
Data Validation Package

July 2015 Groundwater Sampling at the Shirley Basin South, Wyoming, Disposal Site

October 2015

Contents

Sampling Event Summary	
Shirley Basin South, Wyoming, Disposal Site, Sample Location Map	
Data Assessment Summary	
Water Sampling Field Activities Verification Checklist	
Laboratory Performance Assessment	
Sampling Quality Control Assessment	
Certification	

Attachment 1—Assessment of Anomalous Data

Potential Outliers Report

Attachment 2—Data Presentation

Groundwater Quality Data Static Water Level Data Hydrographs Time-Concentration Graphs

Attachment 3—Sampling and Analysis Work Order

Attachment 4—Trip Report

Sampling Event Summary

Site: Shirley Basin South, Wyoming, Disposal Site

Sampling Period: July 7–8, 2015

The 2004 Long-Term Surveillance Plan for the Shirley Basin South (UMTRCA Title II) Disposal Site, Carbon County, Wyoming, requires annual monitoring to verify continued compliance with the pertinent alternate concentration limits (ACLs) and Wyoming Class III (livestock use) groundwater protection standards. Point-of-compliance (POC) wells 19-DC, 5-DC, and 5-SC, and monitoring wells 10-DC, 40-SC, 54-SC, and K.G.S. #3 were sampled as specified in the plan. POC well 51-SC and downgradient well 101-SC were dry at the time of sampling. Also sampled were five of the six newer monitoring wells installed downgradient of the disposal cell in 2008 (100-SC, 102-SC, 110-DC, 112-DC, and 113-DC). The water level was measured at each sampled well except for K.G.S. #3. A water level was not measured in K.G.S. #3 because of the possibility that the water level probe would become tangled with the dedicated pump tubing and power cable. Sampling and analyses were conducted in accordance with the Sampling and Analysis Plan for the U. S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated).

Monitoring wells with an "SC" suffix are completed in the upper sand aquifer of the Wind River Formation. Wells with a "DC" suffix are completed in the main sand aquifer. The upper and main sandstone units vary in thickness and lateral extent, and coalesce into one unit under the northern portion of the disposal cell and near the former open pit mine northeast of the disposal cell. Well K.G.S. #3 is completed in the lower sand aquifer, which is hydraulically separated from the overlying main sand and upper sand aquifers.

ACLs are approved for cadmium, chromium, lead, nickel, radium-226, radium-228, selenium, thorium-230, and uranium in site groundwater. ACLs were exceeded for radium-226, radium 228, and selenium as shown in Table 1.

Radium-228 concentrations remain above the ACL in well 54-SC, with no apparent trend (see page 80). The former licensee attributed elevated radium-228 levels at the site to natural thorium in the uranium ore. Consequently, the elevated concentrations in the well may represent the reestablishment of equilibrium of groundwater with naturally occurring constituents in the sand units.

Table 1. Wells with Results Exceeding an ACL

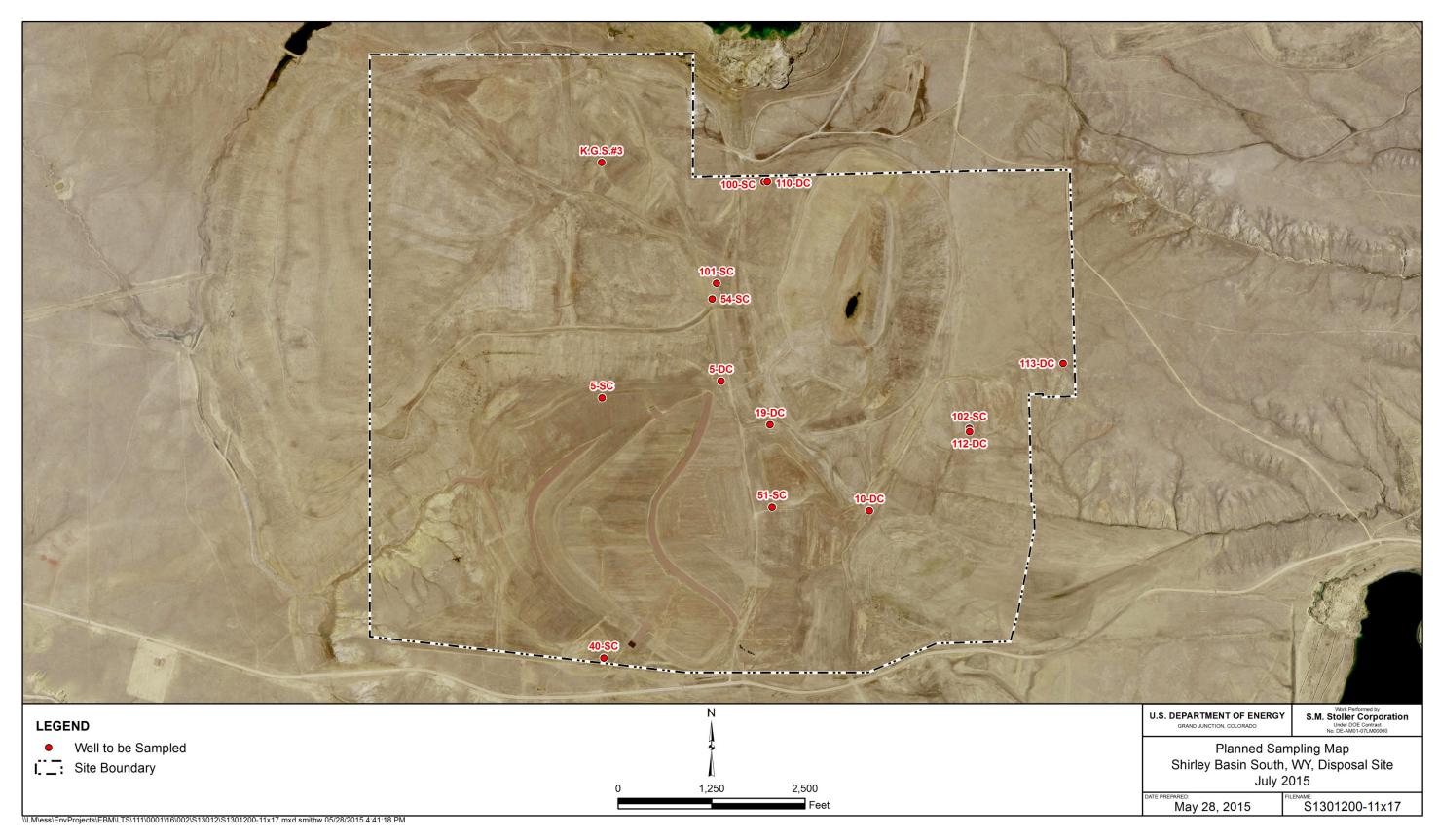
Analyte	ACL	110-DC	54-SC
Radium-226	91.3 pCi/L	129 pCi/L	
Radium-228	25.7 pCi/L		76.8 pCi/L
Selenium	0.12 mg/L		0.14 mg/L

ACL = alternate concentration limit

mg/L = milligram per liter

pCi/L = picocuries per liter

Radium-226 concentrations continue to exceed the ACL in downgradient well 110-DC (Table 1). There are insufficient data to definitively determine why radium-226 is elevated at well 110-DC.


The selenium concentrations in POC wells 5-DC and 5-SC and in monitoring well 54-SC have been following a general upward trend since 2010, with the concentration in well 54-SC now exceeding the ACL.

Concentrations of sulfate and total dissolved solids continue to exceed their respective Wyoming Class III groundwater protection standards for livestock use in wells 5-DC, 5-SC, and 54-SC as they have done throughout the sampling history; however, there is no livestock use of the water from these aquifers at the site, and no constituent concentrations exceed groundwater protection standards at the wells near the site boundary.

Jeffrey Price, Site Lead

Navarro Research and Engineering, Inc.

<u>/0/8/2015</u> Date

Shirley Basin South, Wyoming, Disposal Site, Sample Location Map

DVP—Shirley Basin South, Wyoming RIN 15067185 Page 4 U.S. Department of Energy October 2015 **Data Assessment Summary**

Water Sampling Field Activities Verification Checklist

Project	Shirley Basin South, Wyoming	Date(s) of Water	Sampling	July 7–8, 2015	
Date(s) of Verification	September 29, 2015	Name of Verifier	•	Stephen Donivan	
		Response (Yes, No, NA)		Comments	
1. Is the SAP the primary docum	ent directing field procedures?	Yes			
List any Program Directives or	other documents, SOPs, instructions.		Work Order lette	r dated June 1, 2015.	
Were the sampling locations s	pecified in the planning documents sampled?	No	Locations 51-SC	and 101-SC were dry and not sampled.	
Were calibrations conducted a	as specified in the above-named documents?	Yes	Calibrations were	e performed on July 6, 2015.	
4. Was an operational check of the	he field equipment conducted daily?	Yes			
Did the operational checks me	eet criteria?	Yes			
	alkalinity, temperature, specific conductance, d measurements taken as specified?	Yes			
Were wells categorized correct	tly?	Yes			
7. Were the following conditions	met when purging a Category I well:				
Was one pump/tubing volume	purged prior to sampling?	Yes			
Did the water level stabilize pr	ior to sampling?	Yes			
Did pH, specific conductance, prior to sampling?	and turbidity measurements meet criteria	Yes			
Was the flow rate less than 50	00 mL/min?	Yes			

Water Sampling Field Activities Verification Checklist (continued)

	Response (Yes, No, NA)	Comments
8. Were the following conditions met when purging a Category II well:		
Was the flow rate less than 500 mL/min?	Yes	
Was one pump/tubing volume removed prior to sampling?	Yes	
9. Were duplicates taken at a frequency of one per 20 samples?	Yes	A duplicate sample was collected from well K.G.S. #3.
10. Were equipment blanks taken at a frequency of one per 20 samples that were collected with non-dedicated equipment?	NA	An equipment blank was not required.
11. Were trip blanks prepared and included with each shipment of VOC samples?	NA	
12. Were the true identities of the QC samples documented?	Yes	
13. Were samples collected in the containers specified?	Yes	
14. Were samples filtered and preserved as specified?	Yes	
15. Were the number and types of samples collected as specified?	Yes	
16. Were chain of custody records completed and was sample custody maintained?	Yes	
17. Was all pertinent information documented on the field data sheets?	Yes	
18. Was the presence or absence of ice in the cooler documented at every sample location?	Yes	
19. Were water levels measured at the locations specified in the planning documents?	Yes	

Laboratory Performance Assessment

General Information

Report Number (RIN): 15067185 Sample Event: July 7–8, 2015

Site(s): Shirley Basin South, Wyoming

Laboratory: ALS Laboratory Group, Fort Collins, Colorado

Work Order No.: 1507143

Analysis: Metals, Inorganic, and Radiochemistry

Validator: Stephen Donivan Review Date: September 10, 2015

This validation was performed according to the *Environmental Procedures Catalog* (LMS/POL/S04325, continually updated), "Standard Practice for Validation of Environmental Data." The procedure was applied at Level 3, Data Validation. See attached Data Validation Worksheets for supporting documentation on the data review and validation. All analyses were successfully completed. The samples were prepared and analyzed using accepted procedures based on methods specified by line item code, which are listed in Table 2.

Table 2. Analytes and Methods

Analyte	Line Item Code	Prep Method	Analytical Method
Cadmium, Lead, Selenium, Uranium	LMM-02	SW-846 3005A	SW-846 6020A
Chloride	MIS-A-039	SW-846 9056	SW-846 9056
Chromium, Nickel	LMM-01	SW-846 3005A	SW-846 6010B
Nitrate + Nitrite as N	WCH-A-022	EPA 353.2	EPA 353.2
Radium-226	GPC-A-018	SOP712	SOP724
Radium-228	GPC-A-020	SOP749	SOP724
Sulfate	MIS-A-044	SW-846 9056	SW-846 9056
Thorium Isotopes	ASP-A-008	SOP776, SOP777	SOP714
Total Dissolved Solids	WCH-A-033	EPA 160.1	EPA 160.1

Data Qualifier Summary

Analytical results were qualified as listed in Table 3. Refer to the sections below for an explanation of the data qualifiers applied.

Table 3. Data Qualifier Summary

Sample Number	Location	Analyte(s)	Flag	Reason
1507143-1	100-SC	Lead	J	Less than 5 times the method blank
1507143-3	10-DC	Lead	U	Less than 5 times the method blank
1507143-4	110-DC	Lead	J	Less than 5 times the method blank
1507143-6	113-DC	Lead	U	Less than 5 times the method blank
1507143-6	113-DC	Selenium	U	Less than 5 times the method blank
1507143-6	113-DC	Thorium-228	J	Less than the Determination Limit
1507143-7	19-DC	Lead	U	Less than 5 times the method blank
1507143-7	19-DC	Thorium-228	J	Less than the Determination Limit
1507143-7	19-DC	Thorium-232	U	Less than the Decision Level Concentration
1507143-8	K.G.S.#3 Duplicate	Lead	U	Less than 5 times the method blank
1507143-9	40-SC	Lead	U	Less than 5 times the method blank
1507143-9	40-SC	Radium-226	J	Less than the Determination Limit
1507143-9	40-SC	Radium-228	J	Less than the Determination Limit
1507143-9	40-SC	Thorium-232	J	Less than the Determination Limit
1507143-10	54-SC	Lead	U	Less than 5 times the method blank
1507143-10	54-SC	Thorium-230	J	Less than the Determination Limit
1507143-13	K.G.S.#3	Lead	U	Less than 5 times the method blank
1507143-13	K.G.S.#3	Nickel	U	Less than 5 times the calibration blank

Sample Shipping/Receiving

ALS Laboratory Group in Fort Collins, Colorado, received 13 water samples on July 9, 2015, accompanied a Chain of Custody form. The Chain of Custody form was checked to confirm that all of the samples were listed with sample collection dates and times, and that signatures and dates were present indicating sample relinquishment and receipt. The receiving documentation included copies of the air bills. The Chain of Custody form was complete with no errors or omissions.

Preservation and Holding Times

The sample shipment was received intact with the temperature inside the iced cooler at 2.8 °C, which complies with requirements. All samples were received in the correct container types and had been preserved correctly for the requested analyses. All samples were analyzed within the applicable holding times.

Detection and Quantitation Limits

The method detection limit (MDL) was reported for all metal and wet chemical analytes as required. The MDL, as defined in 40 CFR 136, is the minimum concentration of an analyte that can be measured and reported with 99 percent confidence that the analyte concentration is greater than zero. The practical quantitation limit (PQL) for these analytes is the lowest concentration that can be reliably measured, and is defined as 5 times the MDL.

For radiochemical analytes (those measured by radiometric counting) the MDL and PQL are not applicable, and these results are evaluated using the minimum detectable concentration (MDC), Decision Level Concentration (DLC), and Determination Limit (DL). The MDC is a measure of radiochemical method performance and was calculated and reported as specified in *Quality Systems for Analytical Services*. The DLC is the minimum concentration of an analyte that can be measured and reported with 99 percent confidence that the analyte concentration is greater than zero, and is estimated as 3 times the one-sigma total propagated uncertainty. Results that are greater than the MDC, but less than the DLC are qualified with a "U" flag (not detected). The DL for radiochemical results is the lowest concentration that can be reliably measured, and is defined as 3 times the MDC. Results not previously "U" qualified that are less than the DL are qualified with a "J" flag as estimated values.

The reported MDLs for all metal and wet chemical analytes; and MDCs for radiochemical analytes demonstrate compliance with contractual requirements.

Laboratory Instrument Calibration

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing acceptable qualitative and quantitative data for all analytes. Initial calibration demonstrates that the instrument is capable of acceptable performance in the beginning of the analytical run and of producing a linear curve. Compliance requirements for continuing calibration checks are established to ensure that the instrument continues to be capable of producing acceptable qualitative and quantitative data. All laboratory instrument calibrations were performed correctly in accordance with the cited methods. All calibration and laboratory spike standards were prepared from independent sources.

Method EPA 160.1, Total Dissolved Solids

There is no initial or continuing calibration requirement associated with the determination of total dissolved solids.

