	COMMENTS
Driller <u>RComfort</u>		Date <u>12/11/06</u> Permit # <u>NA</u>	· · · · ·
Depth (ft.) (ft.) (ft.) (ft.) (ft.)	Sample ID % Recovery Blow Count Recovery Craphic Log USCS Class.	Description (Color, Texture, Structu Geologic descriptions are based on ASTM Standard	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	SP SP SP SM ML SM ML MH	Grass, brown coarse grain SAND and GR, Brown, medium grain SAND, some subany Brown, medium grain SAND, little subange Brown, fine to medium grain SAND, some Brown-gray, SILT, little clay, moist. Brown, fine grain SAND and SILT, moist. Gray, SILT, trace clay, moist. Gray, SILT, trace clay, saturated.	gułar gravel, dry. Ilar gravel, moist.

: ...

Drilling Log Monitoring Well **MW-42S** Page: 1 of 1 Project _<u>Colonie FUSRAP Site</u> _____ Owner _____ Shaw Environmental, Inc. COMMENTS Location _Central Ave., Colonie, NY ____ Proj. No. <u>837935</u> Surface Elev. _223.0 ft.____ Total Hole Depth _23.0 ft. _ North ____ _ East _ _____ Water Level Initial _<u> 7 10.0 ft.___</u> Static _<u>NA____</u> Top of Casing NA ___ Diameter _______6.25 in.___ Type/Size _PVC Sch 40/0.010 in. Screen: Dia _2 in. _ Length _10 ft. _ Type _PVC Sch 40 Casing: Dia _2 in. _ Length _10 ft. Fill Material _Morie Sand #1 _ Rig/Core _ Method HSA Drill Co. ADT Driller R.Comfort Log By _R.Adams Date 12/12/06 Permit # NA Checked By _ License No. Blow Count Recovery <u>Sample ID</u> % Recovery Well Completion USCS Class Description Graphic Log (mqq Depth (ft.) (Color, Texture, Structure) Geologic descriptions are based on ASTM Standard D 2487-93 and the USCS. 0 w. Grass, brown, medium grain SAND, some gravel, dry. 2 Ð. 0.22 SW 0.14 4 ċ 6 0.14 Brown, fine grain SAND, some silt, some gravel, moist. 8 0.29 SM 10*⊈* 0.98 Brown-gray, SILT and fine grain SAND, trace gravel, wet. SM 12 1.12 Brown-gray, SILT and fine grain SAND, trace gravel, wet, slight 1/10/07 petro-like odor. ML IT_CORP.GDT 14 1.78 Brown-gray, SILT and fine grain SAND, trace gravel, wet. 16 -COLONIE DECO6.GPJ MŁ 18 12/6/99 20 . 0.28 Gray, SILT, little fine grain sand, wet. Rev: ML 22 0.27 COMMERCIAL 24

VISUAL CLASSIFICATION OF SOILS


	NG NUMBER MW44S PROJECT NAME Colonie FUSRAP IECT NUMBER 500304 COORDINATES Northing 1405456.27, Easting 679685.18						1				
		500304					405456.27, East	ing 679685.18		DAT	
LEVATION	N					Ground: 223.20 ft msl TOC: 224.65 ft msl					7/27/201
GEOLOGIS	Т	B. Squire					MPLETED 7/2				
	METHOD	HSA & Spli	t Spoon						PAGE/	PAGES	1/2
DEPTH (ft)	SAMPLE NUMBER	RECOVERY (ft)	DIG (mqq)		DESCRIPTION					R	EMARKS
1 2 3 4				Brown f-c SAND	, little silt,	little rock,	damp			Hand a from cu	uger, log uttings
5 6 7	1	1	0.0	Brown silty SANI	rown silty SAND, some gravel, loose, damp				SM		
8	2	1.5	0.0	As above, gradin	g to gray-	brown					
10 11	3	1.0	0.0	As above, moist							
12	4	1.5	0.0	As above Brown f SAND, fe	ew to little	e silt, loose	wet]		
14 15	5	0.0	0.0	As above (trace r	ecovery)		SP/SM				
16	6	1.0	0.0	As above							
17	-			Gray vf-f SAND, s	ome silt,	loose, satu	rated		 SM		
18 19	7	1.5	0.0	As above,							
20	8	NR	0.0	As above					1		
m = r f = f vf = v rilling Cor	very fine htractor:	Parratt-Wo		Continued on pa ft = feet NA= not applic NR= not recom ppm = parts per	cable ded						
i uung Eat	ipment:	HSA and sp M. Eaves	mu spoon								
			1.1.4.1								

VISUAL CLASSIFICATION OF SOILS

BORING N		MW44S			PROJECT NAME	Colonie FU					
	NUMBER	500304			COORDINATES		05456.27, East	ting 679685.18		DAT	
ELEVATIO		Ground: 22	23.20 ft m	sl	TOC: 224.65 ft ms		1	 	STARTED		7/27/2015 7/27/2015
GEOLOGI	METHOD	B. Squire HSA & Split	Snoon		GWL Depth	<u> </u>	Date/Time	l	COMPLE PAGE/P		2/2
DEPT H	SAMPLE TYPE & NUMBER	RECOVERY (ft)	PID / Oil Screen (ppm / pos-neg)			DESCRIPT	rion		USCS SYMBOL		EMARKS
21	8 (cont.)	NR	0.0	As abo	ve				SM		
22				Drilled	interval						
23											
24]										
25											
26											
27											
28											
29	1										
30											
31											
32	1										
33	r.										
34											
35	ļ										
36											
37											
39											
39 40	-										
	÷	L		End of	boring = 22 ft.				1		
NOTES:											Í
	coarse				feet						
	medium fin o				not applicable						
	fine very fine				not recorded parts per million						
Drilling Co		Parratt-Wo				. .					
Drilling Eq Driller:	aipment:	HSA and sp M. Eaves	nt spoon								ļ
						-					

MONITORING WELL CONSTRUCTION LOG

Appendix D

Long-Term Monitoring Data Summary Tables

Groundwater Elevations 2010 to **Present**

	1	2010 to Pres	ent	1	
Well ID	Date	Top of Casing Elevation Date [feet]		Groundwater Elevation [feet]	
MW-08S	11/1/2010	230.90	3.31	227.59	
MW-08S	11/30/2010	230.90	3.60	227.30	
MW-08S	2/21/2011	230.90	2.72	228.18	
MW-08S	3/9/2011	230.90	1.99	228.91	
MW-08S	5/9/2011	230.90	3.32	227.58	
MW-08S	5/17/2011	230.90	1.98	228.92	
MW-08S	8/22/2011	230.90	3.56	227.34	
MW-08S	8/25/2011	230.90	4.37	226.53	
MW-08S	9/6/2011	230.90	2.00	228.90	
MW-08S	11/1/2011	230.90	3.90	227.00	
MW-08S	11/14/2011	230.90	3.90	227.00	
MW-08S	2/27/2012	230.90	4.14	226.76	
MW-08S	5/21/2012	230.90	3.82	227.08	
MW-08S	5/22/2012	230.90	3.55	227.35	
MW-08S	8/27/2012	230.90	6.45	224.45	
MW-08S	8/28/2012	230.90	6.34	224.56	
MW-08S	8/25/2015	230.90	6.01	224.89	
MW-08S	8/2/2016	230.90	2.02	228.88	
MW-08S	4/3/2017	230.90	2.07	228.83	
MW-08S	7/14/2020	230.90	5.09	225.81	
MW-08S	7/20/2021	203.90	2.22	228.68	
MW-08S	7/10/2023	203.90	1.98	228.92	
MW-30S	11/1/2010	226.74	7.80	218.94	
MW-30S	11/30/2010	226.74	7.78	218.96	
MW-30S	2/21/2011	226.74	7.20	219.54	
MW-30S	2/24/2011	226.74	7.45	219.29	
MW-30S	5/9/2011	226.74	8.22	218.52	
MW-30S	5/11/2011	226.74	8.22	218.52	
MW-30S	5/18/2011	226.74	6.28	220.46	
MW-30S	8/22/2011	226.74	9.12	217.62	
MW-30S	11/1/2011	226.74	9.09	217.65	
MW-30S	2/27/2012	226.74	9.11	217.63	
MW-30S	5/21/2012	226.74	8.33	218.41	
MW-30S	8/27/2012	226.74	10.40	216.34	
MW-30S	8/28/2012	226.74	10.38	216.36	
MW-30S	8/25/2015	226.74	9.78	216.96	
MW-30S	8/26/2015	226.74	9.78	216.96	
MW-30S	3/7/2016	226.74	7.55	219.19	
MW-30S	8/2/2016	226.74	7.95	218.79	
MW-30S	4/3/2017	226.74	6.05	220.69	
MW-30S	4/4/2017	226.74	6.05	220.69	
MW-30S	7/14/2020	226.74	9.10	217.64	
MW-30S	7/20/2021	226.74	6.03	220.71	
MW-30S	7/11/2023	226.74	6.30	220.44	

