

LMS/BON/48956

# 2024 Annual BONUS Reactor Radiological Survey Report

September 2024

Work performed under DOE contract number 89303020DLM000001 for the U.S. Department of Energy Office of Legacy Management.

This document is designed for online viewing.

# Contents

| Abbr | eviatio | ons                                               | iii |
|------|---------|---------------------------------------------------|-----|
| 1.0  | Introd  | luction                                           | 1   |
|      | 1.1     | Purpose and Scope                                 | 1   |
|      | 1.2     | Survey Limitations                                | 1   |
| 2.0  | Radio   | ological Surveys                                  | 2   |
|      | 2.1     | Survey Instruments                                | 2   |
|      | 2.2     | Contamination Survey                              |     |
|      | 2.3     | Radiation Survey                                  |     |
|      | 2.4     | Survey Quality                                    | 14  |
|      | 2.5     | Survey Regulatory Limits                          |     |
|      | 2.6     | Survey Results Comparisons (2024 to 2023)         | 17  |
|      |         | 2.6.1 Removable Surface Contamination Comparison  | 17  |
|      |         | 2.6.2 Total Surface Contamination Comparison      |     |
|      |         | 2.6.3 Radiation Dose and Exposure Rate Comparison |     |
|      | 2.7     | 1 1                                               |     |
| 3.0  |         | Survey Conclusion                                 |     |
| 4.0  | Refer   | ences                                             |     |

# Figures

| Figure 1. Original Main Level Contamination Area Posting and Boundary String            | ŀ |
|-----------------------------------------------------------------------------------------|---|
| Figure 2. Updated Main Level Contamination Area Posting and Boundary Rope               |   |
| (looking west)                                                                          | ŀ |
| Figure 3. Updated Main Level Contamination Area Posting and Boundary Rope (looking      |   |
| southeast)                                                                              | 5 |
| Figure 4. Original Radiological Posting and Boundary Location, in the Basement          |   |
| Contamination Area                                                                      | 5 |
| Figure 5. Moved Radiological Posting and Boundary, in the Basement Contamination Area 6 | 5 |
| Figure 6. Basement Contamination Area—Offending Pump                                    | 1 |
| Figure 7. Basement Contamination Area Pump with Fixative Applied, Front View            | 7 |
| Figure 8. Basement Contamination Area Pump with Fixative Applied, Rear View             | 3 |
| Figure 9. Survey Location Marking, Example of Survey Location 20 on Tile Floor          | 3 |
| Figure 10. Remaining Survey and Safety Supplies                                         | ) |

# Tables

| Table 1. 2024 Contamination Survey Results                                               | 9  |
|------------------------------------------------------------------------------------------|----|
| Table 2. 2024 Dose Rate Survey Results                                                   |    |
| Table 3. Summary of Surface Contamination Values <sup>a</sup> in dpm/100 cm <sup>2</sup> |    |
| (10 CFR 835 Appendix D)                                                                  | 16 |
| Table 4. 2024 Versus 2023 Removable Contamination Survey Results                         |    |
| Table 5. 2024 Versus 2023 Total Contamination Survey Results                             |    |
| Table 6. 2024 Versus 2023 Gamma Radiation Survey Results                                 |    |

| Table 7. 2024 Versus 2023 | Gamma Radiation Survey Results with Background Removed | . 28 |
|---------------------------|--------------------------------------------------------|------|
| Table 8. 2024 Versus 2023 | Gamma Radiation Survey Results For Comparison          |      |
| (with Background          | l Removed)                                             | . 31 |

# Attachments

| Attachment 1 | Annual LMS Radiological Characterization Survey Plan for the BONUS,<br>Puerto Rico, Decommissioned Reactor Site LMS RadCon Survey Plan<br>Number: 24-001, June 2024, LMS/BON/48092                                                                           |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Attachment 2 | Completed BONUS Annual Survey Location and Results Data Sheet, from the <i>Annual LMS Radiological Characterization Survey Plan for the BONUS, Puerto Rico, Decommissioned Reactor Site LMS RadCon Survey Plan Number: 24-001</i> , June 2024, LMS/BON/48092 |
| Attachment 3 | <i>Radiological Survey Map</i> Form (LMS 1553) for the BONUS, Puerto Rico,<br>Decommissioned Reactor Site, July 16–17, 2024, Radiological Survey<br>Number 240722-002                                                                                        |
| Attachment 4 | Radiological Instrument Calibration Certificates, <i>After-Calibration Source</i><br><i>Response Checks Data Sheet</i> Forms (LMS 1974), and <i>Daily Instrument</i><br><i>Response</i> Forms (LMS 1974a)                                                    |
|              |                                                                                                                                                                                                                                                              |

# Abbreviations

| BONUS           | Boiling Nuclear Superheater                           |
|-----------------|-------------------------------------------------------|
| CFR             | Code of Federal Regulations                           |
| cm <sup>2</sup> | square centimeters                                    |
| DOE             | U.S. Department of Energy                             |
| dpm             | disintegrations per minute                            |
| $dpm/100 cm^2$  | disintegrations per minute per 100 square centimeters |
| LM              | Office of Legacy Management                           |
| LMFSC           | LM Field Support Center                               |
| LMS             | Legacy Management Support                             |
| μrem            | microrem per hour                                     |
| mrem            | millirem                                              |
| PPE             | personal protection equipment                         |
| PREPA           | Puerto Rico Electric Power Authority                  |
| RCT             | Radiological Control Technician                       |

# **Executive Summary**

In July 2024, Legacy Management Support (LMS) contractor radiological control technicians (RCTs) mobilized to the U.S. Department of Energy Office of Legacy Management Boiling Nuclear Superheater (BONUS), Puerto Rico, Decommissioned Reactor Site (site) and performed the annual radiological survey of the interior of the reactor containment building. The radiological survey was performed in accordance with the *Annual LMS Radiological Characterization Survey Plan for the BONUS, Puerto Rico, Decommissioned Reactor Site, LMS RadCon Survey Plan Number: 24-001* and LMS Radiological Control organization procedures, manuals, and plans.

A comparison of the 2023 and 2024 radiological survey results proved them to be very similar. Two previously identified contamination areas in the reactor containment building remain contamination areas and are radiologically posted as such. No new radiological areas were identified during the survey. No previously posted radiological areas were deposted.

The 2024 radiological survey results, along with the two radiologically posted and controlled contamination areas at the site, provide continued confidence that human health and the environment remain protected from radiological hazards at the site. Additionally, radiological survey results obtained in the nonposted areas are below regulatory surface contamination and radiation dose limits.

# 1.0 Introduction

The Boiling Nuclear Superheater (BONUS) Puerto Rico, Decommissioned Reactor Site (site), located northwest of Rincón, Puerto Rico, was developed as a prototype nuclear power plant to investigate the technical and economic feasibility of the integral boiling-superheating concept. Operation of the BONUS reactor was initiated in 1964 and terminated in 1968. Puerto Rico Electric Power Authority (PREPA) decommissioned the reactor between 1969 and 1970. During decommissioning, special nuclear materials (fuel) and certain highly activated components (e.g., control rods and shims) were removed and transported to the mainland and the piping systems were flushed. The reactor vessel and associated internal components within the biological shield were entombed in concrete. Many contaminated and activated materials were placed in the main circulation pump room beneath the pressure vessel and entombed in concrete.

The site falls under applicable portions of U.S. Department of Energy (DOE) regulations, specifically Title 10 *Code of Federal Regulations* Part 835 (10 CFR 835), "Occupational Radiation Protection." Radiological surveys conducted within the reactor containment building are performed annually to ensure continued worker and public health and environmental hazards remain below established regulatory limits.

### 1.1 **Purpose and Scope**

The purpose of this report is to present the radiological survey results obtained during the 2024 annual radiological survey (survey) of the site. Results from the survey are compared to the previous year's survey results to identify if radiological conditions at the site have changed by more than two sigma since the last survey performed (in 2023). Survey results are also compared against established regulatory radiological limits for the site.

The scope of this report is specific to the performance of various radiological surveys performed by Legacy Management Support (LMS) qualified radiological control technicians (RCTs) in the reactor's containment building (dome) and their outcomes. Surveys were performed in accordance with the *Annual LMS Radiological Characterization Survey Plan for the BONUS*, *Puerto Rico, Decommissioned Reactor Site, LMS RadCon Survey Plan Number: 24-001* (DOE 2024a), also called the survey plan, and LMS Radiological Control organization procedures, manuals, and plans. Radiological surveys were not performed outside of the dome.

### **1.2 Survey Limitations**

The following survey limitations were identified in the survey plan and held true during the surveys:

• Beta-gamma contamination and gamma radiation surveys performed during the survey were used as described in the introduction section of the survey plan. Survey results obtained at the site were not used to make official radiological release decisions for the site. Two sets of used radiological personal protection equipment (PPE) (e.g., rubber shoe covers, disposable coveralls, and nitrile gloves) were radiologically surveyed and found to be free of surface contamination (below regulatory limits) and disposed of as office trash or put back into the radiological PPE inventory.

- Radiological surveys were performed by DOE-qualified LMS RCTs using functional and calibrated LMS radiological survey instruments and equipment.
- Radiological surveys, instrument preoperational checks, and recording of the survey results were performed in accordance with the LMS *Radiation Protection Program Plan* (DOE 2024f), *Radiological Control Manual* (DOE 2023a), Radiological Control implementing procedures, and the survey plan.

# 2.0 Radiological Surveys

## 2.1 Survey Instruments

In order to perform a removable and total surface contamination and general area gamma radiation dose rate survey of the dome, a Ludlum Model 3030 smear counter (serial no. 330877), Ludlum Model 26 Geiger–Müller pancake probe (serial no. PF009836), and ThermoScientific MicroRem meter instrument (serial no. 19288) were selected and used. The MicroRem meter and Ludlum Model 26 instruments were used in the dome to perform the total surface contamination and general area gamma radiation dose rate surveys. The Ludlum Model 3030 instrument (serial no. 330877) was used back at the Office of Legacy Management (LM) Field Support Center at Grand Junction, Colorado (LMFSC), to count loose surface contamination smears collected at the site.

LMS survey instruments shipped to the site arrived intact and operated as expected. Instruments were in calibration and passed their daily response checks prior to daily use, as required by the *Portable Radiation Survey Instrument Response Checks* (DOE 2024e) procedure and the *Counting Systems Daily Operation* (DOE 2024c) procedure. Surveys were performed in accordance with the *Contamination Surveys and Equipment and Material Release* (DOE 2024b) procedure and the survey plan.

Instrument annual calibration certificates, daily response check sheets, and other required instrumentation operational check and quality control documents are included in Attachment 4.