Method SW-846 9056, Chloride and Sulfate

Calibrations were performed on July 10, 2015, using six calibration standards. The calibration curve correlation coefficient values were greater than 0.995, and the absolute values of the intercepts were less than 3 times the MDL. Initial and continuing calibration verification checks were made at the required frequency. All calibration checks met the acceptance criteria.

Method EPA 353.2, Nitrate + Nitrite as N

Calibrations were performed on July 21, 2015, using seven calibration standards. The calibration curve correlation coefficient values were greater than 0.995, and the absolute values of the intercepts were less than 3 times the MDL. Initial and continuing calibration verification checks were made at the required frequency. All calibration checks met the acceptance criteria.

Method SW-846 6010B, Chromium and Nickel

Calibrations were performed on July 25, 2015, using three calibration standards. The calibration curve correlation coefficient values were greater than 0.995. The absolute values of the intercepts were less than or only slightly above 3 times the MDL. Initial and continuing calibration verification checks were made at the required frequency. All calibration checks met the acceptance criteria. Reporting limit verification checks were made at the required frequency to

verify the linearity of the calibration curve near the PQL, and all results were within the acceptance range.

Method SW-846 6020A, Cadmium, Lead, Selenium, and Uranium

Calibrations were performed on July 27, 2015 and September 15, 2015, using four calibration standards. The calibration curve correlation coefficient values were greater than 0.995, and the absolute values of the intercepts were less than 3 times the MDL. Initial and continuing calibration verification checks were made at the required frequency. Reporting limit verification checks were made at the required frequency to verify the linearity of the calibration curve near the PQL. All results were within the acceptance range. Mass calibration and resolution verifications were performed at the beginning of each analytical run in accordance with the analytical procedure. Internal standard recoveries associated with requested analytes were stable and within acceptable ranges.

Radiochemical Analysis

Radium-226

Prior to analysis, samples were screened for radium-226 by gas flow proportional counting. The potential for interference by other alpha-emitting radium isotopes was reduced by allowing a decay period of at least 14 days to elapse. Efficiency calibrations were performed in April–May 2015. Daily instrument checks performed on August 4, 2015, met the acceptance criteria. The chemical recoveries met the acceptance criteria of 40 to 110 percent for all samples.

Radium-228

Detector efficiency calibrations were performed in February 3, 2015. Daily instrument checks performed on July 22, 2015, met the acceptance criteria. The chemical recoveries met the acceptance criteria of 40 to 110 percent for all samples.

Thorium Isotopes

Alpha spectrometry calibrations and instrument backgrounds were performed within a month prior to sample analysis. The tracer recoveries met the acceptance criteria of 30 to 110 percent for all samples. The full width at half maximum was reviewed to evaluate the spectral resolution. For several samples, the tracer full width at half maximum exceeded 100 kiloelectron volts, which is expected for isotopes such as thorium-229 with alpha emissions at multiple energies. These tracer peaks did not appear to compromise the data by contributing significantly to the thorium-230 region of interest. The laboratory noted that the thorium-230 results were corrected for thorium-229 contribution based on historical method blank data. All internal standard peaks were within 50 kiloelectron volts of the expected position. The regions of interest for analyte peaks were reviewed. No manual integrations were performed, and all regions of interest were satisfactory.

Method and Calibration Blanks

Method blanks are analyzed to assess any contamination that may have occurred during sample preparation. Calibration blanks are analyzed to assess instrument contamination prior to and during sample analysis.

Metals and Wet Chemistry

All method blank and calibration blank results associated with the samples were below the PQL for all analytes. In cases where a blank concentration exceeds the MDL, the associated sample results are qualified with a "U" flag (not detected) when the sample result is greater than the MDL but less than 5 times the blank concentration.

Radiochemistry

The method blank results were less than the DLC.

Inductively Coupled Plasma Interference Check Sample Analysis

Interference check samples were analyzed at the required frequency to verify the instrumental interelement and background correction factors. All check sample results met the acceptance criteria.

Matrix Spike Analysis

Matrix spike and matrix spike duplicate (MS/MSD) samples are used to measure method performance in the sample matrix for the metals and wet chemistry analyses. The MS/MSD data are not evaluated when the concentration of the unspiked sample is greater than 4 times the spike concentration. The spikes met the recovery and precision criteria for all analytes evaluated.

Laboratory Replicate Analysis

Laboratory replicate analyses are used to determine laboratory precision for each sample matrix. The relative percent difference for non-radiochemical replicate results that are greater than 5 times the PQL should be less than 20 percent. For results that are less than 5 times the PQL, the range should be no greater than the PQL. For radiochemical measurements, the relative error ratio (the ratio of the absolute difference between the sample and duplicate results and the sum of the 1-sigma uncertainties) is used to evaluate duplicate results and should be less than 3. All replicate results met these criteria, demonstrating acceptable precision.

Laboratory Control Sample

Laboratory control samples were analyzed at the correct frequency to provide information on the accuracy of the analytical method and the overall laboratory performance, including sample preparation. All control sample results were acceptable.

Metals Serial Dilution

Serial dilutions were prepared and analyzed for the metals analyses to monitor chemical or physical interferences in the sample matrix. Serial dilution data are evaluated when the concentration of the undiluted sample is greater than 50 times the MDL. All evaluated serial dilution data were acceptable.

Completeness

Results were reported in the correct units for all analytes requested using contract-required laboratory qualifiers. The analytical report included the MDL (MDC for radiochemistry) and PQL for all analytes and all required supporting documentation.

Chromatography Peak Integration

The integration of analyte peaks was reviewed for all ion chromatography data. All peak integrations were satisfactory.

Electronic Data Deliverable (EDD) File

The EDD file arrived on August 20, 2015. The Sample Management System EDD validation module was used to verify that the EDD file was complete and in compliance with requirements. The module compares the contents of the file to the requested analyses to ensure that all and only the requested data are delivered. The contents of the EDD were manually examined to verify that the sample results accurately reflect the data contained in the sample data package.

SAMPLE MANAGEMENT SYSTEM **General Data Validation Report** Lab Code: PAR Validator: Stephen Donivan RIN: 15067185 Validation Date: 09/10/2015 _ Analysis Type: 🗸 Metals 📝 General Chem 📝 Rad 🗌 Organics Project: Shirley Basin South # of Samples: 13 Matrix: WATER Requested Analysis Completed: Yes - Chain of Custody -Sample-Present: OK Dated: OK Integrity: OK Temperature: OK Signed: OK Preservation: OK **Select Quality Parameters** ✓ Holding Times All analyses were completed within the applicable holding times. ✓ Detection Limits There are 0 detection limit failures. Field/Trip Blanks ✓ Field Duplicates There was 1 duplicate evaluated.

Page 1 of 1

SAMPLE MANAGEMENT SYSTEM Metals Data Validation Worksheet

 RIN:
 15067185
 Lab Code:
 PAR
 Date Due:
 08/06/2015

 Matrix:
 Water
 Site Code:
 SBS01
 Date Completed:
 08/24/2015

Analyte	Method Type	Date Analyzed		ALIBRA	TION		Method	LCS %R	MS %R	MSD %R	Dup. RPD	ICSAB %R	Serial Dil. %R	CRI %R
,	.,,,,-		Int.	R^2	CCV	ССВ	Blank	,,,,	7011	70.1		70.1	,,,,	
Cadmium	ICP/MS	07/27/2015	0.0000	1.0000	ОК	ОК	OK	105.0	99.0	91.0	8.0	103.0		97.0
Cadmium	ICP/MS	09/15/2015	0.0000	1.0000	OK	OK	OK	108.0	108.0	104.0	4.0			
Chromium	ICP/ES	07/25/2015	0.0000	1.0000	ОК	OK	OK	95.0	107.0	105.0	2.0	108.0	İ	83.0
Lead	ICP/MS	07/27/2015	0.0000	1.0000	OK	OK	OK	107.0	102.0	98.0	5.0	100.0		87.0
Lead	ICP/MS	09/15/2015	0.0000	1.0000	OK	OK	OK	109.0	112.0	106.0	5.0			
Nickel	ICP/ES	07/25/2015	0.0000	1.0000	OK	OK	OK	108.0	105.0	103.0	1.0	99.0		111.0
Selenium	ICP/MS	07/27/2015	0.0000	1.0000	OK	OK	OK	99.0	110.0	110.0	0.0	105.0		113.0
Selenium	ICP/MS	09/15/2015	0.0000	1.0000	OK	OK	OK	108.0	112.0	100.0	11.0			
Uranium	ICP/MS	07/27/2015	0.0000	1.0000	ОК	OK	OK	108.0	108.0	103.0	2.0	102.0	3.0	85.0
Uranium	ICP/MS	09/15/2015	0.0000	1.0000	ОК	ОК	OK	112.0	110.0	107.0	1.0		İ	

Page 1 of 2

SAMPLE MANAGEMENT SYSTEM Radiochemistry Data Validation Worksheet

 RIN:
 15067185
 Lab Code:
 PAR
 Date Due:
 08/06/2015

 Matrix:
 Water
 Site Code:
 SBS01
 Date Completed:
 08/24/2015

Sample	Analyte	Date Analyzed	Result	Flag	Tracer %R	LCS %R	MS %R	Duplicate RER
100-SC	Radium-226	08/04/2015			91.6			
102-SC	Radium-226	08/04/2015			90.7			
10-DC	Radium-226	08/04/2015			90.2			
110-DC	Radium-226	08/04/2015			92.0			
112-DC	Radium-226	08/04/2015			90.8			
113-DC	Radium-226	08/04/2015			92.7			
19-DC	Radium-226	08/04/2015			93.0			
2658	Radium-226	08/04/2015			89.7			
40-SC	Radium-226	08/04/2015			94.9			
54-SC	Radium-226	08/04/2015			91.8			
5-DC	Radium-226	08/04/2015			92.0			
5-SC	Radium-226	08/04/2015			92.0			
K.G.S.#3	Radium-226	08/04/2015			90.6			
Blank_Spike	Radium-226	08/04/2015			92.8	98.10		
Blank_Spike_Du	Radium-226	08/04/2015			93.6	99.70		0.09
Blank	Radium-226	08/04/2015	0.0670	U	91.4			
100-SC	Radium-228	07/22/2015			95.2			
102-SC	Radium-228	07/22/2015			97.2			
10-DC	Radium-228	07/22/2015			96.0			
110-DC	Radium-228	07/22/2015			95.3			
112-DC	Radium-228	07/22/2015			96.6			
113-DC	Radium-228	07/22/2015			94.8			
19-DC	Radium-228	07/22/2015			96.3			
2658	Radium-228	07/22/2015			94.1			
40-SC	Radium-228	07/22/2015			95.3			
54-SC	Radium-228	07/22/2015			98.9			
5-DC	Radium-228	07/22/2015			96.4			
5-SC	Radium-228	07/22/2015			96.9			
K.G.S.#3	Radium-228	07/22/2015			94.6			
Blank_Spike	Radium-228	07/22/2015			95.7	103.00		
Blank_Spike_Du	Radium-228	07/22/2015			96.6	99.60		0.20
Blank	Radium-228	07/22/2015	0.0780	U	93.3			

Page 2 of 2

SAMPLE MANAGEMENT SYSTEM Radiochemistry Data Validation Worksheet

 RIN:
 15067185
 Lab Code:
 PAR
 Date Due:
 08/06/2015

 Matrix:
 Water
 Site Code:
 SBS01
 Date Completed:
 08/24/2015

Sample	Analyte	Date Analyzed	Result	Flag	Tracer %R	LCS %R	MS %R	Duplicate RER
100-SC	Thorium-228	08/04/2015			83.5			
102-SC	Thorium-228	08/04/2015			80.8			
10-DC	Thorium-228	08/04/2015			81.9			
110-DC	Thorium-228	08/04/2015			83.6			
112-DC	Thorium-228	08/04/2015		Ì	85.3			
113-DC	Thorium-228	08/04/2015			67.3			
19-DC	Thorium-228	08/04/2015			84.8			
2658	Thorium-228	08/04/2015			86.9			
40-SC	Thorium-228	08/04/2015			77.7			
54-SC	Thorium-228	08/04/2015			83.2			
5-DC	Thorium-228	08/04/2015		Ì	90.1	Ì		
113-DC	Thorium-228	08/04/2015			88.3			0.10
5-SC	Thorium-228	08/05/2015			85.4			
K.G.S.#3	Thorium-228	08/05/2015		Ì	77.1			
Blank	Thorium-228	08/05/2015	0	U	88.2			
113-DC	Thorium-230	08/04/2015						0.95
Blank_Spike	Thorium-230	08/05/2015			90.2	104.00		
Blank	Thorium-230	08/05/2015	-0.0340	U				
113-DC	Thorium-232	08/04/2015						0.15
Blank	Thorium-232	08/05/2015	0.0070	U		i i		

Page 1 of 1

SAMPLE MANAGEMENT SYSTEM Wet Chemistry Data Validation Worksheet

RIN: 15067185 Lab Code: PAR Date Due: <u>08/06/2015</u> Site Code: SBS01 **Date Completed:** <u>08/24/2015</u> Matrix: Water

Analyte	Date Analyzed	_	ALIBRA	TION		Method	LCS %R	MS %R	MSD %R	DUP RPD	Serial Dil. %R
		Int.	R^2	ccv	ССВ	Blank					
CHLORIDE	07/20/2015	0.000	1.0000	ОК	ОК	ОК	100.00	101.0	101.0	0	
Nitrate+Nitrite as N	07/21/2015	0.000	1.0000	ОК	ОК	OK	100.00	96.0	101.0	4.00	
SULFATE	07/20/2015	0.000	1.0000	ОК	ОК	OK	96.00	104.0	104.0	0	
TOTAL DISSOLVED SOLIDS	07/13/2015					OK	102.00			1.00	

Sampling Quality Control Assessment

The following information summarizes and assesses quality control for this sampling event.

Sampling Protocol

With the exception of well K.G.S. #3, all wells were classified as Category I or II and sampled using the low-flow technique. The sample results from these wells are qualified with an "F" flag indicating the low-flow sampling technique. The data from wells 100-SC and 102-SC were further qualified with a "Q" flag because these are Category II wells.

Equipment Blank Assessment

Equipment blanks are prepared and analyzed to document contamination attributable to the sample collection process. An equipment blank was not required for this sampling event.

Field Duplicate Assessment

Field duplicate samples are collected and analyzed as an indication of overall precision of the measurement process. The precision observed includes both field and laboratory precision and has more variability than laboratory duplicates, which measure only laboratory performance. A duplicate sample was collected from location K.G.S. #3. For non-radiochemical measurements, the relative percent difference (RPD) for duplicate results that are greater than 5 times the PQL should be less than 20 percent. For results less than 5 times the PQL, the range should be no greater than the PQL. For radiochemical measurements, the relative error ratio (the ratio of the absolute difference between the sample and duplicate results and the sum of the 1-sigma uncertainties) is used to evaluate duplicate results and should be less than 3. With the exception of the uranium result, the duplicate results met the criteria, demonstrating acceptable overall precision. The original uranium result for K.G.S. #3 resulted in an RPD value of 188 percent. That sample was reanalyzed (see Attachment 1) to provide a more acceptable RPD of 11 percent.

SAMPLE MANAGEMENT SYSTEM

Page 1 of 1

Validation Report: Field Duplicates

 RIN:
 15067185
 Lab Code:
 PAR
 Project:
 Shirley Basin South
 Validation Date:
 09/29/2015

Duplicate: 2658

Sample: K.G.S.#3

	Sample —)			Duplicate —						
Analyte	Result	Flag	Error	Dilution	Result	Flag	Error	Dilution	RPD	RER	Units
Cadmium	0.12	U		10	0.12	U		10			UG/L
CHLORIDE	4.4			10	4.3			10			MG/L
Chromium	0.73	U		1	0.73	U		1			UG/L
Lead	0.61			10	0.59			10	3.33		UG/L
Nickel	1.1	J		1	0.97	U		1			UG/L
Nitrate+Nitrite as N	0.01	U		1	0.01	U		1			MG/L
Radium-226	0.602		0.263	1	0.578		0.264	1		0.1	pCi/L
Radium-228	1.85		0.53	1	1.62		0.481	1		0.6	pCi/L
Selenium	0.32	U		10	0.32	U		10			UG/L
SULFATE	270			10	260			10	3.77		MG/L
Thorium-228	0.0568	U	0.163	1	0.0224	U	0.161	1		0.3	pCi/L
Thorium-230	-0.023	U	0.17	1	-0.12	U	0.165	1		0.8	pCi/L
Thorium-232	0.0236	U	0.0474	1	-0.0218	U	0.0385	1		1.5	pCi/L
TOTAL DISSOLVED SOLIDS	550			1	540			1	1.83		MG/L
Uranium	0.17			10	0.19			10	11.11		UG/L

Certification

All laboratory analytical quality control criteria were met except as qualified in this report. The data qualifiers listed on the SEEPro database reports are defined on the last page of each report. All data in this package are considered validated and available for use.

