# **Data Validation Package**

# November 2010 Groundwater and Surface Water Sampling at the Riverton, Wyoming Processing Site

January 2011



# Contents

| Sampling Event Summary                                 | 1   |
|--------------------------------------------------------|-----|
| Riverton, Wyoming, Processing Site, Sample Locations   |     |
| Data Assessment Summary                                | 5   |
| Water Sampling Field Activities Verification Checklist | 7   |
| Laboratory Performance Assessment                      | 9   |
| Sampling Quality Control Assessment                    | .18 |
| Certification                                          | .20 |

#### **Attachment 1—Assessment of Anomalous Data**

**Potential Outliers Report** 

# **Attachment 2—Data Presentation**

Groundwater Quality Data Surface Water Quality Data Static Water Level Data Hydrographs Time-Concentration Graphs

### Attachment 3—Sampling and Analysis Work Order

#### **Attachment 4—Trip Report**

# **Sampling Event Summary**

Site: Riverton, Wyoming, Processing Site

Sampling Period: November 2–4, 2010

The 2009 *Long-Term Management Plan for the Riverton, Wyoming, Processing Site* requires semiannual monitoring to evaluate groundwater conditions and assess the progress of natural flushing of the uppermost aquifer. This event involved sampling 18 monitoring wells, 9 surface water locations, and 4 domestic wells at the Riverton, Wyoming, Processing Site.

Water levels were measured at all sampled monitoring wells and 14 additional monitoring wells that were not sampled. Sampling and analysis were conducted as specified in the Long-Term Management Plan and the *Sampling and Analysis Plan for the U. S. Department of Energy Office of Legacy Management Sites* (LMS/PLN/S04351, continually updated).

Concentrations of molybdenum and uranium in samples collected from semi-confined aquifer monitoring wells were below their respective U.S. Environmental Protection Agency (EPA) (Title 40 *Code of Federal Regulations* [CFR] Part 192) groundwater standard. The EPA groundwater standards for molybdenum and uranium were exceeded in samples collected from surficial aquifer monitoring wells listed in Table 1. Time-concentration graphs are included in the Data Presentation section. Contaminant concentrations exceeded historical maximum values at many groundwater locations.

Results from domestic wells (locations 0405, 0430, 0436, and 0460) did not indicate any impacts from the Riverton site. Concentrations of molybdenum and uranium in samples collected from domestic wells were below EPA groundwater and drinking water standards, respectively.

| Analyte    | Standard <sup>a</sup> | Location | Concentration in milligrams per liter (mg/L) |
|------------|-----------------------|----------|----------------------------------------------|
|            |                       | 0707     | 1.48                                         |
|            |                       | 0716     | 0.15                                         |
| Molybdenum | 0.1                   | 0718     | 0.15                                         |
|            |                       | 0722R    | 0.11                                         |
|            |                       | 0789     | 0.72                                         |
|            |                       | 0707     | 1.78                                         |
|            |                       | 0716     | 0.29                                         |
|            | 0.044                 | 0718     | 0.30                                         |
| Uranium    |                       | 0722R    | 0.76                                         |
|            |                       | 0788     | 0.07                                         |
|            |                       | 0789     | 2.64                                         |
|            | -                     | 0826     | 0.08                                         |

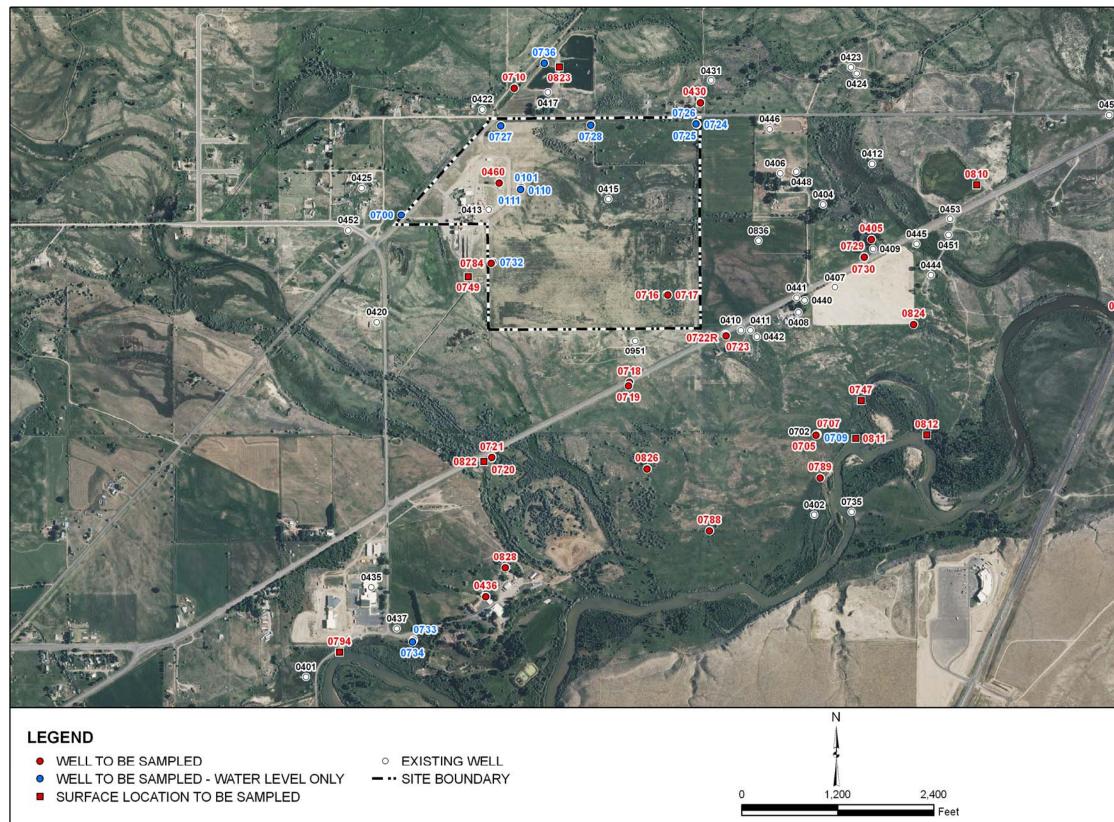
Table 1. Riverton Wells with Samples that Exceeded EPA Groundwater Standards in November 2010

<sup>a</sup> Standards are listed in 40 CFR 192.02 Table 1 to Subpart A.

Surface water uranium results were compared to statistical benchmark values derived using historical data from the Little Wind River location 0794, which is located upstream of the site and represents background conditions. As shown in Table 2, the benchmark value was exceeded only in the oxbow lake (0747), which was formed by a shift in the river path in 1994. Hydraulic and water quality data indicate that the oxbow lake is fed by the discharge of contaminated groundwater; therefore, elevated concentrations are expected. At the time of this sampling event, water was not flowing from the river into the lake. The other locations had uranium concentrations below the benchmark value, which indicates minimal site-related impact on the water quality of the Little Wind River and of the other surface water features. Time-concentration graphs of molybdenum and uranium results at all surface water locations are included in the Data Presentation section.

| Location                           | Uranium Concentration (mg/L) |
|------------------------------------|------------------------------|
| 0794<br>Benchmark                  | 0.011                        |
| 0796<br>Little Wind River          | 0.0077                       |
| 0811<br>Little Wind River          | 0.0075                       |
| 0812<br>Little Wind River          | 0.0083                       |
| 0747<br>Oxbow Lake                 | 0.543                        |
| 0810<br>Constructed Wetlands       | 0.0093                       |
| 0822<br>West Side Irrigation Ditch | 0.010                        |
| 0823<br>Gravel Pit Pond            | 0.0039                       |

Table 2. Comparison of Surface Water Concentrations (November 2010) to Benchmark


The sample collected at the ditch that discharges from the Chemtrade sulfuric acid plant (0749) continues to have elevated concentrations of sulfate (2,690 mg/L). The elevated sulfate concentration in the sulfuric acid plant effluent has affected the sulfate concentration downstream in the west side irrigation ditch (1,080 mg/L at location 0822).

Water samples from 0822 (west side irrigation ditch) were analyzed for radium-226 and radium-228 in response to potentially elevated concentrations of these constituents in the sediments within the ditch. The radium-226 concentration was slightly above, and the radium-228 concentration below, the respective Decision Level Concentration indicating no impact to water quality in the ditch.

Sam Campbell Site Lead, S.M. Stoller Corporation

1-6-2011

Date



M:\LTS\111\0001\16\000\S07078\S0707800-11X17.mxd smithw 10/4/2010 2:52:07 PM

Riverton, Wyoming, Processing Site, Sample Locations

| 5          |                                                       |                                                                                              |
|------------|-------------------------------------------------------|----------------------------------------------------------------------------------------------|
| The second | 0403                                                  |                                                                                              |
| 0454       |                                                       |                                                                                              |
| 796        |                                                       |                                                                                              |
|            |                                                       |                                                                                              |
|            |                                                       |                                                                                              |
|            |                                                       |                                                                                              |
|            | U.S. DEPARTMENT OF ENERGY<br>GRAND JUNCTION, COLORADO | Work Performed by<br>S.M. Stoller Corporation<br>Under DOE Contract<br>No. DE-AM01-07LM00080 |
|            | Planned Sa<br>Riverton, WY, F<br>Novemb               | mpling Map<br>Processing Site                                                                |
|            | October 4, 2010                                       | S0707800                                                                                     |

**Data Assessment Summary** 

# Water Sampling Field Activities Verification Checklist

| F                                                              | Project Riverton, Wyoming                                                                                                                                       |                                           | Date(s) of Wate           | r Sampling                               | November 2–4, 2010                                      |  |  |  |
|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------------|------------------------------------------|---------------------------------------------------------|--|--|--|
| 0                                                              | Date(s) of Verification                                                                                                                                         | December 20, 2010                         | Name of Verifie           | r                                        | Steve Donivan                                           |  |  |  |
|                                                                |                                                                                                                                                                 |                                           | Response<br>(Yes, No, NA) |                                          | Comments                                                |  |  |  |
| 1. Is the SAP the primary document directing field procedures? |                                                                                                                                                                 | Yes                                       |                           |                                          |                                                         |  |  |  |
|                                                                | List other documents, SOPs, instru                                                                                                                              | uctions.                                  |                           | Work Order Letter dated October 7, 2010. |                                                         |  |  |  |
| 2.                                                             | Were the sampling locations speci                                                                                                                               | fied in the planning documents sampled?   | No                        | Domestic well 08<br>been shut off and    | 28 was not sampled because the tap had<br>I winterized. |  |  |  |
| 3.                                                             | Was a pre-trip calibration conducted documents?                                                                                                                 | ed as specified in the above-named        | Yes                       | Pre-trip calibratio                      | n was performed on October 29, 2010.                    |  |  |  |
| 4.                                                             | Was an operational check of the fi                                                                                                                              | eld equipment conducted daily?            | Yes                       |                                          |                                                         |  |  |  |
|                                                                | Did the operational checks meet c                                                                                                                               | iteria?                                   | Yes                       |                                          |                                                         |  |  |  |
| 5.                                                             | <ol> <li>Were the number and types (alkalinity, temperature, specific conductance, pH, turbidity, DO, ORP) of field measurements taken as specified?</li> </ol> |                                           | Yes                       |                                          |                                                         |  |  |  |
| 6.                                                             | Was the category of the well docur                                                                                                                              | nented?                                   | Yes                       |                                          |                                                         |  |  |  |
| 7.                                                             | Were the following conditions met                                                                                                                               |                                           |                           |                                          |                                                         |  |  |  |
|                                                                | Was one pump/tubing volume pure                                                                                                                                 | ged prior to sampling?                    | Yes                       |                                          |                                                         |  |  |  |
|                                                                | Did the water level stabilize prior to                                                                                                                          | o sampling?                               | Yes                       |                                          |                                                         |  |  |  |
|                                                                | Did pH, specific conductance, and sampling?                                                                                                                     | turbidity measurements stabilize prior to | Yes                       |                                          |                                                         |  |  |  |
|                                                                | Was the flow rate less than 500 m                                                                                                                               | _/min?                                    | Yes                       |                                          |                                                         |  |  |  |
|                                                                | If a portable pump was used, was installation and sampling?                                                                                                     | there a 4-hour delay between pump         | NA                        |                                          |                                                         |  |  |  |

# Water Sampling Field Activities Verification Checklist (continued)

|                                                                                                                                         | Response<br>(Yes, No, NA) | Comments                                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------------------------------------------------------|
| 8. Were the following conditions met when purging a Category II well:                                                                   |                           |                                                                |
| Was the flow rate less than 500 mL/min?                                                                                                 | Yes                       |                                                                |
| Was one pump/tubing volume removed prior to sampling?                                                                                   | Yes                       |                                                                |
| 9. Were duplicates taken at a frequency of one per 20 samples?                                                                          | Yes                       | A duplicate sample was collected from locations 0705 and 0822. |
| 10. Were equipment blanks taken at a frequency of one per 20 samples that were collected with nondedicated equipment?                   | No                        | An equipment blank was not collected.                          |
| 11. Were trip blanks prepared and included with each shipment of VOC samples?                                                           | NA                        |                                                                |
| 12. Were QC samples assigned a fictitious site identification number?                                                                   | Yes                       | Location IDs 2644 and 2645 were used for the QC samples.       |
| Was the true identity of the samples recorded on the Quality Assurance Sample Log or in the Field Data Collection System (FDCS) report? | Yes                       |                                                                |
| 13. Were samples collected in the containers specified?                                                                                 | Yes                       |                                                                |
| 14. Were samples filtered and preserved as specified?                                                                                   | Yes                       |                                                                |
| 15. Were the number and types of samples collected as specified?                                                                        | Yes                       |                                                                |
| 16. Were chain of custody records completed and was sample custody maintained?                                                          | Yes                       |                                                                |
| 17. Are field data sheets signed and dated by both team members (hardcopies) or are dates present for the "Date Signed" fields (FDCS)?  | Yes                       |                                                                |
| 18. Was all other pertinent information documented on the field data sheets?                                                            | Yes                       |                                                                |
| 19. Was the presence or absence of ice in the cooler documented at every sample location?                                               | Yes                       |                                                                |
| 20. Were water levels measured at the locations specified in the planning documents?                                                    | Yes                       |                                                                |

#### Laboratory Performance Assessment

#### **General Information**

| Report Number (RIN): | 10103411                                     |
|----------------------|----------------------------------------------|
| Sample Event:        | November 2–4, 2010                           |
| Site(s):             | Riverton, Wyoming                            |
| Laboratory:          | GEL Laboratories, Charleston, South Carolina |
| Work Order No.:      | 266512                                       |
| Analysis:            | Metals, Wet Chemistry, and Radiochemistry    |
| Validator:           | Steve Donivan                                |
| Review Date:         | December 17, 2010                            |

This validation was performed according to the *Environmental Procedures Catalog*, (LMS/PRO/S04325, continually updated) "Standard Practice for Validation of Laboratory Data." The procedure was applied at Level 3, Data Validation. All analyses were successfully completed. The samples were prepared and analyzed using accepted procedures based on methods specified by line item code, which are listed in Table 3.

#### Table 3. Analytes and Methods

| Analyte             | Line Item Code | Prep Method  | Analytical Method |
|---------------------|----------------|--------------|-------------------|
| Manganese           | LMM-01         | SW-846 3005A | SW-846 6010B      |
| Molybdenum, Uranium | LMM-02         | SW-846 3005A | SW-846 6020A      |
| Radium-226          | GPC-A-018      | PA SOP712R14 | PA SOP724R10      |
| Radium-228          | GPC-A-020      | PA SOP746R8  | PA SOP724R10      |
| Sulfate             | MIS-A-044      | MCAWW 300.0  | MCAWW 300.0       |

#### Data Qualifier Summary

Analytical results were qualified as listed in Table 4. Refer to the sections below for an explanation of the data qualifiers applied.

#### Table 4. Data Qualifier Summary

| Sample<br>Number | Location       | Analyte(s) | Flag | Reason                                    |
|------------------|----------------|------------|------|-------------------------------------------|
| 266512011        | 0723           | Molybdenum | U    | Less than 5 times the method blank        |
| 266512011        | 0723           | Sulfate    | J    | Matrix spike failure                      |
| 266512011        | 0723           | Uranium    | U    | Less than 5 times the calibration blank   |
| 266512030        | 0436           | Uranium    | U    | Less than 5 times the calibration blank   |
| 266512033        | 0822 Duplicate | Radium-226 | J    | Less than 3 times the determination limit |
| 266512033        | 0822 Duplicate | Radium-228 | J    | Less than 3 times the determination limit |

#### Sample Shipping/Receiving

GEL Laboratories in Charleston, South Carolina, received 33 water samples on November 6, 2010, accompanied by a Chain of Custody form. The Chain of Custody form was checked to confirm that all of the samples were listed with sample collection dates and times, and that signatures and dates were present indicating sample relinquishment and receipt. The sample submittal documents had no errors or omissions.

### Preservation and Holding Times

The sample shipment was received cool and intact with the temperature inside the iced cooler at  $2.0 \,^{\circ}$ C, which complies with requirements. All samples were received in the correct container types and had been preserved correctly for the requested analyses with the following exception. The metals bottle for sample 0436 was received at a pH of 6. The sample aliquot was acidified to a pH less than 2 by the laboratory upon receipt.

#### Laboratory Instrument Calibration

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing acceptable qualitative and quantitative data for all analytes. Initial calibration demonstrates that the instrument is capable of acceptable performance in the beginning of the analytical run and of producing a linear curve. Compliance requirements for continuing calibration checks are established to ensure that the instrument continues to be capable of producing acceptable qualitative and quantitative data. All laboratory instrument calibrations were performed correctly in accordance with the cited methods. All calibration and laboratory spike standards were prepared from independent sources.

#### Method SW-846 6010, Manganese

Calibrations for manganese were performed on November 24, 29, and 30, 2010, using four calibration standards. The calibration curve correlation coefficient values were greater than 0.995 and the absolute values of the intercepts were less than 3 times the method detection limit (MDL). Initial and continuing calibration verification checks were made at the required frequency resulting in 62 verification checks. All calibration checks met the acceptance criteria. Reporting limit verification checks were made at the required frequency to verify the linearity of the calibration curve near the practical quantitation limit (PQL) and all results were within the acceptance range.

# Method SW-846 6020, Molybdenum and Uranium

Calibrations for molybdenum and uranium were performed on November 29-30 and December 1, 2010, using two calibration standards. Initial and continuing calibration verification checks were made at the required frequency resulting in eight verification checks. All calibration checks met the acceptance criteria. Reporting limit verification checks were made at the required frequency to verify the linearity of the calibration curve near the PQL and all results were within the acceptance range. Mass calibration and resolution verifications were performed at the beginning of each analytical run in accordance with the analytical procedure. Internal standard recoveries associated with requested analytes were stable and within acceptable ranges.

### Method SW-846 9056, Sulfate

The calibration for sulfate was performed using seven calibration standards on November 1, 2010. The calibration curve correlation coefficient value was greater than 0.995 and the absolute value of the intercept was less than 3 times the MDL. Initial and continuing calibration verification checks were made at the required frequency resulting in seven verification checks. The calibration checks met the acceptance criteria.

#### Radiochemical Analysis

Radiochemical results are qualified with a "U" flag (not detected) when the result is greater than the minimum detectable concentration (MDC) but less than the Decision Level Concentration, estimated as 3 times the one-sigma total propagated uncertainty. Results above the Decision Level Concentration and the MDC are qualified with a "J" flag (estimated) when the result is less than Determination Limit (3 times the MDC).

#### Radium-226

Instrument calibration was performed September 1, 2010. Daily instrument checks met the acceptance criteria. The chemical recoveries met the acceptance criteria of 40 to 110 percent for all samples.

#### Radium-228

Instrument calibration was performed August 1, 2010. Daily instrument checks met the acceptance criteria. The chemical recoveries met the acceptance criteria of 40 to 110 percent for all samples.