Groundwater Elevations 2010 to **Present**

Well ID	Date	2010 to Pres Top of Casing Elevation [feet]	Depth to Water [feet]	Groundwater Elevation [feet]
MW-34S	11/1/2010	219.84	6.45	213.39
MW-34S	11/29/2010	219.84	6.46	213.38
MW-34S	2/21/2011	219.84	6.40	213.44
MW-34S	3/9/2011	219.84	6.02	213.82
MW-34S	5/9/2011	219.84	6.80	213.04
MW-34S	5/13/2011	219.84	6.29	213.55
MW-34S	8/22/2011	219.84	7.58	212.26
MW-34S	8/24/2011	219.84	7.58	212.26
MW-34S	11/1/2011	219.84	6.54	213.30
MW-34S	11/16/2011	219.84	6.58	213.26
MW-34S	2/27/2012	219.84	7.16	212.68
MW-34S	5/21/2012	219.84	6.40	213.44
MW-34S	5/23/2012	219.84	6.28	213.56
MW-34S	8/27/2012	219.84	9.15	210.69
MW-34S	8/28/2012	219.84	9.05	210.79
MW-34S	8/25/2015	219.84	8.81	211.03
MW-34S	8/26/2015	219.84	8.81	211.03
MW-34S	3/7/2016	219.84	6.20	213.64
MW-34S	3/8/2016	219.84	6.20	213.64
MW-34S	8/2/2016	219.84	7.71	212.13
MW-34S	8/3/2016	219.84	7.71	212.13
MW-34S	4/3/2017	219.84	5.40	214.44
MW-34S	7/14/2020	219.84	9.26	210.58
MW-34S	7/20/2021	219.84	5.58	214.26
MW-34S	7/11/2023	219.84	5.64	214.20
MW-37S	11/1/2010	219.96	6.22	213.74
MW-37S	11/30/2010	219.96	6.24	213.72
MW-37S	2/21/2011	219.96	6.02	213.94
MW-37S	3/10/2011	219.96	4.78	211.12
MW-37S	5/9/2011	219.96	6.12	213.84
MW-37S	5/17/2011	219.96	5.92	214.04
MW-37S	8/22/2011	219.96	6.76	213.20
MW-37S	8/25/2011	219.96	6.86	213.10
MW-37S	11/1/2011	219.96	6.30	213.66
MW-37S	11/17/2011	219.96	6.40	213.56
MW-37S	2/27/2012	219.96	6.68	213.28
MW-37S	5/21/2012	219.96	6.02	213.94
MW-37S	5/23/2012	219.96	6.08	213.88
MW-37S	8/27/2012	219.96	8.68	211.28
MW-37S	8/29/2012	219.96	8.63	211.33
MW-37S	8/25/2015	219.96	8.41	211.55
MW-37S	8/26/2015	219.96	8.41	211.55
MW-37S	3/7/2016	219.96	6.13	213.83
MW-37S	3/9/2016	219.96	6.13	213.83
MW-37S	8/2/2016	219.96	7.42	212.54
MW-37S	8/3/2016	219.96	7.42	212.54
MW-37S	4/3/2017	219.96	5.25	214.71
MW-37S	7/14/2020	219.96	7.90	212.06
MW-37S	7/20/2021	219.96	5.70	214.26
MW-37S	7/11/2023	219.96	5.95	214.01

Notes: 1 - MW-44S was repaired, then re-surveyed on 07/18/20. Elevation reference- feet above mean sea level [North American Datum of 1983] Page D-2

Groundwater Elevations 2010 to **Present**

		2010 to Pres	ciit	
Well ID	Date	Top of Casing Elevation [feet]	Depth to Water [feet]	Groundwater Elevation [feet]
MW-41S	11/1/2010	224.82	4.84	219.98
MW-41S	12/1/2010	224.82	4.10	220.72
MW-41S	2/21/2011	224.82	4.48	220.34
MW-41S	3/8/2011	224.82	3.67	221.15
MW-41S	3/17/2011	224.82	2.92	221.90
MW-41S	5/9/2011	224.82	5.36	219.46
MW-41S	5/12/2011	224.82	4.47	220.35
MW-41S	8/22/2011	224.82	4.99	219.83
MW-41S	8/23/2011	224.82	5.05	219.77
MW-41S	11/1/2011	224.82	4.87	219.95
MW-41S	11/17/2011	224.82	5.00	219.82
MW-41S	2/27/2012	224.82	5.36	219.46
MW-41S	5/21/2012	224.82	4.40	220.42
MW-41S	5/22/2012	224.82	4.35	220.47
MW-41S	8/27/2012	224.82	6.91	217.91
MW-41S	8/29/2012	224.82	7.03	217.79
MW-41S	8/25/2015	224.82	7.28	217.54
MW-41S	3/7/2016	224.82	4.13	220.69
MW-41S	3/8/2016	224.82	4.13	220.69
MW-41S	8/2/2016	224.82	6.31	218.51
MW-41S	8/3/2016	224.82	6.31	218.51
MW-41S	4/3/2017	224.82	2.90	221.92
MW-41S	7/14/2020	224.82	6.28	218.54
MW-41S	7/20/2021	224.82	3.62	221.20
MW-41S	7/11/2023	224.82	5.03	219.79
MW-42S	11/1/2010	225.77	6.99	218.78
MW-42S	12/1/2010	225.77	6.92	218.85
MW-42S	2/21/2011	225.77	6.95	218.82
MW-42S	2/22/2011	225.77	7.19	218.58
MW-42S	5/9/2011	225.77	7.48	218.29
MW-42S	5/12/2011	225.77	6.97	218.80
MW-42S	8/22/2011	225.77	7.50	218.27
MW-42S	8/23/2011	225.77	7.48	218.29
MW-42S	11/1/2011	225.77	7.11	218.66
MW-42S	11/15/2011	225.77	7.17	218.60
MW-42S	2/27/2012	225.77	7.71	218.06
MW-42S	5/21/2012	225.77	6.59	219.18
MW-42S	5/24/2012	225.77	6.75	219.02
MW-42S	8/27/2012	225.77	9.22	216.55
MW-42S	8/29/2012	225.77	9.30	216.47
MW-42S	8/25/2015	225.77	9.02	216.75
MW-42S	3/7/2016	225.77	6.35	219.42
MW-42S	8/2/2016	225.77	8.45	217.32
MW-42S	4/3/2017	225.77	5.35	220.42
MW-42S	7/14/2020	225.77	8.53	217.24
MW-42S	7/20/2021	225.77	5.78	219.99
MW-42S	7/11/2023	225.77	6.89	218.88

Groundwater Elevations
2010 to Present

1		2010 10 PTES		
Well ID	Date	Top of Casing Elevation [feet]	Depth to Water [feet]	Groundwater Elevation [feet]
MW-44S	8/25/2015	224.65	6.61	218.04
MW-44S	8/26/2015	224.65	6.61	218.04
MW-44S	3/7/2016	224.65	4.15	220.50
MW-44S	3/8/2016	224.65	4.15	220.50
MW-44S	8/2/2016	224.65	4.60	220.05
MW-44S	8/3/2016	224.65	4.60	220.05
MW-44S	4/3/2017	224.65	2.75	221.90
MW-44S ¹	7/14/2020	225.11	5.98	219.13
MW-44S	7/20/2021	225.11	3.43	221.68
MW-44S	7/11/2023	225.11	4.23	220.88

Well Stability Parameters
2008 to 2020

			2000	to 2020			
Well ID	Sample Date	Dissolved Oxygen [mg/L]	Oxidation Reduction Potential [mV]	рН [-]	Specific Conductance [uS/cm]	Temperature [°C]	Turbidity [NTU]
MW-08S	7/28/2008	0.95	520.3	5.52	401	16.61	1.3
MW-08S	10/29/2008	0.45	150.0	6.68	280	12.95	1.0
MW-08S	12/28/2008	0.97	161.4	6.36	486	13.90	10.4
MW-08S	2/18/2009	0	115.0	7.00	483	5.80	0
MW-08S	5/21/2009	4.08	198.1	6.20	418	13.19	0
MW-08S	11/30/2010	2.12	116.7	7.35	479	13.42	4.7
MW-08S	3/9/2011		113	7.10	470	8.67	0
MW-08S	5/17/2011	5.97	151.0	6.85	1084	11.22	1.10
MW-08S	8/25/2011	4.23	144.6	6.70	1112	17.90	1.60
MW-08S	9/6/2011	1.85	130.0	6.27	474	17.44	1.80
MW-08S	11/14/2011	4.13	173.2	6.55	491	11.94	0.30
MW-08S	2/29/2012	2.09	137.8				
MW-08S	5/22/2012	1.38	276.0	6.06	319	13.02	0.8
MW-08S	8/28/2012	0.02	66.9	6.78	524	18.19	5.0
MW-08S	8/25/2015	0.39	252.2	6.60	583	23.02	11.5
MW-08S	8/2/2016	3.18	85.5	6.31	696	18.7	0
MW-08S	4/3/2017	3.23	128.6	6.66	779	11.31	0.3
MW-08S	7/13/2020	0.18	72	6.74	1020	15.50	1.43
MW-08S	7/19/2021	0.46	108.9	6.41	683	19.34	1.03
MW-08S	7/10/2023	1.83	128.3	6.5	520	15.65	2.12
MW-30S	7/29/2008	0.93	452.2	5.80	1114	18.08	5.0
MW-30S	11/6/2008	2.23	273.6	6.22	869	14.56	16.0
MW-30S	2/17/2009	4.80	110.0	6.31	807	7.49	0
MW-30S	5/18/2009	9.67	239.0	6.37	956	9.14	60.5
MW-30S	11/30/2010	7.16	190.20	6.22	781	10.62	61.00
MW-30S	2/24/2011		228	6.69	659	8.41	3.60
MW-30S	5/11/2011	6.02	161.11	6.71	546	10.11	8.40
MW-30S	5/18/2011	7.34	194.4	6.49	423	9.98	20.10
MW-30S	8/25/2011	2.29	-140.2	6.33	647	17.99	32.7
MW-30S	11/14/2011	0.86	396.5	6.32	537	13.87	9.8
MW-30S	2/29/2012	2.72	222.0				
MW-30S	5/24/2012	2.88	220.3	6.31	513	12.03	17.6
MW-30S	8/28/2012	2.9	134.6	6.24	703	25.16	8.5
MW-30S	8/26/2015	0.27	211.4	6.69	536	17.34	8.0
MW-30S	3/7/2016	0.13	213.8	7.09	536	6.24	13.9
MW-30S	8/2/2016	0.95	74.1	7.17	376	16.61	1124.7
MW-30S	4/4/2017	9.17	220.5	6.68	532	6.05	21.1
MW-30S	7/14/2020	1.56	199	6.47	521	13.44	2.31
MW-30S	7/19/2021	4.44	172.5	6.57	514	15.63	17.5
MW-30S	7/10/2023	16.2 R	171	6.8	420	13.9	16.7