Laboratory Coordinator:

Stephen Deniver

10-7-2015

onivan Da

Data Validation Lead:

Itema Donivan

Date

Attachment 1 Assessment of Anomalous Data

Potential Outliers Report

Potential Outliers Report

Potential outliers are measurements that are extremely large or small relative to the rest of the data and, therefore, are suspected of misrepresenting the population from which they were collected. Potential outliers can result from transcription errors, data-coding errors, or measurement system problems. However, outliers can also represent true extreme values of a distribution and can indicate more variability in the population than was expected.

Statistical outlier tests give probabilistic evidence that an extreme value does not "fit" with the distribution of the remainder of the data and is therefore a statistical outlier. These tests should only be used to identify data points that require further investigation. The tests alone cannot determine whether a statistical outlier should be discarded or corrected within a data set.

There are three steps involved in identifying extreme values or outliers:

- 1. **Identify extreme values that may be potential outliers.** Do this by generating the Outliers Report using the Sample Management System from data in the environmental database. The application compares the new data set (in standard environmental database units) with historical data and lists the new data that fall outside the historical data range. A determination is also made as to whether the data are normally distributed using the Shapiro-Wilk Test.
- 2. **Apply the appropriate statistical test.** Dixon's Test for extreme values is used to test for statistical outliers when the sample size is less than or equal to 25. This test considers both extreme values that are much smaller than the rest of the data (case 1) and extreme values that are much larger than the rest of the data (case 2). This test is valid only if the data without the suspected outlier are normally distributed. Rosner's Test is a parametric test that is used to detect outliers for sample sizes of 25 or more. This test also assumes that the data without the suspected outliers are normally distributed.
- 3. Scientifically review statistical outliers and decide on their disposition. The review should include an evaluation of any notable trends in the data that may indicate the outliers represent true extreme values.

Six laboratory results were identified as potential outliers.

On September 22, 2015, the laboratory was requested to repeat the method SW-846 6020A analysis for samples 10-DC, 113-DC, K.G.S. #3, and K.G.S. #3 duplicate. The reanalysis provided selenium results for samples 10-DC, 113-DC; and uranium results for sample K.G.S. #3 that compare more closely with the historical values.

The data associated with the other potential outliers were further reviewed. There were no errors noted. The outliers are likely due to upward or downward trends at these locations. The laboratory data are acceptable as qualified.

Data Validation Outliers Report - No Field Parameters Comparison: All historical Data Beginning 01/01/2005

Laboratory: ALS Laboratory Group

RIN: 15067185

Report Date: 09/10/2015

					Current	Qualit	iore	Historio	al Maxi Quali		Historio	al Minii Qualii			oer of Points	Statistical Outlier
Site Code	Location Code	Sample ID	Sample Date	Analyte	Result	Lab	Data	Result	Lab	Data	Result	Lab	Data	N	N Below Detect	Outilei
SBS01	10-DC	0001	07/07/2015	Selenium	0.00340			0.00028		JF	0.000016	U	F	11	7	Yes
SBS01	110-DC	N001	07/07/2015	Lead	0.00025	J		0.00980		F	0.00079		F	9	0	No
SBS01	110-DC	N001	07/07/2015	Radium-228	6.93			6.62		F	2.46		JF	9	0	No
SBS01	112-DC	N001	07/08/2015	Chloride	39.0			190		F	45.0		F	7	0	NA
SBS01	112-DC	N001	07/08/2015	Radium-226	10.9			29.1		FQ	12.8		F	7	0	No
SBS01	112-DC	N001	07/08/2015	Uranium	0.0110			0.250		F	0.0160		F	7	0	No
SBS01	113-DC	N001	07/08/2015	Chromium	0.00180	J		0.00140	В	UFQ	0.00051	U	F	7	7	NA
SBS01	113-DC	N001	07/08/2015	Selenium	0.00120			0.0001		UF	0.000032	U	F	7	5	Yes
SBS01	113-DC	N001	07/08/2015	Uranium	0.001			0.00200		F	0.00110		F	7	0	No
SBS01	19-DC	N001	07/07/2015	Chromium	0.00490	J		0.00230	В	UF	0.00051	U	F	12	12	Yes
SBS01	19-DC	N001	07/07/2015	Nickel	0.460			0.340		F	0.110		F	12	0	Yes
SBS01	40-SC	N001	07/08/2015	Chromium	0.00170	J		0.00140	U	F	0.00051	U	F	18	18	NA
SBS01	54-SC	N001	07/07/2015	Chromium	0.500			0.380		F	0.140		F	11	0	No
SBS01	54-SC	N001	07/07/2015	Selenium	0.140			0.0850		F	0.00014		UF	11	2	Yes
SBS01	54-SC	N001	07/07/2015	Thorium-228	12.0			10.4		F	5.57		F	11	0	No
SBS01	54-SC	N001	07/07/2015	Uranium	0.0200			0.0820		F	0.0210		F	11	0	No
SBS01	5-DC	N001	07/07/2015	Nickel	1.80			1.40		F	0.240		F	11	0	No

Data Validation Outliers Report - No Field Parameters

Comparison: All historical Data Beginning 01/01/2005

Laboratory: ALS Laboratory Group

RIN: 15067185

Report Date: 09/10/2015

					Current	Qualifiers		Historical Maximum Qualifiers		Historical Minimu Qualifier			Numb Data	Points	Statistical Outlier	
Site Code	Location Code	Sample ID	Sample Date	Analyte	Result	Lab	Data	Result	Lab	Data	Result	Lab	Data	N	N Below Detect	
SBS01	5-DC	N001	07/07/2015	Selenium	0.0870			0.0200		F	0.0001		UF	11	2	NA
SBS01	5-DC	N001	07/07/2015	Sulfate	9500			8400		FJ	3600		F	11	0	No
SBS01	5-DC	N001	07/07/2015	Total Dissolved Solids	14000			13000		F	5100		F	11	0	No
SBS01	5-SC	0001	07/07/2015	Chromium	0.380			0.370		FJ	0.230		F	12	0	No
SBS01	K.G.S.#3	N001	07/07/2015	Radium-228	1.85			1.30			0.580	U	F	11	5	No
SBS01	K.G.S.#3	N002	07/07/2015	Radium-228	1.62			1.30			0.580	U	F	11	5	No
SBS01	K.G.S.#3	N002	07/07/2015	Selenium	0.001			0.00032	U		0.000016	U	F	11	9	No
SBS01	K.G.S.#3	N001	07/07/2015	Uranium	0.00540			0.00023			0.00001	В	F	11	1	Yes

STATISTICAL TESTS:

The distribution of the data is tested for normality or lognormality using the Shapiro-Wilk Test Outliers are identified using Dixon's Test when there are 25 or fewer data points.

Outliers are identified using Rosner's Test when there are 26 or more data points.

See Data Quality Assessment: Statistical Methods for Practitioners, EPA QC/G-9S, February 2006.

NA: Data are not normally or lognormally distributed.

Attachment 2 Data Presentation

Groundwater Quality Data

This page intentionally left blank

REPORT DATE: 09/30/2015

Location: 10-DC WELL

Parameter	Units	Sam		Dept		_	Result		Qualifiers		Detection	Uncertainty
		Date	ID	•	t BL	,		Lab	Data	QA	Limit	
Cadmium	mg/L	07/07/2015	0001	180.8	-	220.8	0.00012	U	F	#	0.00012	
Chloride	mg/L	07/07/2015	0001	180.8	-	220.8	56		F	#	4	
Chromium	mg/L	07/07/2015	0001	180.8	-	220.8	0.00094	J	F	#	0.00073	
Lead	mg/L	07/07/2015	0001	180.8	-	220.8	0.00007	J	UF	#	0.000068	
Nickel	mg/L	07/07/2015	0001	180.8	-	220.8	0.00097	U	F	#	0.00097	
Nitrate + Nitrite as Nitrogen	mg/L	07/07/2015	0001	180.8	-	220.8	0.015		F	#	0.01	
Oxidation Reduction Potential	mV	07/07/2015	N001	180.8	-	220.8	-58.7		F	#		
рН	s.u.	07/07/2015	N001	180.8	-	220.8	6.77		F	#		
Radium-226	pCi/L	07/07/2015	0001	180.8	-	220.8	16		F	#	0.16	4.16
Radium-228	pCi/L	07/07/2015	0001	180.8	-	220.8	4.68		F	#	0.45	1.17
Selenium	mg/L	07/07/2015	0001	180.8	-	220.8	0.00032	U	F	#	0.00032	
Specific Conductance	umhos /cm	07/07/2015	N001	180.8	-	220.8	2068		F	#		
Sulfate	mg/L	07/07/2015	0001	180.8	-	220.8	1000		F	#	10	
Temperature	С	07/07/2015	N001	180.8	-	220.8	8.96		F	#		
Thorium-228	pCi/L	07/07/2015	0001	180.8	-	220.8	0.27	U	F	#	0.27	0.174
Thorium-230	pCi/L	07/07/2015	0001	180.8	-	220.8	0.3	U	F	#	0.3	0.188
Thorium-232	pCi/L	07/07/2015	0001	180.8	-	220.8	0.067	U	F	#	0.067	0.0356
Total Dissolved Solids	mg/L	07/07/2015	0001	180.8	-	220.8	1900		F	#	40	
Turbidity	NTU	07/07/2015	N001	180.8	-	220.8	29.6		F	#		
Uranium	mg/L	07/07/2015	0001	180.8	-	220.8	0.015		F	#	0.000029	

REPORT DATE: 09/30/2015 Location: 100-SC WELL

Parameter	Units	Sam Date	ple ID	•	Range BLS)	Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Cadmium	mg/L	07/07/2015	N001	210	- 225	0.00012	U	FQ	#	0.00012	
Chloride	mg/L	07/07/2015	N001	210	- 225	160		FQ	#	4	
Chromium	mg/L	07/07/2015	N001	210	- 225	0.00073	U	FQ	#	0.00073	
Lead	mg/L	07/07/2015	N001	210	- 225	0.0001	J	UFQ	#	0.000068	
Nickel	mg/L	07/07/2015	N001	210	- 225	0.0037	J	FQ	#	0.00097	
Nitrate + Nitrite as Nitrogen	mg/L	07/07/2015	N001	210	- 225	0.044		FQ	#	0.01	
Oxidation Reduction Potential	mV	07/07/2015	N001	210	- 225	120		FQ	#		
рН	s.u.	07/07/2015	N001	210	- 225	7.23		FQ	#		
Radium-226	pCi/L	07/07/2015	N001	210	- 225	5.07		FQ	#	0.18	1.41
Radium-228	pCi/L	07/07/2015	N001	210	- 225	4.63		FQ	#	0.44	1.16
Selenium	mg/L	07/07/2015	N001	210	- 225	0.00032	U	FQ	#	0.00032	
Specific Conductance	umhos /cm	07/07/2015	N001	210	- 225	2450		FQ	#		
Sulfate	mg/L	07/07/2015	N001	210	- 225	1100		FQ	#	10	
Temperature	С	07/07/2015	N001	210	- 225	10.1		FQ	#		
Thorium-228	pCi/L	07/07/2015	N001	210	- 225	0.32	U	FQ	#	0.32	0.182
Thorium-230	pCi/L	07/07/2015	N001	210	- 225	0.3	U	FQ	#	0.3	0.167
Thorium-232	pCi/L	07/07/2015	N001	210	- 225	0.077	U	FQ	#	0.077	0.0455
Total Dissolved Solids	mg/L	07/07/2015	N001	210	- 225	2200		FQ	#	40	
Turbidity	NTU	07/07/2015	N001	210	- 225	3.2		FQ	#		
Uranium	mg/L	07/07/2015	N001	210	- 225	0.0076		FQ	#	0.000029	

REPORT DATE: 09/30/2015 Location: 102-SC WELL

Parameter	Units	Sam Date	ple ID	Depth Ra	_	Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Cadmium	mg/L	07/08/2015	0001	168.5 -	183.5	0.00012	U	FQ	#	0.00012	
Chloride	mg/L	07/08/2015	0001	168.5 -	183.5	180		FQ	#	4	
Chromium	mg/L	07/08/2015	0001	168.5 -	183.5	0.00073	U	FQ	#	0.00073	
Lead	mg/L	07/08/2015	0001	168.5 -	183.5	0.00013	J	FQ	#	0.000068	
Nickel	mg/L	07/08/2015	0001	168.5 -	183.5	0.0023	J	FQ	#	0.00097	
Nitrate + Nitrite as Nitrogen	mg/L	07/08/2015	0001	168.5 -	183.5	0.38		FQ	#	0.02	
Oxidation Reduction Potential	mV	07/08/2015	N001	168.5 -	183.5	50.3		FQ	#		
рН	s.u.	07/08/2015	N001	168.5 -	183.5	7.6		FQ	#		
Radium-226	pCi/L	07/08/2015	0001	168.5 -	183.5	2.55		FQ	#	0.17	0.784
Radium-228	pCi/L	07/08/2015	0001	168.5 -	183.5	2.41		FQ	#	0.42	0.66
Selenium	mg/L	07/08/2015	0001	168.5 -	183.5	0.00036	J	FQ	#	0.00032	
Specific Conductance	umhos /cm	07/08/2015	N001	168.5 -	183.5	1801		FQ	#		
Sulfate	mg/L	07/08/2015	0001	168.5 -	183.5	670		FQ	#	10	
Temperature	С	07/08/2015	N001	168.5 -	183.5	9.6		FQ	#		
Thorium-228	pCi/L	07/08/2015	0001	168.5 -	183.5	0.27	U	FQ	#	0.27	0.14
Thorium-230	pCi/L	07/08/2015	0001	168.5 -	183.5	0.31	U	FQ	#	0.31	0.169
Thorium-232	pCi/L	07/08/2015	0001	168.5 -	183.5	0.069	U	FQ	#	0.069	0.0425
Total Dissolved Solids	mg/L	07/08/2015	0001	168.5 -	183.5	1400		FQ	#	40	
Turbidity	NTU	07/08/2015	N001	168.5 -	183.5	268		FQ	#		
Uranium	mg/L	07/08/2015	0001	168.5 -	183.5	0.014		FQ	#	0.000029	

REPORT DATE: 09/30/2015 Location: 110-DC WELL

Parameter	Units	Sam Date	ple ID	•	th Ran	-	Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Cadmium	mg/L	07/07/2015	N001	255	-	305	0.00012	U	F	#	0.00012	
Chloride	mg/L	07/07/2015	N001	255	-	305	210		F	#	10	
Chromium	mg/L	07/07/2015	N001	255	-	305	0.0013	J	F	#	0.00073	
Lead	mg/L	07/07/2015	N001	255	-	305	0.00025	J	UF	#	0.000068	
Nickel	mg/L	07/07/2015	N001	255	-	305	0.0017	J	F	#	0.00097	
Nitrate + Nitrite as Nitrogen	mg/L	07/07/2015	N001	255	-	305	0.013		F	#	0.01	
Oxidation Reduction Potential	mV	07/07/2015	N001	255	-	305	-30		F	#		
рН	s.u.	07/07/2015	N001	255	-	305	6.61		F	#		
Radium-226	pCi/L	07/07/2015	N001	255	-	305	153		F	#	0.15	38.4
Radium-228	pCi/L	07/07/2015	N001	255	-	305	6.93		F	#	0.46	1.68
Selenium	mg/L	07/07/2015	N001	255	-	305	0.00041	J	F	#	0.00032	
Specific Conductance	umhos /cm	07/07/2015	N001	255	-	305	3590		F	#		
Sulfate	mg/L	07/07/2015	N001	255	-	305	1900		F	#	25	
Temperature	С	07/07/2015	N001	255	-	305	9.56		F	#		
Thorium-228	pCi/L	07/07/2015	N001	255	-	305	0.67	U	F	#	0.67	0.433
Thorium-230	pCi/L	07/07/2015	N001	255	-	305	0.78	U	F	#	0.78	0.423
Thorium-232	pCi/L	07/07/2015	N001	255	-	305	0.18	U	F	#	0.18	0.11
Total Dissolved Solids	mg/L	07/07/2015	N001	255	-	305	3400		F	#	80	
Turbidity	NTU	07/07/2015	N001	255	-	305	6.67		F	#		
Uranium	mg/L	07/07/2015	N001	255	-	305	0.013		F	#	0.000029	