# 2.2 Contamination Survey

Direct beta-gamma removable and total surface contamination surveys were performed at the 73 identified survey locations (per the survey plan) and at 5 nonbiased survey locations (selected in real time by the RCT performing the survey) using the above-identified contamination survey instruments. Instruments were operated in accordance with LMS Radiological Control operating procedures, plans, and manuals, specifically the *Contamination Surveys and Equipment and Material Release* procedure. Surface contamination survey results were documented in accordance with the survey plan and the *Documenting Radiological Surveys* (DOE 2024d) procedure. Surface contamination smears were checked for radioactivity at the time of the survey using the Ludlum Model 26 Geiger–Müller pancake probe and then brought back to the LMFSC for nuclear counting on the Ludlum Model 3030 smear counter.

Direct beta-gamma surface contamination and transferable surface contamination surveys results were evaluated in real time using the below criteria, and additional confirmatory, biased beta-gamma surface contamination and transferable surface contamination smear surveys were performed when any of the following survey results or physical site conditions existed:

- The RCT observed excessive deterioration of the structure(s) during the survey when compared to the previous year's structural condition
- Survey results from the identified survey locations indicated contamination levels in excess of 1000 disintegrations per minute (dpm) (beta and gamma) per 100 square centimeters (cm<sup>2</sup>) transferable contamination or 5000 dpm (beta and gamma) per 100 cm<sup>2</sup> total surface contamination
- The RCT observed any conditions that justify additional surface contamination surveys be performed, at their discretion

Only a single contamination survey result stood out to the RCTs performing the contamination surveys, which was at survey location L40. The remaining 77 contamination survey results were well within regulatory limits and appeared to be consistent with the 2023 contamination survey results.

Survey location L40 is identified as the Fuel Pool Purifier—Floor #1 location and is physically located inside one of two surface contamination areas in the dome (the contamination area located on the main level floor of the dome, inside the visitor-restricted area). Additional Ludlum Model 26 Geiger–Müller pancake probe surface scans were performed in and around survey location L40 to identify the extent of the contamination area. Scan values ranged from near background to tens of thousands of disintegrations per minute per 100 square centimeters (dpm/100 cm<sup>2</sup>) for total surface contamination inside the contamination area. No surface contamination was identified outside of the contamination area boundary.

The original contamination area radiological posting (sign) and boundary string (Figure 1) were removed and replaced with a yellow and magenta radiological rope and with three contamination area postings hung from the new radiological rope (Figure 2 and Figure 3). This new rope boundary extended back to the walls of the fuel storage pool structure and "enclosed" the actual contamination area. The area (square feet) of contamination area did not change in size with the installation of the new radiological rope.



Figure 1. Original Main Level Contamination Area Posting and Boundary String



Figure 2. Updated Main Level Contamination Area Posting and Boundary Rope (looking west)



Figure 3. Updated Main Level Contamination Area Posting and Boundary Rope (looking southeast)

In the basement of the dome, a preexisting contamination area boundary and radiological posting was moved from its original location to inside the room where the contamination area existed. The movement of this boundary and radiological posting was performed at the request of the BONUS site lead. The RCT moved the boundary rope and radiological posting into the room roughly 15 feet and away from the main walkway in the basement (Figure 4 and Figure 5). The movement of this boundary and posting sign slightly reduced the square footage of the contamination area and better represents the contamination area boundary.

Within the basement contamination area, a single pump appeared to be the reason for the contamination area (the rust-colored material around the base of the pump in Figure 6).

Total surface contamination measurement readings ranged from near background to over 30,000 dpm/100 cm<sup>2</sup> on the areas where rust material existed (prior to applying fixative). As part of the 2024 radiological survey, a contamination fixative was sprayed onto the loose material around the base of the pump to reduce material from becoming loose surface contamination and prevent the spread of contamination in the area. The fixative applied was InstaCote Inc.'s CC Wet and CC Fix. CC Wet was applied first and then followed by CC Fix, per the manufacturer's instructions. The color of the CC Wet was fluorescent green while CC Fix was bright blue (Figure 7 and Figure 8).



Figure 4. Original Radiological Posting and Boundary Location, in the Basement Contamination Area



Figure 5. Moved Radiological Posting and Boundary, in the Basement Contamination Area



Figure 6. Basement Contamination Area—Offending Pump



Figure 7. Basement Contamination Area Pump with Fixative Applied, Front View



Figure 8. Basement Contamination Area Pump with Fixative Applied, Rear View

Survey locations were physically identified around the dome and then marked with an indelible marker (Figure 9) on floors and walls. These marking should remain visible and legible and aid in locating radiological survey locations in 2025. Survey locations identified in the survey plan were available and located during the survey. No survey locations had to be moved or relocated due to safety concerns or the unavailability of planned survey locations.

Contamination survey results are identified in Table 1 and on the *Radiological Survey Map* form (LMS 1553), radiological survey number 240722-002 (located in Attachment 3).



Figure 9. Survey Location Marking, Example of Survey Location 20 on Tile Floor

| Survey ID | Survey Location                    | Removable<br>Contamination<br>(dpm/100cm <sup>2</sup> ) | Total Contamination<br>(dpm/100cm <sup>2</sup> ) | General Location         |
|-----------|------------------------------------|---------------------------------------------------------|--------------------------------------------------|--------------------------|
| L1        | Pipe Chase Face #1                 | 26                                                      | < Sc                                             | Monolith Top             |
| L2        | Pipe Chase Face #2                 | < Sc                                                    | < Sc                                             | Monolith Top             |
| L3        | Pipe Chase Face #3                 | < Sc                                                    | < Sc                                             | Monolith Top             |
| L4        | Pipe Chase Face #4                 | < Sc                                                    | 495                                              | Monolith Top             |
| L5        | Top Plug Face #1—Left              | < Sc                                                    | < Sc                                             | Monolith Top             |
| L6        | Top Plug Face #1—Center            | < Sc                                                    | < Sc                                             | Monolith Top             |
| L7        | Top Plug Face #1—Right             | < Sc                                                    | 495                                              | Monolith Top             |
| L8        | Top Plug Face #2—Top               | < Sc                                                    | 730                                              | Monolith Top             |
| L9        | Top Plug Face #2—Center            | < Sc                                                    | 1908                                             | Monolith Top             |
| L10       | Top Plug Face #2—Bottom            | < Sc                                                    | 683                                              | Monolith Top             |
| L11       | Top Plug Face #3—Right             | < Sc                                                    | 447                                              | Monolith Top             |
| L12       | Top Plug Face #3—Center            | < Sc                                                    | 565                                              | Monolith Top             |
| L13       | Top Plug Face #3—Left              | < Sc                                                    | < Sc                                             | Monolith Top             |
| L14       | Top Plug Face #4—Bottom            | < Sc                                                    | < Sc                                             | Monolith Top             |
| L15       | Top Plug Face #4—Center            | < Sc                                                    | 612                                              | Monolith Top             |
| L16       | Top Plug Face #4—Top               | < Sc                                                    | 612                                              | Monolith Top             |
| L17       | Top Plug Top Surface—Upper Left    | < Sc                                                    | 471                                              | Monolith Top             |
| L18       | Top Plug Top Surface—Center Right  | < Sc                                                    | < Sc                                             | Monolith Top             |
| L19       | Top Plug Top Surface—Center Bottom | 35                                                      | < Sc                                             | Monolith Top             |
| L20       | Main Floor—Zone 1                  | < Sc                                                    | < Sc                                             | Main Level—Public Access |
| L21       | Main Floor—Zone 2                  | < Sc                                                    | < Sc                                             | Main Level—Public Access |
| L22       | Main Floor—Zone 3                  | < Sc                                                    | < Sc                                             | Main Level—Public Access |
| L23       | Main Floor—Zone 4                  | < Sc                                                    | 707                                              | Main Level—Public Access |
| L24       | Main Floor—Zone 5                  | < Sc                                                    | 777                                              | Main Level—Public Access |
| L25       | Main Floor—Zone 6                  | < Sc                                                    | 942                                              | Main Level—Public Access |
| L26       | Main Floor—Zone 7                  | < Sc                                                    | < Sc                                             | Main Level—Public Access |
| L27       | Main Floor—Zone 8                  | < Sc                                                    | < Sc                                             | Main Level—Public Access |
| L28       | Main Floor—Zone 9                  | < Sc                                                    | < Sc                                             | Main Level—Public Access |

Table 1. 2024 Contamination Survey Results

| Survey ID | Survey Location                       | Removable<br>Contamination<br>(dpm/100cm²) | Total Contamination<br>(dpm/100cm <sup>2</sup> ) | General Location             |
|-----------|---------------------------------------|--------------------------------------------|--------------------------------------------------|------------------------------|
| L29       | Main Floor—Zone 10                    | 28                                         | 683                                              | Main Level—Public Access     |
| L30       | Main Floor—Zone 11                    | < Sc                                       | < Sc                                             | Main Level—Public Access     |
| L31       | Main Floor—Zone 12                    | < Sc                                       | < Sc                                             | Main Level—Public Access     |
| L32       | Main Floor—Zone 13                    | < Sc                                       | 542                                              | Main Level—Public Access     |
| L33       | Main Floor—Zone 14                    | < Sc                                       | 777                                              | Main Level—Public Access     |
| L34       | Main Floor Water Column—Center Bottom | 28                                         | 542                                              | Main Level—Controlled Area   |
| L35       | Main Floor Water Column—Right Middle  | < Sc                                       | < Sc                                             | Main Level—Controlled Area   |
| L36       | Instrument Thimble #1                 | < Sc                                       | < Sc                                             | Main Level—Controlled Area   |
| L37       | Instrument Thimble #2                 | < Sc                                       | < Sc                                             | Main Level—Controlled Area   |
| L38       | Instrument Thimble #3                 | < Sc                                       | < Sc                                             | Main Level—Controlled Area   |
| L39       | Pipe Chase Exit Hatch                 | 26                                         | < Sc                                             | Main Level—Controlled Area   |
| L40       | Fuel Pool Purifier—Floor #1           | < Sc                                       | 18,699                                           | Main Level—Contaminated Area |
| L41       | Fuel Pool Purifier—Floor #2           | < Sc                                       | 942                                              | Main Level—Controlled Area   |
| L42       | Fuel Pool Purifier—Floor #3           | < Sc                                       | 495                                              | Main Level—Controlled Area   |
| L43       | Fuel Pool Purifier—Floor #4           | < Sc                                       | < Sc                                             | Main Level—Controlled Area   |
| L44       | Basement Floor—Zone 1                 | < Sc                                       | < Sc                                             | Basement Level               |
| L45       | Basement Floor—Zone 2                 | < Sc                                       | < Sc                                             | Basement Level               |
| L46       | Basement Floor—Zone 3                 | < Sc                                       | < Sc                                             | Basement Level               |
| L47       | Basement Floor—Zone 4                 | 35                                         | < Sc                                             | Basement Level               |
| L48       | Basement Floor—Zone 5                 | < Sc                                       | < Sc                                             | Basement Level               |
| L49       | Basement Floor—Zone 6                 | < Sc                                       | < Sc                                             | Basement Level               |
| L50       | Basement Floor—Zone 7                 | < Sc                                       | < Sc                                             | Basement Level               |
| L51       | Basement Floor—Zone 8                 | < Sc                                       | < Sc                                             | Basement Level               |
| L52       | Basement Floor—Zone 9                 | < Sc                                       | < Sc                                             | Basement Level               |
| L53       | Basement Floor—Zone 10                | < Sc                                       | < Sc                                             | Basement Level               |
| L54       | Basement Floor—Zone 11                | < Sc                                       | < Sc                                             | Basement Level               |
| L55       | Basement Floor—Zone 12                | < Sc                                       | < Sc                                             | Basement Level               |
| L56       | Basement Floor—Zone 13                | < Sc                                       | < Sc                                             | Basement Level               |