Well Stability Parameters
2008 to 2020

			2000	to 2020			
Well ID	Sample Date	Dissolved Oxygen [mg/L]	Oxidation Reduction Potential [mV]	рН [-]	Specific Conductance [uS/cm]	Temperature [°C]	Turbidity [NTU]
MW-34S	8/1/2008	0.48	283.0	6.42	414	13.58	0
MW-34S	10/30/2008	0.31	13.1	6.91	507	13.78	0
MW-34S	2/19/2009	0	150.0	7.15	582	8.90	
MW-34S	5/26/2009	0.61	121.8	7.10	527	10.73	1287.0
MW-34S	11/29/2010	1.88	120.50	6.68	784	11.01	254.00
MW-34S	3/9/2011		18	7.19	691	9.64	50.0
MW-34S	5/13/2011	2.26	-16.4	7.06	986	10.20	6.6
MW-34S	8/24/2011	1.73	-182.2	6.59	717	16.58	4.1
MW-34S	11/16/2011	1.87	48.0	6.87	650	13.10	4.9
MW-34S	2/28/2012	1.38	3.9				
MW-34S	5/23/2012	1.68	91.7	7.05	602	13.64	7.4
MW-34S	8/28/2012	2.47	12.1	7.20	748	16.15	1.4
MW-34S	8/26/2015	0.46	114.7	7.26	1025	24.78	5.0
MW-34S	3/8/2016	0.01	-14.0	7.03	699	9.14	30.8
MW-34S	8/3/2016	0.02	-75.3	7.44	630	13.12	30.2
MW-34S	4/3/2017	1.67	53.7	7.09	672	10.54	39.4
MW-34S	7/15/2020	1.07	23	7.58	863	12.02	2.58
MW-34S	7/20/2021	0.32	49.3	6.93	617	14.00	9.3
MW-34S	7/11/2023	1.54	68.6	6.94	500	12.96	nm *
MW-37S	8/1/2008	1.71	-77.9	6.67	676	12.30	54.2
MW-37S	10/1/2008	5.10	-96.4	7.25	630	12.62	6.5
MW-37S	2/1/2009	0.94	-48.9	7.05	565	10.09	2085.8
MW-37S	5/26/2009	1.14	-56.3	6.41	717	11.48	76.0
MW-37S	11/30/2010	0.68	-67.80	7.44	818	12.70	96.40
MW-37S	3/10/2011		-102	7.22	769	10.24	85.0
MW-37S	5/17/2011	1.64	-83.7	7.06	662	11.29	16.2
MW-37S	8/25/2011	1.81	-53.7	7.05	1398	14.47	1.8
MW-37S	11/17/2011	2.29	-74.0	6.89	1077	11.90	4.3
MW-37S	2/28/2012	3.00	-54.9				
MW-37S	5/23/2012	1.44	-86.2	7.15	482	12.27	18.2
MW-37S	8/29/2012	0.22	-93.8	7.01	460	16.35	1.3
MW-37S	8/26/2015	0.23	-64.4	6.84	500	12.76	4.7
MW-37S	3/9/2016	3.13	-61.8	7.04	471	11.34	22.6
MW-37S	8/3/2016	0.01	-94.0	6.99	350	12.12	26.7
MW-37S	4/3/2017	2.39	-55.7	7.15	489	10.73	75.6
MW-37S	7/15/2020	2.72	-46	7.49	523	12.31	9.67
MW-37S	7/20/2021	0.99	-96.5	7.07	508	13.92	35.5
MW-37S	7/11/2023	1.35	-88.6	7.04	439	13.25	nm *

Well Stability Parameters
2008 to 2020

Well ID	Sample Date	Dissolved Oxygen [mg/L]	Oxidation Reduction Potential [mV]	рН [-]	Specific Conductance [uS/cm]	Temperature [°C]	Turbidity [NTU]
MW-41S	8/1/2008	2.37	413.1	3.89	471	14.44	676.0
MW-41S	11/1/2008	0.31	-33.7	7.12	415	14.17	378
MW-41S	2/1/2009	2.74	-8.1	6.94	545	9.11	154.3
MW-41S	5/1/2009	3.18	18.0	6.92	773	10.19	17.6
MW-41S	12/1/2010	0.85	-101.10	7.10	991	12.67	607.70
MW-41S	3/8/2011		-35	6.88	948	9.92	80.0
MW-41S	3/17/2011		-20	7.04	816	10.69	894
MW-41S	5/12/2011	0.47	-70.2	6.94	1061	10.03	599.9
MW-41S	8/23/2011	0.76	-14.6	6.69	908	19.21	6.4
MW-41S	11/17/2011	0.57	-74.4	6.82	941	13.20	214.7
MW-41S	2/27/2012	6.09	-44.5				
MW-41S	5/22/2012	1.72	-33.5	6.85	791	15.07	87.9
MW-41S	8/29/2012	0.88	-52.8	6.93	884	15.74	203.0
MW-41S	8/25/2015	0.35	-12.6	6.47	1288	23.16	120.3
MW-41S	3/8/2016	0.02	-81.7	6.67	1241	10.72	51.7
MW-41S	8/3/2016	0.04	-47.0	6.62	719	14.17	192.8
MW-41S	4/3/2017	1.38	-21.6	6.72	1281	9.97	85.6
MW-41S	7/15/2020	0.82	-29	6.83	1060	19.40	57.5
MW-41S	7/20/2021	2.17	-39.3	6.66	1119	18.65	8.71
MW-41S	7/10/2023	0.84	-57.3	6.69	925	13.34	36
MW-42S	8/5/2008	1.11	-173.3	6.10	592	15.82	466.0
MW-42S	11/4/2008	6.38	-62.7	6.83	603	14.66	155
MW-42S	2/17/2009	0.89	-87.1	6.93	674	9.49	261.0
MW-42S	2/19/2009	17.39	-28.5	4.84	681	9.77	66.5
MW-42S	12/1/2010	0.84	-95.70	7.27	976	13.31	831.70
MW-42S	2/22/2011		-107	7.14	971	9.73	240
MW-42S	5/12/2011	0.92	-62.4	5.95	648	10.55	32.3
MW-42S	8/23/2011	1.09	-40.1	6.71	716	18.89	5.6
MW-42S	11/15/2011	1.09	-67.4	6.85	743	14.32	17.0
MW-42S	2/27/2012	0.26	-19.9				
MW-42S	5/24/2012	1.23	-88.4	6.87	600	15.64	84.0
MW-42S	8/29/2012	0.64	-82.7	7.06	588	18.00	60.0
MW-42S	8/25/2015	0.08	-52.2	6.76		19.58	30.0
MW-42S	3/7/2016	0	-129.9	7.19	536	8.17	162.8
MW-42S	8/2/2016	0.04	-87.6	6.91	313	14.14	40.0
MW-42S	4/3/2017	0.86	-65.9	7.00	540	9.34	86.7
MW-42S	7/14/2020	1.46	-54	7.15	495	14.61	48.3
MW-42S	7/19/2021	0.14	-88.1	6.98	474	16.25	13.0
MW-42S	7/10/2023	1.22	-112.2	7.08	428	14.79	14.0
MW-44S	8/26/2015	0.23	35.7	6.97	728	14.00	17.6
MW-44S	3/8/2016	0.01	-31.0	6.91	654	8.81	6.0
MW-44S	8/3/2016	0.15	-18.3	6.68	451	14.13	0.1
MW-44S	4/3/2017	0.60	52.6	6.43	632	9.51	41.3
MW-44S	7/15/2020	0.29	51	7.66	693	13.63	9.14
MW-44S	7/20/2021	0.55	58.5	6.74	1006	19.95	3.81
MW-44S	7/10/2023	3.95	125.3	6.78	812	16.03	9.25

Monitored Natural Attenuation Parameters

2008 to 2020

Well ID	Sample Date	Ethane [ug/L]	Ethene [ug/L]	Ferrous Iron [mg/L]	Man- ganese (II) [mg/L]	Methane [ug/L]	Nitrate + Nitrite [mg/L]	Field Nitrite [mg/L]	Sulfate [mg/L]	Sulfide [mg/L]	Total Organic Carbon [mg/L]
MW-08S	11/30/2010	2.0 U	2.0 U	0.20 U	0.05 U	650	0.10 U		31.1		1.91
MW-08S	3/9/2011	2.0 U	2.0 U	0.10 U	0.54	270	0.10 U		38.0		1.91
MW-08S	5/17/2011	2.0 U	2.0 U	0.09	0.795	71.0	0.10 U		46.4		2.18
MW-08S	8/25/2011	2.0 U	2.0 U	0.09	0.795	25.0	0.0578 J		31.3		1.80
MW-08S	2/29/2012	2.0 U	2.0 U	0.03 U	2.990	12	0.0591 J		22.4		1.61
MW-08S	5/22/2012	2.0 U	2.0 U	0.43	4.23	4.1	0.0601 J		16.1		1.57
MW-08S	8/28/2012	2.0 U	2.0 U	0.15	4.50	24.0	0.0617 J		25.6		1.24 J
MW-08S	7/13/2020			0		11.1 J	0.0214 J	0	23.1	0.0330 U	1.31
MW-30S	11/30/2010	2.0 U	2.0 U	0.80	0.15	1.2 J	2.86		113		1.91
MW-30S	2/24/2011	2.0 U	2.0 U	0.10	0.36	2.9	2.21		97.6		1.87
MW-30S	5/18/2011	2.0 U	2.0 U	0.11	0.136	2.0 U	1.48		43.8		1.79
MW-30S	8/25/2011	2.0 U	2.0 U	0.11	0.136	9.9	0.244		104		1.73
MW-30S	2/29/2012	2.0 U	2.0 U	0.30	0.540	5.5	0.37		93.4		2.29
MW-30S	5/24/2012	2.0 U	2.0 U	0.64	0.768	4.3	0.189		90.5		1.70
MW-30S	8/28/2012	2.0 U	2.0 U	0.14	0.511	24.0	0.0666 J		104		1.83
MW-30S	7/14/2020			0		37.9	0.0170 U	0.02	29.8	0.0330 U	1.79
MW-34S	8/1/2008	2 U	2 U	0	1	13	0.161		92		2.31 J
MW-34S	10/30/2008	2 U	2 U	0	1	13	0.13 J		95		2.25 J
MW-34S	2/19/2009	2 U	2 U	0	0 U	13	0.239		79		2.16
MW-34S	5/26/2009	2 U	2 U	0 U	1	15	0.229		84		2.19 J
MW-34S	11/29/2010	2.0 U	2.0 U	0.01	0.60	11.0	0.132		76.3		1.92
MW-34S	3/9/2011	2.0 U	2.0 U	0.10 U	0.61	7.2	0.108		78.0		2.12
MW-34S	5/13/2011	2.0 U	2.0 U	0.18	0.554	12.0	0.0949 J		75.7		2.12
MW-34S	8/24/2011	2.0 U	2.0 U	0.18	0.554	14.0	0.0917 J		78.9		2.11
MW-34S	2/28/2012	2.0 U	2.0 U	0.14	0.765	15	0.0976 J		70.5		2.13
MW-34S	5/23/2012	2.0 U	2.0 U	0.03 U	0.469	14	0.0932 J		65.7		1.88
MW-34S	8/28/2012	2.0 U	2.0 U	0.03 U	0.484	21.0	0.0777 J		72.6		2.22
MW-34S	7/15/2020			1.71		12.3 J	0.0170 U	0	39.0	0.0330 U	1.26