REPORT DATE: 09/30/2015 Location: 112-DC WELL

Parameter	Units	Sam Date	ple ID	•	th Ra	_	Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Cadmium	mg/L	07/08/2015	N001	203	-	253	0.00012	U	F	#	0.00012	
Chloride	mg/L	07/08/2015	N001	203	-	253	39		F	#	4	
Chromium	mg/L	07/08/2015	N001	203	-	253	0.00092	J	F	#	0.00073	
Lead	mg/L	07/08/2015	N001	203	-	253	0.00058		F	#	0.000068	
Nickel	mg/L	07/08/2015	N001	203	-	253	0.0024	J	F	#	0.00097	
Nitrate + Nitrite as Nitrogen	mg/L	07/08/2015	N001	203	-	253	0.01	U	F	#	0.01	
Oxidation Reduction Potential	mV	07/08/2015	N001	203	-	253	-73.2		F	#		
рН	s.u.	07/08/2015	N001	203	-	253	7.24		F	#		
Radium-226	pCi/L	07/08/2015	N001	203	-	253	10.9		F	#	0.15	2.87
Radium-228	pCi/L	07/08/2015	N001	203	-	253	4.24		F	#	0.4	1.06
Selenium	mg/L	07/08/2015	N001	203	-	253	0.0021		F	#	0.00032	
Specific Conductance	umhos /cm	07/08/2015	N001	203	-	253	2145		F	#		
Sulfate	mg/L	07/08/2015	N001	203	-	253	1100		F	#	10	
Temperature	С	07/08/2015	N001	203	-	253	9.6		F	#		
Thorium-228	pCi/L	07/08/2015	N001	203	-	253	0.3	U	F	#	0.3	0.175
Thorium-230	pCi/L	07/08/2015	N001	203	-	253	0.3	U	F	#	0.3	0.181
Thorium-232	pCi/L	07/08/2015	N001	203	-	253	0.11	U	F	#	0.11	0.0611
Total Dissolved Solids	mg/L	07/08/2015	N001	203	-	253	1900		F	#	40	
Turbidity	NTU	07/08/2015	N001	203	-	253	1.01		F	#		
Uranium	mg/L	07/08/2015	N001	203	-	253	0.011		F	#	0.000029	

REPORT DATE: 09/30/2015 Location: 113-DC WELL

Parameter	Units	Sam Date	ple ID	•	th Ran	_	Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Cadmium	mg/L	07/08/2015	N001	235	-	285	0.00019	J	F	#	0.00012	
Chloride	mg/L	07/08/2015	N001	235	-	285	7.2		F	#	2	
Chromium	mg/L	07/08/2015	N001	235	-	285	0.0018	J	F	#	0.00073	
Lead	mg/L	07/08/2015	N001	235	-	285	0.00052		UF	#	0.000068	
Nickel	mg/L	07/08/2015	N001	235	-	285	0.00097	U	F	#	0.00097	
Nitrate + Nitrite as Nitrogen	mg/L	07/08/2015	N001	235	-	285	0.037		F	#	0.01	
Oxidation Reduction Potential	mV	07/08/2015	N001	235	-	285	-32		F	#		
pH	s.u.	07/08/2015	N001	235	-	285	7.4		F	#		
Radium-226	pCi/L	07/08/2015	N001	235	-	285	3.1		F	#	0.17	0.916
Radium-228	pCi/L	07/08/2015	N001	235	-	285	2.68		F	#	0.42	0.723
Selenium	mg/L	07/08/2015	N001	235	-	285	0.00039	J	UF	#	0.00032	
Specific Conductance	umhos /cm	07/08/2015	N001	235	-	285	1483		F	#		
Sulfate	mg/L	07/08/2015	N001	235	-	285	640		F	#	5	
Temperature	С	07/08/2015	N001	235	-	285	9.94		F	#		
Thorium-228	pCi/L	07/08/2015	N001	235	-	285	0.488		FJ	#	0.31	0.234
Thorium-230	pCi/L	07/08/2015	N001	235	-	285	0.37	U	F	#	0.37	0.199
Thorium-232	pCi/L	07/08/2015	N001	235	-	285	0.13	U	F	#	0.13	0.0835
Total Dissolved Solids	mg/L	07/08/2015	N001	235	-	285	1100		F	#	40	
Turbidity	NTU	07/08/2015	N001	235	-	285	3.15		F	#		
Uranium	mg/L	07/08/2015	N001	235	-	285	0.00099		F	#	0.000029	

REPORT DATE: 09/30/2015

Location: 19-DC WELL

Parameter	Units	Sam			th Ra		Result		Qualifiers		Detection	Uncertainty
T dramotor	- Critico	Date	ID	(F	t BLS	S)	resoure	Lab	Data	QA	Limit	Oncortainty
Cadmium	mg/L	07/07/2015	N001	177	-	237	0.00012	U	F	#	0.00012	
Chloride	mg/L	07/07/2015	N001	177	-	237	64		F	#	10	
Chromium	mg/L	07/07/2015	N001	177	-	237	0.0049	J	F	#	0.00073	
Lead	mg/L	07/07/2015	N001	177	-	237	0.00021	J	UF	#	0.000068	
Nickel	mg/L	07/07/2015	N001	177	-	237	0.46		F	#	0.00097	
Nitrate + Nitrite as Nitrogen	mg/L	07/07/2015	N001	177	-	237	0.01	U	F	#	0.01	
Oxidation Reduction Potential	mV	07/07/2015	N001	177	-	237	-97.9		F	#		
рН	s.u.	07/07/2015	N001	177	-	237	6.53		F	#		
Radium-226	pCi/L	07/07/2015	N001	177	-	237	4.67		F	#	0.18	1.31
Radium-228	pCi/L	07/07/2015	N001	177	-	237	6.02		F	#	0.4	1.46
Selenium	mg/L	07/07/2015	N001	177	-	237	0.00032	U	F	#	0.00032	
Specific Conductance	umhos /cm	07/07/2015	N001	177	-	237	3543		F	#		
Sulfate	mg/L	07/07/2015	N001	177	-	237	2300		F	#	25	
Temperature	С	07/07/2015	N001	177	-	237	9.25		F	#		
Thorium-228	pCi/L	07/07/2015	N001	177	-	237	0.52		FJ	#	0.27	0.214
Thorium-230	pCi/L	07/07/2015	N001	177	-	237	0.31	U	F	#	0.31	0.173
Thorium-232	pCi/L	07/07/2015	N001	177	-	237	0.0383		UF	#	0.021	0.038
Total Dissolved Solids	mg/L	07/07/2015	N001	177	-	237	3500		F	#	80	
Turbidity	NTU	07/07/2015	N001	177	-	237	8.52		F	#		
Uranium	mg/L	07/07/2015	N001	177	-	237	0.00026		F	#	0.000029	

REPORT DATE: 09/30/2015

Location: 40-SC WELL

Parameter	Units	Sam	ple	Depth Range	Result		Qualifiers		Detection	Uncertainty
Farameter	UTIILS	Date	ID	(Ft BLS)	Result	Lab	Data	QA	Limit	Uncertainty
Cadmium	mg/L	07/08/2015	N001	-	0.00023	J	F	#	0.00012	
Chloride	mg/L	07/08/2015	N001	-	34		F	#	4	
Chromium	mg/L	07/08/2015	N001	-	0.0017	J	F	#	0.00073	
Lead	mg/L	07/08/2015	N001	-	0.00019	J	UF	#	0.000068	
Nickel	mg/L	07/08/2015	N001	-	0.0082		F	#	0.00097	
Nitrate + Nitrite as Nitrogen	mg/L	07/08/2015	N001	-	1.1		F	#	0.02	
Oxidation Reduction Potential	mV	07/08/2015	N001	-	85		F	#		
рН	s.u.	07/08/2015	N001	-	6.47		F	#		
Radium-226	pCi/L	07/08/2015	N001	-	0.314		FJ	#	0.18	0.189
Radium-228	pCi/L	07/08/2015	N001	-	0.81		FJ	#	0.36	0.316
Selenium	mg/L	07/08/2015	N001	-	0.0048		F	#	0.00032	
Specific Conductance	umhos /cm	07/08/2015	N001	-	2520		F	#		
Sulfate	mg/L	07/08/2015	N001	-	1600		F	#	10	
Temperature	С	07/08/2015	N001	-	8.9		F	#		
Thorium-228	pCi/L	07/08/2015	N001	-	0.26	U	F	#	0.26	0.141
Thorium-230	pCi/L	07/08/2015	N001	-	0.34	U	F	#	0.34	0.22
Thorium-232	pCi/L	07/08/2015	N001	-	0.153		FJ	#	0.059	0.0774
Total Dissolved Solids	mg/L	07/08/2015	N001	-	2400		F	#	40	
Turbidity	NTU	07/08/2015	N001	-	2.38		F	#		
Uranium	mg/L	07/08/2015	N001	-	0.00039		F	#	0.000029	

REPORT DATE: 09/30/2015

Location: 5-DC WELL

Parameter	Units	Sar Date	nple ID	Depth Range (Ft BLS)	Result		Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Cadmium	mg/L	07/07/2015	N001	-	0.0015			F	#	0.00012	
Chloride	mg/L	07/07/2015	N001	-	220			F	#	20	
Chromium	mg/L	07/07/2015	N001	-	0.025			F	#	0.00073	
Lead	mg/L	07/07/2015	N001	-	0.00084			F	#	0.000068	
Nickel	mg/L	07/07/2015	N001	-	1.8			F	#	0.00097	
Nitrate + Nitrite as Nitrogen	mg/L	07/07/2015	N001	-	0.019			F	#	0.01	
Oxidation Reduction Potential	mV	07/07/2015	N001	-	116.2			F	#		
pH	s.u.	07/07/2015	N001	-	4.72			F	#		
Radium-226	pCi/L	07/07/2015	N001	-	10.1			F	#	0.17	2.67
Radium-228	pCi/L	07/07/2015	N001	-	41.6			F	#	0.36	9.6
Selenium	mg/L	07/07/2015	N001	-	0.087			F	#	0.00032	
Specific Conductance	umhos /cm	07/07/2015	N001	-	10591			F	#		
Sulfate	mg/L	07/07/2015	N001	-	9500			F	#	50	
Temperature	С	07/07/2015	N001	-	9.36			F	#		
Thorium-228	pCi/L	07/07/2015	N001	-	4.05			F	#	1.1	1.19
Thorium-230	pCi/L	07/07/2015	N001	-	1.7	ι	J	F	#	1.7	1.09
Thorium-232	pCi/L	07/07/2015	N001	-	0.51	ι	J	F	#	0.51	0.311
Total Dissolved Solids	mg/L	07/07/2015	N001	-	14000			F	#	200	
Turbidity	NTU	07/07/2015	N001	-	8.09			F	#		
Uranium	mg/L	07/07/2015	N001	-	0.21			F	#	0.000029	

REPORT DATE: 09/30/2015

Location: 5-SC WELL

Parameter	Units	Sam	ple		th Ra		Result		Qualifiers		Detection	Uncertainty
Farameter	Offics	Date	ID	(F	t BLS	S)	Nesuit	Lab	Data	QA	Limit	Officertainty
Cadmium	mg/L	07/07/2015	0001	49.3	-	57.7	0.04		F	#	0.00012	
Chloride	mg/L	07/07/2015	0001	49.3	-	57.7	310		F	#	20	
Chromium	mg/L	07/07/2015	0001	49.3	-	57.7	0.38		F	#	0.00073	
Lead	mg/L	07/07/2015	0001	49.3	-	57.7	0.00011	J	F	#	0.000068	
Nickel	mg/L	07/07/2015	0001	49.3	-	57.7	2.9		F	#	0.00097	
Nitrate + Nitrite as Nitrogen	mg/L	07/07/2015	0001	49.3	-	57.7	0.014		F	#	0.01	
Oxidation Reduction Potential	mV	07/07/2015	N001	49.3	-	57.7	281		F	#		
рН	s.u.	07/07/2015	N001	49.3	-	57.7	3.39		F	#		
Radium-226	pCi/L	07/07/2015	0001	49.3	-	57.7	5.17		F	#	0.15	1.44
Radium-228	pCi/L	07/07/2015	0001	49.3	-	57.7	1.92		F	#	0.54	0.611
Selenium	mg/L	07/07/2015	0001	49.3	-	57.7	0.12		F	#	0.00032	
Specific Conductance	umhos /cm	07/07/2015	N001	49.3	-	57.7	11338		F	#		
Sulfate	mg/L	07/07/2015	0001	49.3	-	57.7	12000		F	#	100	
Temperature	С	07/07/2015	N001	49.3	-	57.7	10.07		F	#		
Thorium-228	pCi/L	07/07/2015	0001	49.3	-	57.7	48.9		F	#	2.3	8.68
Thorium-230	pCi/L	07/07/2015	0001	49.3	-	57.7	400		F	#	3.7	62.5
Thorium-232	pCi/L	07/07/2015	0001	49.3	-	57.7	11.4		F	#	0.82	2.68
Total Dissolved Solids	mg/L	07/07/2015	0001	49.3	-	57.7	19000		F	#	200	
Turbidity	NTU	07/07/2015	N001	49.3	-	57.7	54.5		F	#		
Uranium	mg/L	07/07/2015	0001	49.3	-	57.7	3.4		F	#	0.000029	

REPORT DATE: 09/30/2015

Location: 54-SC WELL

Parameter	Units	Sam	ıple	Depth Range	Result		Qualifiers		Detection	Uncertainty
i didilicici	Office	Date	ID	(Ft BLS)	Nesuit	Lab	Data	QA	Limit	Officertainty
Cadmium	mg/L	07/07/2015	N001	-	0.0011		F	#	0.00012	
Chloride	mg/L	07/07/2015	N001	-	360		F	#	20	
Chromium	mg/L	07/07/2015	N001	-	0.5		F	#	0.00073	
Lead	mg/L	07/07/2015	N001	-	0.00042	J	UF	#	0.000068	
Nickel	mg/L	07/07/2015	N001	-	2.5		F	#	0.00097	
Nitrate + Nitrite as Nitrogen	mg/L	07/07/2015	N001	-	0.019		F	#	0.01	
Oxidation Reduction Potential	mV	07/07/2015	N001	-	231		F	#		
рН	s.u.	07/07/2015	N001	-	4.1		F	#		
Radium-226	pCi/L	07/07/2015	N001	-	13.8		F	#	0.19	3.61
Radium-228	pCi/L	07/07/2015	N001	-	92.9		F	#	0.35	21.4
Selenium	mg/L	07/07/2015	N001	-	0.14		F	#	0.00032	
Specific Conductance	umhos /cm	07/07/2015	N001	-	9059		F	#		
Sulfate	mg/L	07/07/2015	N001	-	8700		F	#	50	
Temperature	С	07/07/2015	N001	-	10.32		F	#		
Thorium-228	pCi/L	07/07/2015	N001	-	12		F	#	1.8	2.71
Thorium-230	pCi/L	07/07/2015	N001	-	6.95		FJ	#	2.6	2.22
Thorium-232	pCi/L	07/07/2015	N001	-	7.32		F	#	0.85	1.79
Total Dissolved Solids	mg/L	07/07/2015	N001	-	12000		F	#	200	
Turbidity	NTU	07/07/2015	N001	-	4.69		F	#		
Uranium	mg/L	07/07/2015	N001	-	0.02		F	#	0.000029	