| Survey ID | Survey Location                       | Removable<br>Contamination<br>(dpm/100cm²) | Total Contamination<br>(dpm/100cm <sup>2</sup> ) | General Location         |
|-----------|---------------------------------------|--------------------------------------------|--------------------------------------------------|--------------------------|
| L57       | Basement Floor—Zone 14                | < Sc                                       | < Sc                                             | Basement Level           |
| L58       | Basement Floor—Zone 15                | < Sc                                       | < Sc                                             | Basement Level           |
| L59       | Basement Floor—Zone 16                | < Sc                                       | 495                                              | Basement Level           |
| L60       | Basement Floor—Zone 17                | < Sc                                       | < Sc                                             | Basement Level           |
| L61       | Basement Floor—Zone 18                | < Sc                                       | < Sc                                             | Basement Level           |
| L62       | Side of Liquid Waste Tank #1          | < Sc                                       | < Sc                                             | Basement Level           |
| L63       | Side of Liquid Waste Tank #2          | < Sc                                       | < Sc                                             | Basement Level           |
| L64       | Column 4 and 5 Inside Room            | < Sc                                       | < Sc                                             | Basement Level           |
| L65       | Heater Room (Wall)                    | < Sc                                       | < Sc                                             | Basement Level           |
| L66       | Vapor Sphere Room—Upper Left          | < Sc                                       | < Sc                                             | Basement Level           |
| L67       | Vapor Sphere Room—Center Right        | < Sc                                       | < Sc                                             | Basement Level           |
| L68       | Water Pump Room to the Right          | < Sc                                       | < Sc                                             | Basement Level           |
| L69       | Condenser Room Entry Wall—Block       | < Sc                                       | < Sc                                             | Basement Level           |
| L70       | Condenser Room Entry Wall—Concrete    | < Sc                                       | < Sc                                             | Basement Level           |
| L71       | South Room with 2 pumps               | < Sc                                       | < Sc                                             | Basement Level           |
| L72       | Under Stairs Near North Door—Floor #1 | < Sc                                       | 471                                              | Basement Level           |
| L73       | Under Stairs Near North Door—Floor #2 | < Sc                                       | < Sc                                             | Basement Level           |
| L74       | Condensate Pump #2 Pedestal           | < Sc                                       | 942                                              | Basement Level           |
| L75       | Basement Floor—Zone 5                 | < Sc                                       | < Sc                                             | Basement Level           |
| L76       | Display Area                          | < Sc                                       | < Sc                                             | Main Level—Public Access |
| L77       | RadCon Storage Area                   | < Sc                                       | < Sc                                             | Main Level—Public Access |
| L78       | Building Airlock Main Entry           | < Sc                                       | < Sc                                             | Main Level—Public Access |

Table 1. 2024 Contamination Survey Results (continued)

Abbreviations:

RadCon = radiological control Sc = instrument critical value

### 2.3 Radiation Survey

General area gamma radiation dose rate surveys were performed at the 73 identified survey locations (per the survey plan) and at 5 nonbiased survey locations (selected real time by the RCT performing the survey) using the ThermoScientific MicroRem meter instrument (serial no. 19288). The instrument was operated in accordance with LMS Radiological Control operating procedures, plans, and manuals. General area gamma radiation dose rate results were documented in accordance with the survey plan and the *Documenting Radiological Surveys* procedure.

General area gamma radiation dose rate survey results were evaluated in real time using the criteria below. Additional confirmatory, biased general area gamma radiation dose rate surveys were performed when any of the following survey result or physical site conditions existed:

- The RCT observed excessive deterioration of the structure(s) during the survey when compared to the previous year's structural condition
- Survey results from the identified survey locations indicated a gamma radiation dose rate in excess of 0.4 millirem per hour (400  $\mu$ rem/h)
- The RCT observed any conditions that justified an additional gamma radiation dose rate survey be performed, at their discretion

General area gamma radiation dose rate results appeared appropriate to the RCTs performing the surveys; survey results were well within regulatory limits and appeared to be consistent with 2023's general area gamma radiation dose rate survey results, taking into account the difference in the gamma radiation instruments used in 2023 and 2024 (a dose rate instrument that was used in 2024 versus an exposure rate instrument that was used in 2023) and the way the survey results were recorded and presented in the 2023 report, with the background exposure rate subtracted from the gross gamma exposure rate compared to the 2024 report, in which the dose rate was reported and recorded as a gross dose rate value (no background value was subtracted from the gross reading result). General area background dose rates were 17  $\mu$ rem/h on the main level and mezzanine (monolith top), and 38  $\mu$ rem/h in the basement level. No biased general area gamma radiation dose rate surveys were performed as none of the triggers to take biased general area gamma radiation dose rate surveys occurred.

Gamma radiation dose rate survey results are identified in Table 2 and on the *Radiological Survey Map* form, radiological survey number 240722-002 (located in Attachment 3).

| Survey ID | Survey Location         | Dose Result<br>(μrem/h) | General Location |
|-----------|-------------------------|-------------------------|------------------|
| L1        | Pipe Chase Face #1      | 20                      | Monolith Top     |
| L2        | Pipe Chase Face #2      | 20                      | Monolith Top     |
| L3        | Pipe Chase Face #3      | 20                      | Monolith Top     |
| L4        | Pipe Chase Face #4      | 20                      | Monolith Top     |
| L5        | Top Plug Face #1—Left   | 12                      | Monolith Top     |
| L6        | Top Plug Face #1—Center | 10                      | Monolith Top     |

Table 2. 2024 Dose Rate Survey Results

| Survey ID | Survey Location                       | Dose Result<br>(μrem/h) | General Location             |
|-----------|---------------------------------------|-------------------------|------------------------------|
| L7        | Top Plug Face #1—Right                | 10                      | Monolith Top                 |
| L8        | Top Plug Face #2—Top                  | 11                      | Monolith Top                 |
| L9        | Top Plug Face #2—Center               | 12                      | Monolith Top                 |
| L10       | Top Plug Face #2—Bottom               | 10                      | Monolith Top                 |
| L11       | Top Plug Face #3—Right                | 10                      | Monolith Top                 |
| L12       | Top Plug Face #3—Center               | 12                      | Monolith Top                 |
| L13       | Top Plug Face #3—Left                 | 13                      | Monolith Top                 |
| L14       | Top Plug Face #4—Bottom               | 12                      | Monolith Top                 |
| L15       | Top Plug Face #4—Center               | 12                      | Monolith Top                 |
| L16       | Top Plug Face #4—Top                  | 12                      | Monolith Top                 |
| L17       | Top Plug Top Surface—Upper Left       | 12                      | Monolith Top                 |
| L18       | Top Plug Top Surface—Center Right     | 12                      | Monolith Top                 |
| L19       | Top Plug Top Surface—Center Bottom    | 14                      | Monolith Top                 |
| L20       | Main Floor—Zone 1                     | 14                      | Main Level—Public Access     |
| L21       | Main Floor—Zone 2                     | 14                      | Main Level—Public Access     |
| L22       | Main Floor—Zone 3                     | 15                      | Main Level—Public Access     |
| L23       | Main Floor—Zone 4                     | 17                      | Main Level—Public Access     |
| L24       | Main Floor—Zone 5                     | 17                      | Main Level—Public Access     |
| L25       | Main Floor—Zone 6                     | 17                      | Main Level—Public Access     |
| L26       | Main Floor—Zone 7                     | 18                      | Main Level—Public Access     |
| L27       | Main Floor—Zone 8                     | 17                      | Main Level—Public Access     |
| L28       | Main Floor—Zone 9                     | 17                      | Main Level—Public Access     |
| L29       | Main Floor—Zone 10                    | 17                      | Main Level—Public Access     |
| L30       | Main Floor—Zone 11                    | 15                      | Main Level—Public Access     |
| L31       | Main Floor—Zone 12                    | 17                      | Main Level—Public Access     |
| L32       | Main Floor—Zone 13                    | 18                      | Main Level—Public Access     |
| L33       | Main Floor—Zone 14                    | 17                      | Main Level—Public Access     |
| L34       | Main Floor Water Column—Center Bottom | 18                      | Main Level—Controlled Area   |
| L35       | Main Floor Water Column—Right Middle  | 15                      | Main Level—Controlled Area   |
| L36       | Instrument Thimble #1                 | 22                      | Main Level—Controlled Area   |
| L37       | Instrument Thimble #2                 | 20                      | Main Level—Controlled Area   |
| L38       | Instrument Thimble #3                 | 16                      | Main Level—Controlled Area   |
| L39       | Pipe Chase Exit Hatch                 | 22                      | Main Level—Controlled Area   |
| L40       | Fuel Pool Purifier—Floor #1           | 30                      | Main Level—Contaminated Area |
| L41       | Fuel Pool Purifier—Floor #2           | 30                      | Main Level—Controlled Area   |
| L42       | Fuel Pool Purifier—Floor #3           | 30                      | Main Level—Controlled Area   |
| L43       | Fuel Pool Purifier—Floor #4           | 30                      | Main Level—Controlled Area   |
| L44       | Basement Floor—Zone 1                 | 40                      | Basement Level               |
| L45       | Basement Floor—Zone 2                 | 40                      | Basement Level               |
| L46       | Basement Floor—Zone 3                 | 40                      | Basement Level               |
| L47       | Basement Floor—Zone 4                 | 35                      | Basement Level               |