Monitored Natural Attenuation Parameters

2008 to 2020

Well ID	Sample Date		Ethene [ug/L]	Ferrous Iron [mg/L]	Man- ganese (II) [mg/L]	Methane [ug/L]	Nitrate + Nitrite [mg/L]	Field Nitrite [mg/L]	Sulfate [mg/L]	Sulfide [mg/L]	Total Organic Carbon [mg/L]
MW-37S	8/1/2008	2 U		00		2 U			11		1.01 J
MW-37S	10/1/2008	2 U	2 U	0 U	0 U	2 U	0.0571 J		12		1.53
MW-37S	2/1/2009	2 U	2 U	0 U	0 U	2 U	0.0588 J		10		1.13 J
MW-37S	5/26/2009	2 U	2 U	0 U	0 U	2 U	0.1 U		18		0.847 J
MW-37S	11/30/2010	2.0 U	2.0 U	2.00	0.60	80.0	0.10 U		33.8		3.10
MW-37S	3/10/2011	2.0 U	2.0 U	1.20	0.60	76	0.0563 J		34.0		4.27
MW-37S	5/17/2011	2.0 U	2.0 U	0.67	0.713	130	0.10 U		32.2		4.38
MW-37S	8/25/2011	2.0 U	2.0 U	0.67	0.713	80.0	0.10 U		36.4		3.38
MW-37S	2/28/2012	2.0 U	2.0 U	1.51	5.06	59	0.0615 J		36.5		2.66
MW-37S	5/23/2012	2.0 U	2.0 U	2.59	7.42	74	0.100 U		38.0		3.56
MW-37S	8/29/2012	2.0 U	2.0 U	0.03 U	6.12	56.0	0.10 U		33.4		2.74
MW-37S	7/15/2020			1.35		56.1	0.0170 U	0	21.7	0.0330 U	1.52
MW-41S	8/1/2008	1.4 J	2.0 U	0.6		78.0	0.114 J		75.6		2.89
MW-41S	11/1/2008	0.84 J	2.0 U	0.6	0.68	56	0.106 J		80.1		2.64 J
MW-41S	2/1/2009	2.0 U	2.0 U	0.8	0.05	66	0.112 J		74.2		2.72
MW-41S	5/1/2009	0.65 J	2.0 U	1.8	0.68	110	0.10 U		70.8		2.88
MW-41S	12/1/2010		2.0 U	2.00	0.70 E	110			76.3		2.88
MW-41S	3/8/2011	2.2	2.0 U	0.80		170			78.8		2.62
MW-41S	5/12/2011	2.40		0		220			70.7		2.78
MW-41S	8/23/2011	2.0 U		0	1.536	190			80.0		2.79
MW-41S	2/27/2012	0.89 J		3.04	11.26	210			79.4		2.79
MW-41S	5/22/2012	0.73 J		2.05	12.16				75.0		2.50
MW-41S	8/29/2012	2.0 U	2.0 U	3.20	14.24	150			75.1		2.77
MW-41S	7/15/2020			0.34		134	0.0170 U	0.004	74.6	0.0330 U	3.24

Monitored Natural Attenuation Parameters

2008 to 2020

Well ID		Ethane [ug/L]	Ethene [ug/L]	Ferrous Iron [mg/L]	• • • •	Methane [ug/L]	Nitrate + Nitrite [mg/L]	Field Nitrite [mg/L]	Sulfate [mg/L]	Sulfide [mg/L]	Total Organic Carbon [mg/L]
MW-42S	8/5/2008	1.2 J	2.0 U	2.2	0.70	230	0.10 U		98.6		14.5
MW-42S	11/4/2008	2.0 U	2.0 U	2.2	0.70	400	0.118 J		96.1		12.1
MW-42S	2/17/2009	2.0 U	2.0 U	2.6	0.05	510	0.0789 J		75.2		9.53
MW-42S	2/19/2009	1.2 J	2.0 U	1.2	0.68	470	0.10 U		66.3		8.79
MW-42S	12/1/2010	1.4 J	2.0 U	3.40	0.69	150	0.10 U		65.8		6.10
MW-42S	2/22/2011	2.0 U	2.0 U	2.60	0.68	150	0.0605 J		68.6		5.85
MW-42S	5/12/2011	0.77 J	2.0 U	0.53	1.106	130	0.10 U		53.2		5.96
MW-42S	8/23/2011	2.0 U	2.0 U	0.53	1.106	100	0.0536 J		54.0		6.05
MW-42S	2/27/2012	2.0 U	2.0 U	7.00	6.80	100	0.0717 J		46.2		5.01
MW-42S	5/24/2012	1.3 J	2.0 U	11.90	8.58	81	0.0549 J		35.7		4.34
MW-42S	8/29/2012	2.0 U	2.0 U	2.07	2.24	11.0	0.0571 J		23.6		4.84
MW-42S	7/14/2020			0.65		105	0.0170 U	0.02	4.96	0.0330 U	2.10
MW-44S	7/15/2020			0		57.0	0.0170 U	0.013	32.9	0.0330 U	1.84

Volatile Organic Compounds
2008 to Present

		2000	to Present			
Well ID	Sample Date	Tetrachloro- ethene [ug/L]	Trichloro- ethene [ug/L]	cis-1,2- Dichloroethene [ug/L]	Vinyl Chloride [ug/L]	
	TCG:	5.5	18	1800	1.4	
MW-08S	7/28/2008	1.0 U	1.0 U	1.0 U	1.0 U	
MW-08S	10/29/2008	1.0 U	1.0 U	1.0 U	1.0 U	
MW-08S	12/28/2008	1.0 U	1.0 U	1.0 U	2.0 U	
MW-08S	2/18/2009	1.0 U	1.0 U	1.0 U	1.0 U	
MW-08S	5/21/2009	1.0 U	1.0 U	1.0 U	1.0 U	
MW-08S	11/30/2010	1.0 U	1.0 U	1.0 U	1.0 U	
MW-08S	3/9/2011	1.0 U	1.0 U	1.0 U	1.0 U	
MW-08S	5/17/2011	1.0 U	1.0 U	1.0 U	1.0 U	
MW-08S	8/25/2011	1.0 U	1.0 U	1.0 U	1.0 U	
MW-08S	2/29/2012	1.0 U	1.0 U	1.0 U	1.0 U	
MW-08S	5/22/2012	1.0 U	1.0 U	1.0 U	1.0 U	
MW-08S	8/28/2012	1.0 U	1.0 U	1.0 U	1.0 U	
MW-08S	8/25/2015	1.0 U	1.0 U	1.0 U	1.0 U	
MW-08S	8/2/2016	1.0 U	1.0 U	1.0 U	1.0 U	
MW-08S	4/3/2017	1.0 U	1.0 U	1.0 U	1.0 U	
MW-08S	7/13/2020	0.333 U	0.333 U	0.333 U	0.333 U	
MW-08S	7/19/2021	0.333 U	0.333 U	0.333 U	0.333 U	
MW-08S	7/11/2023	0.333 U	0.333 U	0.333 U	0.333 U	
MW-30S	7/29/2008	14.0	5.8	3.2	1.0 U	
MW-30S	11/6/2008	12.0	5.4	2.7	1.0 U	
MW-30S	2/17/2009	9.0	2.9	1.4	1.0 U	
MW-30S	5/18/2009	7.8	3.1	2.4	1.0 U	
MW-30S	11/30/2010	5.6	1.4	0.56 J	1.0 U	
MW-30S	2/24/2011	4.7	1.1	0.67 J	1.0 U	
MW-30S	5/18/2011	3.6	0.5 J	1.0 U	1.0 U	
MW-30S	8/25/2011	4.4	1.6	1.3	1.0 U	
MW-30S	2/29/2012	4.5	1.7	1.4	1.0 U	
MW-30S	5/24/2012	4.6	1.6	1.3	1.0 U	
MW-30S	8/28/2012	6.0	2.4	2.3	1.0 U	
MW-30S	8/26/2015	2.8	1.6	2.0	1.0 U	
MW-30S	3/7/2016	1.5	0.52 J	0.76 J	1.0 U	
MW-30S	8/2/2016	3.9	1.2	0.96 J	1.0 U	
MW-30S	4/4/2017	3.1	1.0 U	1.0 U	1.0 U	
MW-30S	7/14/2020	6.67	1.54	0.540 J	0.333 U	
MW-30S	7/19/2021	2.88	0.333 U	0.333 U	0.333 U	
MW-30S	7/10/2023	0.8 J	0.49 J	0.52 J	0.333 U	

Notes: TCG - target concentration goal; ug/L - microgram per liter; U - not detected at reporting limit; J - estimated result, detected below reporting limit. Shaded results exceed the TCG.