REPORT DATE: 09/30/2015 Location: K.G.S.#3 WELL

Parameter	Units	Sam Date	ple ID	•	n Range BLS)	Result	Lab	Qualifiers Data	QA	Detection Limit	Uncertainty
Cadmium	mg/L	07/07/2015	N001	420	- 450	0.00012	U	Data	#	0.00012	
Cadmium	mg/L	07/07/2015	N002	420	- 450	0.00012	U		#	0.00012	
Chloride	mg/L	07/07/2015	N001	420	- 450	4.4			#	2	
Chloride	mg/L	07/07/2015	N002	420	- 450	4.3			#	2	
Chromium	mg/L	07/07/2015	N001	420	- 450	0.00073	U		#	0.00073	
Chromium	mg/L	07/07/2015	N002	420	- 450	0.00073	U		#	0.00073	
Lead	mg/L	07/07/2015	N001	420	- 450	0.00061		U	#	0.000068	
Lead	mg/L	07/07/2015	N002	420	- 450	0.00059		U	#	0.000068	
Nickel	mg/L	07/07/2015	N001	420	- 450	0.0011	J	U	#	0.00097	
Nickel	mg/L	07/07/2015	N002	420	- 450	0.00097	U		#	0.00097	
Nitrate + Nitrite as Nitrogen	mg/L	07/07/2015	N001	420	- 450	0.01	U		#	0.01	
Nitrate + Nitrite as Nitrogen	mg/L	07/07/2015	N002	420	- 450	0.01	U		#	0.01	
Oxidation Reduction Potential	mV	07/07/2015	N001	420	- 450	-195			#		
рН	s.u.	07/07/2015	N001	420	- 450	8.13			#		
Radium-226	pCi/L	07/07/2015	N001	420	- 450	0.602			#	0.15	0.263
Radium-226	pCi/L	07/07/2015	N002	420	- 450	0.578			#	0.17	0.264
Radium-228	pCi/L	07/07/2015	N001	420	- 450	1.85			#	0.38	0.53
Radium-228	pCi/L	07/07/2015	N002	420	- 450	1.62			#	0.37	0.481
Selenium	mg/L	07/07/2015	N001	420	- 450	0.00032	U		#	0.00032	
Selenium	mg/L	07/07/2015	N002	420	- 450	0.00032	U		#	0.00032	

REPORT DATE: 09/30/2015 Location: K.G.S.#3 WELL

Parameter	Units	Sam Date	ple ID	•	n Range BLS)	Result	(Lab	Qualifiers Data QA	Detection Limit	Uncertainty
Specific Conductance	umhos /cm	07/07/2015	N001	420	- 450	807		#		
Sulfate	mg/L	07/07/2015	N001	420	- 450	270		#	5	
Sulfate	mg/L	07/07/2015	N002	420	- 450	260		#	5	
Temperature	С	07/07/2015	N001	420	- 450	10.69		#		
Thorium-228	pCi/L	07/07/2015	N001	420	- 450	0.28	U	#	0.28	0.163
Thorium-228	pCi/L	07/07/2015	N002	420	- 450	0.28	U	#	0.28	0.161
Thorium-230	pCi/L	07/07/2015	N001	420	- 450	0.31	U	#	0.31	0.17
Thorium-230	pCi/L	07/07/2015	N002	420	- 450	0.31	U	#	0.31	0.165
Thorium-232	pCi/L	07/07/2015	N001	420	- 450	0.085	U	#	0.085	0.0474
Thorium-232	pCi/L	07/07/2015	N002	420	- 450	0.095	U	#	0.095	0.0385
Total Dissolved Solids	mg/L	07/07/2015	N001	420	- 450	550		#	20	
Total Dissolved Solids	mg/L	07/07/2015	N002	420	- 450	540		#	20	
Turbidity	NTU	07/07/2015	N001	420	- 450	7.13		#		
Uranium	mg/L	07/07/2015	N001	420	- 450	0.00017		#	0.000029	
Uranium	mg/L	07/07/2015	N002	420	- 450	0.00019		#	0.000029	

SAMPLE ID CODES: $000X = Filtered sample (0.45 \mu m)$. N00X = Unfiltered sample. X = replicate number.

LAB QUALIFIERS:

- * Replicate analysis not within control limits.
- > Result above upper detection limit.
- A TIC is a suspected aldol-condensation product.
- B Inorganic: Result is between the IDL and CRDL. Organic: Analyte also found in method blank.
- C Pesticide result confirmed by GC-MS.
- D Analyte determined in diluted sample.
- E Inorganic: Estimate value because of interference, see case narrative. Organic: Analyte exceeded calibration range of the GC-MS.
- H Holding time expired, value suspect.
- I Increased detection limit due to required dilution.
- J Estimated
- N Inorganic or radiochemical: Spike sample recovery not within control limits. Organic: Tentatively identified compound (TIC).
- P > 25% difference in detected pesticide or Aroclor concentrations between 2 columns.
- U Analytical result below detection limit.
- W Post-digestion spike outside control limits while sample absorbance < 50% of analytical spike absorbance.
- X,Y,Z Laboratory defined qualifier, see case narrative.

DATA QUALIFIERS:

F Low flow sampling method used. G Possible grout contamination, pH > 9. J Estimated value.
Less than 3 bore volumes purged prior to sampling. Q Qualitative result due to sampling technique. R Unusable result.
U Parameter analyzed for but was not detected. X Location is undefined.

QA QUALIFIER:

Validated according to quality assurance guidelines.

Static Water Level Data

This page intentionally left blank

STATIC WATER LEVELS (USEE700) FOR SITE SBS01, Shirley Basin South Disposal Site REPORT DATE: 09/29/2015

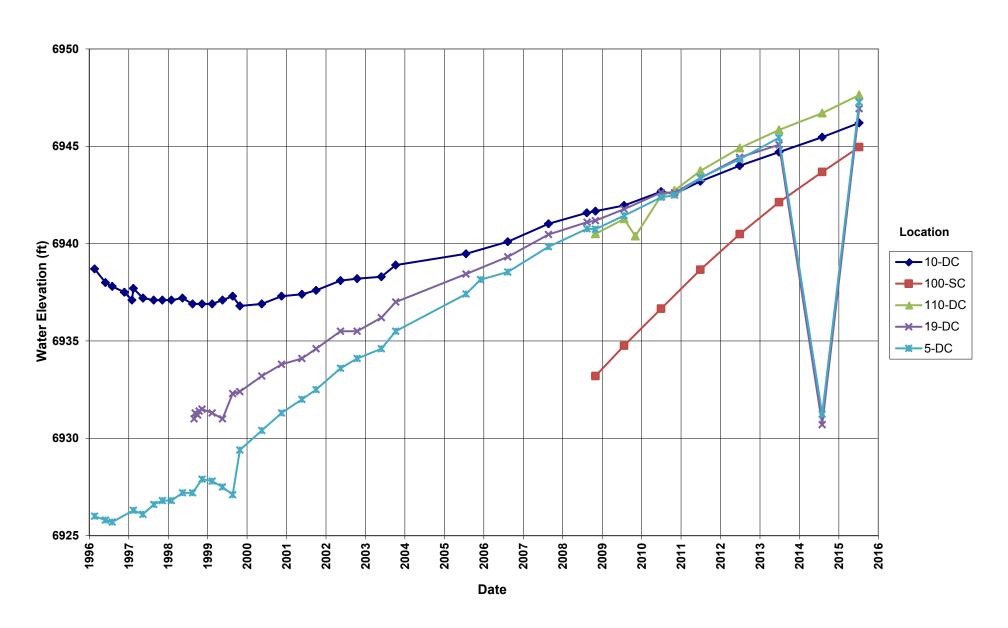
Location Code	Flow Code	Top of Casing Elevation (Ft)	Measurement Date Time		Depth From Top of Casing (Ft)	Water Elevation (Ft)	Water Level Flag
10-DC		7113.1	07/07/2015	17:00:05	166.9	6946.2	
100-SC		7153.56	07/07/2015	09:30:56	208.6	6944.96	
101-SC		7168.35	07/07/2015	15:29:00			D
110-DC		7153.92	07/07/2015	11:00:11	206.29	6947.63	
19-DC		7112.1	07/07/2015	16:00:32	165.17	6946.93	
5-DC		7119.94	07/07/2015	14:00:14	172.67	6947.27	
5-SC		7053.31	07/07/2015	14:45:38	57.24	6996.07	
51-SC		7092.6	07/07/2015	16:12:00			D
54-SC		7158.74	07/07/2015	13:00:43	208.63	6950.11	

FLOW CODES: B BACKGROUND

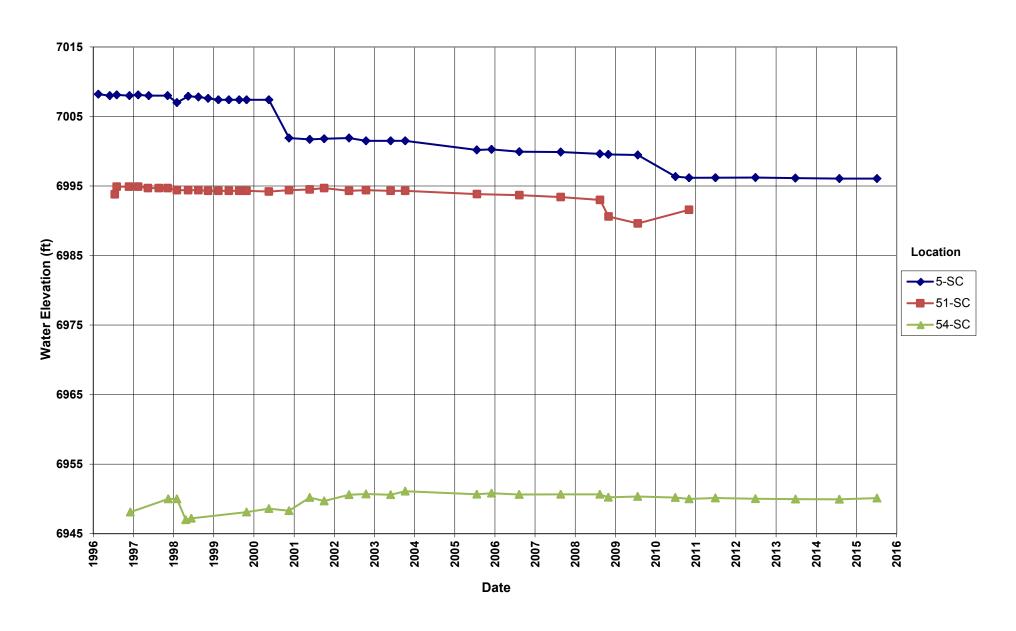
F OFFSITE
U UPGRADIENT

C CROSS GRADIENT N UNKNOWN

D DOWNGRADIENT

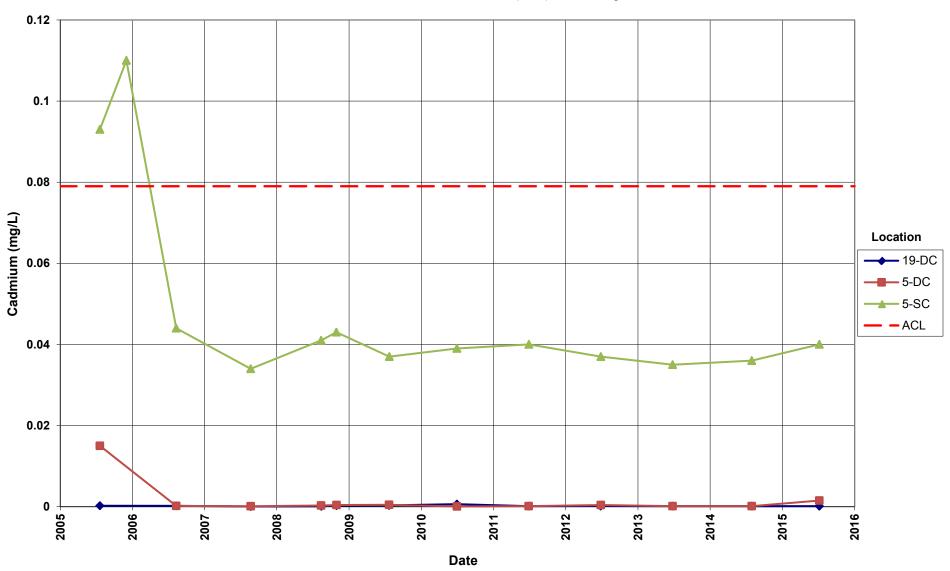

O ONSITE

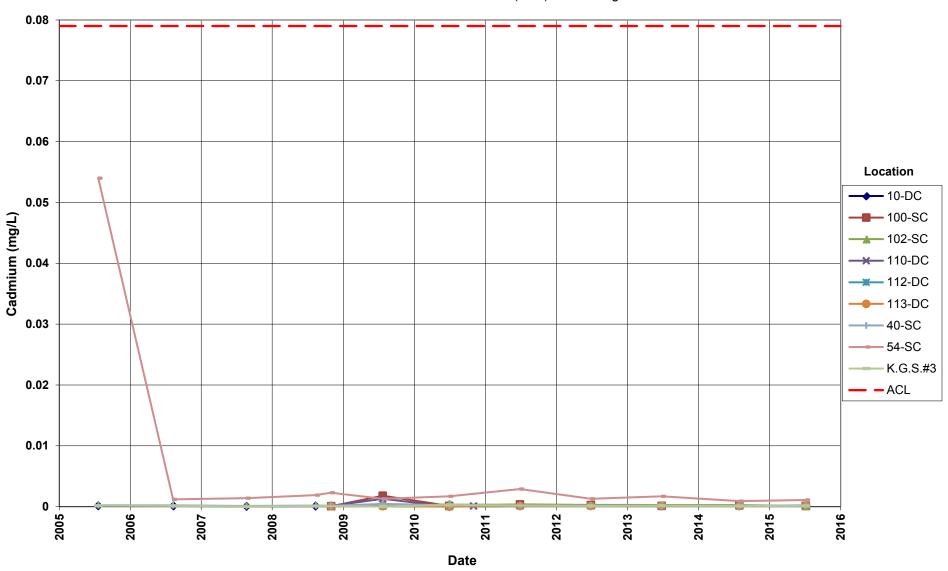
WATER LEVEL FLAGS: D Dry F Flowing B Below top of pump This page intentionally left blank