#### Method and Calibration Blanks

Method blanks are analyzed to assess any contamination that may have occurred during sample preparation. Calibration blanks are analyzed to assess instrument contamination prior to and during sample analysis.

#### Metals and Wet Chemistry

All method blank and calibration blank results associated with the samples were below the PQL for all analytes. In cases where a blank concentration exceeds the MDL, the associated sample results are qualified with a "U" flag (not detected) when the sample result is greater than the MDL but less than 5 times the blank concentration.

#### Radiochemistry

The radium-226 and radium-228 method blank results were below the decision level concentration.

#### Inductively Coupled Plasma (ICP) Interference Check Sample (ICS) Analysis

ICP interference check samples ICSA and ICSAB were analyzed at the required frequency to verify the instrumental interelement and background correction factors. All check sample results met the acceptance criteria.

#### Matrix Spike Analysis

Matrix spike and matrix spike duplicate (MS/MSD) samples are used to measure method performance in the sample matrix. Spike samples were analyzed for manganese, molybdenum, sulfate, and uranium. The MS/MSD analyses resulted in acceptable recovery and precision for all analytes with the following exception. The sulfate MS recovery from sample 0723 did not meet the acceptance criteria. The sulfate result for that sample is qualified with a "J" flag as an estimated value.

#### Laboratory Replicate Analysis

Laboratory replicate sample results demonstrate acceptable laboratory precision. The relative percent difference values for the non-radiochemical sample replicates and matrix spike replicates were less than 20 percent for results that are greater than 5 times the PQL, indicating acceptable precision. The radiochemical relative error ratio (calculated using the one-sigma total propagated uncertainty) for the laboratory control sample replicates was less than three, indicating acceptable precision.

#### Laboratory Control Sample

Laboratory control samples were analyzed at the correct frequency to provide information on the accuracy of the analytical method and the overall laboratory performance, including sample preparation. All control sample results were acceptable.

#### Metals Serial Dilution

Serial dilutions were prepared and analyzed for the metals analyses to monitor chemical or physical interferences in the sample matrix. Serial dilution data are evaluated when the concentration of the undiluted sample is greater than 100 times the PQL for ICP-MS or greater than 50 times the PQL for ICP. All serial dilution data evaluated met the acceptance criteria.

#### **Detection Limits/Dilutions**

Samples were diluted in a consistent and acceptable manner when required. The samples were diluted prior to analysis of molybdenum and uranium to reduce interferences. The required detection limits were met for all metals and wet chemistry analytes.

All radiochemical MDCs were calculated using the following equation as specified in *Quality Systems for Analytical Services* revision 2.5. All reported MDCs were less than the required MDCs.

#### Completeness

Results were reported in the correct units for all analytes requested using contract-required laboratory qualifiers. The analytical report included the MDL (MDC for radiochemistry) and PQL for all analytes and all required supporting documentation.

### Chromatography Peak Integration

The integration of analyte peaks was reviewed for all ion chromatography data. All peak integrations, including manual integrations, were satisfactory.

### Electronic Data Deliverable (EDD) File

The EDD file arrived on December 6, 2010. The Sample Management System EDD validation module was used to verify that the EDD files were complete and in compliance with requirements. The module compares the contents of the files to the requested analyses to ensure all and only the requested data are delivered. The contents of the EDDs were manually examined to verify that the sample results accurately reflect the data contained in the sample data package.

|                              | General Data Validation Report                                                     |
|------------------------------|------------------------------------------------------------------------------------|
| : 10103411 Lab Cod           | le: <u>GEN</u> Validator: <u>Steve Donivan</u> Validation Date: <u>12/16/2010</u>  |
| ject: Riverton               | Analysis Type: 🗸 Metals 🗸 General Chem 🖌 Rad 🗌 Organics                            |
| f Samples: <u>33</u> Matrix: | Water Requested Analysis Completed: Yes                                            |
| Chain of Custody———          | Sample                                                                             |
| Present: OK Signed: OK       | Dated:         OK         Preservation:         OK         Temperature:         OK |
| Select Quality Parameters    | -                                                                                  |
| Holding Times                | All analyses were completed within the applicable holding times.                   |
| Detection Limits             | The reported detection limits are equal to or below contract requirements.         |
| Field/Trip Blanks            |                                                                                    |
| Field Duplicates             | There were 2 duplicates evaluated.                                                 |
|                              |                                                                                    |
|                              |                                                                                    |
|                              |                                                                                    |
|                              |                                                                                    |
|                              |                                                                                    |
|                              |                                                                                    |
|                              |                                                                                    |
|                              |                                                                                    |
|                              |                                                                                    |
|                              |                                                                                    |
|                              |                                                                                    |

Page 1 of 1

CRI %R

#### SAMPLE MANAGEMENT SYSTEM

#### Metals Data Validation Worksheet

| R | IN: | <u>101</u> | 034 |
|---|-----|------------|-----|
|   |     |            |     |

Date Analyzed

Analyte

<u>411</u> Matrix: Water

Lab Code: GEN

Date Due: 12/4/2010 Date Completed: 12/6/2010

| Site Code: RV       | Τ      | Date | e Com    | pleted    | <u>12/6/20</u> | 10          |                   |  |
|---------------------|--------|------|----------|-----------|----------------|-------------|-------------------|--|
| CALIBRATION         | Method | %R   | MS<br>%R | MSD<br>%R | Dup.<br>RPD    | ICSAB<br>%R | Serial Dil.<br>%R |  |
| R^2 ICV CCV ICB CCB | Blank  |      |          |           |                |             |                   |  |
| 1.0000 OK OK OK OK  | OK     | 99.7 | 96.5     |           |                | 96.0        | 5.0               |  |

|            |            | Int.   | R^2    | ICV | CCV | ICB | CCB | Blank |       |       |      |       |     |       |
|------------|------------|--------|--------|-----|-----|-----|-----|-------|-------|-------|------|-------|-----|-------|
| Manganese  | 11/24/2010 | 0.0000 | 1.0000 | OK  | OK  | OK  | OK  | OK    | 99.7  | 96.5  |      | 96.0  | 5.0 | 109.0 |
| Manganese  | 11/29/2010 | 0.0000 | 1.0000 | OK  | OK  | OK  | OK  | OK    | 100.0 | 97.0  | 1.0  | 96.0  | 3.0 | 105.0 |
| Manganese  | 11/30/2010 | 0.0000 | 1.0000 | OK  | OK  | OK  | OK  | OK    | 102.0 | 96.7  | 11.0 | 96.0  |     | 105.0 |
| Molybdenum | 11/30/2010 |        |        | OK  | OK  | OK  | OK  | OK    | 96.0  | 96.4  | 3.0  | 99.0  | 5.0 | 103.0 |
| Molybdenum | 11/30/2010 |        |        | OK  | OK  | OK  | OK  | OK    | 101.0 | 108.0 | 2.0  | 94.0  | 8.0 | 106.0 |
| Molybdenum | 11/30/2010 |        |        |     |     |     |     |       | 99.8  | 103.0 | 6.0  | 98.0  | 3.0 | 104.0 |
| Uranium    | 11/30/2010 |        |        | OK  | OK  | OK  | OK  | OK    | 103.0 | 102.0 |      | 109.0 | 1.0 | 117.0 |
| Uranium    | 12/01/2010 |        |        | OK  | OK  | OK  | OK  | OK    | 103.0 | 105.0 | 3.0  | 114.0 |     | 114.0 |
| Uranium    | 12/01/2010 |        |        |     |     |     |     |       | 105.0 | 99.6  |      | 113.0 |     | 119.0 |

Page 1 of 1

# SAMPLE MANAGEMENT SYSTEM Radiochemistry Data Validation Worksheet

| <b>RIN:</b> <u>10103411</u> | Lab Code: GEN  | Date Due: <u>12/4/2010</u> |
|-----------------------------|----------------|----------------------------|
| Matrix: Water               | Site Code: RVT | Date Completed: 12/6/2010  |
|                             |                |                            |

| Sample      | Analyte    | Date<br>Analyzed | Result | Flag | Tracer<br>%R | LCS<br>%R | MS<br>%R | Duplicate |
|-------------|------------|------------------|--------|------|--------------|-----------|----------|-----------|
| 0822        | Radium-226 | 11/23/2010       |        |      |              |           |          | 1.93      |
| Blank_Spike | Radium-226 | 11/23/2010       |        |      |              | 92.90     |          |           |
| 0822        | Radium-226 | 11/23/2010       |        |      |              |           | 78.0     |           |
| Blank       | Radium-226 | 11/23/2010       | 0.2950 | U    |              |           |          |           |
| 0822        | Radium-228 | 11/19/2010       |        |      | 87.0         |           |          |           |
| 2645        | Radium-228 | 11/19/2010       |        |      | 85.0         |           |          |           |
| 2940        | Radium-228 | 11/19/2010       |        |      | 96.0         |           |          |           |
| Blank_Spike | Radium-228 | 11/19/2010       |        |      | 87.0         | 106.00    |          |           |
| 2940        | Radium-228 | 11/19/2010       |        |      | 91.0         |           | 75.1     | 0.80      |
| Blank       | Radium-228 | 11/19/2010       | 0.4230 | U    | 76.0         |           |          |           |

Page 1 of 1

#### SAMPLE MANAGEMENT SYSTEM

#### Wet Chemistry Data Validation Worksheet

RIN: 10103411

Lab Code: GEN Site Code: RVT Date Due: <u>12/4/2010</u> Date Completed: <u>12/6/2010</u>

| Analyte | Date Analyzed |       | CAL    | IBRA | TION |     |     | Method | LCS   | MS<br>%R | MSD<br>%R | DUP<br>RPD | Serial Dil.<br>%R |
|---------|---------------|-------|--------|------|------|-----|-----|--------|-------|----------|-----------|------------|-------------------|
|         |               | Int.  | R^2    | ICV  | CCV  | ICB | ССВ | Blank  | 1000  |          |           |            | 1.000             |
| Sulfate | 11/09/2010    | 0.000 | 1.0000 | OK   | OK   | OK  | OK  | OK     | 95.80 | 96.5     |           | 1.00       |                   |
| Sulfate | 11/10/2010    |       |        |      | OK   |     | OK  | OK     | 95.80 | 111.0    |           | 1.00       |                   |
| Sulfate | 11/10/2010    |       |        |      | Ι    |     |     |        | 96.30 | 96.6     |           | 1.00       |                   |
| Sulfate | 11/11/2010    |       |        |      | OK   |     | OK  | OK     |       | 102.0    |           | 0          |                   |

# Sampling Quality Control Assessment

The following information summarizes and assesses quality control for this sampling event.

#### Sampling Protocol

Surface water locations were sampled using a peristaltic pump and tubing reel or by container immersion. Monitoring wells were sampled using a peristaltic pump and dedicated tubing. Domestic wells (0405, 0430, 0436, and 0460) were classified as Category IV and sampled by filling bottles at the discharge point.

Sample results for all monitoring wells met the Category I or II low-flow sampling criteria and were qualified with an "F" flag in the database, indicating the wells were purged and sampled using the low-flow sampling method. Wells 0705, 0719 and 0730 were classified as Category II therefore, results from these wells were qualified with a "Q" flag, indicating the data are qualitative because of the sampling technique.

#### Equipment Blank Assessment

An equipment blank was not collected.

#### Field Duplicate Assessment

Field duplicate samples are collected and analyzed as an indication of overall precision of the measurement process. The precision observed includes both field and laboratory precision and has more variability than laboratory duplicates, which measure only laboratory performance. Duplicate samples were collected from locations 0705 and 0822 (field duplicate IDs 2644 and 2645, respectively). The duplicate results were acceptable, meeting the EPA recommended laboratory duplicate criteria of less than 20 percent relative difference for results that are greater than 5 times the PQL.

### SAMPLE MANAGEMENT SYSTEM

Page 1 of 1

#### Validation Report: Field Duplicates

RIN: 10103411 Lab Code: GEN Project: Riverton

Validation Date: 12/16/2010

| Duplicate: 2644 | Sample: 07 | 05   |       |          |            |      |       |          |      |     |       |
|-----------------|------------|------|-------|----------|------------|------|-------|----------|------|-----|-------|
|                 | Sample     |      |       |          | Duplicate— |      |       |          |      |     |       |
| Analyte         | Result     | Flag | Error | Dilution | Result     | Flag | Error | Dilution | RPD  | RER | Units |
| Manganese       | 33.2       |      |       | 1.00     | 30.3       |      |       | 1.00     | 9.13 |     | ug/L  |
| Molybdenum      | 3.02       |      |       | 1.00     | 2.87       | В    |       | 1.00     | 5.09 |     | ug/L  |
| Sulfate         | 411        |      |       | 100.00   | 414        |      |       | 100.00   | 0.73 |     | mg/L  |
| Uranium         | 0.241      |      |       | 1.00     | 0.165      |      |       | 1.00     |      |     | ug/L  |

| Duplicate: 2645 | Sample: 08 | 22   |       |          | Duplicate |      |       |          |      |     |       |
|-----------------|------------|------|-------|----------|-----------|------|-------|----------|------|-----|-------|
| Analyte         | Result     | Flag | Error | Dilution | Result    | Flag | Error | Dilution | RPD  | RER | Units |
| Manganese       | 35.1       |      |       | 1.00     | 35        |      |       | 1.00     | 0.29 |     | ug/L  |
| Molybdenum      | 7.46       |      |       | 1.00     | 7.32      |      |       | 1.00     | 1.89 |     | ug/L  |
| Radium-226      | 0.889      |      | 0.369 | 1.00     | 0.498     |      | 0.282 | 1.00     |      | 1.7 | pCi/L |
| Radium-228      | 0.425      | U    | 0.350 | 1.00     | 0.762     |      | 0.416 | 1.00     |      | 1.2 | pCi/L |
| Sulfate         | 1080       |      |       | 100.00   | 1100      |      |       | 100.00   | 1.83 |     | mg/L  |
| Uranium         | 10.3       |      |       | 1.00     | 10.5      |      |       | 1.00     | 1.92 |     | ug/L  |

#### Certification

All laboratory analytical quality control criteria were met except as qualified in this report. The data qualifiers listed on the SEEPro database reports are defined on the last page of each report. All data in this package are considered validated and available for use.

Laboratory Coordinator:

Stee Doni Steve Donivan

1-5-2011 Date

Data Validation Lead:

| Stere Donuis  |  |
|---------------|--|
| Steve Donivan |  |

1-5-201) Date

# Attachment 1 Assessment of Anomalous Data

**Potential Outliers Report** 

#### **Potential Outliers Report**

Potential outliers are measurements that are extremely large or small relative to the rest of the data and, therefore, are suspected of misrepresenting the population from which they were collected. Potential outliers may result from transcription errors, data-coding errors, or measurement system problems. However, outliers may also represent true extreme values of a distribution and indicate more variability in the population than was expected.

Statistical outlier tests give probabilistic evidence that an extreme value does not "fit" with the distribution of the remainder of the data and is therefore a statistical outlier. These tests should only be used to identify data points that require further investigation. The tests alone cannot determine whether a statistical outlier should be discarded or corrected within a data set.

There are three steps involved in identifying extreme values or outliers:

- 1. Identify extreme values that may be potential outliers by generating the Outliers Report using the Sample Management System from data in the SEEPro database. The application compares the new data set with historical data and lists the new data that fall outside the historical data range. A determination is also made if the data are normally distributed using the Shapiro-Wilk Test.
- 2. Apply the appropriate statistical test. Dixon's Extreme Value test is used to test for statistical outliers when the sample size is less than or equal to 25. This test considers both extreme values that are much smaller than the rest of the data (case 1) and extreme values that are much larger than the rest of the data (case 2). This test is valid only if the data without the suspected outlier are normally distributed. Rosner's Test is a parametric test that is used to detect outliers for sample sizes of 25 or more. This test also assumes that the data without the suspected outliers are normally distributed.
- 3. Scientifically review statistical outliers and decide on their disposition.

Two field measurement results and two laboratory results were identified as potentially anomalous. There were no errors noted during the review of these data, and the data for this RIN are acceptable as qualified.

#### Data Validation Outliers Report - Field Parameters Only

Comparison: All Historical Data

Laboratory: Field Measurements

RIN: 10103411

Report Date: 12/20/2010

|           |                  |              |             |                              | U U    | urrent |       | Historic | ai waxii | mum     | Historic | ai wiinin | num     | NU   | mber of           | Statistical |
|-----------|------------------|--------------|-------------|------------------------------|--------|--------|-------|----------|----------|---------|----------|-----------|---------|------|-------------------|-------------|
|           |                  |              |             |                              |        | Qualif | fiers |          | Qua      | lifiers |          | Qual      | lifiers | Data | a Points          | Outlier     |
| Site Code | Location<br>Code | Sample<br>ID | Sample Date | Analyte                      | Result | Lab    | Data  | Result   | Lab      | Data    | Result   | Lab       | Data    | Ν    | N Below<br>Detect |             |
| RVT01     | 0405             | N001         | 11/03/2010  | Specific Conductance         | 1094   |        |       | 1031     |          | G       | 633      |           |         | 22   | 0                 | No          |
| RVT01     | 0436             | N001         | 11/03/2010  | Alkalinity, Total (As CaCO3) | 155    |        |       | 174      |          |         | 156      |           |         | 13   | 0                 | No          |
| RVT01     | 0460             | N001         | 11/03/2010  | Alkalinity, Total (As CaCO3) | 157    |        |       | 194      |          |         | 158      |           |         | 9    | 0                 | No          |
| RVT01     | 0705             | N001         | 11/03/2010  | Specific Conductance         | 1349   |        | FQ    | 1338     |          | FQ      | 700      |           | GF      | 33   | 0                 | No          |
| RVT01     | 0710             | N001         | 11/02/2010  | Temperature                  | 13.09  |        | F     | 13.02    |          | F       | 5.8      |           |         | 28   | 0                 | No          |
| RVT01     | 0717             | N001         | 11/02/2010  | Specific Conductance         | 2155   |        | F     | 2090     |          |         | 324      |           |         | 23   | 0                 | No          |
| RVT01     | 0718             | N001         | 11/02/2010  | Specific Conductance         | 6505   |        | F     | 5050     |          |         | 2490     |           |         | 22   | 0                 | Yes         |
| RVT01     | 0719             | N001         | 11/02/2010  | Alkalinity, Total (As CaCO3) | 127    |        | FQ    | 122      |          | FQ      | 75       |           | L       | 22   | 0                 | No          |
| RVT01     | 0721             | N001         | 11/03/2010  | Specific Conductance         | 990    |        | F     | 949      |          | F       | 602      |           |         | 18   | 0                 | No          |
| RVT01     | 0722R            | N001         | 11/02/2010  | Specific Conductance         | 2627   |        | F     | 2031     |          | F       | 992      |           | F       | 7    | 0                 | No          |
| RVT01     | 0729             | N001         | 11/03/2010  | Alkalinity, Total (As CaCO3) | 263    |        | F     | 390      |          | F       | 274      |           | F       | 13   | 0                 | No          |
| RVT01     | 0784             | N001         | 11/02/2010  | Alkalinity, Total (As CaCO3) | 139    |        | F     | 453      |          | F       | 242      |           | F       | 5    | 0                 | No          |
| RVT01     | 0784             | N001         | 11/02/2010  | рН                           | 7.55   |        | F     | 8.09     |          | F       | 7.61     |           | F       | 9    | 0                 | No          |
| RVT01     | 0784             | N001         | 11/02/2010  | Temperature                  | 15.07  |        | F     | 14.1     |          | F       | 11.31    |           | F       | 9    | 0                 | No          |
| RVT01     | 0788             | N001         | 11/03/2010  | Alkalinity, Total (As CaCO3) | 449    |        | F     | 432      |          |         | 370      |           | F       | 10   | 0                 | Yes         |
| RVT01     | 0789             | N001         | 11/03/2010  | Alkalinity, Total (As CaCO3) | 543    |        | F     | 448      |          | F       | 313      |           | F       | 5    | 0                 | No          |
| RVT01     | 0789             | N001         | 11/03/2010  | Turbidity                    | 1.05   |        | F     | 9.54     |          |         | 1.19     |           | F       | 10   | 0                 | No          |
| RVT01     | 0824             | N001         | 11/03/2010  | Specific Conductance         | 1013   |        | F     | 981      |          | F       | 758      |           | F       | 7    | 0                 | No          |
| RVT01     | 0824             | N001         | 11/03/2010  | Temperature                  | 12.89  |        | F     | 11.79    |          | F       | 8.45     |           | F       | 7    | 0                 | No          |