Volatile Organic Compounds 2008 to **Present**

		2008	to Present			
Well ID	Sample Date	Tetrachloro- ethene [ug/L]	Trichloro- ethene [ug/L]	cis-1,2- Dichloroethene [ug/L]	Vinyl Chloride [ug/L]	
	TCG:	5.5	18	1800	1.4	
MW-34S	8/1/2008	0.92 J	1.0 U	0.93 J	1.6	
MW-34S	10/30/2008	1.0	1.0 U	1.3	1.8	
MW-34S	2/19/2009	0.94 J	1.0 U	0.89 J	1.6	
MW-34S	5/26/2009	0.85 J	1.0 U	0.85 J	2.0	
MW-34S	11/29/2010	0.96 J	1.0 U	1.6	2.5	
MW-34S	3/9/2011	0.75 J	1.0 U	0.96 J	1.8	
MW-34S	5/13/2011	0.66 J	1.0 U	0.93 J	2.4	
MW-34S	8/24/2011	0.71 J	1.0 U	1.2	2.2	
MW-34S	2/28/2012	0.70 J	1.0 U	1.1 J	2.3	
MW-34S	5/23/2012	0.72 J	1.0 U	0.86 J	2.0	
MW-34S	8/28/2012	0.73 J	1.0 U	1.5	3.4	
MW-34S	8/26/2015	0.45 J	1.0 U	0.91 J	1.7 J	
MW-34S	3/8/2016	0.49 J	1.0 U	0.79 J	1.1	
MW-34S	8/3/2016	0.61 J	1.0 U	1.3	1.6	
MW-34S	4/3/2017	0.75 J	0.29 J	1.2	1.1	
MW-34S	7/15/2020	0.470 J	0.333 U	1.34	0.970 J	
MW-34S	7/20/2021	0.51 J	0.333 U	1.09	0.86 J	
MW-34S	7/11/2023	0.37 J	0.333 U	1.04	0.74 J	
MW-37S	8/1/2008	0.22 J	0.33 J	1.6	0.99 J	
MW-37S	10/1/2008	0.23 J	0.38 J	2.3	1.1 J	
MW-37S	2/1/2009	0.51 J	0.71 J	3.6	0.85 J	
MW-37S	5/26/2009	0.27 J	0.36 J	1.9	1.2 J	
MW-37S	11/30/2010	0.25 J	0.36 J	17.0	0.50 J	
MW-37S	3/10/2011	1.0 U	0.33 J	27	0.66 J	
MW-37S	5/17/2011	0.25 J	0.41 J	27.0	0.91 J	
MW-37S	8/25/2011	0.39 J	0.63 J	34.0	0.53 J	
MW-37S	2/28/2012	0.58 J	0.68 J	28	0.40 J	
MW-37S	5/23/2012	0.21 J	0.31 J	39	0.63 J	
MW-37S	8/29/2012	0.37 J	0.53 J	48.0	0.69 J	
MW-37S	8/26/2015	0.49 J	0.58 J	52.0	0.59 J	
MW-37S	3/9/2016	0.38 J	0.62 J	39	0.35 J	
MW-37S	8/3/2016	1.0 U	0.28 J	51	0.48 J	
MW-37S	4/3/2017	0.50 J	0.42 J	49	0.65 J	
MW-37S	7/15/2020	0.333 U	0.333 U	45.6	0.333 U	
MW-37S	7/20/2021	0.333 U	0.333 U	41.6	0.62 J	
MW-37S	7/11/2023	0.48 J	0.48 J	33.3	0.86 J	

Notes: TCG - target concentration goal; ug/L - microgram per liter; U - not detected at reporting limit; J - estimated result, detected below reporting limit. Shaded results exceed the TCG.

Volatile Organic Compounds 2008 to **Present**

		2000	to Present			
		Tetrachloro-	Trichloro-	cis-1,2-	Vinyl	
Well ID	Sample Date	ethene	ethene	Dichloroethene	Chloride	
		[ug/L]	[ug/L]	[ug/L]	[ug/L]	
	TCG:	5.5	18	1800	1.4	
MW-41S	8/1/2008	33.0	7.3	4.7	0.78 J	
MW-415	11/1/2008	31.0	6.7	4.6	0.78 J 0.77 J	
MW-415	2/1/2009	31.0	6.9	4.0	1.0 U	
MW-415	5/1/2009	37	6.5	4.7	0.56 J	
MW-415	12/1/2010	26.0	8.3	6.6	0.50 J	
MW-415	3/17/2011	15	5.3	3.5	0.58 J	
MW-415	5/12/2011	39.0	11.0	6.8	0.92 J	
MW-415	8/23/2011	24	7.1	5.2	0.52 J 0.69 J	
MW-415	2/27/2012	30.0	6.8	4.4	1.0	
MW-41S	5/22/2012	28	7.4	5.2	1.0	
MW-41S	8/29/2012	30.0	8.6	5.1	1.0	
MW-41S	8/25/2015	14.0	4.5	4.2	0.90 J	
MW-41S	3/8/2016	25	6.1	4.7	0.53 J	
MW-41S	8/3/2016	18	5.3	4.7	0.62 J	
MW-41S	4/3/2017	24	5.1	4.8	0.58 J	
MW-41S	7/15/2020	15.0	4.93	5.77	0.333 U	
MW-41S	7/20/2021	12.7	4.86	6.35	0.76 J	
MW-41S	7/10/2023	8.05	2.53	4.71	1.4	
MW-42S	8/5/2008	0.51 J	1.1	2.2	1.0 U	
MW-42S	11/4/2008	0.34 J	1.0 J	2.3	1.0 U	
MW-42S	2/17/2009	0.30 J	1.0	2.0	1.0 U	
MW-42S	2/19/2009	0.28 J	0.78 J	1.5	1.0 U	
MW-42S	12/1/2010	0.43 J	1.3	4.3	1.0 U	
MW-42S	2/22/2011	0.20 J	1.0	3.4	1.0 U	
MW-42S	5/12/2011	0.37 J	0.75 J	9.2	0.22 J	
MW-42S	8/23/2011	0.23 J	0.73 J	12	1.0 U	
MW-42S	2/27/2012	0.22 J	0.54 J	6.6	0.22 J	
MW-42S	5/24/2012	1.0 U	0.73 J	7.4	1.0 U	
MW-42S	8/29/2012	1.0 U	0.59 J	11.0	0.21 J	
MW-42S	8/25/2015	1.0 U	0.65 J	13.0	1.0 U	
MW-42S	3/7/2016	1.0 U	0.44 J	7.2	1.0 U	
MW-42S	8/2/2016	1.0 U	0.45 J	8.5	1.0 U	
MW-42S	4/3/2017	0.34 J	0.75 J	7.6	1.0 U	
MW-42S	7/14/2020	0.333 U	0.520 J	7.00	0.333 U	
MW-42S	7/19/2021	0.333 U	0.333 U	5.31	0.333 U	
MW-42S	7/10/2023	0.333 U	0.333 U	4.88	0.333 U	
MW-44S	8/26/2015	3.1	4.0	3.1	1.0 U	
MW-44S	3/8/2016	13	7.7	2.8	1.0 U	
MW-44S	8/3/2016	15	9.9	3.5	1.0 U	
MW-44S	4/3/2017	18	9.9	3.3	1.0 U	
MW-44S	7/15/2020	0.333 U	0.333 U	0.510 J	0.333 U	
MW-44S	7/20/2021	0.333 U	0.333 U	0.333 U	0.333 U	
MW-44S	7/10/2023	0.333 U	0.333 U	0.333 U	0.333 U	

Notes: TCG - target concentration goal; ug/L - microgram per liter; U - not detected at reporting limit; J - estimated result, detected below reporting limit. Shaded results exceed the TCG.

Appendix E

Data Validation Memo

memo

To:	Carl Young, RSI
From:	Daniel Ohlson, RSI
CC:	Gretchen Baer, RSI Steve Donivan, RSI Janice McDonald, RSI Daniel Ohlson, RSI
Date:	August 31, 2023
Re:	Validation of July 2023 Groundwater Sampling Data from the Colonie, New York, Site

Validation of data generated from the July 2023 Groundwater sampling event at the Colonie, New York, Site has been completed. This Level 3 validation was conducted according to the *Environmental Data Validation Procedure* (LMS/PRO/S15870).

The samples were submitted for analysis identified by Task Code CLN01-01.2307004. Planned monitoring locations are shown in the Sampling and Analysis Work Order (Enclosure 1). Samples were collected at 7 of the 7 planned locations. An additional sample called "Effluent1" was collected from the GAC effluent. See the Trip Report (Enclosure 2) for additional details.

All environmental data from this sampling event are considered validated and available for use. Site data are available for viewing with dynamic mapping via the GEMS (Geospatial Environmental Mapping System) website at http://gems.lm.doe.gov/#. The Field Data Assessment (Enclosure 3) includes discussion of the field data and field quality control samples. The Laboratory Performance Assessment (Enclosure 4) documents the review of the laboratory data. An assessment of anomalous data is included in Enclosure 5. Summaries of Enclosures 3, 4, and 5 are presented below.

Sampling and Analysis Work Order (Enclosure 1)

Trip Report (Enclosure 2)

Field Data Assessment (Enclosure 3)

Verification of Field Activities

A Field Activities Verification Checklist was completed with no issues identified.

Assessment of Field Quality Control Samples

Assessment of field quality control samples was conducted. Trip blanks were prepared and analyzed to document contamination attributable to the shipping and field handling procedures. This type of blank is useful in documenting contamination of volatile organic samples. One trip blank was submitted with these samples. No analytes were detected in the trip blank. Field duplicate samples are collected and analyzed as an indication of overall precision of the measurement process. The precision observed includes both field and laboratory precision and has more variability than laboratory duplicates, which measure only laboratory performance. A duplicate sample was collected from location MW-41S. The relative percent difference for duplicate results that are greater than 5 times the PQL should be less than 20%. For results that are less than 5 times the PQL, the range should be no greater than the PQL. The duplicate results met the criteria, demonstrating acceptable overall precision.

Laboratory Performance Assessment (Enclosure 4)

Laboratory analytical quality control criteria were met except as qualified in the Laboratory Performance Assessment. Analytical data and the associated qualifiers can be viewed in reports from the environmental database.