Hydrographs

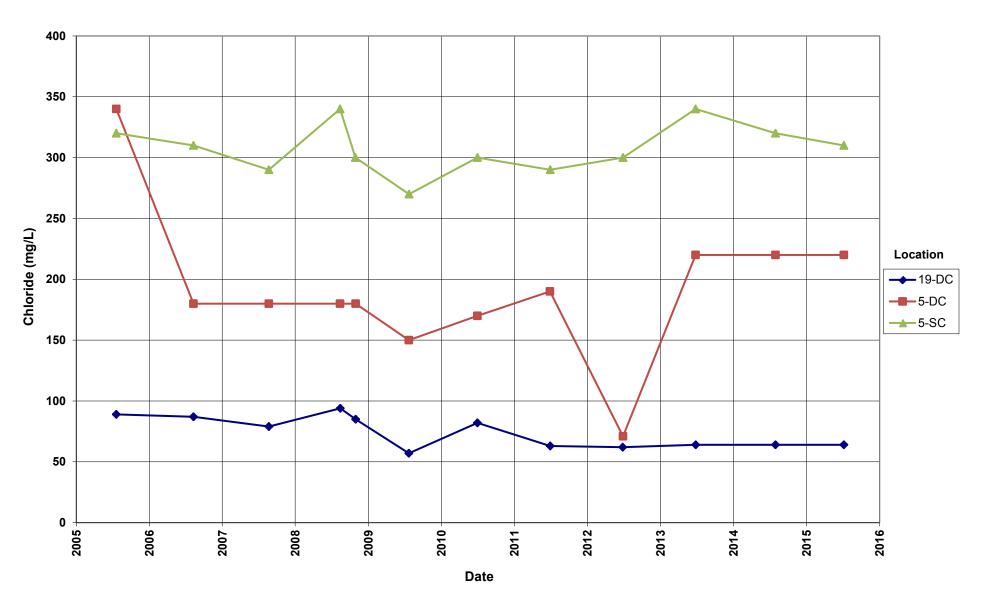
This page intentionally left blank

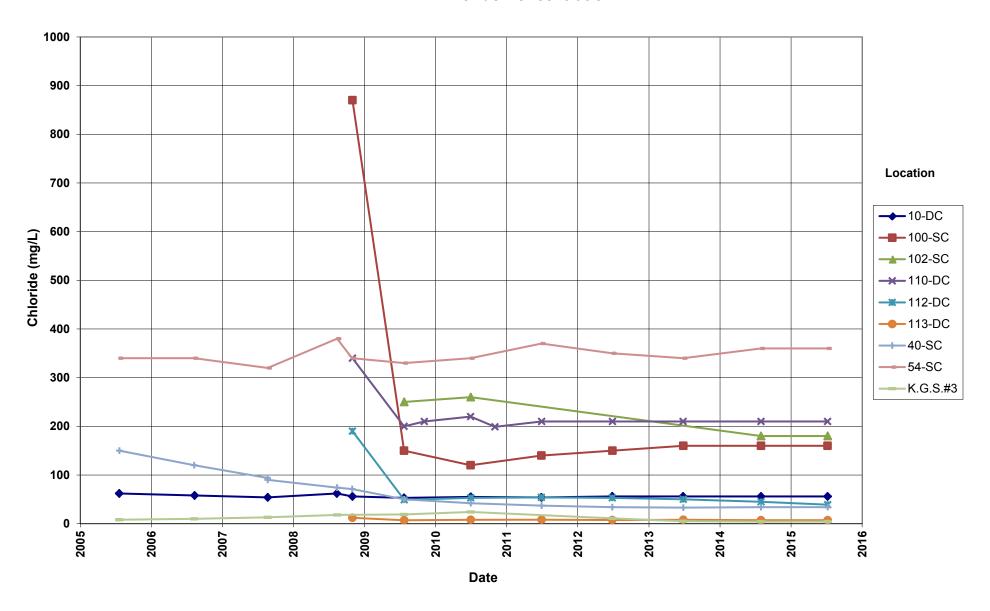
Shirley Basin South Disposal Site Hydrograph

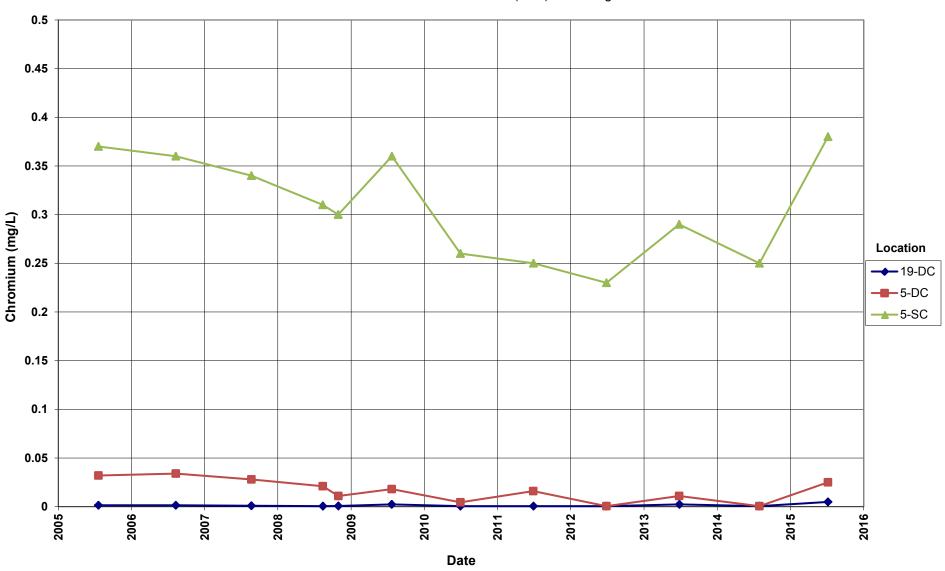

Shirley Basin South Disposal Site Hydrograph

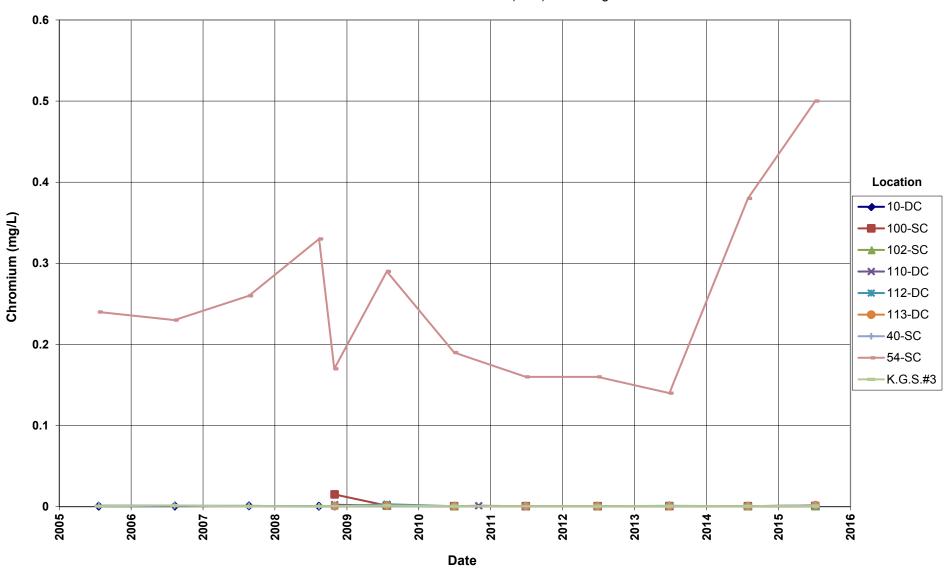

Time-Concentration Graphs

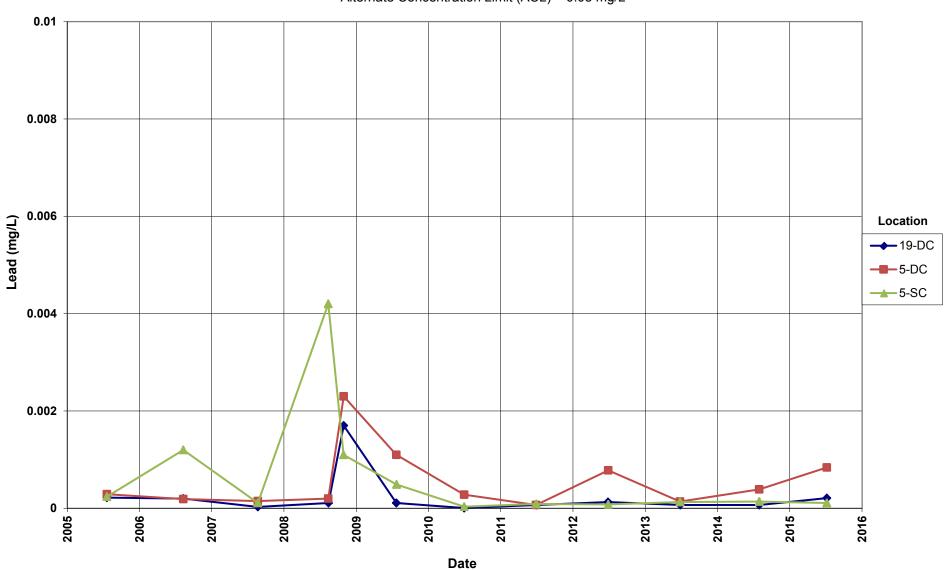
This page intentionally left blank

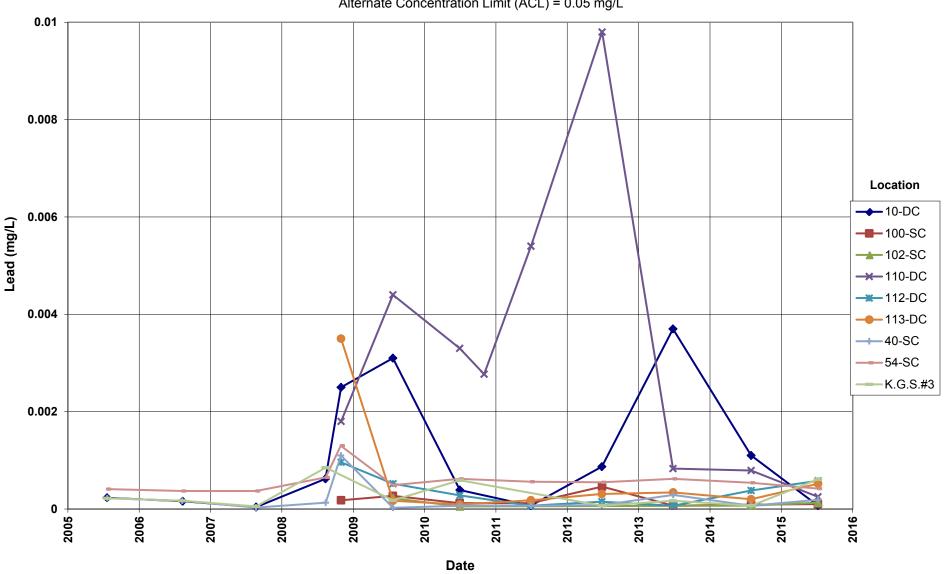

Shirley Basin South Disposal Site Cadmium Concentration Point of Compliance Wells Alternate Concentration Limit (ACL) = 0.079 mg/L

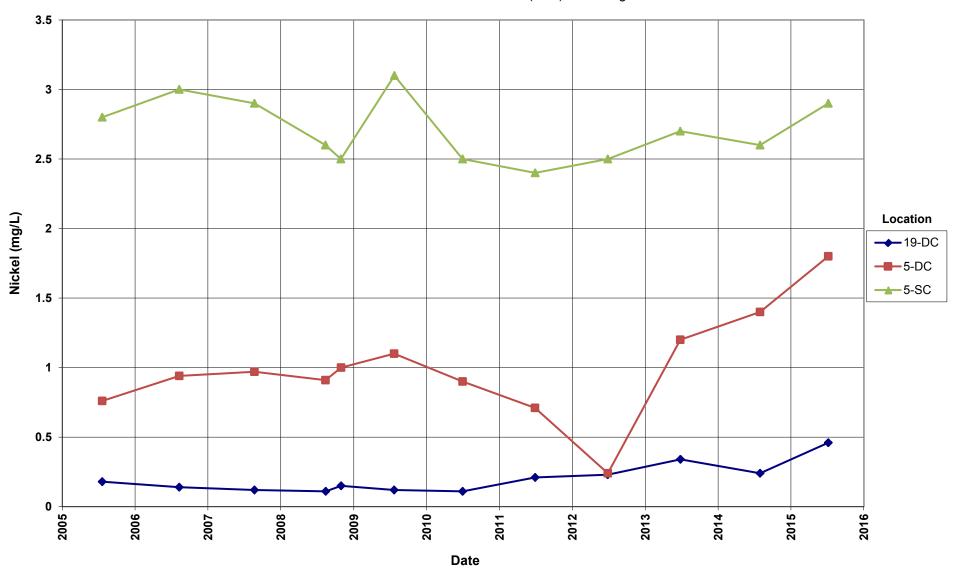

Shirley Basin South Disposal Site Cadmium Concentration Monitoring Wells Alternate Concentration Limit (ACL) = 0.079 mg/L

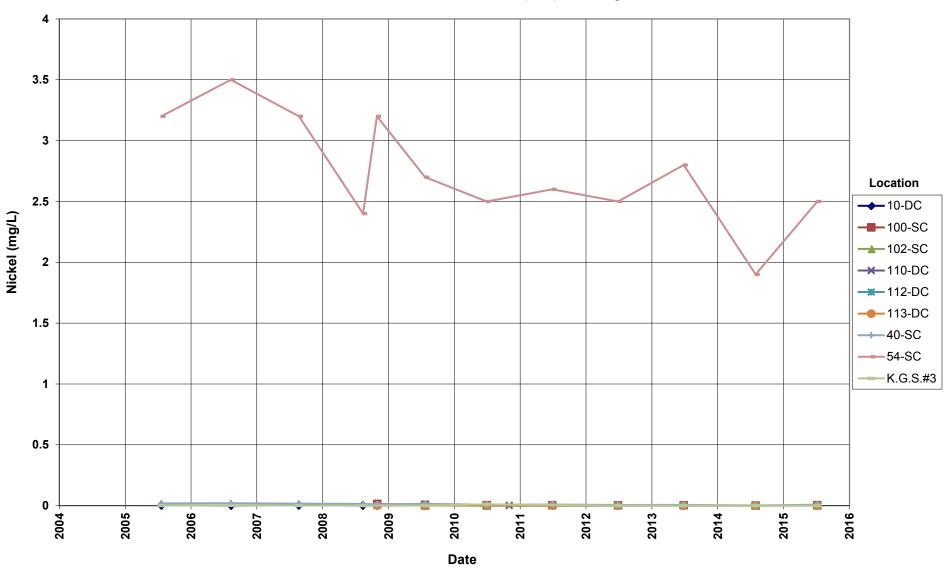

Shirley Basin South Disposal Site Point of Compliance Wells Chloride Concentration

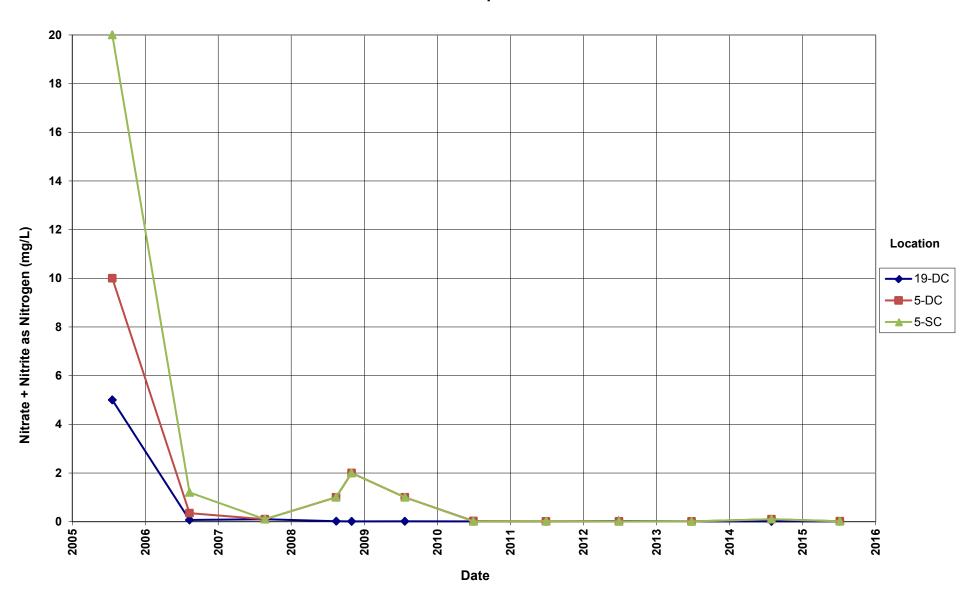

Shirley Basin South Disposal Site Monitoring Wells Chloride Concentration

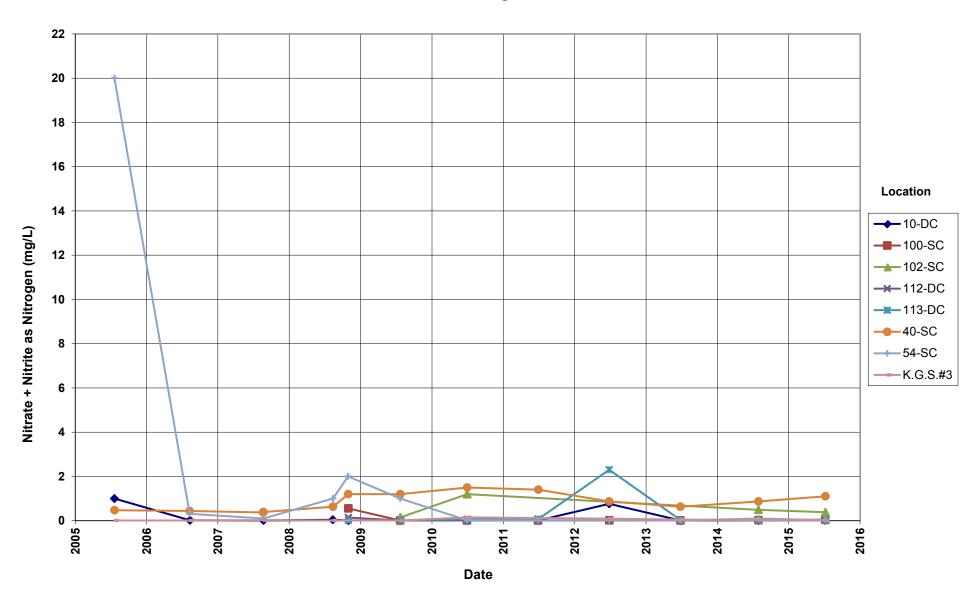

Shirley Basin South Disposal Site Chromium Concentration Point of Compliance Wells Alternate Concentration Limit (ACL) = 1.83 mg/L