#### Data Validation Outliers Report - No Field Parameters

Comparison: All Historical Data Laboratory: GEL Laboratories RIN: 10103411 Report Date: 12/20/2010

|           |                  |              |             |            | Cu      | urrent<br>Qualifiers | Historic | al Maxim<br>Quali |      | Historic |     | num<br>lifiers |    | mber of<br>a Points | Statistical<br>Outlier |
|-----------|------------------|--------------|-------------|------------|---------|----------------------|----------|-------------------|------|----------|-----|----------------|----|---------------------|------------------------|
| Site Code | Location<br>Code | Sample<br>ID | Sample Date | Analyte    | Result  | Lab Data             | Result   | Lab               | Data | Result   | Lab | Data           | Ν  | N Below<br>Detect   |                        |
| RVT01     | 0460             | N001         | 11/03/2010  | Sulfate    | 181     |                      | 170      |                   |      | 150      |     |                | 15 | 0                   | No                     |
| RVT01     | 0718             | N001         | 11/02/2010  | Sulfate    | 3050    | F                    | 2960     | I                 |      | 1130     | Ν   | J              | 24 | 0                   | No                     |
| RVT01     | 0722R            | N001         | 11/02/2010  | Manganese  | 0.0208  | F                    | 0.0051   |                   | F    | 0.00013  | В   | JF             | 7  | 2                   | Yes                    |
| RVT01     | 0722R            | N001         | 11/02/2010  | Molybdenum | 0.113   | F                    | 0.11     |                   | F    | 0.053    |     | F              | 7  | 0                   | No                     |
| RVT01     | 0722R            | N001         | 11/02/2010  | Sulfate    | 1110    | F                    | 870      |                   | F    | 230      |     | F              | 7  | 0                   | No                     |
| RVT01     | 0722R            | N001         | 11/02/2010  | Uranium    | 0.759   | F                    | 0.7      |                   | F    | 0.25     |     | F              | 7  | 0                   | No                     |
| RVT01     | 0789             | N001         | 11/03/2010  | Molybdenum | 0.723   | F                    | 0.71     |                   | F    | 0.34     |     | F              | 14 | 0                   | Yes                    |
| RVT01     | 0789             | N001         | 11/03/2010  | Uranium    | 2.64    | F                    | 2.5      |                   | F    | 1.3      |     | F              | 15 | 0                   | No                     |
| RVT01     | 0824             | N001         | 11/03/2010  | Molybdenum | 0.00503 | F                    | 0.0048   |                   | F    | 0.0037   |     | F              | 7  | 0                   | No                     |
| RVT01     | 0826             | N001         | 11/03/2010  | Molybdenum | 0.0468  | F                    | 0.046    |                   | F    | 0.021    |     | F              | 8  | 0                   | No                     |

#### STATISTICAL TESTS:

The distribution of the data is tested for normality or lognormality using the Shapiro-Wilk Test Outliers are identified using Dixon's Test when there are 25 or fewer data points. Outliers are identified using Rosner's Test when there are 26 or more data points. See Data Quality Assessment: Statistical Methods for Practitioners, EPA QC/G-9S, February 2006.

Attachment 2 Data Presentation

**Groundwater Quality Data** 

## Groundwater Quality Data by Location (USEE100) FOR SITE RVT01, Riverton Processing Site REPORT DATE: 12/20/2010 Location: 0405 WELL

| Parameter                        | Units        | Sam<br>Date | ple<br>ID | Depth Range<br>(Ft BLS) | Result  | (<br>Lab | Qualifiers<br>Data QA | Detection<br>Limit | Uncertainty |
|----------------------------------|--------------|-------------|-----------|-------------------------|---------|----------|-----------------------|--------------------|-------------|
| Alkalinity, Total (As CaCO3)     | mg/L         | 11/03/2010  | N001      | -                       | 48      |          | #                     |                    |             |
| Dissolved Oxygen                 | mg/L         | 11/03/2010  | N001      | -                       | 8.35    |          | #                     |                    |             |
| Manganese                        | mg/L         | 11/03/2010  | N001      | -                       | 0.00344 | В        | #                     | 0.002              |             |
| Molybdenum                       | mg/L         | 11/03/2010  | N001      | -                       | 0.00441 |          | #                     | 0.000167           |             |
| Oxidation Reduction<br>Potential | mV           | 11/03/2010  | N001      | -                       | -24.6   |          | #                     |                    |             |
| pH                               | s.u.         | 11/03/2010  | N001      | -                       | 9.11    |          | #                     |                    |             |
| Specific Conductance             | umhos<br>/cm | 11/03/2010  | N001      | -                       | 1094    |          | #                     |                    |             |
| Sulfate                          | mg/L         | 11/03/2010  | N001      | -                       | 348     |          | #                     | 10                 |             |
| Temperature                      | С            | 11/03/2010  | N001      | -                       | 11.29   |          | #                     |                    |             |
| Turbidity                        | NTU          | 11/03/2010  | N001      | -                       | 3.19    |          | #                     |                    |             |
| Uranium                          | mg/L         | 11/03/2010  | N001      | -                       | 0.00005 | U        | #                     | 0.00005            |             |

## Groundwater Quality Data by Location (USEE100) FOR SITE RVT01, Riverton Processing Site REPORT DATE: 12/20/2010 Location: 0430 WELL

| Parameter                        | Units        | Sam<br>Date | ple<br>ID | Depth Range<br>(Ft BLS) | Result  |   | alifiers<br>Data QA | Detection<br>Limit | Uncertainty |
|----------------------------------|--------------|-------------|-----------|-------------------------|---------|---|---------------------|--------------------|-------------|
| Alkalinity, Total (As CaCO3)     | mg/L         | 11/02/2010  | N001      | -                       | 161     |   | #                   |                    |             |
| Dissolved Oxygen                 | mg/L         | 11/02/2010  | N001      | -                       | 2.6     |   | #                   |                    |             |
| Manganese                        | mg/L         | 11/02/2010  | N001      | -                       | 0.00321 | В | #                   | 0.002              |             |
| Molybdenum                       | mg/L         | 11/02/2010  | N001      | -                       | 0.00233 | В | #                   | 0.000167           |             |
| Oxidation Reduction<br>Potential | mV           | 11/02/2010  | N001      | -                       | 21.1    |   | #                   |                    |             |
| рН                               | s.u.         | 11/02/2010  | N001      | -                       | 8.72    |   | #                   |                    |             |
| Specific Conductance             | umhos<br>/cm | 11/02/2010  | N001      | -                       | 847     |   | #                   |                    |             |
| Sulfate                          | mg/L         | 11/02/2010  | N001      | -                       | 195     |   | #                   | 10                 |             |
| Temperature                      | С            | 11/02/2010  | N001      | -                       | 13.33   |   | #                   |                    |             |
| Turbidity                        | NTU          | 11/02/2010  | N001      | -                       | 2.68    |   | #                   |                    |             |
| Uranium                          | mg/L         | 11/02/2010  | N001      | -                       | 0.00005 | U | #                   | 0.00005            |             |

## Groundwater Quality Data by Location (USEE100) FOR SITE RVT01, Riverton Processing Site REPORT DATE: 12/20/2010 Location: 0436 WELL

| Parameter                        | Units        | Sam<br>Date | ple<br>ID | Depth Range<br>(Ft BLS) | Result   | Lab | Qualifiers<br>Data | QA | Detection<br>Limit | Uncertainty |
|----------------------------------|--------------|-------------|-----------|-------------------------|----------|-----|--------------------|----|--------------------|-------------|
| Alkalinity, Total (As CaCO3)     | mg/L         | 11/03/2010  | N001      | -                       | 155      |     |                    | #  |                    |             |
| Dissolved Oxygen                 | mg/L         | 11/03/2010  | N001      | -                       | 3.37     |     |                    | #  |                    |             |
| Manganese                        | mg/L         | 11/03/2010  | N001      | -                       | 0.002    | U   |                    | #  | 0.002              |             |
| Molybdenum                       | mg/L         | 11/03/2010  | N001      | -                       | 0.00317  |     |                    | #  | 0.000167           |             |
| Oxidation Reduction<br>Potential | mV           | 11/03/2010  | N001      | -                       | 63.9     |     |                    | #  |                    |             |
| рН                               | s.u.         | 11/03/2010  | N001      | -                       | 8.84     |     |                    | #  |                    |             |
| Specific Conductance             | umhos<br>/cm | 11/03/2010  | N001      | -                       | 868      |     |                    | #  |                    |             |
| Sulfate                          | mg/L         | 11/03/2010  | N001      | -                       | 202      |     |                    | #  | 10                 |             |
| Temperature                      | С            | 11/03/2010  | N001      | -                       | 16.41    |     |                    | #  |                    |             |
| Turbidity                        | NTU          | 11/03/2010  | N001      | -                       | 1.53     |     |                    | #  |                    |             |
| Uranium                          | mg/L         | 11/03/2010  | N001      | -                       | 0.000089 | В   | U                  | #  | 0.00005            |             |

## Groundwater Quality Data by Location (USEE100) FOR SITE RVT01, Riverton Processing Site REPORT DATE: 12/20/2010 Location: 0460 WELL Koch Sulfuric Acid Plant

| Parameter                        | Units        | Sam<br>Date | ple<br>ID | Depth Range<br>(Ft BLS) | Result  | (<br>Lab | Qualifiers<br>Data QA | Detection<br>Limit | Uncertainty |
|----------------------------------|--------------|-------------|-----------|-------------------------|---------|----------|-----------------------|--------------------|-------------|
| Alkalinity, Total (As CaCO3)     | mg/L         | 11/03/2010  | N001      | -                       | 157     |          | #                     |                    |             |
| Dissolved Oxygen                 | mg/L         | 11/03/2010  | N001      | -                       | 1.45    |          | #                     |                    |             |
| Manganese                        | mg/L         | 11/03/2010  | N001      | -                       | 0.002   | U        | #                     | 0.002              |             |
| Molybdenum                       | mg/L         | 11/03/2010  | N001      | -                       | 0.00285 | В        | #                     | 0.000167           |             |
| Oxidation Reduction<br>Potential | mV           | 11/03/2010  | N001      | -                       | 99.4    |          | #                     |                    |             |
| рН                               | s.u.         | 11/03/2010  | N001      | -                       | 8.9     |          | #                     |                    |             |
| Specific Conductance             | umhos<br>/cm | 11/03/2010  | N001      | -                       | 807     |          | #                     |                    |             |
| Sulfate                          | mg/L         | 11/03/2010  | N001      | -                       | 181     |          | #                     | 10                 |             |
| Temperature                      | С            | 11/03/2010  | N001      | -                       | 22.89   |          | #                     |                    |             |
| Turbidity                        | NTU          | 11/03/2010  | N001      | -                       | 2.71    |          | #                     |                    |             |
| Uranium                          | mg/L         | 11/03/2010  | N001      | -                       | 0.00005 | U        | #                     | 0.00005            |             |

## Groundwater Quality Data by Location (USEE100) FOR SITE RVT01, Riverton Processing Site REPORT DATE: 12/20/2010 Location: 0705 WELL

| Parameter                        | Units        | Sam<br>Date | ple<br>ID |      | Range<br>BLS) | Result   | Lab | Qualifiers<br>Data | QA | Detection<br>Limit | Uncertainty |
|----------------------------------|--------------|-------------|-----------|------|---------------|----------|-----|--------------------|----|--------------------|-------------|
| Alkalinity, Total (As CaCO3)     | mg/L         | 11/03/2010  | N001      | 37.3 | - 61.8        | 51       |     | FQ                 | #  |                    |             |
| Dissolved Oxygen                 | mg/L         | 11/03/2010  | N001      | 37.3 | - 61.8        | 4.61     |     | FQ                 | #  |                    |             |
| Manganese                        | mg/L         | 11/03/2010  | N001      | 37.3 | - 61.8        | 0.0332   |     | FQ                 | #  | 0.002              |             |
| Manganese                        | mg/L         | 11/03/2010  | N002      | 37.3 | - 61.8        | 0.0303   |     | FQ                 | #  | 0.002              |             |
| Molybdenum                       | mg/L         | 11/03/2010  | N001      | 37.3 | - 61.8        | 0.00302  |     | FQ                 | #  | 0.000167           |             |
| Molybdenum                       | mg/L         | 11/03/2010  | N002      | 37.3 | - 61.8        | 0.00287  | В   | FQ                 | #  | 0.000167           |             |
| Oxidation Reduction<br>Potential | mV           | 11/03/2010  | N001      | 37.3 | - 61.8        | 27.8     |     | FQ                 | #  |                    |             |
| рН                               | s.u.         | 11/03/2010  | N001      | 37.3 | - 61.8        | 8.37     |     | FQ                 | #  |                    |             |
| Specific Conductance             | umhos<br>/cm | 11/03/2010  | N001      | 37.3 | - 61.8        | 1349     |     | FQ                 | #  |                    |             |
| Sulfate                          | mg/L         | 11/03/2010  | N001      | 37.3 | - 61.8        | 411      |     | FQ                 | #  | 10                 |             |
| Sulfate                          | mg/L         | 11/03/2010  | N002      | 37.3 | - 61.8        | 414      |     | FQ                 | #  | 10                 |             |
| Temperature                      | С            | 11/03/2010  | N001      | 37.3 | - 61.8        | 7.96     |     | FQ                 | #  |                    |             |
| Turbidity                        | NTU          | 11/03/2010  | N001      | 37.3 | - 61.8        | 4.18     |     | FQ                 | #  |                    |             |
| Uranium                          | mg/L         | 11/03/2010  | N001      | 37.3 | - 61.8        | 0.000241 |     | FQ                 | #  | 0.00005            |             |
| Uranium                          | mg/L         | 11/03/2010  | N002      | 37.3 | - 61.8        | 0.000165 |     | FQ                 | #  | 0.00005            |             |

## Groundwater Quality Data by Location (USEE100) FOR SITE RVT01, Riverton Processing Site REPORT DATE: 12/20/2010 Location: 0707 WELL

| Parameter                        | Units        | Sam<br>Date | iple<br>ID |     | h Range<br>t BLS) | e   | Result | Lab | Qualifiers<br>Data | QA | Detection<br>Limit | Uncertainty |
|----------------------------------|--------------|-------------|------------|-----|-------------------|-----|--------|-----|--------------------|----|--------------------|-------------|
| Alkalinity, Total (As CaCO3)     | mg/L         | 11/03/2010  | N001       | 9.1 | - 2               | 3.3 | 424    |     | F                  | #  |                    |             |
| Dissolved Oxygen                 | mg/L         | 11/03/2010  | N001       | 9.1 | - 2               | 3.3 | 2.7    |     | F                  | #  |                    |             |
| Manganese                        | mg/L         | 11/03/2010  | N001       | 9.1 | - 2               | 3.3 | 1.95   |     | F                  | #  | 0.002              |             |
| Molybdenum                       | mg/L         | 11/03/2010  | N001       | 9.1 | - 2               | 3.3 | 1.48   |     | F                  | #  | 0.00334            |             |
| Oxidation Reduction<br>Potential | mV           | 11/03/2010  | N001       | 9.1 | - 2               | 3.3 | 78.4   |     | F                  | #  |                    |             |
| рН                               | s.u.         | 11/03/2010  | N001       | 9.1 | - 2               | 3.3 | 7      |     | F                  | #  |                    |             |
| Specific Conductance             | umhos<br>/cm | 11/03/2010  | N001       | 9.1 | - 2               | 3.3 | 8448   |     | F                  | #  |                    |             |
| Sulfate                          | mg/L         | 11/03/2010  | N001       | 9.1 | - 2               | 3.3 | 4230   |     | F                  | #  | 50                 |             |
| Temperature                      | С            | 11/03/2010  | N001       | 9.1 | - 2               | 3.3 | 9.26   |     | F                  | #  |                    |             |
| Turbidity                        | NTU          | 11/03/2010  | N001       | 9.1 | - 2               | 3.3 | 0.93   |     | F                  | #  |                    |             |
| Uranium                          | mg/L         | 11/03/2010  | N001       | 9.1 | - 2               | 3.3 | 1.78   |     | F                  | #  | 0.005              |             |

## Groundwater Quality Data by Location (USEE100) FOR SITE RVT01, Riverton Processing Site REPORT DATE: 12/20/2010 Location: 0710 WELL

| Parameter                        | Units        | Sam<br>Date | ple<br>ID |     | oth Ra<br>Ft BL |      | Result  | Lab | Qualifiers<br>Data | QA | Detection<br>Limit | Uncertainty |
|----------------------------------|--------------|-------------|-----------|-----|-----------------|------|---------|-----|--------------------|----|--------------------|-------------|
| Alkalinity, Total (As CaCO3)     | mg/L         | 11/02/2010  | N001      | 9.8 | -               | 26.8 | 207     |     | F                  | #  |                    |             |
| Dissolved Oxygen                 | mg/L         | 11/02/2010  | N001      | 9.8 | -               | 26.8 | 1.71    |     | F                  | #  |                    |             |
| Manganese                        | mg/L         | 11/02/2010  | N001      | 9.8 | -               | 26.8 | 0.0182  |     | F                  | #  | 0.002              |             |
| Molybdenum                       | mg/L         | 11/02/2010  | N001      | 9.8 | -               | 26.8 | 0.00216 | В   | F                  | #  | 0.000167           |             |
| Oxidation Reduction<br>Potential | mV           | 11/02/2010  | N001      | 9.8 | -               | 26.8 | 27.9    |     | F                  | #  |                    |             |
| рН                               | s.u.         | 11/02/2010  | N001      | 9.8 | -               | 26.8 | 7.47    |     | F                  | #  |                    |             |
| Specific Conductance             | umhos<br>/cm | 11/02/2010  | N001      | 9.8 | -               | 26.8 | 844     |     | F                  | #  |                    |             |
| Sulfate                          | mg/L         | 11/02/2010  | N001      | 9.8 | -               | 26.8 | 146     |     | F                  | #  | 10                 |             |
| Temperature                      | С            | 11/02/2010  | N001      | 9.8 | -               | 26.8 | 13.09   |     | F                  | #  |                    |             |
| Turbidity                        | NTU          | 11/02/2010  | N001      | 9.8 | -               | 26.8 | 1.51    |     | F                  | #  |                    |             |
| Uranium                          | mg/L         | 11/02/2010  | N001      | 9.8 | -               | 26.8 | 0.00383 |     | F                  | #  | 0.00005            |             |