Assessment of Anomalous Data (Enclosure 5)

One dissolved oxygen result at location MW-30S was identified as an outlier. The result was higher than the physical limit for dissolved oxygen at standard temperature and pressure. Possible field data entry error is suspected for this anomalous result. The result was qualified with an R flag and was rejected from the database. See the Data Validation Outliers Report, below. Assessment of anomalous data is documented in Enclosure 5.

Enclosures (5)

Enclosure 1 Sampling and Analysis Work Order

From: To: Subject: Date: Attachments: Goodknight, Lauren (CONTR) Baer, Gretchen (CONTR) FW: TO 2 July 2023 23-1219 Environmental Sampling at the Colonie, New York, Site Wednesday, July 5, 2023 9:09:48 AM image001.pnq 23-1219 Colonie, NY Sampling Analytes.pdf 23-1219 Colonie, NY Sampling Locations.pdf

This is what Susan sent to DOE.

From: Berg, Susan (CONTR) <Susan.Berg@lm.doe.gov> Sent: Wednesday, June 21, 2023 7:10 AM To: Eichelberger, Shawn <Shawn.Eichelberger@Im.doe.gov> Cc: Bale, Jeff (CONTR) < jeff.bale@lm.doe.gov>; Barker, Brandee (CONTR) <Brandee.Barker@Im.doe.gov>; Brown, Karen (CONTR) <Karen.Brown@Im.doe.gov>; Browning, Stephen (CONTR) <Stephen.Browning@Im.doe.gov>; Carpenter, Cliff <Cliff.Carpenter@Im.doe.gov>; Castillo, Darina <Darina.Castillo@Im.doe.gov>; Deyo, Yvonne (CONTR) <Yvonne.Deyo@Im.doe.gov>; Diei-Anene, Obiajulum <obiajulum.diei-anene@hq.doe.gov>; Document Determination <Document_Determination@lm.doe.gov>; Hart, Mark (CONTR) <Mark.Hart@lm.doe.gov>; Jordan, Mary Ann (CONTR) (Mary.Jordan@lm.doe.gov>; Krull, Connie (CONTR) (connie.krull@lm.doe.gov>; Kuhlman, Alison <Alison.Kuhlman@lm.doe.gov>; Medina, Melissa (CONTR) <Melissa.Medina@lm.doe.gov>; Milush, Jenise (CONTR) <Jenise.Milush@lm.doe.gov>; Owen, Ronald (CONTR) <ronald.owen@Im.doe.gov>; Roberts, Rebecca <Rebecca.Roberts@Im.doe.gov>; Romano, Elizabeth (CONTR) <elizabeth.romano@lm.doe.gov>; Snider, Scott (CONTR) <scott.snider@Im.doe.gov>; Spicer, Emily (CONTR) <Emily.Spicer@Im.doe.gov>; Sumrell, Michelle (CONTR) <Michelle.Sumrell@lm.doe.gov>; Cardinal, Tammera <tammera.cardinal@emcbc.doe.gov>; Vance, Rockelle (CONTR) <Rockelle.Vance@Im.doe.gov>; Whitmill, Cindy (CONTR) <Cindy.Whitmill@lm.doe.gov>; Whysner, Kathleen <kathleen.whysner@lm.doe.gov>; Young, Carl (CONTR) <Carl.Young@lm.doe.gov>; Goodknight, Lauren (CONTR) <Lauren,Goodknight@Im.doe.gov>; Gault, Stacie (CONTR) <Stacie.Gault@Im.doe.gov>; Donivan, Steve (CONTR) <Steve.Donivan@lm.doe.gov> Subject: TO 2 July 2023 23-1219 Environmental Sampling at the Colonie, New York, Site

The RSI Team respectfully submits the map and tables specifying sample locations and analytes for monitoring at the Colonie site. Water quality data will be collected from this site as part of the routine environmental sampling and is currently scheduled to begin the week of July 10, 2023.

Listed below are the monitoring wells scheduled to be sampled during this event.

MW-08S, MW-30S, MW-34S, MW-37S, MW41S, MW-42S, and MW-44S

Submitted on behalf of Carl Young, LMS FUSRAP Site Lead.

Susan Berg FUSRAP Administrative Specialist RSI Team | Contractor to the U.S. Department of Energy Office of Legacy Management Mobile | 727-420-0107

Constituent Sampling Breakdown

Site	Color	ie Site			
Analyte	Groundwater	Surface Water	Required Detection Limit (mg/L)	Analytical Method	Line Item Code
Approx. No. Samples/yr	7	0	1.000	i	
Field Measurements			1		
Total Alkalinity					
Dissolved Oxygen	х		1		
Redox Potential	Х		No. 11		
Hq	х		· · · · · · · ·	1	
Specific Conductance	X				
Turbidity	х		1	1	
Temperature	х				
Laboratory Measurements					
Aluminum			· · · · · · · · ·	1	
Ammonia as N (NH3-N)					
Calcium				1	
Chloride	-			1	
Chromium			A	1	
Iron					1
Lead			1		
Magnesium					
Manganese			1		
Molybdenum	1-		· · · · · · · · · ·		
Nickel					
Selenium					
Silica					
Sodium			1.1		
Strontium			· · · · · · · · · · ·		
Uranium			1		
VOCs	Х		0.001	SW-846 8260	VOA-A-008
Zinc			·	1	
Total Analyses	1 1		0 · · · · · · · ·	i i	1

Note: All analyte samples are considered unfiltered unless stated otherwise. All private well samples are to be unfiltered. The total number of analytes does not include field parameters.

Sampling Frequencies for Locations at Colonie, New York

Location ID	Quarterly	Annually	Biennially	Triennially	Not Sampled	Notes	
Monitorin	g Wells						
MW-08S			X			Next in 2023	
MW-30S			X			Next in 2023	
MW-32S					Х	Decommissioned in 2022	
MVV-34S			X		1	Next in 2023	
MW-37S			X	1		Next in 2023	
MW-41S			X			Next in 2023	
MVV-42S			Х			Next in 2023	
MW-44S			X	A		Next in 2023	

Sampling conducted in July.

Enclosure 2 Trip Report

memo

To:	Carl Young, RSI EnTech
From:	Chelsie Creps, RSI EnTech
Date:	July 27, 2023
CC:	Gretchen Baer, RSI EnTech Steve Donivan, RSI EnTech Janice McDonald, RSI EnTech
Re:	Sampling Trip Report

Site: Colonie, New York

Dates of Event: July 10-11, 2023

Team Members: Chelsie Creps and Carl Young, RSI EnTech

Number of Locations Sampled: Samples were collected from all seven of the locations identified in an email from S. Berg to S. Eichelberger on June 21, 2023. Note that this email was sent in lieu of a Sampling Notification Letter. A copy of the email can be found in \\\lm\raapps\sms\CLN01-01.2307004.

Location Specific Information: Location specific information is presented in Table 1.

Location IDs	Comments				
MVV-30S MVV-42S	The Category I turbidity criteria of 10 NTUs was not met during the purge. The final turbidity measurements were <20 NTUs. Humid conditions caused condensation to form quickly on the sample vials, which caused these readings to be biased high.				
MW-34S	Turbidimeter error; no turbidity readings could be collected. Water was visibly clear.				
MW-37S	Possible iron floc in well. Could not draw water through the installed bladder pump because it was clogged. Collected water using peristaltic and new tubing installed to same depth as the pump intake. Turbidimeter error; no turbidity readings could be collected. Water was visibly turbid.				
MW-41S	The Category I turbidity criteria of 10 NTUs was not met during the purge. Turbidity issues. Noticed sediment in vials.				

Table 1. Location Specific Information

Quality Control Sample Cross Reference: A summary of the quality control samples collected is shown in Table 2.

False Location	False Sample ID	Parent Location	Parent Sample ID	Sample Type	Associated Matrix			
2332	CLN01-01.2307004-001	01-01.2307004-001 MW-41S CLN01-01.2307004-010		LN01-01.2307004-001 MW-41S CLN01-01.2307004-010 D		Duplicate	Groundwater	
2333	CLN01-01.2307004-002	NA	NA	Trip Blank	Water			

Table 2. Quality Control Sample Summary

Carl Young July 27, 2023 Page 2

Task Codes Assigned: Samples were assigned to CLN01-01.2307004. Field data sheets can be found in \\lm\raapps\sms\CLN01-01.2307004\RECORDS.

Sample Shipment: All samples were shipped overnight via FedEx from Albany, NY, to GEL Laboratories in Charleston, SC, on July 11, 2023.

Water Level Measurements: Water levels were measured at all sampled wells upon arrival at the well.

Well Inspection Summary: All wells were in good condition.

Sampling Method: Samples were collected according to the Sampling and Analysis Plan (SAP) for the U. S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). All purge water was treated on-site with granular activated carbon (GAC) as described in Program Directive PD-2023-02-CLN. A sample (called 'Effluent1') was collected from the GAC effluent.

Field Variance:

- The samplers from the Grand Junction site could not attend this sampling event as
 planned due to a cancelled flight. The issues are documented in an email chain that can
 be found in <u>\\lm\raapps\sms\CLN01-01.2307004</u>. C. Creps and C. Young collected
 samples using Grand Junction equipment that had been shipped to a FedEx office in
 Albany.
- The turbidity measurements at Category I locations MW-30S, MW-37S, MW-41S, and MW-42S were higher than 10 NTUs. Turbidity measurements could not be collected at MW-34S and MW-37S because of equipment error.

Equipment: A peristaltic pump was used to purge and sample all wells. Silicone pump head tubing (MasterFlex 96410-15) was used. All equipment functioned properly with this exception: at location MW-378, the bladder pump was clogged, as described in Table 1. At this location, the water was purged and sampled through newly installed tubing rather than through the bladder pump/tubing.

Stakeholder/Regulatory/DOE: The DOE Site Manager, S, Eichelberger, was present for all activities on July 10, 2023. One regulator from the New York State Department of Environmental Conservation was present for some activities on July 9, 2023.

Institutional Controls:

Fences, Gates, and Locks: The main gate was locked and in good condition. Signs: All signage was intact and present.