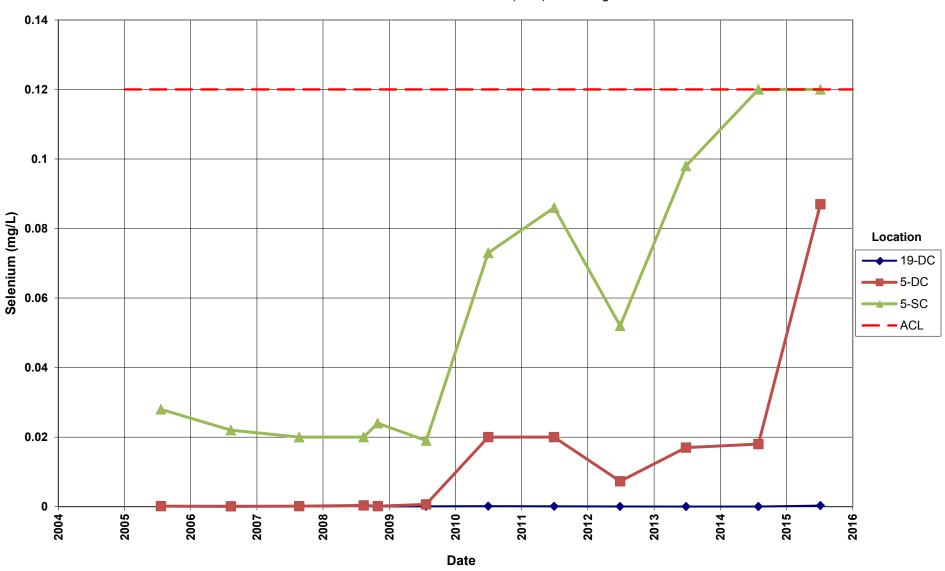

Shirley Basin South Disposal Site Chromium Concentration **Monitoring Wells**Alternate Concentration Limit (ACL) = 1.83 mg/L

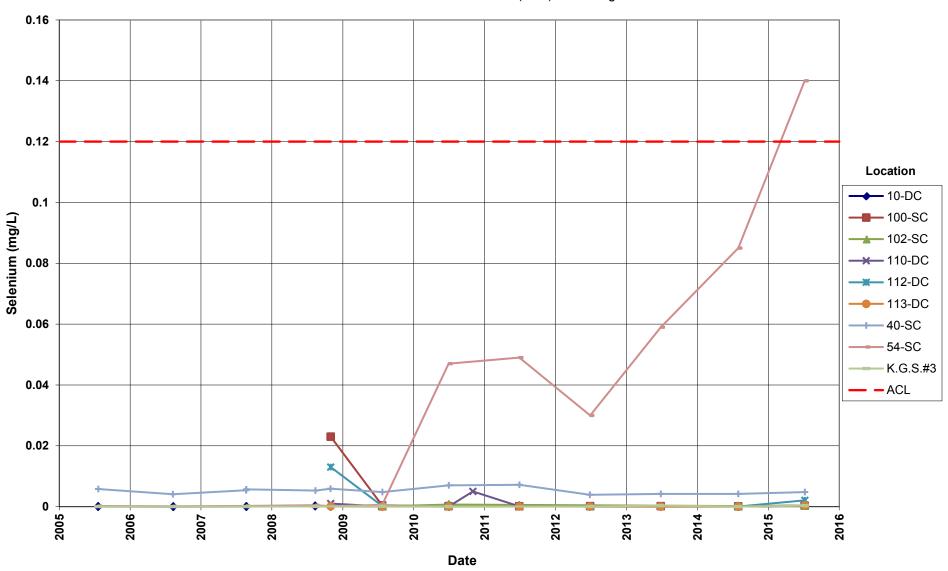

Shirley Basin South Disposal Site Lead Concentration Point of Compliance Wells Alternate Concentration Limit (ACL) = 0.05 mg/L

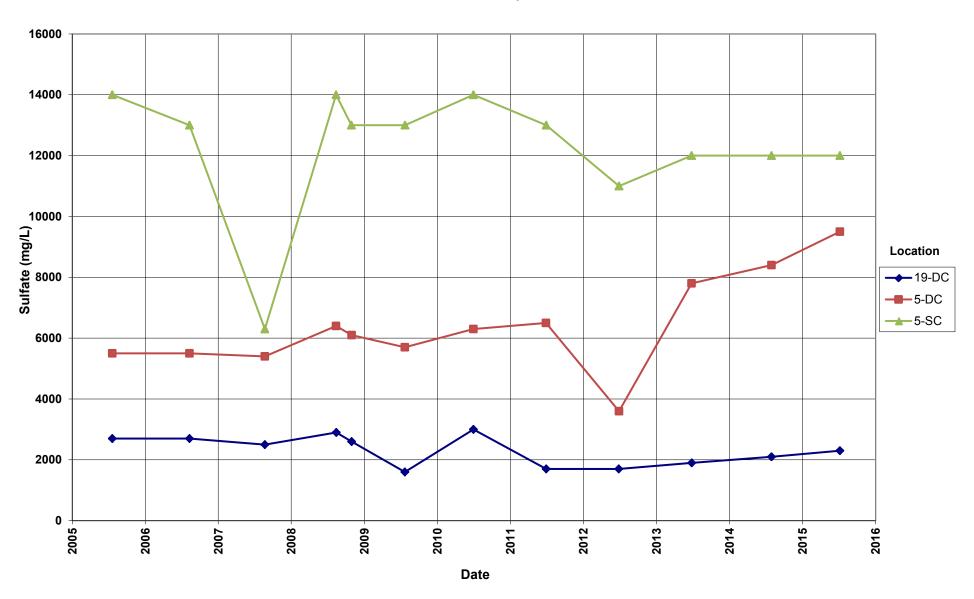

Shirley Basin South Disposal Site Lead Concentration Monitoring WellsAlternate Concentration Limit (ACL) = 0.05 mg/L

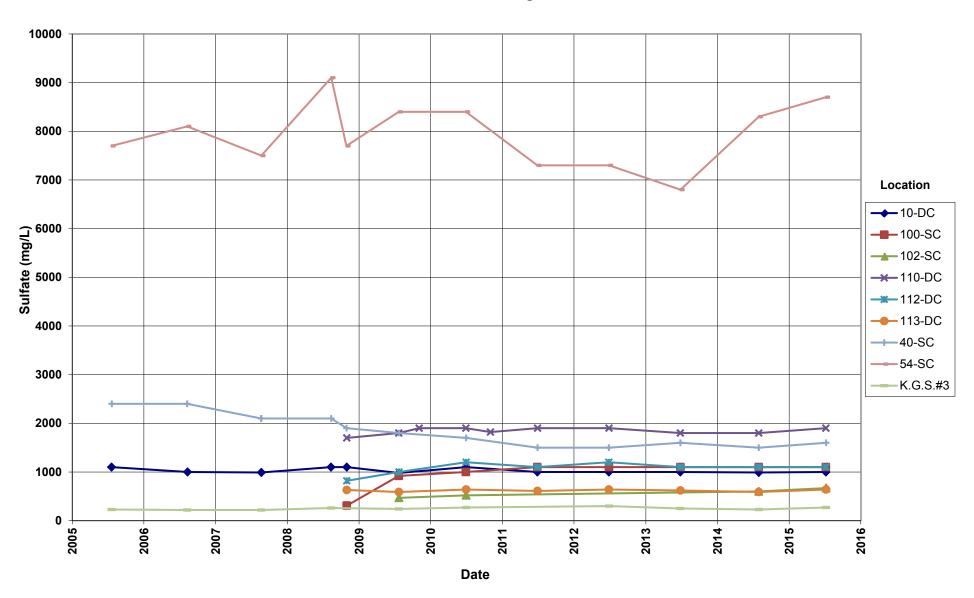

Shirley Basin South Disposal Site Nickel Concentration Point of Compliance Wells Alternate Concentration Limit (ACL) = 6.15 mg/L

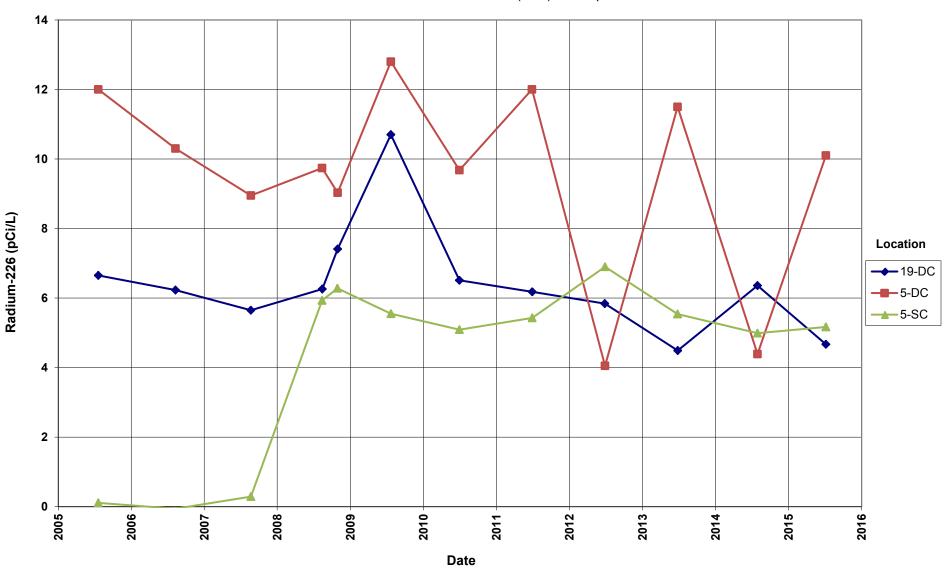

Shirley Basin South Disposal Site Nickel Concentration **Monitoring Wells**Alternate Concentration Limit (ACL) = 6.15 mg/L

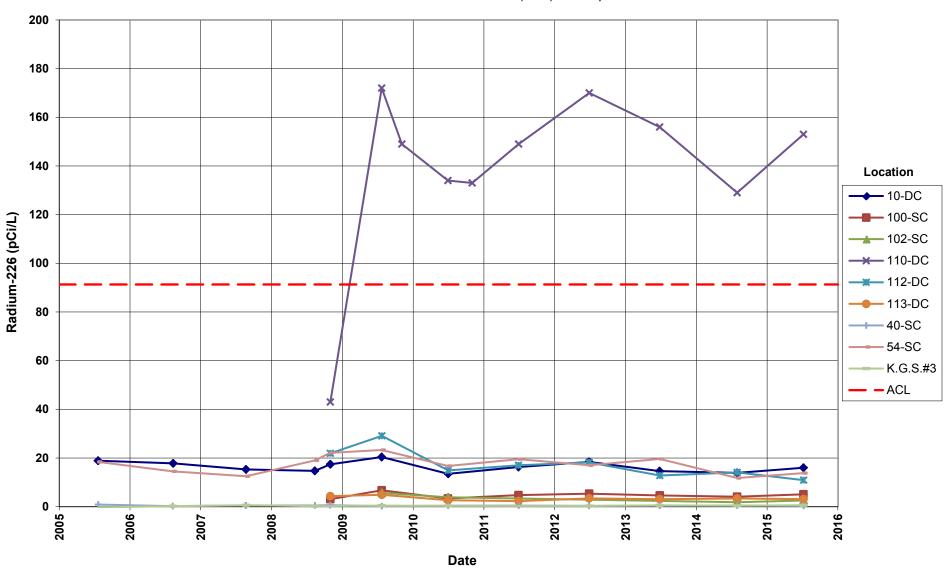

Shirley Basin South Disposal Site Nitrate + Nitrite as Nitrogen Concentration Point of Compliance Wells

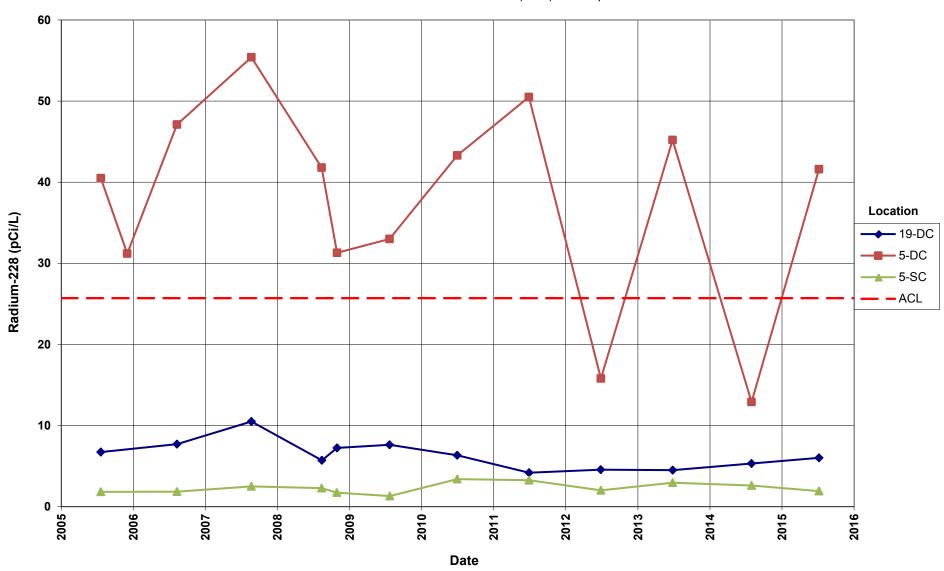

Shirley Basin South Disposal Site Nitrate + Nitrite as Nitrogen Concentration Monitoring Wells


Shirley Basin South Disposal Site Selenium Concentration Point of Compliance Wells Alternate Concentration Limit (ACL) = 0.12 mg/L

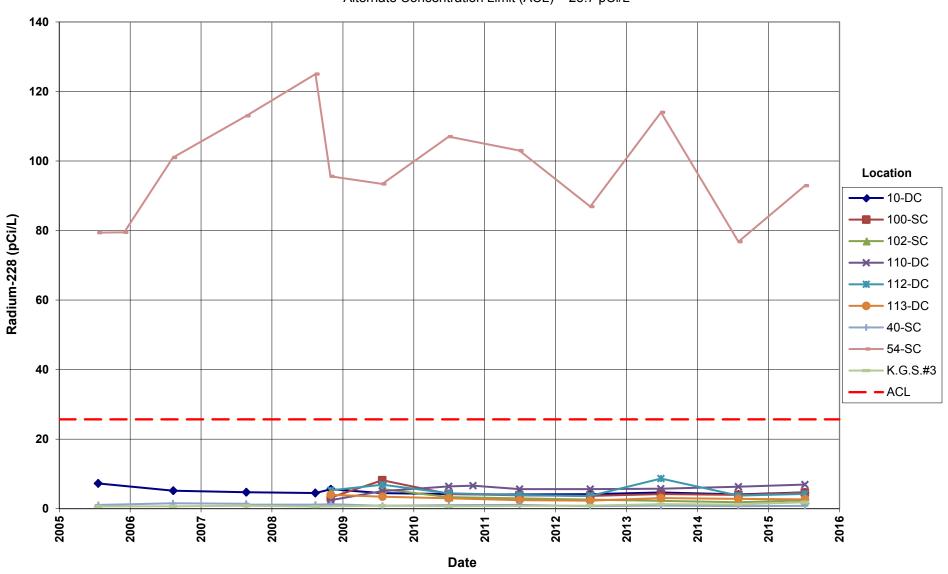

Shirley Basin South Disposal Site Selenium Concentration Monitoring Wells Alternate Concentration Limit (ACL) = 0.12 mg/L