## Groundwater Quality Data by Location (USEE100) FOR SITE RVT01, Riverton Processing Site REPORT DATE: 12/20/2010 Location: 0716 WELL

| Parameter                        | Units        | Sam<br>Date | ple<br>ID | Depth R<br>(Ft Bl |       | Result | Lab | Qualifiers<br>Data | QA | Detection<br>Limit | Uncertainty |
|----------------------------------|--------------|-------------|-----------|-------------------|-------|--------|-----|--------------------|----|--------------------|-------------|
| Alkalinity, Total (As CaCO3)     | mg/L         | 11/02/2010  | N001      | 9.78 -            | 14.78 | 299    |     | F                  | #  |                    |             |
| Dissolved Oxygen                 | mg/L         | 11/02/2010  | N001      | 9.78 -            | 14.78 | 2.23   |     | F                  | #  |                    |             |
| Manganese                        | mg/L         | 11/02/2010  | N001      | 9.78 -            | 14.78 | 0.376  |     | F                  | #  | 0.002              |             |
| Molybdenum                       | mg/L         | 11/02/2010  | N001      | 9.78 -            | 14.78 | 0.152  |     | F                  | #  | 0.000167           |             |
| Oxidation Reduction<br>Potential | mV           | 11/02/2010  | N001      | 9.78 -            | 14.78 | -12.7  |     | F                  | #  |                    |             |
| рН                               | s.u.         | 11/02/2010  | N001      | 9.78 -            | 14.78 | 7.16   |     | F                  | #  |                    |             |
| Specific Conductance             | umhos<br>/cm | 11/02/2010  | N001      | 9.78 -            | 14.78 | 1561   |     | F                  | #  |                    |             |
| Sulfate                          | mg/L         | 11/02/2010  | N001      | 9.78 -            | 14.78 | 410    |     | F                  | #  | 10                 |             |
| Temperature                      | С            | 11/02/2010  | N001      | 9.78 -            | 14.78 | 13.39  |     | F                  | #  |                    |             |
| Turbidity                        | NTU          | 11/02/2010  | N001      | 9.78 -            | 14.78 | 1.69   |     | F                  | #  |                    |             |
| Uranium                          | mg/L         | 11/02/2010  | N001      | 9.78 -            | 14.78 | 0.29   |     | F                  | #  | 0.0005             |             |

## Groundwater Quality Data by Location (USEE100) FOR SITE RVT01, Riverton Processing Site REPORT DATE: 12/20/2010 Location: 0717 WELL

| Parameter                        | Units        | Sam<br>Date | ple<br>ID | Depth Ra<br>(Ft BL |      | Result  | Lab | Qualifiers<br>Data | QA | Detection<br>Limit | Uncertainty |
|----------------------------------|--------------|-------------|-----------|--------------------|------|---------|-----|--------------------|----|--------------------|-------------|
| Alkalinity, Total (As CaCO3)     | mg/L         | 11/02/2010  | N001      | 45.1 -             | 55.1 | 225     |     | F                  | #  |                    |             |
| Dissolved Oxygen                 | mg/L         | 11/02/2010  | N001      | 45.1 -             | 55.1 | 2.3     |     | F                  | #  |                    |             |
| Manganese                        | mg/L         | 11/02/2010  | N001      | 45.1 -             | 55.1 | 0.179   |     | F                  | #  | 0.002              |             |
| Molybdenum                       | mg/L         | 11/02/2010  | N001      | 45.1 -             | 55.1 | 0.00744 |     | F                  | #  | 0.000167           |             |
| Oxidation Reduction<br>Potential | mV           | 11/02/2010  | N001      | 45.1 -             | 55.1 | -91.1   |     | F                  | #  |                    |             |
| рН                               | s.u.         | 11/02/2010  | N001      | 45.1 -             | 55.1 | 7.75    |     | F                  | #  |                    |             |
| Specific Conductance             | umhos<br>/cm | 11/02/2010  | N001      | 45.1 -             | 55.1 | 2155    |     | F                  | #  |                    |             |
| Sulfate                          | mg/L         | 11/02/2010  | N001      | 45.1 -             | 55.1 | 673     |     | F                  | #  | 10                 |             |
| Temperature                      | С            | 11/02/2010  | N001      | 45.1 -             | 55.1 | 11.47   |     | F                  | #  |                    |             |
| Turbidity                        | NTU          | 11/02/2010  | N001      | 45.1 -             | 55.1 | 1.85    |     | F                  | #  |                    |             |
| Uranium                          | mg/L         | 11/02/2010  | N001      | 45.1 -             | 55.1 | 0.00005 | U   | F                  | #  | 0.00005            |             |

## Groundwater Quality Data by Location (USEE100) FOR SITE RVT01, Riverton Processing Site REPORT DATE: 12/20/2010 Location: 0718 WELL

| Parameter                        | Units        | Sam<br>Date | ple<br>ID | Depth Ra<br>(Ft BL |       | Result | Lab | Qualifiers<br>Data | QA | Detection<br>Limit | Uncertainty |
|----------------------------------|--------------|-------------|-----------|--------------------|-------|--------|-----|--------------------|----|--------------------|-------------|
| Alkalinity, Total (As CaCO3)     | mg/L         | 11/02/2010  | N001      | 18.24 -            | 23.24 | 416    |     | F                  | #  |                    |             |
| Dissolved Oxygen                 | mg/L         | 11/02/2010  | N001      | 18.24 -            | 23.24 | 2.93   |     | F                  | #  |                    |             |
| Manganese                        | mg/L         | 11/02/2010  | N001      | 18.24 -            | 23.24 | 0.991  |     | F                  | #  | 0.002              |             |
| Molybdenum                       | mg/L         | 11/02/2010  | N001      | 18.24 -            | 23.24 | 0.148  |     | F                  | #  | 0.000167           |             |
| Oxidation Reduction<br>Potential | mV           | 11/02/2010  | N001      | 18.24 -            | 23.24 | 109.4  |     | F                  | #  |                    |             |
| рН                               | s.u.         | 11/02/2010  | N001      | 18.24 -            | 23.24 | 7.04   |     | F                  | #  |                    |             |
| Specific Conductance             | umhos<br>/cm | 11/02/2010  | N001      | 18.24 -            | 23.24 | 6505   |     | F                  | #  |                    |             |
| Sulfate                          | mg/L         | 11/02/2010  | N001      | 18.24 -            | 23.24 | 3050   |     | F                  | #  | 10                 |             |
| Temperature                      | С            | 11/02/2010  | N001      | 18.24 -            | 23.24 | 14.88  |     | F                  | #  |                    |             |
| Turbidity                        | NTU          | 11/02/2010  | N001      | 18.24 -            | 23.24 | 1.49   |     | F                  | #  |                    |             |
| Uranium                          | mg/L         | 11/02/2010  | N001      | 18.24 -            | 23.24 | 0.297  |     | F                  | #  | 0.0005             |             |

#### Groundwater Quality Data by Location (USEE100) FOR SITE RVT01, Riverton Processing Site REPORT DATE: 12/20/2010 Location: 0719 WELL

| Parameter                        | Units        | Sam<br>Date | iple<br>ID | Depth R<br>(Ft Bl |       | Result   | Lab | Qualifiers<br>Data | QA | Detection<br>Limit | Uncertainty |
|----------------------------------|--------------|-------------|------------|-------------------|-------|----------|-----|--------------------|----|--------------------|-------------|
| Alkalinity, Total (As CaCO3)     | mg/L         | 11/02/2010  | N001       | 38.47 -           | 48.47 | 127      |     | FQ                 | #  |                    |             |
| Dissolved Oxygen                 | mg/L         | 11/02/2010  | N001       | 38.47 -           | 48.47 | 1.65     |     | FQ                 | #  |                    |             |
| Manganese                        | mg/L         | 11/02/2010  | N001       | 38.47 -           | 48.47 | 0.072    |     | FQ                 | #  | 0.002              |             |
| Molybdenum                       | mg/L         | 11/02/2010  | N001       | 38.47 -           | 48.47 | 0.016    |     | FQ                 | #  | 0.000167           |             |
| Oxidation Reduction<br>Potential | mV           | 11/02/2010  | N001       | 38.47 -           | 48.47 | -40.4    |     | FQ                 | #  |                    |             |
| рН                               | s.u.         | 11/02/2010  | N001       | 38.47 -           | 48.47 | 7.75     |     | FQ                 | #  |                    |             |
| Specific Conductance             | umhos<br>/cm | 11/02/2010  | N001       | 38.47 -           | 48.47 | 1343     |     | FQ                 | #  |                    |             |
| Sulfate                          | mg/L         | 11/02/2010  | N001       | 38.47 -           | 48.47 | 426      |     | FQ                 | #  | 10                 |             |
| Temperature                      | С            | 11/02/2010  | N001       | 38.47 -           | 48.47 | 13.18    |     | FQ                 | #  |                    |             |
| Turbidity                        | NTU          | 11/02/2010  | N001       | 38.47 -           | 48.47 | 8.99     |     | FQ                 | #  |                    |             |
| Uranium                          | mg/L         | 11/02/2010  | N001       | 38.47 -           | 48.47 | 0.000568 |     | FQ                 | #  | 0.00005            |             |

#### Groundwater Quality Data by Location (USEE100) FOR SITE RVT01, Riverton Processing Site REPORT DATE: 12/20/2010 Location: 0720 WELL

| Parameter                        | Units        | Sam<br>Date | ple<br>ID | Depth R<br>(Ft BL |       | Result  | Lab | Qualifiers<br>Data | QA | Detection<br>Limit | Uncertainty |
|----------------------------------|--------------|-------------|-----------|-------------------|-------|---------|-----|--------------------|----|--------------------|-------------|
| Alkalinity, Total (As CaCO3)     | mg/L         | 11/03/2010  | N001      | 7.94 -            | 12.94 | 216     |     | F                  | #  |                    |             |
| Dissolved Oxygen                 | mg/L         | 11/03/2010  | N001      | 7.94 -            | 12.94 | 2.33    |     | F                  | #  |                    |             |
| Manganese                        | mg/L         | 11/03/2010  | N001      | 7.94 -            | 12.94 | 0.017   |     | F                  | #  | 0.002              |             |
| Molybdenum                       | mg/L         | 11/03/2010  | N001      | 7.94 -            | 12.94 | 0.00176 | В   | F                  | #  | 0.000167           |             |
| Oxidation Reduction<br>Potential | mV           | 11/03/2010  | N001      | 7.94 -            | 12.94 | 43      |     | F                  | #  |                    |             |
| рН                               | s.u.         | 11/03/2010  | N001      | 7.94 -            | 12.94 | 7.31    |     | F                  | #  |                    |             |
| Specific Conductance             | umhos<br>/cm | 11/03/2010  | N001      | 7.94 -            | 12.94 | 793     |     | F                  | #  |                    |             |
| Sulfate                          | mg/L         | 11/03/2010  | N001      | 7.94 -            | 12.94 | 176     |     | F                  | #  | 10                 |             |
| Temperature                      | С            | 11/03/2010  | N001      | 7.94 -            | 12.94 | 11.83   |     | F                  | #  |                    |             |
| Turbidity                        | NTU          | 11/03/2010  | N001      | 7.94 -            | 12.94 | 1.72    |     | F                  | #  |                    |             |
| Uranium                          | mg/L         | 11/03/2010  | N001      | 7.94 -            | 12.94 | 0.00555 |     | F                  | #  | 0.00005            |             |

#### Groundwater Quality Data by Location (USEE100) FOR SITE RVT01, Riverton Processing Site REPORT DATE: 12/20/2010 Location: 0721 WELL

| Parameter                        | Units        | Sam<br>Date | ple<br>ID | Depth R<br>(Ft BL |       | Result   | Lab | Qualifiers<br>Data | QA | Detection<br>Limit | Uncertainty |
|----------------------------------|--------------|-------------|-----------|-------------------|-------|----------|-----|--------------------|----|--------------------|-------------|
| Alkalinity, Total (As CaCO3)     | mg/L         | 11/03/2010  | N001      | 44.43 -           | 54.43 | 81       |     | F                  | #  |                    |             |
| Dissolved Oxygen                 | mg/L         | 11/03/2010  | N001      | 44.43 -           | 54.43 | 0.73     |     | F                  | #  |                    |             |
| Manganese                        | mg/L         | 11/03/2010  | N001      | 44.43 -           | 54.43 | 0.00389  | В   | F                  | #  | 0.002              |             |
| Molybdenum                       | mg/L         | 11/03/2010  | N001      | 44.43 -           | 54.43 | 0.00303  |     | F                  | #  | 0.000167           |             |
| Oxidation Reduction<br>Potential | mV           | 11/03/2010  | N001      | 44.43 -           | 54.43 | -51      |     | F                  | #  |                    |             |
| рН                               | s.u.         | 11/03/2010  | N001      | 44.43 -           | 54.43 | 8.86     |     | F                  | #  |                    |             |
| Specific Conductance             | umhos<br>/cm | 11/03/2010  | N001      | 44.43 -           | 54.43 | 990      |     | F                  | #  |                    |             |
| Sulfate                          | mg/L         | 11/03/2010  | N001      | 44.43 -           | 54.43 | 283      |     | F                  | #  | 10                 |             |
| Temperature                      | С            | 11/03/2010  | N001      | 44.43 -           | 54.43 | 10.48    |     | F                  | #  |                    |             |
| Turbidity                        | NTU          | 11/03/2010  | N001      | 44.43 -           | 54.43 | 2.65     |     | F                  | #  |                    |             |
| Uranium                          | mg/L         | 11/03/2010  | N001      | 44.43 -           | 54.43 | 0.000146 |     | F                  | #  | 0.00005            |             |

# Groundwater Quality Data by Location (USEE100) FOR SITE RVT01, Riverton Processing Site REPORT DATE: 12/20/2010

Location: 0722R WELL Replacement well for destroyed well 0722.

| Parameter                        | Units        | Sam<br>Date | ple<br>ID | Depth R<br>(Ft BL |      | Result | Lab | Qualifiers<br>Data | QA | Detection<br>Limit | Uncertainty |
|----------------------------------|--------------|-------------|-----------|-------------------|------|--------|-----|--------------------|----|--------------------|-------------|
| Alkalinity, Total (As CaCO3)     | mg/L         | 11/02/2010  | N001      | 11.1 -            | 16.1 | 280    |     | F                  | #  |                    |             |
| Dissolved Oxygen                 | mg/L         | 11/02/2010  | N001      | 11.1 -            | 16.1 | 3.14   |     | F                  | #  |                    |             |
| Manganese                        | mg/L         | 11/02/2010  | N001      | 11.1 -            | 16.1 | 0.0208 |     | F                  | #  | 0.002              |             |
| Molybdenum                       | mg/L         | 11/02/2010  | N001      | 11.1 -            | 16.1 | 0.113  |     | F                  | #  | 0.000167           |             |
| Oxidation Reduction<br>Potential | mV           | 11/02/2010  | N001      | 11.1 -            | 16.1 | 67.2   |     | F                  | #  |                    |             |
| рН                               | s.u.         | 11/02/2010  | N001      | 11.1 -            | 16.1 | 6.92   |     | F                  | #  |                    |             |
| Specific Conductance             | umhos<br>/cm | 11/02/2010  | N001      | 11.1 -            | 16.1 | 2627   |     | F                  | #  |                    |             |
| Sulfate                          | mg/L         | 11/02/2010  | N001      | 11.1 -            | 16.1 | 1110   |     | F                  | #  | 10                 |             |
| Temperature                      | С            | 11/02/2010  | N001      | 11.1 -            | 16.1 | 14.79  |     | F                  | #  |                    |             |
| Turbidity                        | NTU          | 11/02/2010  | N001      | 11.1 -            | 16.1 | 1.31   |     | F                  | #  |                    |             |
| Uranium                          | mg/L         | 11/02/2010  | N001      | 11.1 -            | 16.1 | 0.759  |     | F                  | #  | 0.001              |             |

#### Groundwater Quality Data by Location (USEE100) FOR SITE RVT01, Riverton Processing Site REPORT DATE: 12/20/2010 Location: 0723 WELL

| Parameter                        | Units        | Sam<br>Date | ple<br>ID | Depth R<br>(Ft BL |       | Result   | Lab | Qualifiers<br>Data | QA | Detection<br>Limit | Uncertainty |
|----------------------------------|--------------|-------------|-----------|-------------------|-------|----------|-----|--------------------|----|--------------------|-------------|
| Alkalinity, Total (As CaCO3)     | mg/L         | 11/02/2010  | N001      | 45.99 -           | 55.99 | 377      |     | F                  | #  |                    |             |
| Dissolved Oxygen                 | mg/L         | 11/02/2010  | N001      | 45.99 -           | 55.99 | 5.35     |     | F                  | #  |                    |             |
| Manganese                        | mg/L         | 11/02/2010  | N001      | 45.99 -           | 55.99 | 0.471    |     | F                  | #  | 0.002              |             |
| Molybdenum                       | mg/L         | 11/02/2010  | N001      | 45.99 -           | 55.99 | 0.000421 | В   | UF                 | #  | 0.000167           |             |
| Oxidation Reduction<br>Potential | mV           | 11/02/2010  | N001      | 45.99 -           | 55.99 | -32      |     | F                  | #  |                    |             |
| рН                               | s.u.         | 11/02/2010  | N001      | 45.99 -           | 55.99 | 7.14     |     | F                  | #  |                    |             |
| Specific Conductance             | umhos<br>/cm | 11/02/2010  | N001      | 45.99 -           | 55.99 | 4201     |     | F                  | #  |                    |             |
| Sulfate                          | mg/L         | 11/02/2010  | N001      | 45.99 -           | 55.99 | 1610     |     | FJ                 | #  | 10                 |             |
| Temperature                      | С            | 11/02/2010  | N001      | 45.99 -           | 55.99 | 12.34    |     | F                  | #  |                    |             |
| Turbidity                        | NTU          | 11/02/2010  | N001      | 45.99 -           | 55.99 | 1.55     |     | F                  | #  |                    |             |
| Uranium                          | mg/L         | 11/02/2010  | N001      | 45.99 -           | 55.99 | 0.000097 | В   | UF                 | #  | 0.00005            |             |

#### Groundwater Quality Data by Location (USEE100) FOR SITE RVT01, Riverton Processing Site REPORT DATE: 12/20/2010 Location: 0729 WELL

| Parameter                        | Units        | Sam<br>Date | iple<br>ID | Depth Range<br>(Ft BLS) | Result  | Lab | Qualifiers<br>Data | QA | Detection<br>Limit | Uncertainty |
|----------------------------------|--------------|-------------|------------|-------------------------|---------|-----|--------------------|----|--------------------|-------------|
| Alkalinity, Total (As CaCO3)     | mg/L         | 11/03/2010  | N001       | 14.71 - 19.71           | 263     |     | F                  | #  |                    |             |
| Dissolved Oxygen                 | mg/L         | 11/03/2010  | N001       | 14.71 - 19.71           | 1.22    |     | F                  | #  |                    |             |
| Manganese                        | mg/L         | 11/03/2010  | N001       | 14.71 - 19.71           | 0.00423 | В   | F                  | #  | 0.002              |             |
| Molybdenum                       | mg/L         | 11/03/2010  | N001       | 14.71 - 19.71           | 0.00378 |     | F                  | #  | 0.000167           |             |
| Oxidation Reduction<br>Potential | mV           | 11/03/2010  | N001       | 14.71 - 19.71           | 143.4   |     | F                  | #  |                    |             |
| рН                               | s.u.         | 11/03/2010  | N001       | 14.71 - 19.71           | 7.17    |     | F                  | #  |                    |             |
| Specific Conductance             | umhos<br>/cm | 11/03/2010  | N001       | 14.71 - 19.71           | 775     |     | F                  | #  |                    |             |
| Sulfate                          | mg/L         | 11/03/2010  | N001       | 14.71 - 19.71           | 132     |     | F                  | #  | 10                 |             |
| Temperature                      | С            | 11/03/2010  | N001       | 14.71 - 19.71           | 13.92   |     | F                  | #  |                    |             |
| Turbidity                        | NTU          | 11/03/2010  | N001       | 14.71 - 19.71           | 1.83    |     | F                  | #  |                    |             |
| Uranium                          | mg/L         | 11/03/2010  | N001       | 14.71 - 19.71           | 0.00599 |     | F                  | #  | 0.00005            |             |