#### Table 2. 2024 Dose Rate Survey Results (continued)

| Survey ID | Survey Location                                                               | Dose Result<br>(μrem/h) | General Location         |
|-----------|-------------------------------------------------------------------------------|-------------------------|--------------------------|
| L48       | Basement Floor—Zone 5                                                         | 35                      | Basement Level           |
| L49       | Basement Floor—Zone 6                                                         | 35                      | Basement Level           |
| L50       | Basement Floor—Zone 7                                                         | 40                      | Basement Level           |
| L51       | Basement Floor—Zone 8                                                         | 40                      | Basement Level           |
| L52       | Basement Floor—Zone 9                                                         | 40                      | Basement Level           |
| L53       | Basement Floor—Zone 10                                                        | 35                      | Basement Level           |
| L54       | Basement Floor—Zone 11                                                        | 35                      | Basement Level           |
| L55       | Basement Floor—Zone 12                                                        | 40                      | Basement Level           |
| L56       | Basement Floor—Zone 13                                                        | 35                      | Basement Level           |
| L57       | Basement Floor—Zone 14                                                        | 35                      | Basement Level           |
| L58       | Basement Floor—Zone 15                                                        | 35                      | Basement Level           |
| L59       | Basement Floor—Zone 16                                                        | 40                      | Basement Level           |
| L60       | Basement Floor—Zone 17                                                        | 35                      | Basement Level           |
| L61       | Basement Floor—Zone 18                                                        | 40                      | Basement Level           |
| L62       | Side of Liquid Waste Tank #1                                                  | 40                      | Basement Level           |
| L63       | Side of Liquid Waste Tank #2                                                  | 40                      | Basement Level           |
| L64       | Column 4 and 5 Inside Room                                                    | 40                      | Basement Level           |
| L65       | Heater Room (wall)                                                            | 40                      | Basement Level           |
| L66       | Vapor Sphere Room—Upper Left                                                  | 40                      | Basement Level           |
| L67       | Vapor Sphere Room—Center Right                                                | 35                      | Basement Level           |
| L68       | Water Pump Room to the Right                                                  | 40                      | Basement Level           |
| L69       | Condenser Room Entry Wall—Block                                               | 40                      | Basement Level           |
| L70       | Condenser Room Entry Wall—Concrete                                            | 40                      | Basement Level           |
| L71       | South Room with 2 pumps                                                       | 40                      | Basement Level           |
| L72       | Under Stairs Near North Door—Floor #1                                         | 40                      | Basement Level           |
| L73       | Under Stairs Near North Door—Floor<br>#2Under stairs near north door Floor #2 | 40                      | Basement Level           |
| L74       | Condensate Pump #2 Pedestal                                                   | 40                      | Basement Level           |
| L75       | Basement Floor—Zone 5                                                         | 35                      | Basement Level           |
| L76       | Display Area                                                                  | 19                      | Main Level—Public Access |
| L77       | RadCon Storage Area                                                           | 20                      | Main Level—Public Access |
| L78       | Building Airlock Main Entry                                                   | 18                      | Main Level—Public Access |

## 2.4 Survey Quality

The quality of a radiological survey (and its results) can be demonstrated in several ways and is predominately based on the type of survey being performed (NRC 2020). For unrestricted release surveys or Final Status Surveys, high-quality data is needed to ensure that the surveyed item being released truly meets the release criteria. While survey data quality is still necessary for characterization and routine-type radiological surveys, the level of the data quality process is not as rigorous as the process needed for an unrestricted release survey.

For the surveys performed in 2024, radiological survey and results quality is obtained and demonstrated through several methods and techniques, including using senior-level DOE-qualified RCTs to perform the survey, using approved survey procedures, using an approved plan, using industry standard calibrated and daily response checked survey instruments, calculating counting instrument critical values, and performing peer-reviews and senior health physics reviews of the survey results.

For the 2024 survey, two senior LMS RCTs mobilized to the site and performed the identified radiological surveys in accordance with the approved survey plan and LMS Radiological Control organization procedures. Instrument daily response checks were performed at both the beginning of the day and then at the end of the day, ensuring the instruments were functioning properly during the daily surveys. Daily Instrument Response forms (LMS 1974a) were used to record the morning's response checks and are included in Attachment 4. In addition to the Daily Instrument Response forms, instrument After-Calibration Source Response Checks Data Sheet forms (LMS 1974) and instrument calibration certificates are also included in Attachment 4 for the instruments used during the surveys. Survey results were recorded on an LMS Radiological Survey Map form and are included in Attachment 3. This form has been in use for numerous years by LMS staff and is an electronic form that automatically performs the complex calculations required to convert raw instrument results data (i.e., counts per unit time) into disintegrations per unit time and survey area results data (i.e., dpm/100 cm<sup>2</sup>) that can then be comparted against established regulatory limits for the surveys. The Radiological Survey Map form also automatically calculates the critical values of the instruments used, given the instrument's background values. Using an electronic-based form like the Radiological Survey Map helps ensure the accuracy of required calculations and adds an additional level of survey results quality.

Lastly, the survey results are formally reviewed by a senior-level LMS health physicist and signed off as reviewed and proved on the *Radiological Survey Map* form. If errors are identified on the *Radiological Survey Map* form, then it is returned to the RCT that performed the survey and corrections to the results are requested.

# 2.5 Survey Regulatory Limits

Radiological survey results were compared against the established regulatory limits of 10 CFR 835 Appendix D, "Surface Contamination Values," for surface radioactive contamination (for both removable and total, Table 3) and against the radiation levels identified in 10 CFR 835 for a radiation area (i.e., any area, accessible to individuals, in which radiation levels could result in an individual receiving an equivalent dose to the whole body in excess of 5 millirem [mrem] in 1 hour at 30 centimeters from the source or from any surface that the radiation penetrates).

Only a single survey location (L40) exceeded the total surface contamination limit of  $5000 \text{ dpm}/100 \text{ cm}^2$ , with a value of 18,699 dpm/100 cm<sup>2</sup>. This survey location is inside an identified and posted contamination area and is therefore not a radiological control concern and there is not an exceedance of regulatory limits.

No survey locations exceeded 5 mrem in 1 hour at 30 centimeters from the source or from any surface.

#### Table 3. Summary of Surface Contamination Values<sup>a</sup> in dpm/100 cm<sup>2</sup> (10 CFR 835 Appendix D)

| Radionuclide                                                                                                                                             | Removable <sup>b,d</sup> | Total<br>(Fixed + Removable) <sup>b,c</sup> |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------------------------------------|
| U-natural, U-235, U-238, and associated decay products                                                                                                   | 1,000 <sup>g</sup>       | 5,000 <sup>g</sup>                          |
| Transuranic elements, radium-226, radium-228,<br>thorium-230, thorium-228, protactinium-231, actinium-227,<br>iodine-125, iodine-129                     | 20                       | 500                                         |
| Th-natural, thorium-232, strontium-90, radium-223, radium-224, U-232, iodine-126, iodine-131, iodine-133                                                 | 200                      | 1,000                                       |
| Beta-gamma emitters (nuclides with decay modes other than alpha emission or spontaneous fission) except strontium-90 and others noted above <sup>e</sup> | 1,000                    | 5,000                                       |
| Tritium and STCs <sup>f</sup>                                                                                                                            | 10,000                   | See Note f                                  |

Notes:

<sup>a</sup> The values in this appendix, with the exception noted in footnote f, apply to radioactive contamination deposited on, but not incorporated into the interior or matrix of, the contaminated item. Where surface contamination by both alpha- and beta-gamma-emitting nuclides exists, the limits established for alpha- and beta-gamma-emitting nuclides apply independently.

<sup>b</sup> As used in this table, dpm means the rate of emission by radioactive material as determined by correcting the counts per minute observed by an appropriate detector for background, efficiency, and geometric factors associated with the instrumentation.

<sup>c</sup> The levels may be averaged over 1 square meter provided the maximum surface activity in any area of 100 cm<sup>2</sup> is less than three times the value specified. For purposes of averaging, any square meter of surface shall be considered to be above the surface contamination value if: (1) by using measurements of a representative number of sections it is determined that the average contamination level exceeds the applicable value; or (2) it is determined that the sum of the activity of all isolated spots or particles in any 100 cm<sup>2</sup> area exceeds three times the applicable value.

- <sup>d</sup> The amount of removable radioactive material per 100 cm<sup>2</sup> of surface area should be determined by swiping the area with dry filter or soft absorbent paper, applying moderate pressure, and then assessing the amount of radioactive material on the swipe with an appropriate instrument of known efficiency. (Note: The use of dry material may not be appropriate for tritium.) When removable contamination on objects of surface area less than 100 cm<sup>2</sup> is determined, the activity per unit area shall be based on the actual area and the entire surface shall be wiped. It is not necessary to use swiping techniques to measure removable contamination levels if direct scan surveys indicate that the total residual surface contamination levels are within the limits for removable contamination.
- <sup>e</sup> This category of radionuclides includes mixed fission products, including the strontium-90 which is present in them. It does not apply to strontium-90 which has been separated from the other fission products or mixtures where the strontium-90 has been enriched.
- <sup>f</sup> Tritium contamination including STCs may diffuse into the volume or matrix of materials. Evaluation of surface contamination shall consider the extent to which such contamination may migrate to the surface in order to ensure the surface contamination value provided in this appendix is not exceeded. Once this contamination migrates to the surface, it may be removable, not fixed; therefore, a "total" value does not apply. In certain cases, a "total" value of 10,000 dpm/100 cm<sup>2</sup> may be applicable either to metals of the types from which insoluble special tritium compounds are formed, that have been exposed to tritium, or to bulk materials to which insoluble special tritium compound particles are fixed to a surface.

<sup>g</sup> These limits apply only to the alpha emitters within the respective decay series.

#### Abbreviations:

STC= special tritium compound Th = thorium U = uranium

### 2.6 Survey Results Comparisons (2024 to 2023)

In accordance with the survey plan, results from the 2024 survey are to be compared to the previous year's survey results to identify if radiological conditions at the site have changed (by more than two sigma) since the last survey performed.

### 2.6.1 Removable Surface Contamination Comparison

The 2024 removable surface contamination results are very similar to the 2023 removable surface contamination results (Table 4). Given the insignificance of the survey results greater than either the 2024 instrument's critical value or the 2023 instrument's minimum detectable activity for the survey instruments used, a two sigma value was not determined for the survey result populations nor used as a comparison tool (to understand if removable surface contamination values had changed with any statistical significance). The highest removable surface contamination result identified for the comparison was 215 dpm/100 cm<sup>2</sup> (from the 2023 survey). When compared to the removable surface contamination limit of 1000 dpm/100 cm<sup>2</sup>, surface contamination levels of 215 dpm/100 cm<sup>2</sup> or less already provide a solid indication that surface contamination levels are not changing in a given area.

One 2024 survey location (L43) did not have a matching 2023 survey location. During development of the 2024 survey plan, the plan's author was unsure of the location of the 2023 survey location. During the physical survey, it was determined that the 2023 L43 survey location was inside the contamination area while the 2024 survey location was outside of the contamination area. Hence, no 2023 radiological data was available for the 2024 comparison.

It can be concluded (for both years 2024 and 2023) that removable surface contamination is not migrating from one area to another area and that removable surface contamination levels are significantly below regulatory removable surface contamination limit values and do not pose human health concerns or environmental risks.

### 2.6.2 Total Surface Contamination Comparison

The 2024 total surface contamination survey results compare favorably to the 2023 total surface contamination survey results (Table 5), excluding one survey result (at survey location L40).