Shirley Basin South Disposal Site Sulfate Concentration Point of Compliance Wells

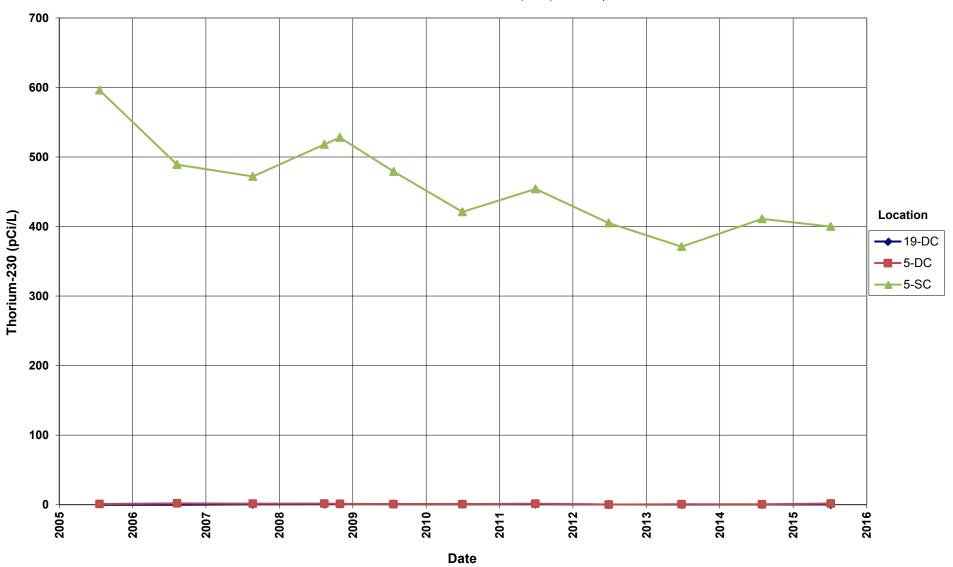

Shirley Basin South Disposal Site Sulfate Concentration Monitoring Wells


Shirley Basin South Disposal Site Radium-226 Concentration Point of Compliance Wells Alternate Concentration Limit (ACL) = 91.3 pCi/L

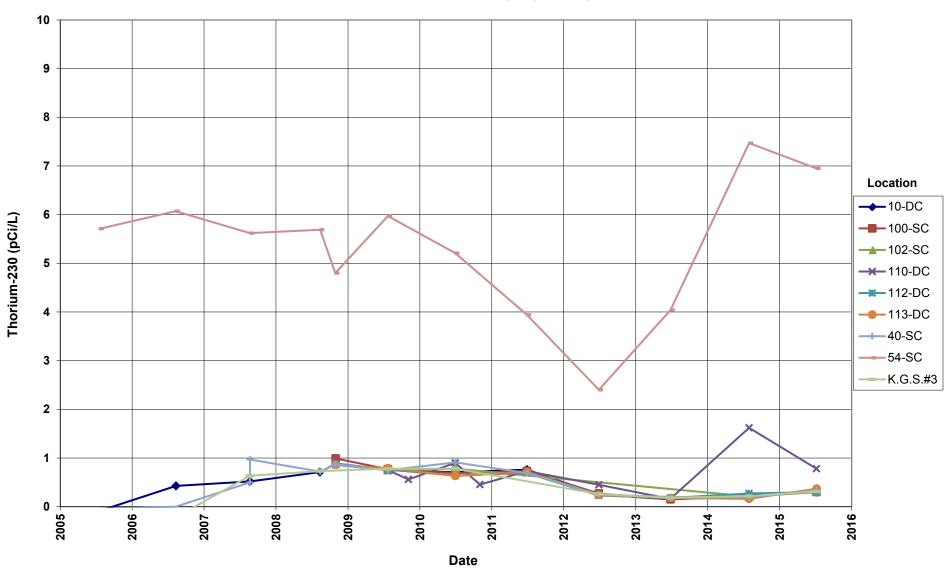
Shirley Basin South Disposal Site Radium-226 Concentration Monitoring WellsAlternate Concentration Limit (ACL) = 91.3 pCi/L



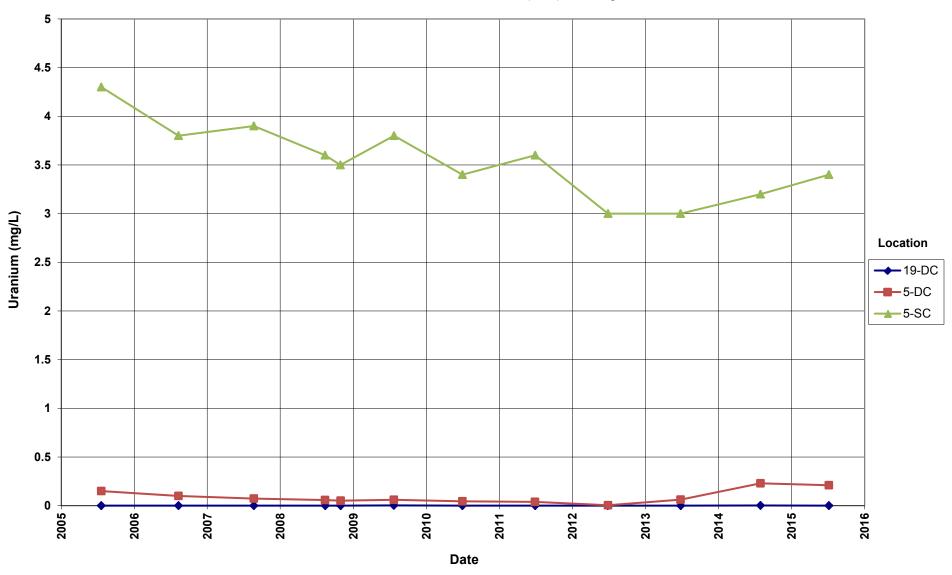
Shirley Basin South Disposal Site Radium-228 Concentration Point of Compliance Wells Alternate Concentration Limit (ACL) = 25.7 pCi/L


Shirley Basin South Disposal Site Radium-228 Concentration Monitoring Wells

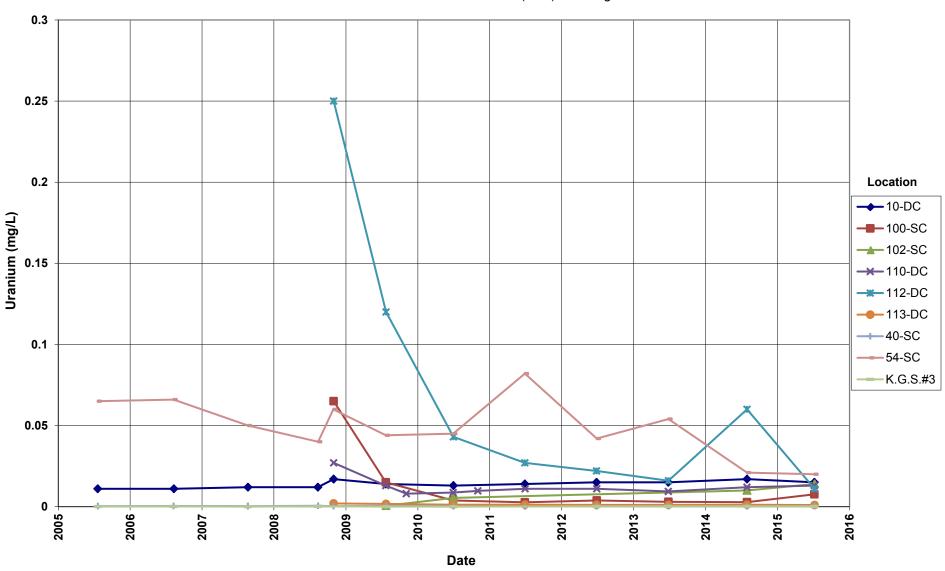
Alternate Concentration Limit (ACL) = 25.7 pCi/L


Shirley Basin South Disposal Site Thorium-230 Concentration Point of Compliance Wells

Alternate Concentration Limit (ACL) = 2409 pCi/L



Shirley Basin South Disposal Site Thorium-230 Concentration Monitoring Wells


Alternate Concentration Limit (ACL) = 2409 pCi/L

Shirley Basin South Disposal Site Uranium Concentration Point of Compliance Wells Alternate Concentration Limit (ACL) = 9.2 mg/L

Shirley Basin South Disposal Site Úranium Concentration Monitoring Wells Alternate Concentration Limit (ACL) = 9.2 mg/L

Attachment 3 Sampling and Analysis Work Order

This page intentionally left blank

June 1, 2015

Task Assignment 103 Control Number 15-0570

U.S. Department of Energy Office of Legacy Management ATTN: Scott Surovchak Site Manager 11025 Dover Street, Suite 1000 Westminster, CO 80021-5573

SUBJECT:

Contract No. DE-LM0000415, Stoller Newport News Nuclear, Inc. (SN3),

a wholly owned subsidiary of Huntington Ingalls Industries, Inc.

Task Assignment 103 LTS&M - UMTRCA TI & TII, D&D, Others, and AS&T July 2015 Environmental Sampling at the Shirley Basin South, Wyoming,

Disposal Site

REFERENCE: Task Assignment 103, 3-103-1-03-223, Shirley Basin South, Wyoming,

Disposal Site

Dear Mr. Surovchak:

The purpose of this letter is to inform you of the upcoming sampling event at Shirley Basin South, Wyoming. Enclosed are the map and tables specifying sample locations and analytes for monitoring at the Shirley Basin South site. Water quality data will be collected from monitoring wells at this site as part of the routine environmental sampling currently scheduled to begin the week of July 6, 2015.

The following list shows the monitoring wells scheduled to be sampled during this event.

MONITORING WELLS

40-SC	51-SC	10-DC	5-DC	19-DC	5-SC	54-SC
100-SC	101-SC	102-SC	110-DC	112-DC	113-DC	K.G.S.#3

*NOTE: SC wells are completed in the upper sand aquifer of the Wind River Formation; DC wells are completed in the main sand aquifer of the Wind River Formation.

All samples will be collected as directed in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites. Access agreements are being reviewed and are expected to be complete by the beginning of fieldwork.

Scott Surovchak Control Number 15-0570 Page 2

1.2. Prin

Please contact me at (970) 248-6592 if you have any questions.

Sincerely,

Jeffrey E. Price Site Manager

JEP/lcg/bkb

Enclosures (3)

cc: (electronic)

Christina Pennal, DOE
Steve Donivan, SN3
Lauren Goodknight, SN3
Diana Osborne, SN3
Jeffrey Price, SN3
EDD Delivery
rc-grand.junction
File: SBS 400.02

Sampling Frequencies for Locations at Shirley Basin South, Wyoming

Location									
ID	Quarterly	Semiannually	Annually	Biennially	Not Sampled	Notes			
Monitoring	Monitoring Wells								
100-SC			Х						
101-SC			Х						
102-SC			Х						
110-DC			Х						
112-DC			Х						
113-DC			Х						
40-SC			Х						
5-SC			Х						
51-SC			Х						
54-SC			Х						
10-DC			Х						
5-DC			Х						
19-DC			Х						
K.G.S.#3			Х						

Sampling conducted in June

Constituent Sampling Breakdown

Site	Shirley Ba	asin South			
Analyte	Groundwater	Surface Water	Required Detection Limit (mg/L)	Analytical Method	Line Item Code
Approx. No. Samples/yr	14	0			
Field Measurements					
Alkalinity					
Dissolved Oxygen					
Redox Potential	Х				
рН	Х				
Specific Conductance	Х				
Turbidity	Х				
Temperature	Х				
Laboratory Measurements		ı			
Aluminum					
Ammonia as N (NH3-N) Cadmium	Х		0.001	SW-846 6020	LMM-02
Calcium	^		0.001	3VV-040 0U2U	LIVIIVI-UZ
Chloride	Х		0.5	SW-846 9056	MIS-A-039
Chromium	X		0.005	SW-846 6010	LMM-01
Gross Alpha			0.003	077-040 0010	LIVIIVI-01
Gross Beta					
Iron					
Lead	х		0.002	SW-846 6020	LMM-02
Magnesium	15.5%				
Manganese					
Molybdenum					
Nickel	Х		0.02	SW-846 6010	LMM-01
Nickel-63					
Nitrate + Nitrite as N (NO3+NO2)-N	Х		0.05	EPA 353.1	WCH-A-022
Potassium					
Radium-226	Х		1 pCi/L	Gas Proportional Counter	GPC-A-018
Radium-228	Х		1 pCi/L	Gas Proportional Counter	GPC-A-020
Selenium	Х		0.0001	SW-846 6020	LMM-02
Silica					
Sodium					
Strontium					
Sulfate	Х		0.5	SW-846 9056	MIS-A-044
Sulfide					
Thorium-230	X		1 pCi/L	Alpha Specrtrometry	ASP-A-008
Total Dissolved Solids	Х		10	SM2540 C	WCH-A-033
Total Organic Carbon	2,000				12 20200A AARA
Uranium	Х		0.0001	SW-846 6020	LMM-02
Vanadium					
Zinc					
Total No. of Analytes	13	0			

Note: All private well samples are to be unfiltered. The total number of analytes does not include field parameters.

Attachment 4
Trip Report

This page intentionally left blank

Memorandum

DATE: July 28, 2015

TO: Distribution

FROM: Jeff Price

SUBJECT: Water Sampling Trip Report

Site: Shirley Basin South, Wyoming, Disposal Site

Dates of Sampling Event: July 6 - 9, 2015

Team Members: Eric Szabelski, Jeff Price

Number of Locations Sampled: Samples were collected from 12 of the 14 locations identified

on the sampling notification letter.

Locations Not Sampled/Reason: Wells 51-SC and 101-SC were dry (normal).

Location Specific Information: Nothing to note.

Quality Control Sample Cross Reference: The following is the false identification assigned to the quality control sample:

False ID	Ticket Number	True ID	Sample Type	Associated Matrix	Associated Samples
2658	NHW 663	K.G.S. #3	Duplicate	Groundwater	N/A

Requisition Index Number (RIN) Assigned: Samples were assigned to RIN 15067185. Field data sheets can be found in \\crow\RAApps\SMS\15067185\FieldData.

Sample Shipment: Samples were shipped overnight via FedEx from Casper, Wyoming, to ALS Lab on July 8.

Water Level Measurements: Water levels were measured in all sampled wells.

Well Inspection Summary: No issues were identified.

Sampling Method: Samples were collected according to the Sampling and Analysis Plan (SAP) for the U. S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated).

Distribution July 28, 2015 Page 2

Field Variance: None. Samples were collected according to the SAP. Category I wells 5-SC and 10-DC were filtered.

Equipment: All equipment functioned properly.

Stakeholder/Regulatory/DOE: John Cash of UR Energy was on site July 7 and collected water samples from wells K.G.S. #3, 110-DC, and 100-SC.

Institutional Controls:

Fences, Gates, and Locks: All gates and locks were in good condition.

Signs: No issues were observed.

Trespassing/Site Disturbances: None observed.

Disposal Cell/Drainage Structure Integrity: No issues were observed.

Safety Issues: None.

Access Issues: None.

General Information: None.

Immediate Actions Taken: None.

Future Actions Required or Suggested: None.

JP/lcg

cc: (electronic)
Scott Surovchak, DOE
Steve Donivan, SN3
Jeff Price, SN3
EDD Delivery