#### Groundwater Quality Data by Location (USEE100) FOR SITE RVT01, Riverton Processing Site REPORT DATE: 12/20/2010 Location: 0730 WELL

| Parameter                        | Units        | Sam<br>Date | ple<br>ID | Depth R<br>(Ft Bl |       | Result  | Lab | Qualifiers<br>Data | QA | Detection<br>Limit | Uncertainty |
|----------------------------------|--------------|-------------|-----------|-------------------|-------|---------|-----|--------------------|----|--------------------|-------------|
| Alkalinity, Total (As CaCO3)     | mg/L         | 11/03/2010  | N001      | 38.62 -           | 48.62 | 336     |     | FQ                 | #  |                    |             |
| Dissolved Oxygen                 | mg/L         | 11/03/2010  | N001      | 38.62 -           | 48.62 | 0.25    |     | FQ                 | #  |                    |             |
| Manganese                        | mg/L         | 11/03/2010  | N001      | 38.62 -           | 48.62 | 0.0504  |     | FQ                 | #  | 0.002              |             |
| Molybdenum                       | mg/L         | 11/03/2010  | N001      | 38.62 -           | 48.62 | 0.00547 |     | FQ                 | #  | 0.000167           |             |
| Oxidation Reduction<br>Potential | mV           | 11/03/2010  | N001      | 38.62 -           | 48.62 | -35.6   |     | FQ                 | #  |                    |             |
| рН                               | s.u.         | 11/03/2010  | N001      | 38.62 -           | 48.62 | 7.47    |     | FQ                 | #  |                    |             |
| Specific Conductance             | umhos<br>/cm | 11/03/2010  | N001      | 38.62 -           | 48.62 | 1063    |     | FQ                 | #  |                    |             |
| Sulfate                          | mg/L         | 11/03/2010  | N001      | 38.62 -           | 48.62 | 174     |     | FQ                 | #  | 10                 |             |
| Temperature                      | С            | 11/03/2010  | N001      | 38.62 -           | 48.62 | 13.44   |     | FQ                 | #  |                    |             |
| Turbidity                        | NTU          | 11/03/2010  | N001      | 38.62 -           | 48.62 | 1.71    |     | FQ                 | #  |                    |             |
| Uranium                          | mg/L         | 11/03/2010  | N001      | 38.62 -           | 48.62 | 0.00942 |     | FQ                 | #  | 0.00005            |             |

#### Groundwater Quality Data by Location (USEE100) FOR SITE RVT01, Riverton Processing Site REPORT DATE: 12/20/2010 Location: 0784 WELL

| Parameter                        | Units        | Sam<br>Date | ple<br>ID |      | Range<br>BLS) | Result | Lab | Qualifiers<br>Data | QA | Detection<br>Limit | Uncertainty |
|----------------------------------|--------------|-------------|-----------|------|---------------|--------|-----|--------------------|----|--------------------|-------------|
| Alkalinity, Total (As CaCO3)     | mg/L         | 11/02/2010  | N001      | 1.65 | - 6.65        | 139    |     | F                  | #  |                    |             |
| Dissolved Oxygen                 | mg/L         | 11/02/2010  | N001      | 1.65 | - 6.65        | 1.74   |     | F                  | #  |                    |             |
| Manganese                        | mg/L         | 11/02/2010  | N001      | 1.65 | - 6.65        | 0.839  |     | F                  | #  | 0.002              |             |
| Molybdenum                       | mg/L         | 11/02/2010  | N001      | 1.65 | - 6.65        | 0.0144 |     | F                  | #  | 0.000167           |             |
| Oxidation Reduction<br>Potential | mV           | 11/02/2010  | N001      | 1.65 | - 6.65        | -45.5  |     | F                  | #  |                    |             |
| рН                               | s.u.         | 11/02/2010  | N001      | 1.65 | - 6.65        | 7.55   |     | F                  | #  |                    |             |
| Specific Conductance             | umhos<br>/cm | 11/02/2010  | N001      | 1.65 | - 6.65        | 4859   |     | F                  | #  |                    |             |
| Sulfate                          | mg/L         | 11/02/2010  | N001      | 1.65 | - 6.65        | 2180   |     | F                  | #  | 10                 |             |
| Temperature                      | С            | 11/02/2010  | N001      | 1.65 | - 6.65        | 15.07  |     | F                  | #  |                    |             |
| Turbidity                        | NTU          | 11/02/2010  | N001      | 1.65 | - 6.65        | 2.18   |     | F                  | #  |                    |             |
| Uranium                          | mg/L         | 11/02/2010  | N001      | 1.65 | - 6.65        | 0.0043 |     | F                  | #  | 0.00005            |             |

#### Groundwater Quality Data by Location (USEE100) FOR SITE RVT01, Riverton Processing Site REPORT DATE: 12/20/2010 Location: 0788 WELL

| Parameter                        | Units        | Sam<br>Date | iple<br>ID | Depth Ra<br>(Ft BL |       | Result | Lab | Qualifiers<br>Data | QA | Detection<br>Limit | Uncertainty |
|----------------------------------|--------------|-------------|------------|--------------------|-------|--------|-----|--------------------|----|--------------------|-------------|
| Alkalinity, Total (As CaCO3)     | mg/L         | 11/03/2010  | N001       | 1.41 -             | 13.41 | 449    |     | F                  | #  |                    |             |
| Dissolved Oxygen                 | mg/L         | 11/03/2010  | N001       | 1.41 -             | 13.41 | 0.44   |     | F                  | #  |                    |             |
| Manganese                        | mg/L         | 11/03/2010  | N001       | 1.41 -             | 13.41 | 0.195  |     | F                  | #  | 0.002              |             |
| Molybdenum                       | mg/L         | 11/03/2010  | N001       | 1.41 -             | 13.41 | 0.0299 |     | F                  | #  | 0.000167           |             |
| Oxidation Reduction<br>Potential | mV           | 11/03/2010  | N001       | 1.41 -             | 13.41 | 30.8   |     | F                  | #  |                    |             |
| рН                               | s.u.         | 11/03/2010  | N001       | 1.41 -             | 13.41 | 7.18   |     | F                  | #  |                    |             |
| Specific Conductance             | umhos<br>/cm | 11/03/2010  | N001       | 1.41 -             | 13.41 | 4808   |     | F                  | #  |                    |             |
| Sulfate                          | mg/L         | 11/03/2010  | N001       | 1.41 -             | 13.41 | 2020   |     | F                  | #  | 10                 |             |
| Temperature                      | С            | 11/03/2010  | N001       | 1.41 -             | 13.41 | 11.14  |     | F                  | #  |                    |             |
| Turbidity                        | NTU          | 11/03/2010  | N001       | 1.41 -             | 13.41 | 2.76   |     | F                  | #  |                    |             |
| Uranium                          | mg/L         | 11/03/2010  | N001       | 1.41 -             | 13.41 | 0.0745 |     | F                  | #  | 0.00005            |             |

#### Groundwater Quality Data by Location (USEE100) FOR SITE RVT01, Riverton Processing Site REPORT DATE: 12/20/2010 Location: 0789 WELL

| Parameter                        | Units        | Sam<br>Date | ple<br>ID |     | th Rai<br>t BLS |      | Result | Lab | Qualifiers<br>Data | QA | Detection<br>Limit | Uncertainty |
|----------------------------------|--------------|-------------|-----------|-----|-----------------|------|--------|-----|--------------------|----|--------------------|-------------|
| Alkalinity, Total (As CaCO3)     | mg/L         | 11/03/2010  | N001      | 6.2 | -               | 18.2 | 543    |     | F                  | #  |                    |             |
| Dissolved Oxygen                 | mg/L         | 11/03/2010  | N001      | 6.2 | -               | 18.2 | 0.98   |     | F                  | #  |                    |             |
| Manganese                        | mg/L         | 11/03/2010  | N001      | 6.2 | -               | 18.2 | 0.347  |     | F                  | #  | 0.002              |             |
| Molybdenum                       | mg/L         | 11/03/2010  | N001      | 6.2 | -               | 18.2 | 0.723  |     | F                  | #  | 0.000167           |             |
| Oxidation Reduction<br>Potential | mV           | 11/03/2010  | N001      | 6.2 | -               | 18.2 | 44.8   |     | F                  | #  |                    |             |
| рН                               | s.u.         | 11/03/2010  | N001      | 6.2 | -               | 18.2 | 7.12   |     | F                  | #  |                    |             |
| Specific Conductance             | umhos<br>/cm | 11/03/2010  | N001      | 6.2 | -               | 18.2 | 13744  |     | F                  | #  |                    |             |
| Sulfate                          | mg/L         | 11/03/2010  | N001      | 6.2 | -               | 18.2 | 6890   |     | F                  | #  | 50                 |             |
| Temperature                      | С            | 11/03/2010  | N001      | 6.2 | -               | 18.2 | 11.66  |     | F                  | #  |                    |             |
| Turbidity                        | NTU          | 11/03/2010  | N001      | 6.2 | -               | 18.2 | 1.05   |     | F                  | #  |                    |             |
| Uranium                          | mg/L         | 11/03/2010  | N001      | 6.2 | -               | 18.2 | 2.64   |     | F                  | #  | 0.005              |             |

## Groundwater Quality Data by Location (USEE100) FOR SITE RVT01, Riverton Processing Site REPORT DATE: 12/20/2010 Location: 0824 WELL

| Parameter                        | Units        | Sam<br>Date | ple<br>ID |     | th Ra<br>t BLS |      | Result  | Lab | Qualifiers<br>Data | QA | Detection<br>Limit | Uncertainty |
|----------------------------------|--------------|-------------|-----------|-----|----------------|------|---------|-----|--------------------|----|--------------------|-------------|
| Alkalinity, Total (As CaCO3)     | mg/L         | 11/03/2010  | N001      | 9.5 | -              | 14.5 | 342     |     | F                  | #  |                    |             |
| Dissolved Oxygen                 | mg/L         | 11/03/2010  | N001      | 9.5 | -              | 14.5 | 0.57    |     | F                  | #  |                    |             |
| Manganese                        | mg/L         | 11/03/2010  | N001      | 9.5 | -              | 14.5 | 0.00534 | В   | F                  | #  | 0.002              |             |
| Molybdenum                       | mg/L         | 11/03/2010  | N001      | 9.5 | -              | 14.5 | 0.00503 |     | F                  | #  | 0.000167           |             |
| Oxidation Reduction<br>Potential | mV           | 11/03/2010  | N001      | 9.5 | -              | 14.5 | 56.9    |     | F                  | #  |                    |             |
| рН                               | s.u.         | 11/03/2010  | N001      | 9.5 | -              | 14.5 | 7.21    |     | F                  | #  |                    |             |
| Specific Conductance             | umhos<br>/cm | 11/03/2010  | N001      | 9.5 | -              | 14.5 | 1013    |     | F                  | #  |                    |             |
| Sulfate                          | mg/L         | 11/03/2010  | N001      | 9.5 | -              | 14.5 | 169     |     | F                  | #  | 10                 |             |
| Temperature                      | С            | 11/03/2010  | N001      | 9.5 | -              | 14.5 | 12.89   |     | F                  | #  |                    |             |
| Turbidity                        | NTU          | 11/03/2010  | N001      | 9.5 | -              | 14.5 | 1.1     |     | F                  | #  |                    |             |
| Uranium                          | mg/L         | 11/03/2010  | N001      | 9.5 | -              | 14.5 | 0.0178  |     | F                  | #  | 0.00005            |             |

#### Groundwater Quality Data by Location (USEE100) FOR SITE RVT01, Riverton Processing Site REPORT DATE: 12/20/2010 Location: 0826 WELL

| Parameter                        | Units        | Sam<br>Date | ple<br>ID |     | h Range<br>t BLS) | Result | Lab | Qualifiers<br>Data | QA | Detection<br>Limit | Uncertainty |
|----------------------------------|--------------|-------------|-----------|-----|-------------------|--------|-----|--------------------|----|--------------------|-------------|
| Alkalinity, Total (As CaCO3)     | mg/L         | 11/03/2010  | N001      | 6.6 | - 11.6            | 472    |     | F                  | #  |                    |             |
| Dissolved Oxygen                 | mg/L         | 11/03/2010  | N001      | 6.6 | - 11.6            | 0.51   |     | F                  | #  |                    |             |
| Manganese                        | mg/L         | 11/03/2010  | N001      | 6.6 | - 11.6            | 2.47   |     | F                  | #  | 0.002              |             |
| Molybdenum                       | mg/L         | 11/03/2010  | N001      | 6.6 | - 11.6            | 0.0468 |     | F                  | #  | 0.000167           |             |
| Oxidation Reduction<br>Potential | mV           | 11/03/2010  | N001      | 6.6 | - 11.6            | 30.3   |     | F                  | #  |                    |             |
| рН                               | s.u.         | 11/03/2010  | N001      | 6.6 | - 11.6            | 7.13   |     | F                  | #  |                    |             |
| Specific Conductance             | umhos<br>/cm | 11/03/2010  | N001      | 6.6 | - 11.6            | 4519   |     | F                  | #  |                    |             |
| Sulfate                          | mg/L         | 11/03/2010  | N001      | 6.6 | - 11.6            | 1820   |     | F                  | #  | 10                 |             |
| Temperature                      | С            | 11/03/2010  | N001      | 6.6 | - 11.6            | 11.5   |     | F                  | #  |                    |             |
| Turbidity                        | NTU          | 11/03/2010  | N001      | 6.6 | - 11.6            | 1.84   |     | F                  | #  |                    |             |
| Uranium                          | mg/L         | 11/03/2010  | N001      | 6.6 | - 11.6            | 0.0784 |     | F                  | #  | 0.00005            |             |

SAMPLE ID CODES: 000X = Filtered sample (0.45 µm). N00X = Unfiltered sample. X = replicate number.

#### LAB QUALIFIERS:

- \* Replicate analysis not within control limits.
- Result above upper detection limit.
- A TIC is a suspected aldol-condensation product.
- B Inorganic: Result is between the IDL and CRDL. Organic: Analyte also found in method blank.
- C Pesticide result confirmed by GC-MS.
- D Analyte determined in diluted sample.
- E Inorganic: Estimate value because of interference, see case narrative. Organic: Analyte exceeded calibration range of the GC-MS.
- H Holding time expired, value suspect.
- I Increased detection limit due to required dilution.
- J Estimated

- Inorganic or radiochemical: Spike sample recovery not within control limits. Organic: Tentatively identified compound (TIC). > 25% difference in detected pesticide or Aroclor concentrations between 2 columns. Ν
- Ρ
- U Analytical result below detection limit.
- Post-digestion spike outside control limits while sample absorbance < 50% of analytical spike absorbance. W
- X,Y,Z Laboratory defined qualifier, see case narrative.

#### DATA QUALIFIERS:

- Low flow sampling method used. F L Less than 3 bore volumes purged prior to sampling.

- Parameter analyzed for but was not detected. X Location is undefined.

#### QA QUALIFIER:

U

# Validated according to quality assurance guidelines. This page intentionally left blank

**Surface Water Quality Data** 

This page intentionally left blank

## Surface Water Quality Data by Location (USEE102) FOR SITE RVT01, Riverton Processing Site REPORT DATE: 12/20/2010

Location: 0747 SURFACE LOCATION 8/26/97 State plane east changed from 594497.14 to an estimation close to river

| Parameter                        | Units    | Samp<br>Date | le<br>ID | Result | Qualifiers<br>Lab Data QA | Detection<br>Limit | Uncertainty |
|----------------------------------|----------|--------------|----------|--------|---------------------------|--------------------|-------------|
| Alkalinity, Total (As CaCO3)     | mg/L     | 11/03/2010   | 0001     | 377    | #                         |                    |             |
| Manganese                        | mg/L     | 11/03/2010   | 0001     | 2.45   | #                         | 0.002              |             |
| Molybdenum                       | mg/L     | 11/03/2010   | 0001     | 0.0251 | #                         | 0.000167           |             |
| Sulfate                          | mg/L     | 11/03/2010   | 0001     | 2080   | #                         | 10                 |             |
| Uranium                          | mg/L     | 11/03/2010   | 0001     | 0.543  | #                         | 0.0005             |             |
| Dissolved Oxygen                 | mg/L     | 11/03/2010   | N001     | 0.83   | #                         |                    |             |
| Oxidation Reduction<br>Potential | mV       | 11/03/2010   | N001     | 122.4  | #                         |                    |             |
| рН                               | s.u.     | 11/03/2010   | N001     | 7.87   | #                         |                    |             |
| Specific Conductance             | umhos/cm | 11/03/2010   | N001     | 4868   | #                         |                    |             |
| Temperature                      | С        | 11/03/2010   | N001     | 5.64   | #                         |                    |             |
| Turbidity                        | NTU      | 11/03/2010   | N001     | 17.48  | #                         |                    |             |

## Surface Water Quality Data by Location (USEE102) FOR SITE RVT01, Riverton Processing Site REPORT DATE: 12/20/2010

Location: 0749 SURFACE LOCATION 8/26/97 State plane east changed from 589532.71 to an estimation close to river

| Parameter                        | Units    | Samp<br>Date | le<br>ID | Result  | Qualifiers<br>Lab Data QA | Detection<br>Limit | Uncertainty |
|----------------------------------|----------|--------------|----------|---------|---------------------------|--------------------|-------------|
| Alkalinity, Total (As CaCO3)     | mg/L     | 11/02/2010   | N001     | 62      | #                         |                    |             |
| Dissolved Oxygen                 | mg/L     | 11/02/2010   | N001     | 7.35    | #                         |                    |             |
| Manganese                        | mg/L     | 11/02/2010   | N001     | 0.153   | #                         | 0.002              |             |
| Molybdenum                       | mg/L     | 11/02/2010   | N001     | 0.0242  | #                         | 0.000167           |             |
| Oxidation Reduction<br>Potential | mV       | 11/02/2010   | N001     | 49.5    | #                         |                    |             |
| рН                               | s.u.     | 11/02/2010   | N001     | 7.76    | #                         |                    |             |
| Specific Conductance             | umhos/cm | 11/02/2010   | N001     | 4834    | #                         |                    |             |
| Sulfate                          | mg/L     | 11/02/2010   | N001     | 2690    | #                         | 10                 |             |
| Temperature                      | С        | 11/02/2010   | N001     | 21.46   | #                         |                    |             |
| Turbidity                        | NTU      | 11/02/2010   | N001     | 9.91    | #                         |                    |             |
| Uranium                          | mg/L     | 11/02/2010   | N001     | 0.00427 | #                         | 0.00005            |             |

## Surface Water Quality Data by Location (USEE102) FOR SITE RVT01, Riverton Processing Site REPORT DATE: 12/20/2010

Location: 0794 SURFACE LOCATION 8/26/97 State plane north changed from 844178.27 to an estimation close to river

| Parameter                        | Units    | Samp<br>Date | le<br>ID | Result  |   | ualifiers<br>Data QA | Detection<br>Limit | Uncertainty |
|----------------------------------|----------|--------------|----------|---------|---|----------------------|--------------------|-------------|
| Alkalinity, Total (As CaCO3)     | mg/L     | 11/03/2010   | N001     | 186     |   | #                    |                    |             |
| Dissolved Oxygen                 | mg/L     | 11/03/2010   | N001     | 11.65   |   | #                    |                    |             |
| Manganese                        | mg/L     | 11/03/2010   | N001     | 0.0426  |   | #                    | 0.002              |             |
| Molybdenum                       | mg/L     | 11/03/2010   | N001     | 0.00169 | В | #                    | 0.000167           |             |
| Oxidation Reduction<br>Potential | mV       | 11/03/2010   | N001     | 109     |   | #                    |                    |             |
| рН                               | s.u.     | 11/03/2010   | N001     | 8.41    |   | #                    |                    |             |
| Specific Conductance             | umhos/cm | 11/03/2010   | N001     | 1063    |   | #                    |                    |             |
| Sulfate                          | mg/L     | 11/03/2010   | N001     | 309     |   | #                    | 10                 |             |
| Temperature                      | С        | 11/03/2010   | N001     | 9.86    |   | #                    |                    |             |
| Turbidity                        | NTU      | 11/03/2010   | N001     | 9.78    |   | #                    |                    |             |
| Uranium                          | mg/L     | 11/03/2010   | N001     | 0.00831 |   | #                    | 0.00005            |             |