The standard deviation (sigma) value calculated for all of the 2023 total surface contamination results is 1354 dpm/100 cm<sup>2</sup>. The sigma value calculated for all of the 2024 total surface contamination results is 3764 dpm/100 cm<sup>2</sup>. These sigma results differ by more than two times. However, when survey location L40 results are removed from the sigma calculations, the 2023 sigma value is 286 dpm/100 cm<sup>2</sup> and the 2024 sigma value is 309 dpm/100 cm<sup>2</sup>. These two sigma results (when the L40 survey location results are excluded) are well within the two sigma range of each other, suggesting that the 2023 and 2024 total surface contamination results are very similar. The highest total surface contamination result (excluding survey location L40) identified for the comparison was 1908 dpm/100 cm<sup>2</sup>, from the 2024 survey.

| Survey ID | Survey Location                    | 2024 Removable<br>Contamination<br>(dpm/100cm <sup>2</sup> ) | 2023 Removable<br>Contamination<br>(dpm/100cm <sup>2</sup> ) | General Location         |
|-----------|------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|--------------------------|
| L1        | Pipe Chase Face #1                 | 26                                                           | < MDA                                                        | Monolith Top             |
| L2        | Pipe Chase Face #2                 | < Sc                                                         | < MDA                                                        | Monolith Top             |
| L3        | Pipe Chase Face #3                 | < Sc                                                         | < MDA                                                        | Monolith Top             |
| L4        | Pipe Chase Face #4                 | < Sc                                                         | < MDA                                                        | Monolith Top             |
| L5        | Top Plug Face #1—Left              | < Sc                                                         | < MDA                                                        | Monolith Top             |
| L6        | Top Plug Face #1—Center            | < Sc                                                         | < MDA                                                        | Monolith Top             |
| L7        | Top Plug Face #1—Right             | < Sc                                                         | < MDA                                                        | Monolith Top             |
| L8        | Top Plug Face #2—Top               | < Sc                                                         | < MDA                                                        | Monolith Top             |
| L9        | Top Plug Face #2—Center            | < Sc                                                         | < MDA                                                        | Monolith Top             |
| L10       | Top Plug Face #2—Bottom            | < Sc                                                         | < MDA                                                        | Monolith Top             |
| L11       | Top Plug Face #3—Right             | < Sc                                                         | < MDA                                                        | Monolith Top             |
| L12       | Top Plug Face #3—Center            | < Sc                                                         | 122                                                          | Monolith Top             |
| L13       | Top Plug Face #3—Left              | < Sc                                                         | < MDA                                                        | Monolith Top             |
| L14       | Top Plug Face #4—Bottom            | < Sc                                                         | 149                                                          | Monolith Top             |
| L15       | Top Plug Face #4—Center            | < Sc                                                         | < MDA                                                        | Monolith Top             |
| L16       | Top Plug Face #4—Top               | < Sc                                                         | < MDA                                                        | Monolith Top             |
| L17       | Top Plug Top Surface—Upper Left    | < Sc                                                         | < MDA                                                        | Monolith Top             |
| L18       | Top Plug Top Surface—Center Right  | < Sc                                                         | < MDA                                                        | Monolith Top             |
| L19       | Top Plug Top Surface—Center Bottom | 35                                                           | < MDA                                                        | Monolith Top             |
| L20       | Main Floor—Zone 1                  | < Sc                                                         | < 200                                                        | Main Level—Public Access |
| L21       | Main Floor—Zone 2                  | < Sc                                                         | < MDA                                                        | Main Level—Public Access |
| L22       | Main Floor—Zone 3                  | < Sc                                                         | 122                                                          | Main Level—Public Access |
| L23       | Main Floor—Zone 4                  | < Sc                                                         | < MDA                                                        | Main Level—Public Access |
| L24       | Main Floor—Zone 5                  | < Sc                                                         | < MDA                                                        | Main Level—Public Access |
| L25       | Main Floor—Zone 6                  | < Sc                                                         | < 200                                                        | Main Level—Public Access |
| L26       | Main Floor—Zone 7                  | < Sc                                                         | < 200                                                        | Main Level—Public Access |
| L27       | Main Floor—Zone 8                  | < Sc                                                         | < 200                                                        | Main Level—Public Access |
| L28       | Main Floor—Zone 9                  | < Sc                                                         | < 200                                                        | Main Level—Public Access |

| Survey ID | Survey Location                       | 2024 Removable<br>Contamination<br>(dpm/100cm <sup>2</sup> ) | 2023 Removable<br>Contamination<br>(dpm/100cm <sup>2</sup> ) | General Location             |
|-----------|---------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|------------------------------|
| L29       | Main Floor—Zone 10                    | 28                                                           | < 200                                                        | Main Level—Public Access     |
| L30       | Main Floor—Zone 11                    | < Sc                                                         | < 200                                                        | Main Level—Public Access     |
| L31       | Main Floor—Zone 12                    | < Sc                                                         | < 200                                                        | Main Level—Public Access     |
| L32       | Main Floor—Zone 13                    | < Sc                                                         | < 200                                                        | Main Level—Public Access     |
| L33       | Main Floor—Zone 14                    | < Sc                                                         | < 200                                                        | Main Level—Public Access     |
| L34       | Main Floor Water Column—Center Bottom | 28                                                           | < MDA                                                        | Main Level—Controlled Area   |
| L35       | Main Floor Water Column—Right Middle  | < Sc                                                         | < MDA                                                        | Main Level—Controlled Area   |
| L36       | Instrument Thimble #1                 | < Sc                                                         | < MDA                                                        | Main Level—Controlled Area   |
| L37       | Instrument Thimble #2                 | < Sc                                                         | < MDA                                                        | Main Level—Controlled Area   |
| L38       | Instrument Thimble #3                 | < Sc                                                         | 127                                                          | Main Level—Controlled Area   |
| L39       | Pipe Chase Exit Hatch                 | 26                                                           | < MDA                                                        | Main Level—Controlled Area   |
| L40       | Fuel Pool Purifier—Floor #1           | < Sc                                                         | 138                                                          | Main Level—Contaminated Area |
| L41       | Fuel Pool Purifier—Floor #2           | < Sc                                                         | < MDA                                                        | Main Level—Controlled Area   |
| L42       | Fuel Pool Purifier—Floor #3           | < Sc                                                         | 215                                                          | Main Level—Controlled Area   |
| L43       | Fuel Pool Purifier—Floor #4           | < Sc                                                         | NA                                                           | Main Level—Controlled Area   |
| L44       | Basement Floor—Zone 1                 | < Sc                                                         | < 200                                                        | Basement Level               |
| L45       | Basement Floor—Zone 2                 | < Sc                                                         | < 200                                                        | Basement Level               |
| L46       | Basement Floor—Zone 3                 | < Sc                                                         | < 200                                                        | Basement Level               |
| L47       | Basement Floor—Zone 4                 | 35                                                           | < 200                                                        | Basement Level               |
| L48       | Basement Floor—Zone 5                 | < Sc                                                         | < 200                                                        | Basement Level               |
| L49       | Basement Floor—Zone 6                 | < Sc                                                         | < 200                                                        | Basement Level               |
| L50       | Basement Floor—Zone 7                 | < Sc                                                         | < 200                                                        | Basement Level               |
| L51       | Basement Floor—Zone 8                 | < Sc                                                         | < 200                                                        | Basement Level               |
| L52       | Basement Floor—Zone 9                 | < Sc                                                         | < 200                                                        | Basement Level               |
| L53       | Basement Floor—Zone 10                | < Sc                                                         | < 200                                                        | Basement Level               |
| L54       | Basement Floor—Zone 11                | < Sc                                                         | < 200                                                        | Basement Level               |
| L55       | Basement Floor—Zone 12                | < Sc                                                         | < 200                                                        | Basement Level               |
| L56       | Basement Floor—Zone 13                | < Sc                                                         | < 200                                                        | Basement Level               |

| Survey ID | Survey Location                       | 2024 Removable<br>Contamination<br>(dpm/100cm <sup>2</sup> ) | 2023 Removable<br>Contamination<br>(dpm/100cm²) | General Location         |
|-----------|---------------------------------------|--------------------------------------------------------------|-------------------------------------------------|--------------------------|
| L57       | Basement Floor—Zone 14                | < Sc                                                         | < 200                                           | Basement Level           |
| L58       | Basement Floor—Zone 15                | < Sc                                                         | < 200                                           | Basement Level           |
| L59       | Basement Floor—Zone 16                | < Sc                                                         | < 200                                           | Basement Level           |
| L60       | Basement Floor—Zone 17                | < Sc                                                         | < 200                                           | Basement Level           |
| L61       | Basement Floor—Zone 18                | < Sc                                                         | < 200                                           | Basement Level           |
| L62       | Side of Liquid Waste Tank #1          | < Sc                                                         | < MDA                                           | Basement Level           |
| L63       | Side of Liquid Waste Tank #2          | < Sc                                                         | < MDA                                           | Basement Level           |
| L64       | Column 4 and 5 Inside Room            | < Sc                                                         | < MDA                                           | Basement Level           |
| L65       | Heater Room (wall)                    | < Sc                                                         | < MDA                                           | Basement Level           |
| L66       | Vapor Sphere Room—Upper Left          | < Sc                                                         | < MDA                                           | Basement Level           |
| L67       | Vapor Sphere Room—Center Right        | < Sc                                                         | < MDA                                           | Basement Level           |
| L68       | Water Pump Room to the Right          | < Sc                                                         | < MDA                                           | Basement Level           |
| L69       | Condenser Room Entry Wall, block      | < Sc                                                         | < MDA                                           | Basement Level           |
| L70       | Condenser Room Entry Wall, concrete   | < Sc                                                         | < MDA                                           | Basement Level           |
| L71       | South Room with 2 pumps               | < Sc                                                         | < MDA                                           | Basement Level           |
| L72       | Under Stairs Near North Door—Floor #1 | < Sc                                                         | < MDA                                           | Basement Level           |
| L73       | Under Stairs Near North Door—Floor #2 | < Sc                                                         | 177                                             | Basement Level           |
| L74       | Condensate Pump #2 Pedestal           | < Sc                                                         | See Note a                                      | Basement Level           |
| L75       | Basement Floor—Zone 5                 | < Sc                                                         | See Note a                                      | Basement Level           |
| L76       | Display Area                          | < Sc                                                         | See Note a                                      | Main Level—Public Access |
| L77       | RadCon Storage Area                   | < Sc                                                         | See Note a                                      | Main Level—Public Access |
| L78       | Building Airlock Main Entry           | < Sc                                                         | See Note a                                      | Main Level—Public Access |

Table 4. 2024 Versus 2023 Removable Contamination Survey Results (continued)

Note:

<sup>a</sup> 2024 RCT-selected survey locations, did not exist in 2023.