Trespassing/Site Disturbances: A second break in the barbed wire on the south side of the site was still present. A hole on the north side of the fence behind the restaurant was noted.

Safety Issues: (A) When sampling wells MW-34S and MW-37S, which are accessed by crossing railroad tracks, sampling personnel must be accompanied by an Amtrak engineer. Sampling personnel must have completed Amtrak Contractor Orientation Training and must wear all

Carl Young July 27, 2023 Page 3

required PPE, including hard hats, eye protection, safety-toe boots, and orange high-vis vests. **(B)** Wasps were nesting under the MW-08S well cover.

Access Issues: All gate and well locks use the new LM site key.

General Information: There are 3 rights-of-entry used for offsite sampling: Amtrak/LMS, Amtrak /DOE, and LM/private party.

Immediate Actions Taken: None.

Future Actions Required or Suggested: Nothing to note.

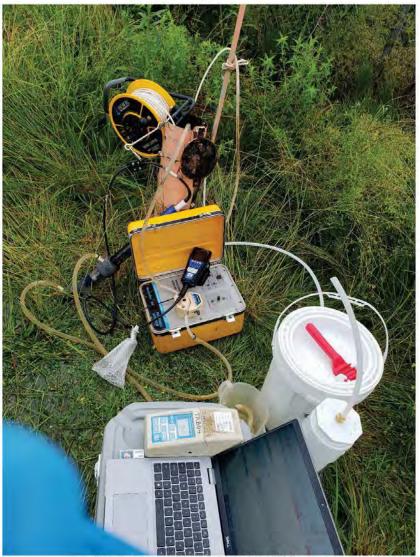


Figure 1. Purging Monitoring Well MW-08S

Carl Young July 27, 2023 Page 4

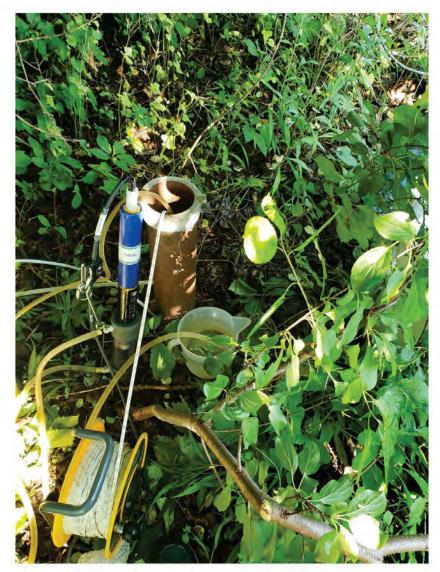


Figure 2. Purging Monitoring Well MW-34S

Enclosure 3 Field Data Assessment

Water Sampling Field Activities Verification Checklist

Project Colonie		Colonie, New York Site	Date(s) of Wate	r Sampling	July 10 and 11, 2023
I	Date(s) of Verification	August 30, 2023	Name of Verifie	r	Daniel Ohlson
			Response (Yes, No, NA)		Comments
1.	Is the SAP the primary document	directing field procedures?	Yes		
	List any Program Directives or ot	ner documents, SOPs, instructions.		PD-2023-02-CLN	1
2.	Were the sampling locations spec	sified in the planning documents sampled?	Yes		
3.	Were field equipment calibrations documents?	conducted as specified in the above-name	edYes		
4.	Was an operational check of the	field equipment conducted daily?	Yes		
	Did the operational checks meet	criteria?	No	Turbidity operation sampling day. Of	a available in the field for operational checks. onal checks not performed on 7/11/2023 field RP and turbidity passed the end-of-event k on July 13, 2023.
5.		linity, temperature, specific conductance, easurements taken as specified?	No	Turbidity measur locations MW-34	ements were not collected on 7/11/2023, for S and MS-37S.
6.	Were wells categorized correctly	2	Yes		
7.	Were the following conditions me	t when purging a Category I well:			
	Was one pump/tubing volume pu	rged prior to sampling?	Yes		
	Did the water level stabilize prior	to sampling?	No	Water level did n	ot stabilize at location MW-41S.
	Did pH, specific conductance, an prior to sampling?	d turbidity measurements meet criteria	No	Specific conducta	ance did not stabilize at location MW-34S.
	Was the flow rate less than 500 r	nL/min?	Yes		

Water Sampling Field Activities Verification Checklist (continued)

	Response (Yes, No, NA) Comments
8. Were the following conditions met when purging a Category II well:		
Was the flow rate less than 500 mL/min?	NA	
Was one pump/tubing volume removed prior to sampling?	NA	
9. Were duplicates taken at a frequency of one per 20 samples?	Yes	
10. Were equipment blanks taken at a frequency of one per 20 samples that were collected with non-dedicated equipment?	NA	
11. Were trip blanks prepared and included with each shipment of VOC samples?	Yes	
12. Were the true identities of the QC samples documented?	Yes	
13. Were samples collected in the containers specified?	Yes	
14. Were samples filtered and preserved as specified?	Yes	
15. Were the number and types of samples collected as specified?	Yes	
16. Were chain of custody records completed and was sample custody maintained?	Yes	
17. Was all pertinent information documented on the field data sheets?	Yes	
18. Was the presence or absence of ice in the cooler documented at every sample location?	No	Ice presence left blank for locations Effluent1, MW-30S, and 2332
19. Were water levels measured at the locations specified in the planning documents?	Yes	

Data Qualifier Summary

Analytical results and field measurements were qualified as listed in the following tables. Refer to the sections below for an explanation of the data qualifiers applied.

Locations	Analytes	Flag	Reason
All monitoring well locations	All analytical results and field measurements	F	Category I or II low-flow sampling
MW-41S	All analytical results and field measurements	Q	Category II purging criteria

Location	Analyte(s)	Flag	Reason
MW-30S	Dissolved Oxygen	R	Nonreal result. Suspected field data entry

J

error.

Did not meet purge stability criteria

Table 2. Data Qualifiers for Field Measurements

Sampling Protocol

MW-34S

Specific Conductance

Sample results for all monitoring wells were qualified with an F flag, indicating the wells were purged and sampled using the low-flow method. At all monitoring well locations, purging and sampling met the Category I criteria, with one exception. The water level at location MW-41S did not stabilize during purging and sampling. This location was classified as Category II because it produced water at a rate less than the minimum low-flow purging rate. The sample results for this well were qualified with a Q flag (qualitative), indicating the samples were not collected under the optimal conditions of the Category I stability criteria.

Field Duplicate Assessment

Field duplicate samples are collected and analyzed as an indication of overall precision of the measurement process. The precision observed includes both field and laboratory precision and has more variability than laboratory duplicates, which measure only laboratory performance. A duplicate sample was collected from location MW-41S. The relative percent difference for duplicate results that are greater than 5 times the PQL should be less than 20%. For results that are less than 5 times the PQL, the range should be no greater than the PQL. The duplicate results met the criteria, demonstrating acceptable overall precision.

<u>Trip Blank</u>

Trip blanks were prepared and analyzed to document contamination attributable to the shipping and field handling procedures. This type of blank is useful in documenting contamination of volatile organic samples. One trip blank was submitted with these samples. No analytes were detected in the trip blank.

Field Measurements

Daily calibration checks were performed as required with acceptable results. The pre-sampling purge criteria were met for all wells, with one exception. Specific conductance at location MW-34S did not stabilize within 10% for its final three measurements. The final specific conductance value at this location was qualified with a J flag as an estimated value. The Category I turbidity criteria could not be met at locations MW-30S, MW-41S, and MW-42S. Turbidity measurements were not recorded for locations MW-34S and MW-37S.

Validation Report: Field Duplicates

Page 1 of 1 29-Aug-2023

Project: Colonie Site

Task Code: CLN01-01 2307004 Lab Code GEN

	Duplicate: CLN01-01.2307004-001			Sample: CLN01-01.2307004-010 MW-41S			ſ .				
Analyte	Result	Qualifiers	Uncert,	Dilution	Result	Qualifiers	Uncert.	Dilution	RPD	RER	Units
cis-1,2-Dichloroethene	4.93			1	4.71	1		1	4.6		ug/L
Tetrachloroethene	8.63		12.11	1	8.05			1	7.0		ug/L
Trichloroethene	2.88	1		1	2,53			1.	12.9		ug/L
Vinyl chloride	1.10			1	1.09			1	111		ug/L

QC Checks: RPD. Relative Percent Difference RER. Relative Error Ratio

Enclosure 4 Laboratory Performance Assessment

General Information

Task Code:	CLN01-01.2307004
Sample Event:	July 10 and 11, 2023
Site(s):	Colonie, New York
Laboratory:	GEL Laboratories, Charleston, South Carolina
Work Order No.:	628811
Analysis:	Organics
Validator:	Daniel Ohlson
Review Date:	August 30, 2023

This validation was performed according to the *Environmental Data Validation Procedure* (LMS/PRO/S15870), which is available at <u>https://documentmanagement.share.lm.doe.gov/</u> <u>ControlledDocuments/Controlled%20Documents/S15870_Env_DV_Procedure.pdf</u>. The procedure was applied at Level 3, Data Validation.

This validation includes the evaluation of data quality indicators (DQIs) associated with the data. DQIs are the quantitative and qualitative descriptors that are used to interpret the degree of acceptability or utility of data. Indicators of data quality include the analysis of laboratory control samples to assess accuracy; duplicates and replicates to assess precision; and interference check samples to assess bias (see attached Data Validation Worksheets). The comparability, completeness, and sensitivity of the data are also evaluated in the sections to follow.

All analyses were successfully completed. The samples were prepared and analyzed using accepted procedures based on methods specified by line item code, which are listed in Table 3.

Table 3.	Analytes	and	Methods
----------	----------	-----	---------

Analyte	Line Item Code	Prep Method	Analytical Method
Volatile Organic Compounds	VOA-A-007	SW-846 5030B	SW846 8260D

Data Qualifier Summary

Analytical results were qualified as listed in Table 4. Refer to the attached validation worksheets and the sections below for an explanation of the data qualifiers applied.