## Surface Water Quality Data by Location (USEE102) FOR SITE RVT01, Riverton Processing Site REPORT DATE: 12/20/2010

Location: 0796 SURFACE LOCATION Was possibly historically sampled ~900 ft E from current location

| Parameter                        | Units    | Samp<br>Date | le<br>ID | Result  | Lab | Qualifiers<br>Data | QA | Detection<br>Limit | Uncertainty |
|----------------------------------|----------|--------------|----------|---------|-----|--------------------|----|--------------------|-------------|
| Alkalinity, Total (As CaCO3)     | mg/L     | 11/03/2010   | N001     | 190     |     |                    | #  |                    |             |
| Manganese                        | mg/L     | 11/03/2010   | N001     | 0.0388  |     |                    | #  | 0.002              |             |
| Molybdenum                       | mg/L     | 11/03/2010   | N001     | 0.00169 | В   |                    | #  | 0.000167           |             |
| Oxidation Reduction<br>Potential | mV       | 11/03/2010   | N001     | 113.3   |     |                    | #  |                    |             |
| рН                               | s.u.     | 11/03/2010   | N001     | 8.53    |     |                    | #  |                    |             |
| Specific Conductance             | umhos/cm | 11/03/2010   | N001     | 1071    |     |                    | #  |                    |             |
| Sulfate                          | mg/L     | 11/03/2010   | N001     | 307     |     |                    | #  | 10                 |             |
| Temperature                      | С        | 11/03/2010   | N001     | 10.83   |     |                    | #  |                    |             |
| Turbidity                        | NTU      | 11/03/2010   | N001     | 8       |     |                    | #  |                    |             |
| Uranium                          | mg/L     | 11/03/2010   | N001     | 0.00765 |     |                    | #  | 0.00005            |             |

#### Surface Water Quality Data by Location (USEE102) FOR SITE RVT01, Riverton Processing Site REPORT DATE: 12/20/2010 Location: 0810 SURFACE LOCATION Gravel Pit Pond

Sample Qualifiers Detection Parameter Units Result Uncertainty Date ID Lab Data QA Limit Alkalinity, Total (As CaCO3) N001 # mg/L 11/03/2010 373 # Manganese mg/L 11/03/2010 N001 0.0405 0.002 Molybdenum 11/03/2010 N001 0.00272 В # 0.000167 mg/L Oxidation Reduction mV 11/03/2010 N001 88.2 # Potential pН N001 8.82 # 11/03/2010 s.u. Specific Conductance 11/03/2010 N001 1592 # umhos/cm Sulfate mg/L 11/03/2010 N001 329 # 10 Temperature С 11/03/2010 N001 8.63 # Turbidity NTU 11/03/2010 N001 2.09 # # Uranium 11/03/2010 N001 0.00931 0.00005 mg/L

## Surface Water Quality Data by Location (USEE102) FOR SITE RVT01, Riverton Processing Site REPORT DATE: 12/20/2010 Location: 0811 SURFACE LOCATION

| Parameter                        | Units    | Samp<br>Date | le<br>ID | Result  | Qualifiers<br>Lab Data QA | Detection<br>Limit | Uncertainty |
|----------------------------------|----------|--------------|----------|---------|---------------------------|--------------------|-------------|
| Alkalinity, Total (As CaCO3)     | mg/L     | 11/03/2010   | N001     | 208     | #                         |                    |             |
| Dissolved Oxygen                 | mg/L     | 11/03/2010   | N001     | 10.17   | #                         |                    |             |
| Manganese                        | mg/L     | 11/03/2010   | N001     | 0.0387  | #                         | 0.002              |             |
| Molybdenum                       | mg/L     | 11/03/2010   | N001     | 0.00168 | B #                       | 0.000167           |             |
| Oxidation Reduction<br>Potential | mV       | 11/03/2010   | N001     | 95.5    | #                         |                    |             |
| рН                               | s.u.     | 11/03/2010   | N001     | 8.41    | #                         |                    |             |
| Specific Conductance             | umhos/cm | 11/03/2010   | N001     | 1139    | #                         |                    |             |
| Sulfate                          | mg/L     | 11/03/2010   | N001     | 311     | #                         | 10                 |             |
| Temperature                      | С        | 11/03/2010   | N001     | 10.65   | #                         |                    |             |
| Turbidity                        | NTU      | 11/03/2010   | N001     | 9.68    | #                         |                    |             |
| Uranium                          | mg/L     | 11/03/2010   | N001     | 0.00745 | #                         | 0.00005            |             |

## Surface Water Quality Data by Location (USEE102) FOR SITE RVT01, Riverton Processing Site REPORT DATE: 12/20/2010 Location: 0812 SURFACE LOCATION

| Parameter                        | Units    | Samp<br>Date | le<br>ID | Result  | Lab | Qualifiers<br>Data | QA | Detection<br>Limit | Uncertainty |
|----------------------------------|----------|--------------|----------|---------|-----|--------------------|----|--------------------|-------------|
| Alkalinity, Total (As CaCO3)     | mg/L     | 11/03/2010   | N001     | 188     |     |                    | #  |                    |             |
| Manganese                        | mg/L     | 11/03/2010   | N001     | 0.0448  |     |                    | #  | 0.002              |             |
| Molybdenum                       | mg/L     | 11/03/2010   | N001     | 0.00196 | В   |                    | #  | 0.000167           |             |
| Oxidation Reduction<br>Potential | mV       | 11/03/2010   | N001     | 97.4    |     |                    | #  |                    |             |
| рН                               | s.u.     | 11/03/2010   | N001     | 8.43    |     |                    | #  |                    |             |
| Specific Conductance             | umhos/cm | 11/03/2010   | N001     | 1060    |     |                    | #  |                    |             |
| Sulfate                          | mg/L     | 11/03/2010   | N001     | 308     |     |                    | #  | 10                 |             |
| Temperature                      | С        | 11/03/2010   | N001     | 9.09    |     |                    | #  |                    |             |
| Turbidity                        | NTU      | 11/03/2010   | N001     | 7.96    |     |                    | #  |                    |             |
| Uranium                          | mg/L     | 11/03/2010   | N001     | 0.00826 |     |                    | #  | 0.00005            |             |

#### Surface Water Quality Data by Location (USEE102) FOR SITE RVT01, Riverton Processing Site REPORT DATE: 12/20/2010 Location: 0822 SURFACE LOCATION west-side irrigation ditch

Sample Qualifiers Detection Parameter Units Result Uncertainty ID Date Lab Data QA Limit # Alkalinity, Total (As CaCO3) mg/L 11/03/2010 N001 197 Manganese mg/L 11/03/2010 N001 0.0351 # 0.002 # Molybdenum mg/L 11/03/2010 N001 0.00746 0.000167 **Oxidation Reduction Potential** m٧ 11/03/2010 N001 68.2 # pН 11/03/2010 N001 8.1 # s.u. Radium-226 pCi/L 11/03/2010 N001 0.889 # 0.213 0.369 pCi/L N001 U # Radium-228 11/03/2010 0.517 0.517 0.35 Specific Conductance 11/03/2010 N001 2594 # umhos/cm # Sulfate mg/L 11/03/2010 N001 1080 10 С # Temperature N001 11/03/2010 10.86 Turbidity NTU 11/03/2010 N001 1.69 # N001 0.0103 # 0.00005 Uranium mg/L 11/03/2010 11/03/2010 N002 0.035 # 0.002 Manganese mg/L 11/03/2010 N002 0.00732 # Molybdenum mg/L 0.000167 Radium-226 pCi/L 11/03/2010 N002 0.498 J # 0.326 0.282 # Radium-228 pCi/L 11/03/2010 N002 0.762 J 0.481 0.416 # Sulfate mg/L 11/03/2010 N002 1100 10 Uranium mg/L 11/03/2010 N002 0.0105 # 0.00005

#### Surface Water Quality Data by Location (USEE102) FOR SITE RVT01, Riverton Processing Site REPORT DATE: 12/20/2010 Location: 0823 SURFACE LOCATION

| Parameter                        | Units    | Samp<br>Date | le<br>ID | Result  | Lab | Qualifiers<br>Data | QA | Detection<br>Limit | Uncertainty |
|----------------------------------|----------|--------------|----------|---------|-----|--------------------|----|--------------------|-------------|
| Alkalinity, Total (As CaCO3)     | mg/L     | 11/02/2010   | N001     | 139     |     |                    | #  |                    |             |
| Manganese                        | mg/L     | 11/02/2010   | N001     | 0.053   |     |                    | #  | 0.002              |             |
| Molybdenum                       | mg/L     | 11/02/2010   | N001     | 0.00196 | В   |                    | #  | 0.000167           |             |
| Oxidation Reduction<br>Potential | mV       | 11/02/2010   | N001     | 47.9    |     |                    | #  |                    |             |
| рН                               | s.u.     | 11/02/2010   | N001     | 8.66    |     |                    | #  |                    |             |
| Specific Conductance             | umhos/cm | 11/02/2010   | N001     | 1846    |     |                    | #  |                    |             |
| Sulfate                          | mg/L     | 11/02/2010   | N001     | 510     |     |                    | #  | 10                 |             |
| Temperature                      | С        | 11/02/2010   | N001     | 10.92   |     |                    | #  |                    |             |
| Turbidity                        | NTU      | 11/02/2010   | N001     | 4.82    |     |                    | #  |                    |             |
| Uranium                          | mg/L     | 11/02/2010   | N001     | 0.00389 |     |                    | #  | 0.00005            |             |

SAMPLE ID CODES: 000X = Filtered sample (0.45 µm). N00X = Unfiltered sample. X = replicate number.

#### LAB QUALIFIERS:

- \* Replicate analysis not within control limits.
- > Result above upper detection limit.
- A TIC is a suspected aldol-condensation product.
- B Inorganic: Result is between the IDL and CRDL. Organic: Analyte also found in method blank.
- C Pesticide result confirmed by GC-MS.
- D Analyte determined in diluted sample.
- E Inorganic: Estimate value because of interference, see case narrative. Organic: Analyte exceeded calibration range of the GC-MS.
- H Holding time expired, value suspect.
- I Increased detection limit due to required dilution.
- J Estimated
- N Inorganic or radiochemical: Spike sample recovery not within control limits. Organic: Tentatively identified compound (TIC).
- P > 25% difference in detected pesticide or Aroclor concentrations between 2 columns.
- U Analytical result below detection limit.
- W Post-digestion spike outside control limits while sample absorbance < 50% of analytical spike absorbance.
- X,Y,Z Laboratory defined qualifier, see case narrative.

#### DATA QUALIFIERS:

- F
- Low flow sampling method used. Less than 3 bore volumes purged prior to sampling. Parameter analyzed for but was not detected. L
- U

#### QA QUALIFIER:

- Validated according to quality assurance guidelines. #
- X Location is undefined.

**Static Water Level Data** 

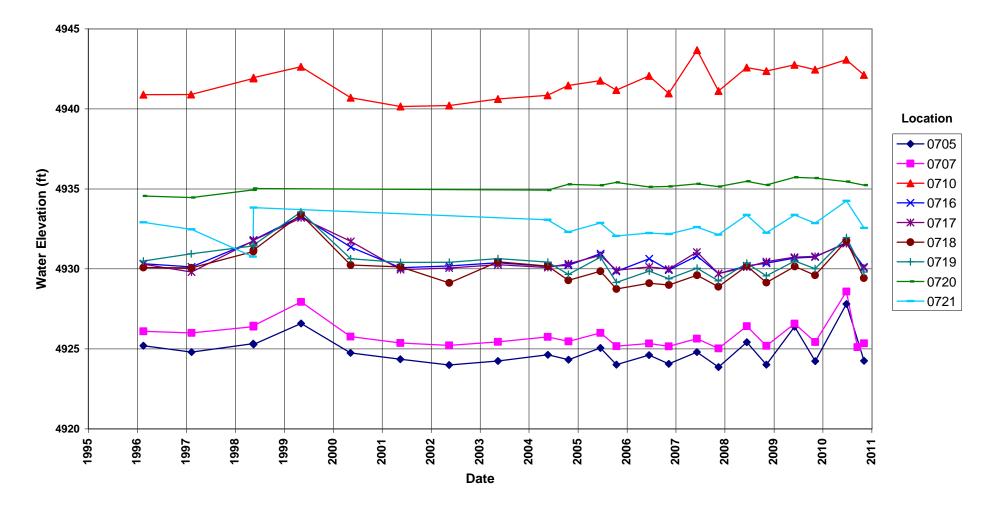
This page intentionally left blank

# STATIC WATER LEVELS (USEE700) FOR SITE RVT01, Riverton Processing Site REPORT DATE: 12/20/2010

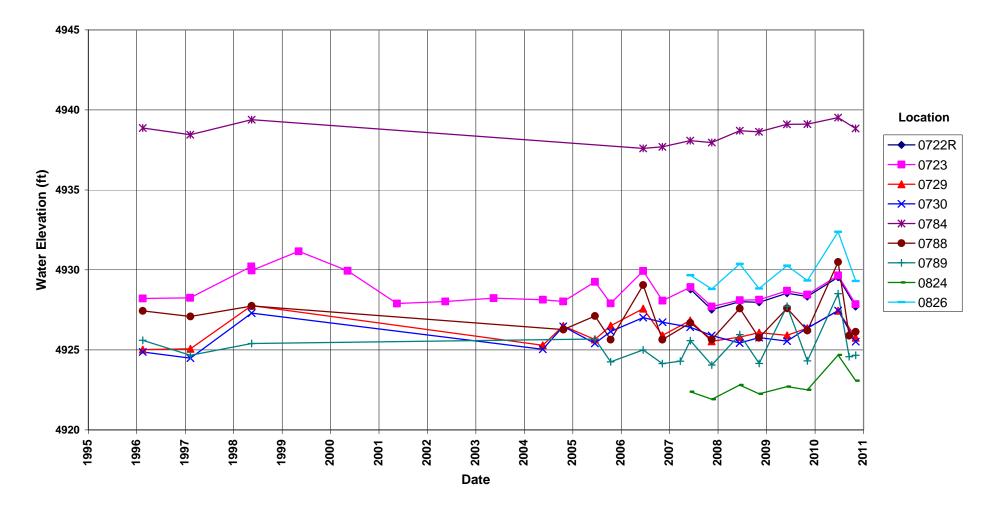
| Location<br>Code | Flow<br>Code | Top of<br>Casing<br>Elevation<br>(Ft) | Measurement<br>Date Time |          | Depth From<br>Top of<br>Casing (Ft) | Water<br>Elevation<br>(Ft) | Water<br>Level<br>Flag |
|------------------|--------------|---------------------------------------|--------------------------|----------|-------------------------------------|----------------------------|------------------------|
| 0101             | 0            | 4946.58                               | 11/02/2010               | 14:26:00 | 10.06                               | 4936.52                    |                        |
| 0110             | 0            | 4944.35                               | 11/02/2010               | 14:28:00 | 9.9                                 | 4934.45                    |                        |
| 0111             | 0            | 4946.87                               | 11/02/2010               | 13:36:00 | 9.96                                | 4936.91                    |                        |
| 0700             | U            | 4951.38                               | 11/03/2010               | 13:22:00 | 6.1                                 | 4945.28                    |                        |
| 0702             | D            | 4931                                  | 11/03/2010               | 09:16:00 | 6.42                                | 4924.58                    |                        |
| 0705             | D            | 4930.8                                | 11/03/2010               | 09:15:15 | 6.55                                | 4924.25                    |                        |
| 0707             | D            | 4931                                  | 11/03/2010               | 09:30:25 | 5.65                                | 4925.35                    |                        |
| 0709             | D            | 4930.7                                | 11/02/2010               | 15:51:00 | 2                                   | 4928.7                     |                        |
| 0710             | U            | 4947.9                                | 11/02/2010               | 13:55:03 | 5.78                                | 4942.12                    |                        |
| 0716             | 0            | 4939.12                               | 11/02/2010               | 16:12:45 | 9                                   | 4930.12                    |                        |
| 0717             | 0            | 4938.8                                | 11/02/2010               | 16:00:35 | 8.74                                | 4930.06                    |                        |
| 0718             | D            | 4937.6                                | 11/02/2010               | 13:07:25 | 8.18                                | 4929.42                    |                        |
| 0719             | D            | 4937.55                               | 11/02/2010               | 13:25:46 | 7.75                                | 4929.8                     |                        |
| 0720             | С            | 4940.46                               | 11/03/2010               | 17:51:12 | 5.22                                | 4935.24                    |                        |
| 0721             | С            | 4940.47                               | 11/03/2010               | 17:40:05 | 7.91                                | 4932.56                    |                        |
| 0722R            |              | 4937.06                               | 11/02/2010               | 12:40:17 | 9.35                                | 4927.71                    |                        |
| 0723             | D            | 4936.01                               | 11/02/2010               | 12:25:40 | 8.15                                | 4927.86                    |                        |
| 0724             | U            | 4941.36                               | 11/02/2010               | 15:26:00 | 7.88                                | 4933.48                    |                        |
| 0725             | U            | 4941.66                               | 11/02/2010               | 14:33:00 | 8.19                                | 4933.47                    |                        |
| 0726             | U            | 4942                                  | 11/02/2010               | 15:25:00 | 6.81                                | 4935.19                    |                        |
| 0727             | U            | 4951.69                               | 11/02/2010               | 15:33:00 | 10.29                               | 4941.4                     |                        |
| 0728             | U            | 4946.01                               | 11/02/2010               | 15:26:00 | 8.63                                | 4937.38                    |                        |
| 0729             | D            | 4932.75                               | 11/03/2010               | 15:20:52 | 6.99                                | 4925.76                    |                        |
| 0730             | D            | 4933.08                               | 11/03/2010               | 15:35:17 | 7.56                                | 4925.52                    |                        |
| 0732             | U            | 4945.07                               | 11/02/2010               | 13:35:00 | 7.93                                | 4937.14                    |                        |
| 0733             | U            | 4946.76                               | 11/03/2010               | 09:18:00 |                                     |                            | D                      |
| 0734             | U            | 4946.08                               | 11/03/2010               | 13:21:00 | 8.84                                | 4937.24                    |                        |
| 0736             | U            | 4946                                  | 11/02/2010               | 15:37:00 | 6.75                                | 4939.25                    |                        |
| 0784             | U            | 4945.45                               | 11/02/2010               | 14:30:51 | 6.61                                | 4938.84                    |                        |

#### STATIC WATER LEVELS (USEE700) FOR SITE RVT01, Riverton Processing Site REPORT DATE: 12/20/2010

| Location<br>Code | Flow<br>Code | Top of<br>Casing<br>Elevation<br>(Ft) | Measure<br>Date | ment<br>Time | Depth From<br>Top of<br>Casing (Ft) | Water<br>Elevation<br>(Ft) | Water<br>Level<br>Flag |
|------------------|--------------|---------------------------------------|-----------------|--------------|-------------------------------------|----------------------------|------------------------|
| 0788             | С            | 4935.09                               | 11/03/2010      | 12:05:14     | 8.96                                | 4926.13                    |                        |
| 0789             | D            | 4933.66                               | 11/03/2010      | 10:55:14     | 9                                   | 4924.66                    |                        |
| 0824             |              | 4928.27                               | 11/03/2010      | 16:10:36     | 5.19                                | 4923.08                    |                        |
| 0826             |              | 4936.98                               | 11/03/2010      | 12:45:51     | 7.67                                | 4929.31                    |                        |