#### Abbreviations:

MDA = minimum detectable activity NA = not available RadCon = radiological control Sc = instrument critical value

| Survey ID | Survey Location                    | 2024 Total<br>Contamination<br>(dpm/100cm <sup>2</sup> ) | 2023 Total<br>Contamination<br>(dpm/100cm <sup>2</sup> ) | General Location         |
|-----------|------------------------------------|----------------------------------------------------------|----------------------------------------------------------|--------------------------|
| L1        | Pipe Chase Face #1                 | < Sc                                                     | < MDA                                                    | Monolith Top             |
| L2        | Pipe Chase Face #2                 | < Sc                                                     | < MDA                                                    | Monolith Top             |
| L3        | Pipe Chase Face #3                 | < Sc                                                     | < MDA                                                    | Monolith Top             |
| L4        | Pipe Chase Face #4                 | 495                                                      | < MDA                                                    | Monolith Top             |
| L5        | Top Plug Face #1—Left              | < Sc                                                     | 737                                                      | Monolith Top             |
| L6        | Top Plug Face #1—Center            | < Sc                                                     | 558                                                      | Monolith Top             |
| L7        | Top Plug Face #1—Right             | 495                                                      | 759                                                      | Monolith Top             |
| L8        | Top Plug Face #2—Top               | 730                                                      | 714                                                      | Monolith Top             |
| L9        | Top Plug Face #2—Center            | 1,908                                                    | 1,696                                                    | Monolith Top             |
| L10       | Top Plug Face #2—Bottom            | 683                                                      | 1,339                                                    | Monolith Top             |
| L11       | Top Plug Face #3—Right             | 447                                                      | 871                                                      | Monolith Top             |
| L12       | Top Plug Face #3—Center            | 565                                                      | 536                                                      | Monolith Top             |
| L13       | Top Plug Face #3—Left              | < Sc                                                     | 759                                                      | Monolith Top             |
| L14       | Top Plug Face #4—Bottom            | < Sc                                                     | 603                                                      | Monolith Top             |
| L15       | Top Plug Face #4—Center            | 612                                                      | 737                                                      | Monolith Top             |
| L16       | Top Plug Face #4—Top               | 612                                                      | 781                                                      | Monolith Top             |
| L17       | Top Plug Top Surface—Upper Left    | 471                                                      | 603                                                      | Monolith Top             |
| L18       | Top Plug Top Surface—Center Right  | < Sc                                                     | 647                                                      | Monolith Top             |
| L19       | Top Plug Top Surface—Center Bottom | < Sc                                                     | 848                                                      | Monolith Top             |
| L20       | Main Floor—Zone 1                  | < Sc                                                     | See Note a                                               | Main Level—Public Access |
| L21       | Main Floor—Zone 2                  | < Sc                                                     | 1,205                                                    | Main Level—Public Access |
| L22       | Main Floor—Zone 3                  | < Sc                                                     | <mda< td=""><td>Main Level—Public Access</td></mda<>     | Main Level—Public Access |
| L23       | Main Floor—Zone 4                  | 707                                                      | <mda< td=""><td>Main Level—Public Access</td></mda<>     | Main Level—Public Access |
| L24       | Main Floor—Zone 5                  | 777                                                      | <mda< td=""><td>Main Level—Public Access</td></mda<>     | Main Level—Public Access |
| L25       | Main Floor—Zone 6                  | 942                                                      | See Note a                                               | Main Level—Public Access |
| L26       | Main Floor—Zone 7                  | < Sc                                                     | See Note a                                               | Main Level—Public Access |
| L27       | Main Floor—Zone 8                  | < Sc                                                     | See Note a                                               | Main Level—Public Access |
| L28       | Main Floor—Zone 9                  | < Sc                                                     | See Note a                                               | Main Level—Public Access |

Table 5. 2024 Versus 2023 Total Contamination Survey Results

| Survey ID | Survey Location                       | 2024 Total<br>Contamination<br>(dpm/100cm <sup>2</sup> ) | 2023 Total<br>Contamination<br>(dpm/100cm <sup>2</sup> ) | General Location             |
|-----------|---------------------------------------|----------------------------------------------------------|----------------------------------------------------------|------------------------------|
| L29       | Main Floor—Zone 10                    | 683                                                      | See Note a                                               | Main Level—Public Access     |
| L30       | Main Floor—Zone 11                    | < Sc                                                     | See Note a                                               | Main Level—Public Access     |
| L31       | Main Floor—Zone 12                    | < Sc                                                     | See Note a                                               | Main Level—Public Access     |
| L32       | Main Floor—Zone 13                    | 542                                                      | See Note a                                               | Main Level—Public Access     |
| L33       | Main Floor—Zone 14                    | 777                                                      | See Note a                                               | Main Level—Public Access     |
| L34       | Main Floor Water Column—Center Bottom | 542                                                      | < MDA                                                    | Main Level—Controlled Area   |
| L35       | Main Floor Water Column—Right Middle  | < Sc                                                     | 647                                                      | Main Level—Controlled Area   |
| L36       | Instrument Thimble #1                 | < Sc                                                     | < MDA                                                    | Main Level—Controlled Area   |
| L37       | Instrument Thimble #2                 | < Sc                                                     | < MDA                                                    | Main Level—Controlled Area   |
| L38       | Instrument Thimble #3                 | < Sc                                                     | < MDA                                                    | Main Level—Controlled Area   |
| L39       | Pipe Chase Exit Hatch                 | < Sc                                                     | < MDA                                                    | Main Level—Controlled Area   |
| L40       | Fuel Pool Purifier—Floor #1           | 18,699                                                   | 7,590                                                    | Main Level—Contaminated Area |
| L41       | Fuel Pool Purifier—Floor #2           | 942                                                      | 1,250                                                    | Main Level—Controlled Area   |
| L42       | Fuel Pool Purifier—Floor #3           | 495                                                      | 848                                                      | Main Level—Controlled Area   |
| L43       | Fuel Pool Purifier—Floor #4           | < Sc                                                     | NA                                                       | Main Level—Controlled Area   |
| L44       | Basement Floor—Zone 1                 | < Sc                                                     | See Note a                                               | Basement Level               |
| L45       | Basement Floor—Zone 2                 | < Sc                                                     | See Note a                                               | Basement Level               |
| L46       | Basement Floor—Zone 3                 | < Sc                                                     | See Note a                                               | Basement Level               |
| L47       | Basement Floor—Zone 4                 | < Sc                                                     | See Note a                                               | Basement Level               |
| L48       | Basement Floor—Zone 5                 | < Sc                                                     | See Note a                                               | Basement Level               |
| L49       | Basement Floor—Zone 6                 | < Sc                                                     | See Note a                                               | Basement Level               |
| L50       | Basement Floor—Zone 7                 | < Sc                                                     | See Note a                                               | Basement Level               |
| L51       | Basement Floor—Zone 8                 | < Sc                                                     | See Note a                                               | Basement Level               |
| L52       | Basement Floor—Zone 9                 | < Sc                                                     | See Note a                                               | Basement Level               |
| L53       | Basement Floor—Zone 10                | < Sc                                                     | See Note a                                               | Basement Level               |
| L54       | Basement Floor—Zone 11                | < Sc                                                     | See Note a                                               | Basement Level               |
| L55       | Basement Floor—Zone 12                | < Sc                                                     | See Note a                                               | Basement Level               |
| L56       | Basement Floor—Zone 13                | < Sc                                                     | See Note a                                               | Basement Level               |

| Survey ID | Survey Location                       | 2024 Total<br>Contamination<br>(dpm/100cm <sup>2</sup> ) | 2023 Total<br>Contamination<br>(dpm/100cm <sup>2</sup> ) | General Location         |
|-----------|---------------------------------------|----------------------------------------------------------|----------------------------------------------------------|--------------------------|
| L57       | Basement Floor—Zone 14                | < Sc                                                     | See Note a                                               | Basement Level           |
| L58       | Basement Floor—Zone 15                | < Sc                                                     | See Note a                                               | Basement Level           |
| L59       | Basement Floor—Zone 16                | 495                                                      | See Note a                                               | Basement Level           |
| L60       | Basement Floor—Zone 17                | < Sc                                                     | See Note a                                               | Basement Level           |
| L61       | Basement Floor—Zone 18                | < Sc                                                     | See Note a                                               | Basement Level           |
| L62       | Side of Liquid Waste Tank #1          | < Sc                                                     | 938                                                      | Basement Level           |
| L63       | Side of Liquid Waste Tank #2          | < Sc                                                     | 1,116                                                    | Basement Level           |
| L64       | Column 4 and 5 Inside Room            | < Sc                                                     | < MDA                                                    | Basement Level           |
| L65       | Heater Room (wall)                    | < Sc                                                     | < MDA                                                    | Basement Level           |
| L66       | Vapor Sphere Room—Upper Left          | < Sc                                                     | < MDA                                                    | Basement Level           |
| L67       | Vapor Sphere Room—Center Right        | < Sc                                                     | < MDA                                                    | Basement Level           |
| L68       | Water Pump Room to the Right          | < Sc                                                     | 625                                                      | Basement Level           |
| L69       | Condenser Room Entry Wall—Block       | < Sc                                                     | < MDA                                                    | Basement Level           |
| L70       | Condenser Room Entry Wall—Concrete    | < Sc                                                     | 603                                                      | Basement Level           |
| L71       | South Room with 2 pumps               | < Sc                                                     | < MDA                                                    | Basement Level           |
| L72       | Under Stairs Near North Door—Floor #1 | 471                                                      | < MDA                                                    | Basement Level           |
| L73       | Under Stairs Near North Door—Floor #2 | < Sc                                                     | 558                                                      | Basement Level           |
| L74       | Condensate Pump #2 Pedestal           | 942                                                      | See Note b                                               | Basement Level           |
| L75       | Basement Floor—Zone 5                 | < Sc                                                     | See Note b                                               | Basement Level           |
| L76       | Display Area                          | < Sc                                                     | See Note b                                               | Main Level—Public Access |
| L77       | RadCon Storage Area                   | < Sc                                                     | See Note b                                               | Main Level—Public Access |
| L78       | Building Airlock Main Entry           | < Sc                                                     | See Note b                                               | Main Level—Public Access |

Table 5. 2024 Versus 2023 Total Contamination Survey Results (continued)

Notes:

<sup>a</sup> 2023 total contamination was not collected or reported in the 2023 BONUS Survey Report. <sup>b</sup> 2024 RCT-selected survey locations, did not exist in 2023.

#### Abbreviations:

MDA = minimum detectable activity NA = not available Sc = instrument critical value

At survey location L40, the total surface contamination result for 2023 was 7590 dpm/100 cm<sup>2</sup> while the 2024 result was 18699 dpm/100 cm<sup>2</sup> (both above the 5000 dpm/100 cm<sup>2</sup> regulatory total surface contamination limit). The L40 survey location is the single survey location at the site that is located within a radiological posted contamination area. Regardless, it is unknown why the total surface contamination level at survey location L40 increased almost 2.5 times from 2023's survey result. Removable contamination levels at survey location L40 (and around L40) were well below regulatory removable surface contamination limits and below the critical value for the instrument used to count that smear in 2024. It is doubtful that the floor at survey location L40 was additionally contaminated between the two survey events, as no removable surface contamination was identified during either the 2023 or 2024 surveys at that location. Special attention to survey location L40 will be implemented during the planning phase of the 2025 survey at the site to better understand possible and likely causes for an increase in total contamination levels in that area. Because the L40 survey location is already identified, posted, and controlled as an LMS contamination area; is also within another physical barrier area (a plexiglass half-wall) that prevents unauthorized personal (visitor) access; and is physically identified as fixed contamination (contamination that is not easily removed or transferred from one location to another), the surface contamination at survey location L40 does not pose human health concerns or environmental risks.