Sample ID	Location	Analyte	Flag	Reason
CLN01-01.2307004-008	MW-34S	Vinyl chloride	J	CCV % drift
CLN01-01.2307004-009	MW-37S	Vinyl chloride	J	CCV % drift

Sample Shipping/Receiving

GEL Laboratories, in Charleston, South Carolina, received ten water samples on July 12, 2023. The Chain of Custody (COC) forms that accompanied the sample shipments were checked to confirm that all the samples were listed with sample collection dates and times, and that signatures and dates were present indicating sample relinquishment and receipt. The COC form included two sample IDs, samples CLN01-01.2307004-003 and CLN01-01.2307004-004, that were not collected. The COC listed samples CLN01-01.2307004-001 and CLN01-01.2307004-002 as having 3 sample vials. However, one vial of each sample had been broken in the field, leaving two sample vials for these samples.

Preservation and Holding Times

The sample shipments were received intact with the temperature inside the iced coolers at 5 $^{\circ}$ C and 6 $^{\circ}$ C, which complies with requirements. All samples were received in the correct container types and had been preserved correctly for the requested analyses. All samples were analyzed within the applicable holding times.

Detection and Quantitation Limits

The method detection limit (MDL) was reported for all analytes as required. The MDL, as defined in Title 40 *Code of Federal Regulations* Section 136, is the minimum concentration of an analyte that can be measured and reported with 99% confidence that the analyte concentration is greater than zero. The practical quantitation limit (PQL) for these analytes is the lowest concentration that can be reliably measured and is defined as 5 times the MDL. All reported MDLs demonstrate compliance with contractual requirements.

Laboratory Instrument Calibration

Method requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing acceptable qualitative and quantitative data for the analytes of interest. Initial calibration verification demonstrates that the instrument is capable of acceptable performance at the beginning of the analytical run. Continuing calibration verification demonstrates that the initial calibration is still valid by checking the performance of the instrument on a continuing basis. Initial and continuing calibration standards must be prepared from independent sources to ensure the validity of the calibration. All laboratory instrument calibration verifications were performed correctly in accordance with the cited methods.

Method SW-846 8260D, Volatile Organics

Initial calibration of instruments "VOA2" and "VOA3" were performed on May 15, 2023, and June 29, 2023, respectively, using nine calibration standards. Calibration curves are established using linear regression or the average response factor approach. Calibrations using average response factors had relative standard deviations of less than 15%. Linear regression calibrations had correlation coefficient values greater than 0.99 and intercepts less than 3 times the MDL. Initial and continuing calibration verification checks were made at the required frequency. Vinyl chloride had a percent drift value greater than 20%. Associated sample results were qualified with a J flag as estimated values. The mass spectrometer calibration and resolution were checked at the beginning of each analytical run, in accordance with the procedure.

Method and Calibration Blanks

Method blanks are analyzed to assess any contamination that may have occurred during sample preparation. Calibration blanks are analyzed to assess instrument contamination prior to and during sample analysis. All method blank and calibration blank results were below the PQL for all analytes. In cases where a blank concentration exceeds the MDL, the associated sample results are qualified with a U flag (not detected) when the sample result is greater than the MDL but less than 5 times the blank concentration (and less than 10 times the blank concentration for common laboratory contaminants).

VOA Internal Standard and Surrogate Recoveries

Laboratory performance for individual samples is evaluated by means of surrogate spikes. All samples are spiked with surrogate compounds prior to sample preparation. Surrogate recoveries are used to monitor factors such as interference and high concentrations of analytes. Surrogate recoveries may also be influenced by the success in recoveries of the internal standards. All surrogate recoveries were within the acceptance ranges. The recovery of the internal standards added to the samples is monitored to measure the purging efficiency. Internal standard recoveries were stable and within acceptance ranges.

Matrix Spike Analysis

Matrix spike and matrix spike duplicate (MS/MSD) samples are used to measure method performance in the sample matrix. The MS/MSD data are not evaluated when the concentration of the unspiked sample is greater than 4 times the spike. The spike recoveries met the acceptance criteria for all analytes evaluated.

Laboratory Replicate Analysis

Laboratory replicate analyses are used to determine laboratory precision for each sample matrix. The relative percent difference (RPD) for results that are greater than 5 times the PQL should be less than 20% (or less than the laboratory-derived control limits for organics). For results that are less than 5 times the PQL, the range should be no greater than the PQL. The replicate results met the criteria, demonstrating acceptable overall precision.

Laboratory Control Sample

Laboratory control samples were analyzed at the correct frequency to provide information on the accuracy of the analytical method and the overall laboratory performance, including sample preparation. All control sample results were acceptable for all analytes.

Chromatography Peak Integration

The integration of analyte peaks was reviewed for all chromatography sample data. All peak integrations, including manual integrations, were satisfactory.

Compound Identification

The mass spectral data were reviewed for each reported organic compound to verify that analytes were identified correctly. Compounds that were reported with results above the MDL but that do not meet the mass spectra compound identification criteria are qualified with a U flag as not detected.

Completeness

Results were reported in the correct units for all analytes requested using contract-required laboratory qualifiers.

Electronic Data Deliverable (EDD) File

The EDD file arrived on August 8, 2023. The EDD was examined to verify that the file was complete and in compliance with requirements. The contents of the file were compared to the requested analyses to ensure all and only the requested data were delivered. The contents of the EDD were manually examined to verify that the sample results accurately reflect the data contained in the sample data package.

Report Prepared By: _____

Daniel Ohlson Data Validator

oject: Colonie Site	emistry 🚺 Metals	# Samples: 10
ain of Custody		Sample
Present <u>OK</u> Signed: <u>C</u>	K Dated: OK	Integrity: OK Preservation OK Temperature: OK
Check		Summary
Holding Times	All analyses were com	pleted within the applicable holding times.
Detection Limits:	The reported detection	limits are equal to or below the contract required limits.
- 2 AT 3 - 2 AT 3	There was 1 field blan	k associated with this task.
Field Blanks	There indo There eldin	R dddddiated mar mis table
10 C 10 C 10 C 10 C 10 C 10 C 10 C 10 C	There was 1 duplicate	
	La ser a ser a ser a ser a ser a ser a ser a ser a ser a ser a ser a ser a ser a ser a ser a ser a ser a ser a	
	La ser a ser a ser a ser a ser a ser a ser a ser a ser a ser a ser a ser a ser a ser a ser a ser a ser a ser a	

organics	Data Validation Summary Page 1 of 1 29-Aug-2023
Task Code: CLN01-01.2307004	
Project: Colonie Site	
Lab Code: GEN	
Surrogate Recovery:	All surrogate recoveries were within the laboratory acceptance limits
LCS/LCSD Performance:	All LCS/LCSD results were within the laboratory acceptance limits.
MS/MSD Performance:	All MS/MSD results were within the laboratory acceptance limits.
Method Blank Performance:	All method blanks were below the MDL

Enclosure 5 Assessment of Anomalous Data

Potential Outliers Report

Potential outliers are results that lie outside the historical range, possibly due to transcription errors, data calculation errors, or measurement system problems. However, outliers can also represent true values outside the historical range. Potential outliers are identified by generating the Data Validation Outliers Report from data in the environmental database. The new data are compared to historical values and data that fall outside the historical data range are listed on the report along with the historical minimum and maximum values. The potential outliers are further reviewed and may be subject to statistical evaluation using the ProUCL application developed by the EPA (https://www.epa.gov/land-research/proucl-software). The review also includes an evaluation of any notable trends in the data that may indicate the outliers represent true extreme values.

There were nine values outside the historical range. None of these values were identified as statistical outliers. Further review of the data for the remaining outliers did not indicate any laboratory errors.

Potential anomalies in the field parameters were also examined for patterns of repeated high or low bias, which suggest a systematic error due to instrument malfunction. One dissolved oxygen result at location MW-30S was identified as an outlier. The result was higher than the physical limit for dissolved oxygen at standard temperature and pressure. Possible field data entry error is suspected for this anomalous result. The result was qualified with an R flag and was rejected from the database. See the Data Validation Outliers Report, below.

Data Validation Outliers Report - No Field Parameters Report Date: 08/29/2023

Comparison to Historical Data Since: 7/1/2013 12:00:00 AM Fraction: Any

Task: CLN01-01.2307004

Analyte	Location	Analysis Location	Units	Fraction	Result	Lab Qualifier(s)	Туре	HistMIN	HistMAX	HistSetSize	Outlier?
Vinyl chloride	MW-41S	LB	ug/L	Ν	1.10		> HistMAX	0.333	1.09	7	No
Tetrachloroethene	MW-30S	LB	ug/L	N	0.800	J	< HistMIN	1.5	6.67	7	No
Tetrachloroethene	MW-34S	LB	ug/L	N	0.370	J	< HistMIN	0.45	0.75	6	No
Vinyl chloride	MW-34S	LB	ug/L	N	0.740	J	< HistMIN	0.86	1.7	6	No
cis-1,2- Dichloroethene	MW-37S	LB	ug/L	N	33.3		< HistMIN	39	52	6	No
Vinyl chloride	MW-37S	LB	ug/L	Ν	0.860	J	> HistMAX	0.333	0.65	6	No
Tetrachloroethene	MW-41S	LB	ug/L	N	8.05		< HistMIN	8.63	25	7	No
Trichloroethene	MW-41S	LB	ug/L	N	2.53		< HistMIN	2.88	6.1	7	No
cis-1,2- Dichloroethene	MW-42S	LB	ug/L	Ν	4.88		< HistMIN	5.31	13	6	No

FRACTION: D = Dissolved N = NA T = Total

Data Validation Outliers Report - Field Parameters Only Report Date: 08/29/2023

Comparison to Historical Data Since: 7/1/2013 12:00:00 AM Fraction: Any

Task: CLN01-01.2307004

Analyte	Location	Analysis Location	Units	Fraction	Result	Lab Qualifier(s)	Туре	HistMIN	HistMAX	HistSetSize	Outlier?
Dissolved Oxygen	MW-30S	FI	mg/L	Ν	16.2		> HistMAX	0.13	9.17	7	Yes, Rejected

FRACTION: D = Dissolved N = NA T = Total