FLOW CODES: B BACKGROUND C CROSS GRADIENT D DOWN GRADIENT F OFF SITE U UPGRADIENT F OFF SITE

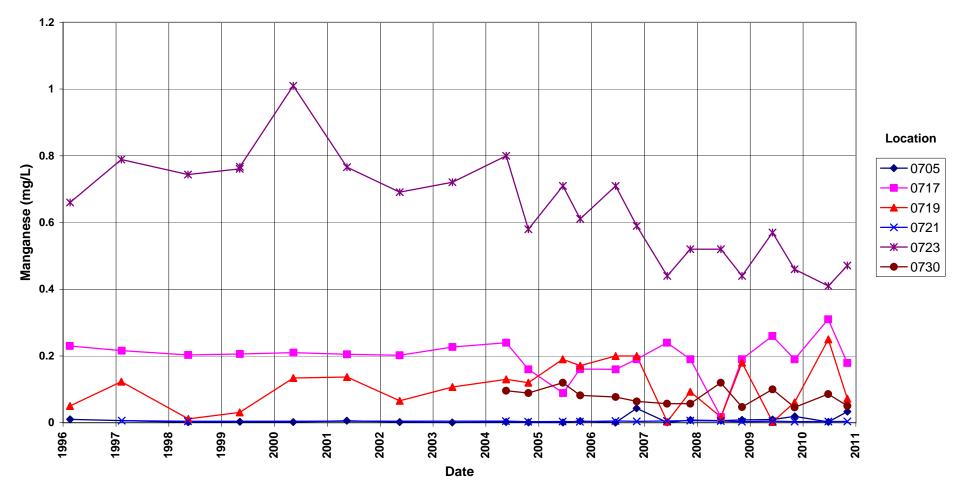
WATER LEVEL FLAGS: D Dry F FLOWING


Hydrographs

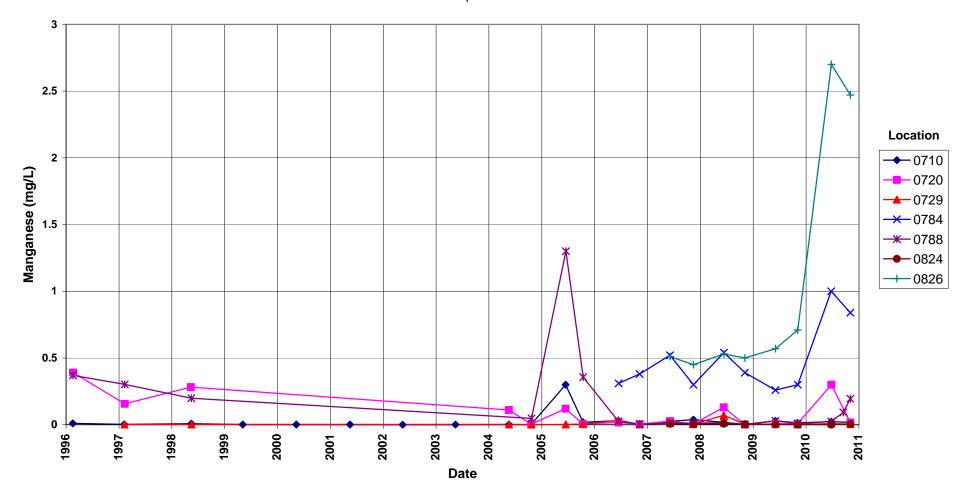
This page intentionally left blank

Riverton Processing Site Hydrograph

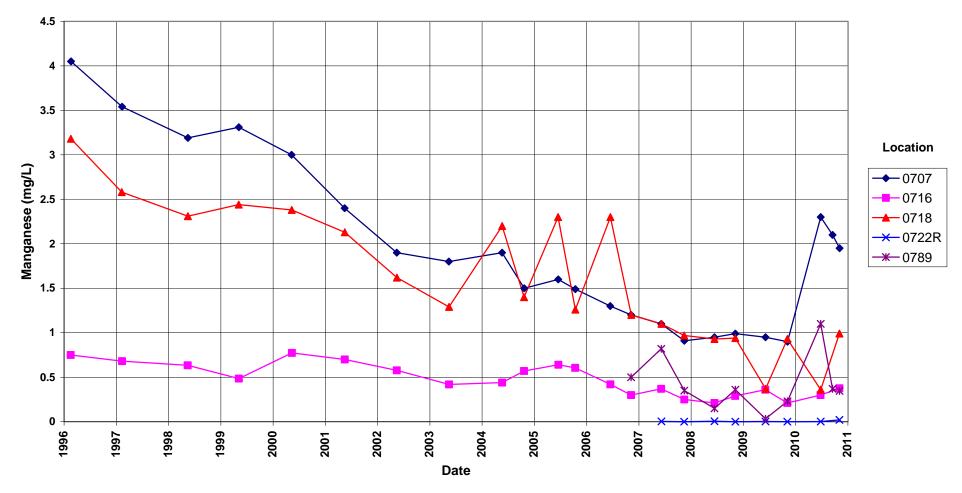


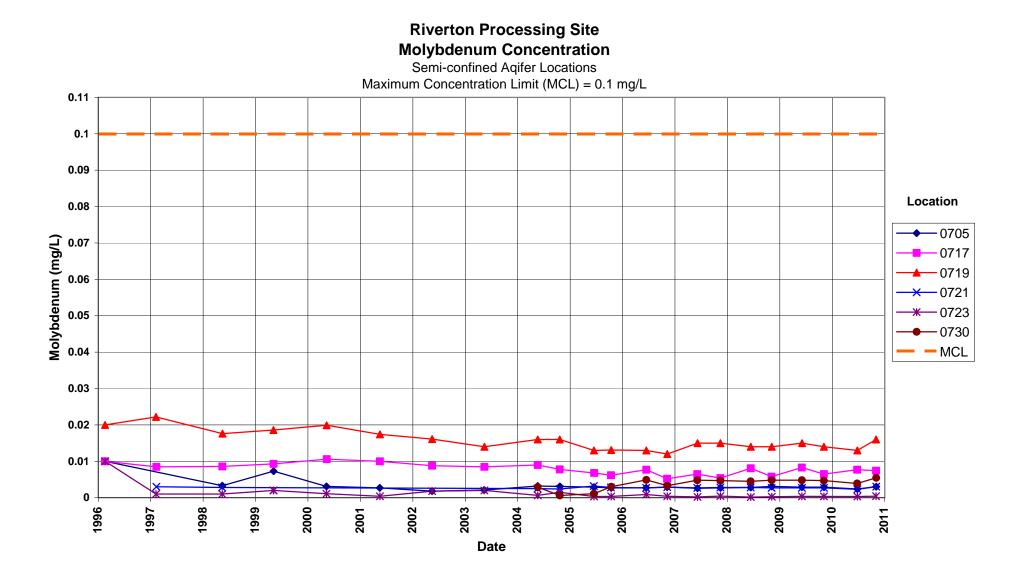

Riverton Processing Site Hydrograph



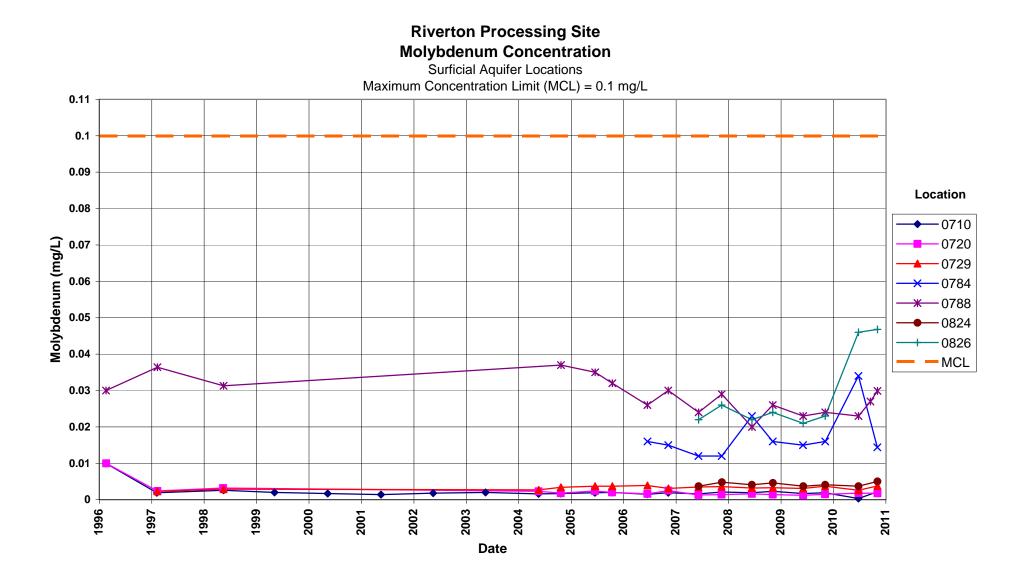

**Time-Concentration Graphs** 

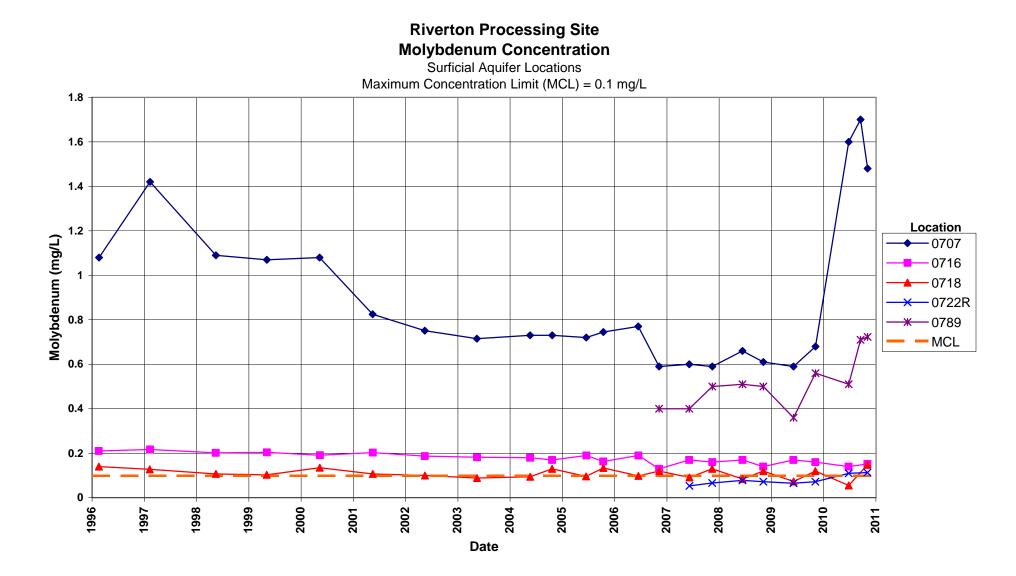
This page intentionally left blank



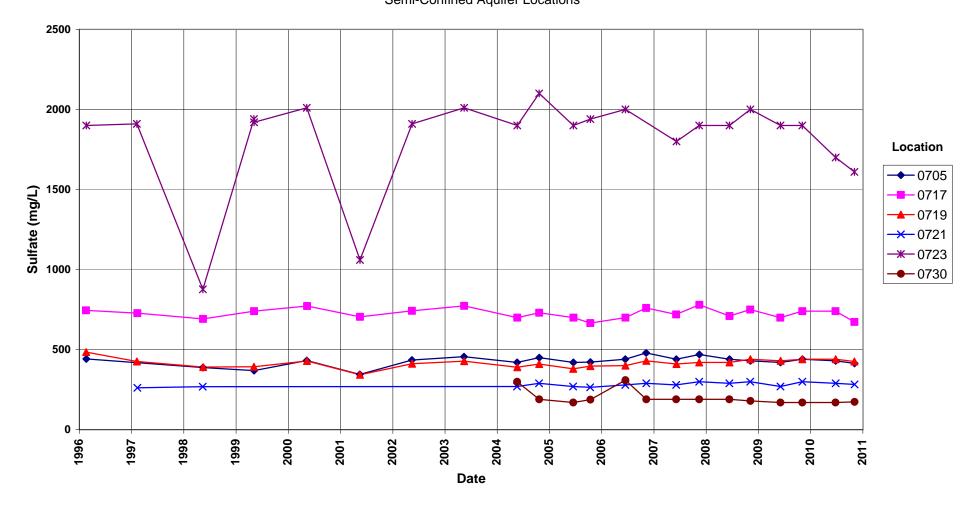




### Riverton Processing Site Manganese Concentration Surficial Aquifer Locations

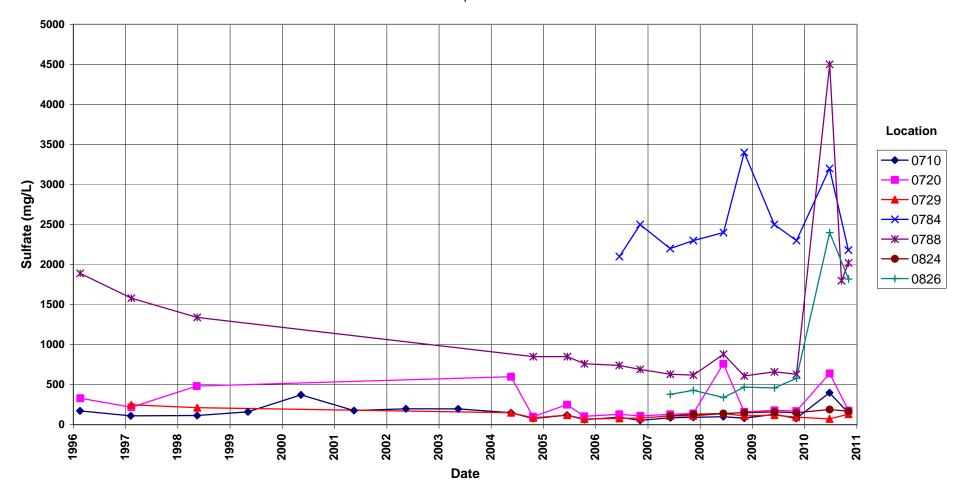


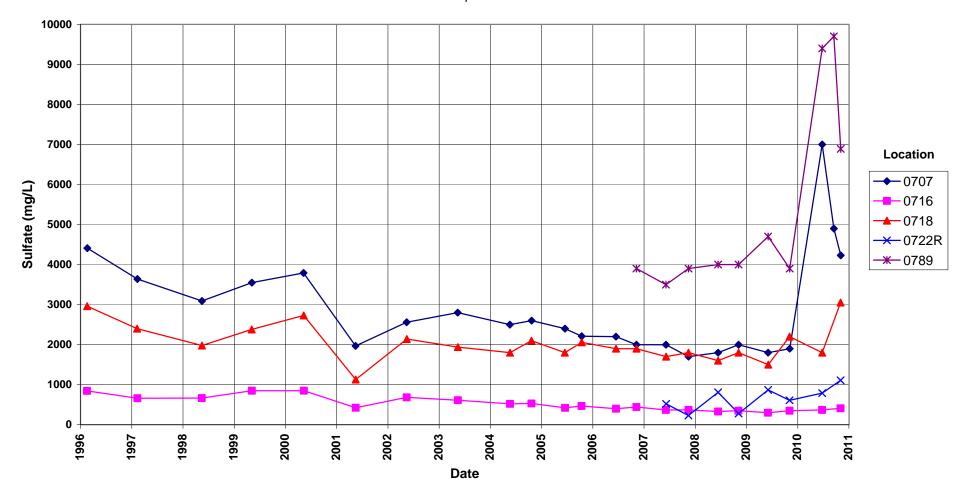


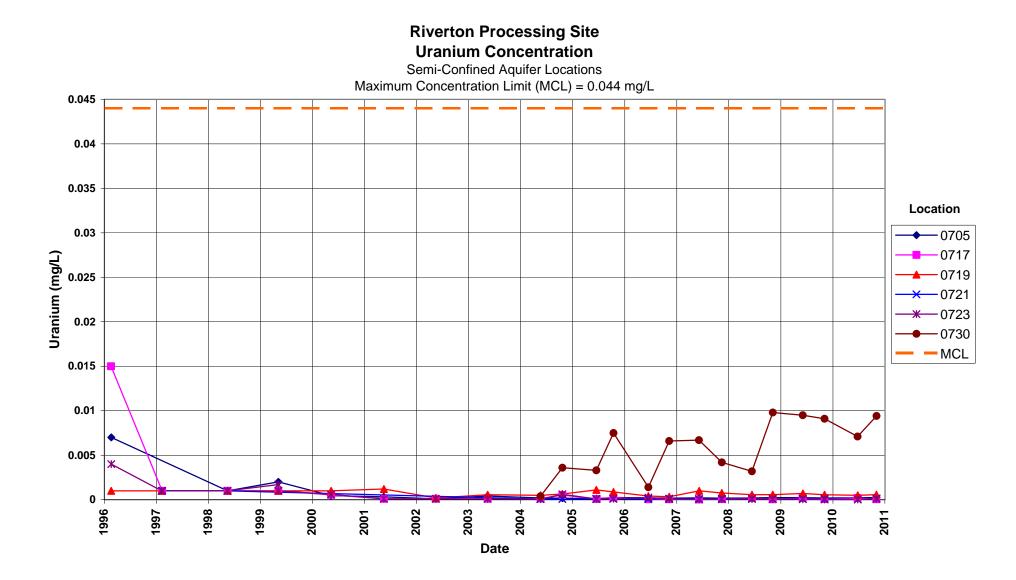



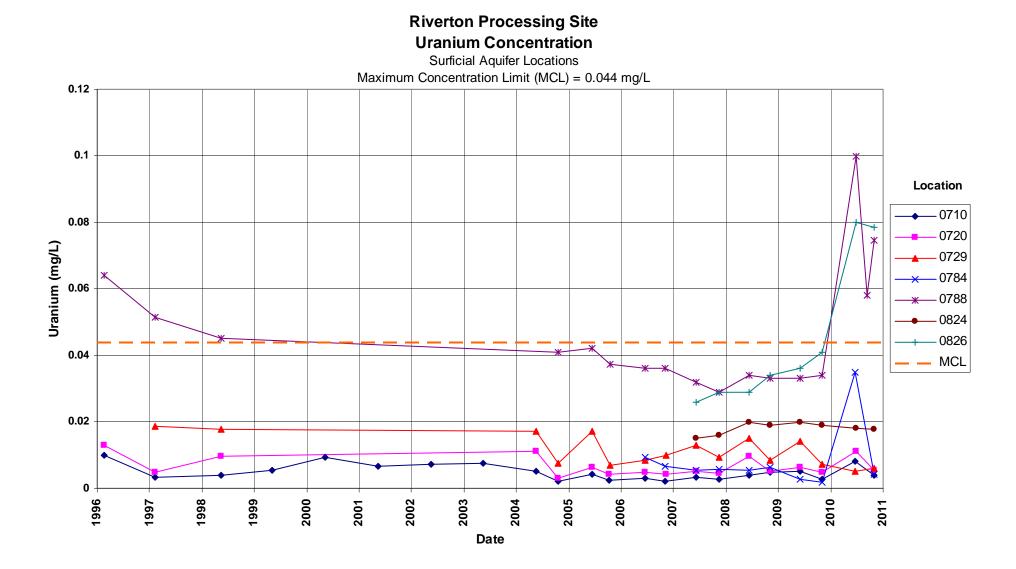

#### Page 82



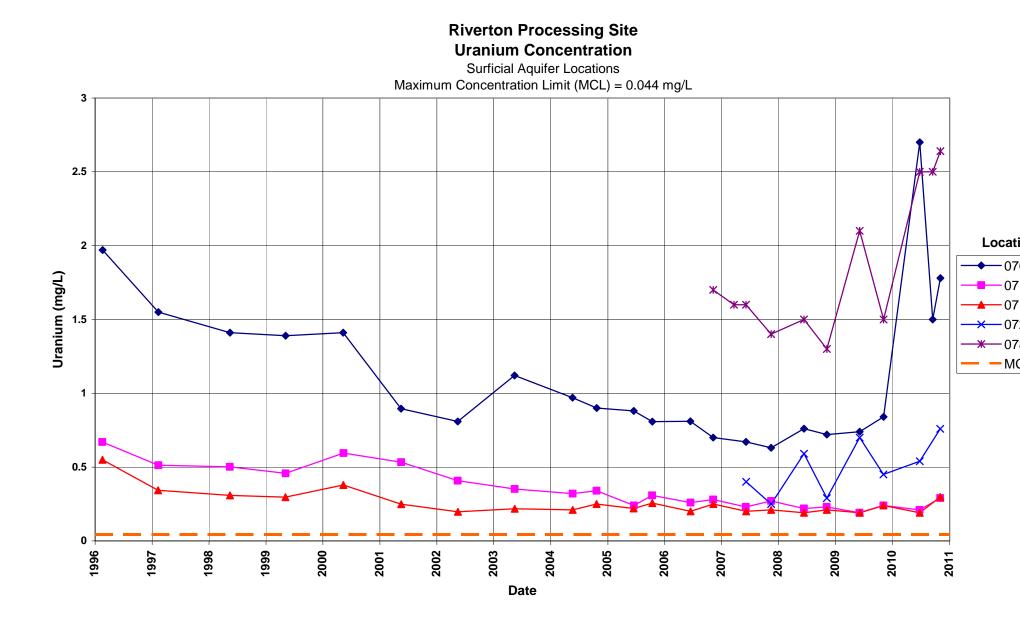




### Riverton Processing Site Sulfate Concentration Semi-Confined Aquifer Locations



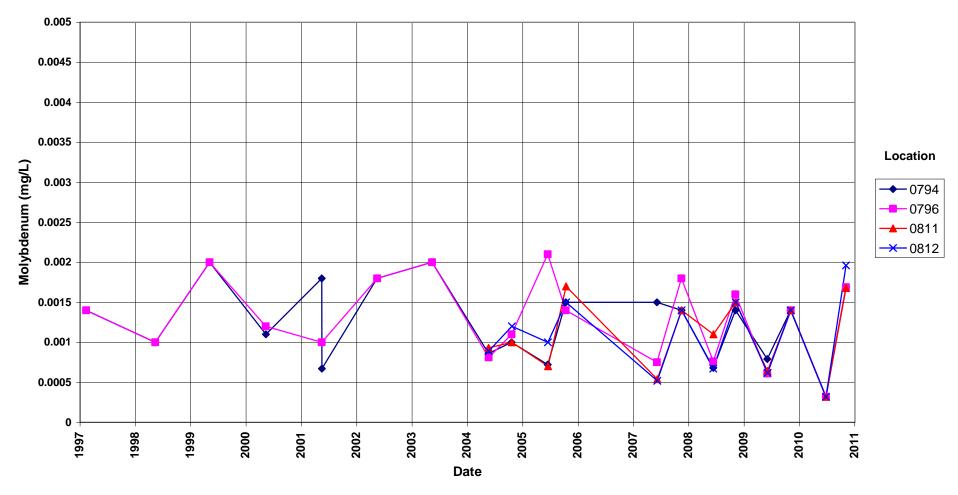


### Riverton Processing Site Sulfate Concentration Surficial Aquifer Locations



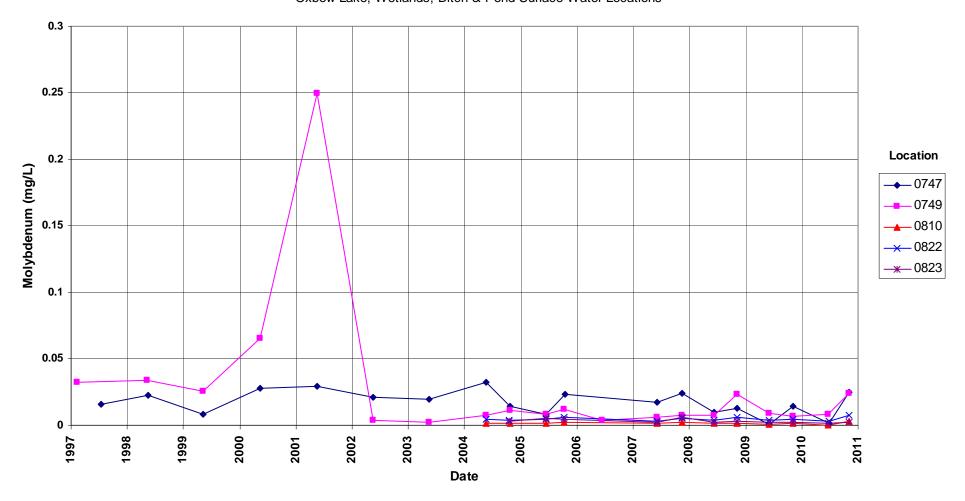

### Riverton Processing Site Sulfate Concentration Surficial Aquifer Locations





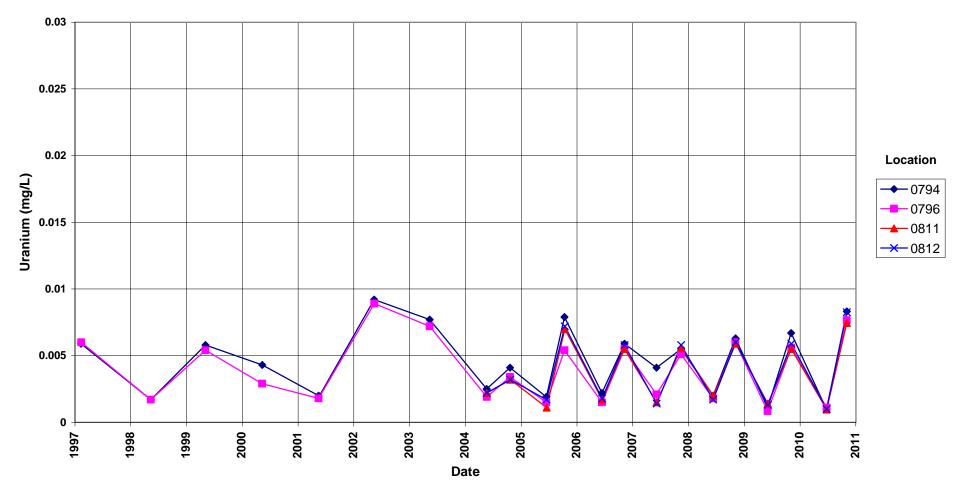



Page 89

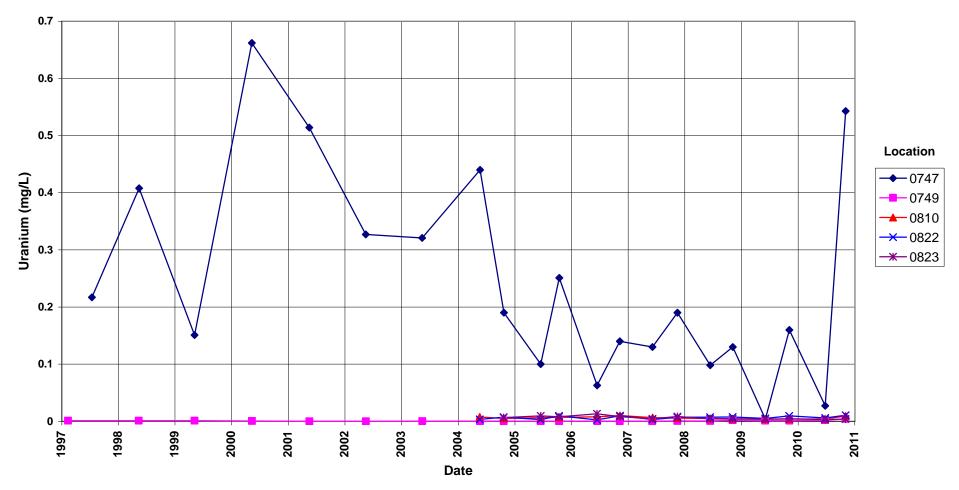



# Riverton Processing Site Molybdenum Concentration

Little Wind River Surface Water Locations




Riverton Processing Site Molybdenum Concentration Oxbow Lake, Wetlands, Ditch & Pond Surface Water Locations




## Riverton Processing Site Uranium Concentration

Little Wind River Surface Water Locations



Riverton Processing Site Uranium Concentration Oxbow Lake, Wetlands, Ditch & Pond Surface Water Locations



Attachment 3 Sampling and Analysis Work Order

This page intentionally left blank

established 1959



Task Order LM00-501 Control Number 11-0014

October 7, 2010

U.S. Department of Energy Office of Legacy Management ATTN: Dr. April Gil Site Manager 2597 B <sup>3</sup>/<sub>4</sub> Road Grand Junction, CO 81503

#### SUBJECT: Contract No. DE-AM01-07LM00060, S.M. Stoller Corporation (Stoller) November 2010 Environmental Sampling at Riverton, Wyoming

REFERENCE: Task Order LM-501-02-117-402, Riverton, WY, Processing Site

Dear Dr. Gil:

The purpose of this letter is to inform you of the upcoming sampling event at Riverton, Wyoming. Enclosed are the map and tables specifying sample locations and analytes for routine monitoring at the Riverton, WY, Processing Site. Water quality data will be collected from monitoring wells, domestic wells, and surface locations at this site as part of the environmental sampling currently scheduled to begin the week of November 1, 2010.

The following lists show the monitoring wells (with zone of completion), surface locations, and domestic wells scheduled to be sampled during this event.

| Monitorin | g Wells*       |                |                |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------|----------------|----------------|----------------|--------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 705 Se    | 716 Sf         | 719 Se         | 722R Sf        | 730 Se | 788 Sf | 824 Sf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 707 Sf    | 717 Se         | 720 Sf         | 723 Se         | 784 Sf | 789 Sf | 826 Sf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 710 Sf    | 718 Sf         | 721 Se         | 729 Sf         | ×.     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| *NOTE: S  | e = Semi-confi | ned sandstone; | Sf = surficial |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Surface L | ocations       |                |                |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 747       | 794            | 810            | 811            | 812    | 822    | 823                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 749       | 796            |                |                |        |        | 11 ( <b>M</b> - <b>M</b> |
| Domestic  | Wells          |                |                |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 405       | 430            | 436            | 460            | 828    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|           |                |                |                |        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

(970) 248-6000

Dr. April Gil Control Number 11-0014 Page 2

All samples will be collected as directed in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites. Access agreements are being reviewed and are expected to be complete by the beginning of fieldwork.

Please contact me at (970) 248-6654 if you have any questions or concerns.

Sincerely,

an langbell

Sam Campbell Site Lead

SC/lcg/lb

Enclosures (3)

cc: (electronic)

Cheri Bahrke, Stoller Sam Campbell, Stoller Steve Donivan, Stoller Bev Gallagher, Stoller Lauren Goodknight, Stoller EDD Delivery rc-grand.junction File: RVT 410.02(A)

2597 B ¼ Road

Grand Junction, CO 81503

(970) 248-6000

### Sampling Frequencies for Locations at Riverton, Wyoming

| Location ID       | Quarterly | Semiannually | Annually | Biennially | Not<br>Sampled | Notes                  |
|-------------------|-----------|--------------|----------|------------|----------------|------------------------|
| Monitoring Wells  |           |              |          |            |                |                        |
| 101               |           |              |          |            | Х              | WL only                |
| 110               |           |              |          |            | Х              | WL only                |
| 111               |           |              |          |            | Х              | WL only                |
| 700               |           |              |          |            | Х              | WL only                |
| 702               |           |              |          |            | X              | Data logger            |
| 705               |           | Х            |          |            |                |                        |
| 707               |           | X<br>X       |          |            |                | Data logger            |
| 709               |           |              |          |            | Х              | WL only; Data logger   |
| 710               |           | Х            |          |            |                | The only, Data logger  |
| 716               |           | X            |          |            |                |                        |
| 717               |           | X            |          |            |                |                        |
| 718               |           | X            |          |            |                |                        |
| 719               |           | X            |          |            |                |                        |
| 719               | -         | X            |          |            |                |                        |
| 720               |           | X            |          |            |                |                        |
|                   |           |              |          |            |                |                        |
| 722R              |           | X            |          |            |                |                        |
| 723               |           | Х            |          |            |                |                        |
| 724               |           |              |          |            | X              | WL only                |
| 725               |           |              |          |            | Х              | WL only                |
| 726               |           |              |          |            | Х              | WL only                |
| 727               |           |              |          |            | Х              | WL only                |
| 728               |           |              |          |            | Х              | WL only                |
| 729               |           | Х            |          |            |                |                        |
| 730               |           | Х            |          |            |                |                        |
| 732               |           |              |          |            | Х              | WL only                |
| 733               |           |              |          |            | Х              | WL only                |
| 734               |           |              |          |            | Х              | WL only                |
| 736               |           |              |          |            | Х              | WL only                |
| 784               |           | Х            |          |            |                |                        |
| 788               |           | Х            |          |            |                |                        |
| 789               |           | Х            |          |            |                | Data logger            |
| 824               |           | Х            |          |            |                |                        |
| 825               |           |              |          |            | Х              | Not drilled yet        |
| 826               |           | Х            |          |            |                |                        |
| Surface Locations |           |              |          | 1          |                |                        |
| 747               |           | Х            |          |            |                |                        |
| 749               |           | X            |          |            |                |                        |
| 794               |           | X            |          |            |                |                        |
| 796               |           | X<br>X       |          |            |                | 1                      |
| 810               |           | X            |          |            |                | Gravel pit             |
| 811               |           | X            |          |            |                | Little Wind River      |
| 812               |           | X            |          |            |                | Little Wind River      |
| 822               |           | X            |          |            |                |                        |
| 823               |           | X            |          |            |                |                        |
| Domestic Wells    |           | ^            | l        | l          |                |                        |