One 2024 survey location (L43) did not have a matching 2023 survey location. During development of the 2024 survey plan, the plan's author was unsure of the location of the 2023 survey location. During the physical survey, it was determined that the 2023 L43 survey location was inside the contamination area while the 2024 survey location was outside of the contamination area. Hence, no 2023 radiological data was available for the 2024 comparison.

When compared to the total surface contamination limit of  $5000 \text{ dpm}/100 \text{ cm}^2$ , total surface contamination levels at the site are well within regulatory limits and do not pose human health concerns or environmental risks.

### 2.6.3 Radiation Dose and Exposure Rate Comparison

Comparison of 2024 gamma radiation dose rate results to the 2023 gamma radiation exposure rate results (as recorded) initially proves to be confusing (Table 6). In Table 6, none of the radiation dose rate results are shown with the instrument's background level removed from the instrument's gross reading, which is the correct way to document general area radiation dose rate survey results. However, once instrument-specific radiation dose rate background values are removed from the instrument's gross reading, comparison of 2024 to 2023 gamma radiation survey results become clearer (Table 7). The 2024 gamma radiation dose rate survey results compare favorably to the 2023 gamma radiation dose rate survey results, excluding five survey results: L41, L42, L62, L63, and L65 (Table 8).

Different gamma radiation dose rate instruments were used in 2023 and 2024. Specifically, a dose rate instrument was used in 2024 versus an exposure rate instrument in 2023. It is acceptable to use either type of gamma radiation dose or exposure rate survey instrument for performing the annual BONUS gamma radiation survey (e.g., a dose rate versus exposure rate survey) so long as background radiation dose rates are subtracted from the instrument's gross gamma radiation rate readings. The only real difference between the two instruments when measuring gamma radiation from cesium 137 is the instrument's manufacturer and its readout units (i.e., exposure rate versus dose rate).

| Survey ID | Survey Location                    | 2024 Dose Result<br>(μrem/h) | 2023 Exposure<br>Result (μR/h) | General Location         |
|-----------|------------------------------------|------------------------------|--------------------------------|--------------------------|
| L1        | Pipe Chase Face #1                 | 20                           | 4                              | Monolith Top             |
| L2        | Pipe Chase Face #2                 | 20                           | 4                              | Monolith Top             |
| L3        | Pipe Chase Face #3                 | 20                           | 4                              | Monolith Top             |
| L4        | Pipe Chase Face #4                 | 20                           | 4                              | Monolith Top             |
| L5        | Top Plug Face #1—Left              | 12                           | 6                              | Monolith Top             |
| L6        | Top Plug Face #1—Center            | 10                           | 6                              | Monolith Top             |
| L7        | Top Plug Face #1—Right             | 10                           | 6                              | Monolith Top             |
| L8        | Top Plug Face #2—Top               | 11                           | 6                              | Monolith Top             |
| L9        | Top Plug Face #2—Center            | 12                           | 7                              | Monolith Top             |
| L10       | Top Plug Face #2—Bottom            | 10                           | 6                              | Monolith Top             |
| L11       | Top Plug Face #3—Right             | 10                           | 5                              | Monolith Top             |
| L12       | Top Plug Face #3—Center            | 12                           | 5                              | Monolith Top             |
| L13       | Top Plug Face #3—Left              | 13                           | 5                              | Monolith Top             |
| L14       | Top Plug Face #4—Bottom            | 12                           | 7                              | Monolith Top             |
| L15       | Top Plug Face #4—Center            | 12                           | 5                              | Monolith Top             |
| L16       | Top Plug Face #4—Top               | 12                           | 5                              | Monolith Top             |
| L17       | Top Plug Top Surface—Upper Left    | 12                           | 4                              | Monolith Top             |
| L18       | Top Plug Top Surface—Center Right  | 12                           | 4                              | Monolith Top             |
| L19       | Top Plug Top Surface—Center Bottom | 14                           | 4                              | Monolith Top             |
| L20       | Main Floor—Zone 1                  | 14                           | 5                              | Main Level—Public Access |
| L21       | Main Floor—Zone 2                  | 14                           | 5                              | Main Level—Public Access |
| L22       | Main Floor—Zone 3                  | 15                           | 6                              | Main Level—Public Access |
| L23       | Main Floor—Zone 4                  | 17                           | 4                              | Main Level—Public Access |
| L24       | Main Floor—Zone 5                  | 17                           | 5                              | Main Level—Public Access |
| L25       | Main Floor—Zone 6                  | 17                           | 5                              | Main Level—Public Access |
| L26       | Main Floor—Zone 7                  | 18                           | 5                              | Main Level—Public Access |
| L27       | Main Floor—Zone 8                  | 17                           | 5                              | Main Level—Public Access |
| L28       | Main Floor—Zone 9                  | 17                           | 6                              | Main Level—Public Access |
| L29       | Main Floor—Zone 10                 | 17                           | 6                              | Main Level—Public Access |

Table 6. 2024 Versus 2023 Gamma Radiation Survey Results

| Survey ID | Survey Location                       | 2024 Dose Result<br>(µrem/h) | 2023 Exposure<br>Result (μR/h) | General Location             |
|-----------|---------------------------------------|------------------------------|--------------------------------|------------------------------|
| L30       | Main Floor—Zone 11                    | 15                           | 7                              | Main Level—Public Access     |
| L31       | Main Floor—Zone 12                    | 17                           | 6                              | Main Level—Public Access     |
| L32       | Main Floor—Zone 13                    | 18                           | 6                              | Main Level—Public Access     |
| L33       | Main Floor—Zone 14                    | 17                           | 6                              | Main Level—Public Access     |
| L34       | Main Floor Water Column—Center Bottom | 18                           | 5                              | Main Level—Controlled Area   |
| L35       | Main Floor Water Column—Right Middle  | 15                           | 5                              | Main Level—Controlled Area   |
| L36       | Instrument Thimble #1                 | 22                           | 5                              | Main Level—Controlled Area   |
| L37       | Instrument Thimble #2                 | 20                           | 5                              | Main Level—Controlled Area   |
| L38       | Instrument Thimble #3                 | 16                           | 5                              | Main Level—Controlled Area   |
| L39       | Pipe Chase Exit Hatch                 | 22                           | 5                              | Main Level—Controlled Area   |
| L40       | Fuel Pool Purifier—Floor #1           | 30                           | 15                             | Main Level—Contaminated Area |
| L41       | Fuel Pool Purifier—Floor #2           | 30                           | 4                              | Main Level—Controlled Area   |
| L42       | Fuel Pool Purifier—Floor #3           | 30                           | 4                              | Main Level—Controlled Area   |
| L43       | Fuel Pool Purifier—Floor #4           | 30                           | NA                             | Main Level—Controlled Area   |
| L44       | Basement Floor—Zone 1                 | 40                           | 5                              | Basement Level               |
| L45       | Basement Floor—Zone 2                 | 40                           | 5                              | Basement Level               |
| L46       | Basement Floor—Zone 3                 | 40                           | 5                              | Basement Level               |
| L47       | Basement Floor—Zone 4                 | 35                           | 5                              | Basement Level               |
| L48       | Basement Floor—Zone 5                 | 35                           | 4                              | Basement Level               |
| L49       | Basement Floor—Zone 6                 | 35                           | 7                              | Basement Level               |
| L50       | Basement Floor—Zone 7                 | 40                           | 5                              | Basement Level               |
| L51       | Basement Floor—Zone 8                 | 40                           | 4                              | Basement Level               |
| L52       | Basement Floor—Zone 9                 | 40                           | 5                              | Basement Level               |
| L53       | Basement Floor—Zone 10                | 35                           | 4                              | Basement Level               |
| L54       | Basement Floor—Zone 11                | 35                           | 5                              | Basement Level               |
| L55       | Basement Floor—Zone 12                | 40                           | 5                              | Basement Level               |
| L56       | Basement Floor—Zone 13                | 35                           | 4                              | Basement Level               |
| L57       | Basement Floor—Zone 14                | 35                           | 5                              | Basement Level               |
| L58       | Basement Floor—Zone 15                | 35                           | 5                              | Basement Level               |

| Survey ID | Survey Location                       | 2024 Dose Result<br>(µrem/h) | 2023 Exposure<br>Result (µR/h) | General Location         |
|-----------|---------------------------------------|------------------------------|--------------------------------|--------------------------|
| L59       | Basement Floor—Zone 16                | 40                           | 5                              | Basement Level           |
| L60       | Basement Floor—Zone 17                | 35                           | 5                              | Basement Level           |
| L61       | Basement Floor—Zone 18                | 40                           | 4                              | Basement Level           |
| L62       | Side of Liquid Waste Tank #1          | 40                           | 30                             | Basement Level           |
| L63       | Side of Liquid Waste Tank #2          | 40                           | 28                             | Basement Level           |
| L64       | Column 4 and 5 Inside Room            | 40                           | 7                              | Basement Level           |
| L65       | Heater Room (wall)                    | 40                           | 18                             | Basement Level           |
| L66       | Vapor Sphere Room—Upper Left          | 40                           | 4                              | Basement Level           |
| L67       | Vapor Sphere Room—Center Right        | 35                           | 5                              | Basement Level           |
| L68       | Water Pump Room to the Right          | 40                           | 7                              | Basement Level           |
| L69       | Condenser Room Entry Wall—Block       | 40                           | 5                              | Basement Level           |
| L70       | Condenser Room Entry Wall—Concrete    | 40                           | 5                              | Basement Level           |
| L71       | South Room with 2 pumps               | 40                           | 6                              | Basement Level           |
| L72       | Under Stairs Near North Door—Floor #1 | 40                           | 5                              | Basement Level           |
| L73       | Under Stairs Near North Door—Floor #2 | 40                           | 5                              | Basement Level           |
| L74       | Condensate Pump #2 Pedestal           | 40                           | See Note a                     | Basement Level           |
| L75       | Basement Floor—Zone 5                 | 35                           | See Note a                     | Basement Level           |
| L76       | Display Area                          | 19                           | See Note a                     | Main Level—Public Access |
| L77       | RadCon Storage Area                   | 20                           | See Note a                     | Main Level—Public Access |
| L78       | Building Airlock Main Entry           | 18                           | See Note a                     | Main Level—Public Access |

Table 6. 2024 Versus 2023 Gamma Radiation Survey Results (continued)

#### Note:

<sup>a</sup> 2024 RCT-selected survey locations, did not exist in 2023.