|                   |           |              |          |            |                | 004 Denderusse Des l   |
| 405               |           | X            |          |            |                | 921 Rendezvous Road    |
| 430               |           | X            |          |            |                | 204 Goes in Lodge Road |
| 436               |           | X            |          |            |                | 33 St Stephens Road    |
| 460               |           | X            |          |            |                | 140 Goes in Lodge Road |
| 828               |           | Х            |          |            |                | 33 St Stephens Road    |

Sampling conducted in November and June

### **Constituent Sampling Breakdown**

| Site                                  | River       | ton              | 7                                     |                          |                   |
|---------------------------------------|-------------|------------------|---------------------------------------|--------------------------|-------------------|
| Analyte                               | Groundwater | Surface<br>Water | Required<br>Detection<br>Limit (mg/L) | Analytical Method        | Line Item<br>Code |
| Approx. No. Samples/yr                | 48          | 18               |                                       |                          |                   |
| Field Measurements                    |             |                  |                                       |                          |                   |
| Alkalinity                            |             |                  |                                       |                          |                   |
| Dissolved Oxygen                      |             |                  |                                       |                          |                   |
| Redox Potential                       | Х           | Х                |                                       |                          |                   |
| Residual Chlorine                     |             |                  |                                       |                          |                   |
| pH                                    | Х           | Х                |                                       |                          |                   |
| Specific Conductance                  | Х           | Х                |                                       |                          |                   |
| Turbidity                             | Х           | Х                |                                       |                          |                   |
| Temperature                           | Х           | Х                |                                       |                          |                   |
| Laboratory Measurements               |             |                  |                                       |                          |                   |
| Aluminum                              |             |                  |                                       |                          |                   |
| Ammonia as N (NH3-N)                  |             |                  |                                       |                          |                   |
| Calcium                               |             |                  |                                       |                          |                   |
| Chloride                              |             |                  |                                       |                          |                   |
| Chromium                              |             |                  |                                       |                          |                   |
| Gross Alpha                           |             |                  |                                       |                          |                   |
| Gross Beta                            |             |                  |                                       |                          |                   |
| Iron                                  |             |                  |                                       |                          |                   |
| Lead                                  |             |                  |                                       |                          |                   |
| Magnesium                             |             |                  |                                       |                          |                   |
| Manganese                             | Х           | Х                | 0.005                                 | SW-846 6010              | LMM-01            |
| Molybdenum                            | Х           | Х                | 0.003                                 | SW-846 6020              | LMM-02            |
| Nickel                                |             |                  |                                       |                          |                   |
| Nickel-63                             |             |                  |                                       |                          |                   |
| Nitrate + Nitrite as N<br>(NO3+NO2)-N |             |                  |                                       |                          |                   |
| Potassium                             |             |                  |                                       |                          |                   |
| Radium-226                            |             | 0822 only        | 1 pCi/L                               | Gas Proportional Counter | GPC-A-018         |
| Radium-228                            |             | 0822 only        | 1 pCi/L                               | Gas Proportional Counter | GPC-A-020         |
| Selenium                              |             | •                |                                       |                          |                   |
| Silica                                |             |                  |                                       |                          |                   |
| Sodium                                |             |                  |                                       |                          |                   |
| Strontium                             |             |                  |                                       |                          |                   |
| Sulfate                               | Х           | Х                | 0.5                                   | SW-846 9056              | MIS-A-044         |
| Sulfide                               |             |                  |                                       |                          |                   |
| Total Dissolved Solids                |             |                  |                                       |                          |                   |
| Total Organic Carbon                  |             |                  |                                       |                          |                   |
| Uranium                               | Х           | Х                | 0.0001                                | SW-846 6020              | LMM-02            |
| Vanadium                              |             |                  |                                       |                          |                   |
| Zinc                                  |             |                  |                                       |                          |                   |
| Total No. of Analytes                 | 4           | 6                |                                       |                          |                   |

Note: All analyte samples are considered unfiltered unless stated otherwise. All private well samples are to be unfiltered. The total number of analytes does not include field parameters.

Attachment 4 Trip Report

This page intentionally left blank

established 1959



# Memorandum

Control Number N/A

DATE: November 23, 2010

TO: Sam Campbell

FROM: Dan Sellers

SUBJECT: Trip Report

Site: Riverton, Wyoming, Processing Site.

Dates of Sampling Event: November 2 to November 4, 2010.

Team Members: Dan Sellers and Joe Trevino.

**Number of Locations Sampled:** 18 monitoring wells, 9 surface water locations, and 4 domestic wells.

**Locations Not Sampled/Reason:** Domestic well 0828 was not sampled because the tap had been shut off and winterized.

**Location Specific Information:** Monitoring wells 0705, 0719, and 0730 were purged and sampled using Category II criteria; all other monitoring wells were purged and sampled using Category I criteria.

At the time of sampling, the Little Wind River was not at flood stage and water was not flowing through the Oxbow Lake.

Field Variance: Surface location 0747 (Oxbow sample) was filtered.

**Quality Control Sample Cross Reference:** Following are the false identifications assigned to the quality control samples:

| False ID True ID |      | Sample Type | Ticket Number |  |
|------------------|------|-------------|---------------|--|
| 2644             | 0705 | Duplicate   | ILW 844       |  |
| 2645             | 0822 | Duplicate   | ILW 845       |  |

**Requisition Numbers Assigned:** All samples were assigned to report identification number (RIN) 10103411 and were shipped to GEL Laboratories in Charleston, South Carolina, on November 5, 2010.

**Water Level Measurements:** Water levels were measured at all sampled monitoring wells and 14 additional monitoring wells.

Well Inspection Summary: All wells were in good condition.

Equipment: All equipment functioned properly.

**Stakeholder/Regulatory:** The Wind River Environmental Quality Commission (WREQC) observed sampling activities and split samples at monitoring wells 0707, 0710, 0784, 0788, 0789 and 0826.

#### **Institutional Controls**

Fences, Gates, Locks: No issues identified. Signs: Warning signs installed around the Oxbow Lake were intact. Trespassing/Site Disturbances: None.

Access Issues: New phone numbers were obtained to contact owners of domestic well 0430: Lawrence Raymond (307) 851-3965 or Brent Raymond (307) 840-6243. New access to wells and surface location in the Chem Trade area has been approved by Leon (Chem Trade Employee).

**Corrective Action Required/Taken**: A request has been made to notify Chem Trade (Leon) prior to entering their property and use the gate for access to collect surface sample.

(DLS/lcg)

cc: (electronic) Jalena Dayvault, DOE Cheri Bahrke, Stoller Steve Donivan, Stoller EDD Delivery