#### Abbreviations:

 $\mu$ R/h = microroentgens per hour NA = not available

| Survey ID | Survey Location                    | 2024 Dose Result—<br>Bkgd (μrem/h) | 2023 Exposure<br>Result—Bkgd (μR/h) | General Location         |
|-----------|------------------------------------|------------------------------------|-------------------------------------|--------------------------|
| L1        | Pipe Chase Face #1                 | 3                                  | -1                                  | Monolith Top             |
| L2        | Pipe Chase Face #2                 | 3                                  | -1                                  | Monolith Top             |
| L3        | Pipe Chase Face #3                 | 3                                  | -1                                  | Monolith Top             |
| L4        | Pipe Chase Face #4                 | 3                                  | -1                                  | Monolith Top             |
| L5        | Top Plug Face #1—Left              | -5                                 | 1                                   | Monolith Top             |
| L6        | Top Plug Face #1—Center            | -7                                 | 1                                   | Monolith Top             |
| L7        | Top Plug Face #1—Right             | -7                                 | 1                                   | Monolith Top             |
| L8        | Top Plug Face #2—Top               | -6                                 | 1                                   | Monolith Top             |
| L9        | Top Plug Face #2—Center            | -5                                 | 2                                   | Monolith Top             |
| L10       | Top Plug Face #2—Bottom            | -7                                 | 1                                   | Monolith Top             |
| L11       | Top Plug Face #3—Right             | -7                                 | 0                                   | Monolith Top             |
| L12       | Top Plug Face #3—Center            | -5                                 | 0                                   | Monolith Top             |
| L13       | Top Plug Face #3—Left              | -4                                 | 0                                   | Monolith Top             |
| L14       | Top Plug Face #4—Bottom            | -5                                 | 2                                   | Monolith Top             |
| L15       | Top Plug Face #4—Center            | -5                                 | 0                                   | Monolith Top             |
| L16       | Top Plug Face #4—Top               | -5                                 | 0                                   | Monolith Top             |
| L17       | Top Plug Top Surface—Upper Left    | -5                                 | -1                                  | Monolith Top             |
| L18       | Top Plug Top Surface—Center Right  | -5                                 | -1                                  | Monolith Top             |
| L19       | Top Plug Top Surface—Center Bottom | -3                                 | -1                                  | Monolith Top             |
| L20       | Main Floor—Zone 1                  | -3                                 | 0                                   | Main Level—Public Access |
| L21       | Main Floor—Zone 2                  | -3                                 | 0                                   | Main Level—Public Access |
| L22       | Main Floor—Zone 3                  | -2                                 | 1                                   | Main Level—Public Access |
| L23       | Main Floor—Zone 4                  | 0                                  | -1                                  | Main Level—Public Access |
| L24       | Main Floor—Zone 5                  | 0                                  | 0                                   | Main Level—Public Access |
| L25       | Main Floor—Zone 6                  | 0                                  | 0                                   | Main Level—Public Access |
| L26       | Main Floor—Zone 7                  | 1                                  | 0                                   | Main Level—Public Access |
| L27       | Main Floor—Zone 8                  | 0                                  | 0                                   | Main Level—Public Access |
| L28       | Main Floor—Zone 9                  | 0                                  | 1                                   | Main Level—Public Access |
| L29       | Main Floor—Zone 10                 | 0                                  | 1                                   | Main Level—Public Access |

#### Table 7. 2024 Versus 2023 Gamma Radiation Survey Results with Background Removed

| Survey ID | Survey Location                       | 2024 Dose Result—<br>Bkgd (μrem/h) | 2023 Exposure<br>Result—Bkgd (μR/h) | General Location             |
|-----------|---------------------------------------|------------------------------------|-------------------------------------|------------------------------|
| L30       | Main Floor—Zone 11                    | -2                                 | 2                                   | Main Level—Public Access     |
| L31       | Main Floor—Zone 12                    | 0                                  | 1                                   | Main Level—Public Access     |
| L32       | Main Floor—Zone 13                    | 1                                  | 1                                   | Main Level—Public Access     |
| L33       | Main Floor—Zone 14                    | 0                                  | 1                                   | Main Level—Public Access     |
| L34       | Main Floor Water Column—Center Bottom | 1                                  | 0                                   | Main Level—Controlled Area   |
| L35       | Main Floor Water Column—Right Middle  | -2                                 | 0                                   | Main Level—Controlled Area   |
| L36       | Instrument Thimble #1                 | 5                                  | 0                                   | Main Level—Controlled Area   |
| L37       | Instrument Thimble #2                 | 3                                  | 0                                   | Main Level—Controlled Area   |
| L38       | Instrument Thimble #3                 | -1                                 | 0                                   | Main Level—Controlled Area   |
| L39       | Pipe Chase Ext Hatch                  | 5                                  | 0                                   | Main Level—Controlled Area   |
| L40       | Fuel Pool Purifier—Floor #1           | 13                                 | 10                                  | Main Level—Contaminated Area |
| L41       | Fuel Pool Purifier—Floor #2           | 13                                 | -1                                  | Main Level—Controlled Area   |
| L42       | Fuel Pool Purifier—Floor #3           | 13                                 | -1                                  | Main Level—Controlled Area   |
| L43       | Fuel Pool Purifier—Floor #4           | 13                                 | NA                                  | Main Level—Controlled Area   |
| L44       | Basement Floor—Zone 1                 | 2                                  | 0                                   | Basement Level               |
| L45       | Basement Floor—Zone 2                 | 2                                  | 0                                   | Basement Level               |
| L46       | Basement Floor—Zone 3                 | 2                                  | 0                                   | Basement Level               |
| L47       | Basement Floor—Zone 4                 | -3                                 | 0                                   | Basement Level               |
| L48       | Basement Floor—Zone 5                 | -3                                 | -1                                  | Basement Level               |
| L49       | Basement Floor—Zone 6                 | -3                                 | 2                                   | Basement Level               |
| L50       | Basement Floor—Zone 7                 | 2                                  | 0                                   | Basement Level               |
| L51       | Basement Floor—Zone 8                 | 2                                  | -1                                  | Basement Level               |
| L52       | Basement Floor—Zone 9                 | 2                                  | 0                                   | Basement Level               |
| L53       | Basement Floor—Zone 10                | -3                                 | -1                                  | Basement Level               |
| L54       | Basement Floor—Zone 11                | -3                                 | 0                                   | Basement Level               |
| L55       | Basement Floor—Zone 12                | 2                                  | 0                                   | Basement Level               |
| L56       | Basement Floor—Zone 13                | -3                                 | -1                                  | Basement Level               |
| L57       | Basement Floor—Zone 14                | -3                                 | 0                                   | Basement Level               |
| L58       | Basement Floor—Zone 15                | -3                                 | 0                                   | Basement Level               |

| Table 7. 2024 Versus 2023 Gamma Radiation Survey Results with Background Removed (continue | sults with Background Removed (continued) |
|--------------------------------------------------------------------------------------------|-------------------------------------------|
|--------------------------------------------------------------------------------------------|-------------------------------------------|

| Survey ID | Survey Location                       | 2024 Dose Result—<br>Bkgd (μrem/h) | 2023 Exposure<br>Result—Bkgd (μR/h) | General Location         |
|-----------|---------------------------------------|------------------------------------|-------------------------------------|--------------------------|
| L59       | Basement Floor—Zone 16                | 2                                  | 0                                   | Basement Level           |
| L60       | Basement Floor—Zone 17                | -3                                 | 0                                   | Basement Level           |
| L61       | Basement Floor—Zone 18                | 2                                  | -1                                  | Basement Level           |
| L62       | Side of Liquid Waste Tank #1          | 2                                  | 25                                  | Basement Level           |
| L63       | Side of Liquid Waste Tank #2          | 2                                  | 23                                  | Basement Level           |
| L64       | Column 4 and 5 Inside Room            | 2                                  | 2                                   | Basement Level           |
| L65       | Heater Room (wall)                    | 2                                  | 13                                  | Basement Level           |
| L66       | Vapor Sphere Room—Upper Left          | 2                                  | -1                                  | Basement Level           |
| L67       | Vapor Sphere Room—Center Right        | -3                                 | 0                                   | Basement Level           |
| L68       | Water Pump Room to the Right          | 2                                  | 2                                   | Basement Level           |
| L69       | Condenser Room Entry Wall—Block       | 2                                  | 0                                   | Basement Level           |
| L70       | Condenser Room Entry Wall—Concrete    | 2                                  | 0                                   | Basement Level           |
| L71       | South Room with 2 pumps               | 2                                  | 1                                   | Basement Level           |
| L72       | Under Stairs Near North Door—Floor #1 | 2                                  | 0                                   | Basement Level           |
| L73       | Under Stairs Near North Door—Floor #2 | 2                                  | 0                                   | Basement Level           |
| L74       | Condensate Pump #2 Pedestal           | 2                                  | See Note a                          | Basement Level           |
| L75       | Basement Floor—Zone 5                 | -3                                 | See Note a                          | Basement Level           |
| L76       | Display Area                          | 2                                  | See Note a                          | Main Level—Public Access |
| L77       | RadCon Storage Area                   | 3                                  | See Note a                          | Main Level—Public Access |
| L78       | Building Airlock Main Entry           | 1                                  | See Note a                          | Main Level—Public Access |

#### Note:

<sup>a</sup> 2024 RCT-selected survey locations, did not exist in 2023.

#### Abbreviations:

Bkgd = Background  $\mu$ rem/h = microrems per hour  $\mu$ R/h = microroentgens per hour NA = not available

#### Table 8. 2024 Versus 2023 Gamma Radiation Survey Results For Comparison (with Background Removed)

| Survey ID | Survey Location              | 2024 Dose Result—<br>Bkgd (μrem/h) | 2023 Exposure<br>Result—Bkgd (µR/h) | General Location           |
|-----------|------------------------------|------------------------------------|-------------------------------------|----------------------------|
| L41       | Fuel Pool Purifier—Floor #2  | 13                                 | -1                                  | Main Level—Controlled Area |
| L42       | Fuel Pool Purifier—Floor #3  | 13                                 | -1                                  | Main Level—Controlled Area |
| L62       | Side of Liquid Waste Tank #1 | 2                                  | 25                                  | Basement Level             |
| L63       | Side of Liquid Waste Tank #2 | 2                                  | 23                                  | Basement Level             |
| L65       | Heater Room (Wall)           | 2                                  | 13                                  | Basement Level             |

Abbreviations:

Bkgd = background

µrem/h = microrems per hour

 $\mu$ R/h = microroentgens per hour

Similar to survey location L40 for the total surface contamination comparison, it is unsure why the 2024 survey identified five areas with radiation dose rate results that are greater or less than 10 µrem/h when compared to the 2023 radiation dose rate results. It is doubtful that those five areas have been impacted in a way that would increase or decrease general area radiation dose rates between the December 2023 and August 2024 gamma radiation dose rate surveys. Similar to survey location L40 for the total surface contamination comparison, special attention to survey locations L41, L42, L62, L63, and L65 will be implemented during the planning phase of the 2025 survey at the site in an attempt to better understand a likely cause for an increase or decrease in gamma radiation dose rates in those survey areas. While the five survey locations showed slight changes in gamma radiation dose rate levels between the two surveys, none of the gamma dose rate survey results (2024 or 2023) are anywhere near the 5 mrem/h (5000 µrem/h) regulatory dose limit that would require posting the area as a radiation area and maintaining entry control. The maximum increase in gamma radiation dose rates during the 2024 survey was 14 µrem/h in two areas (L41 and L42), the other three survey locations showed a decrease in their general area gamma radiation dose rates (decreasing up to 23 µrem/h at survey location L62).

One 2024 survey location (L43) did not have a matching 2023 survey location. During development of the 2024 survey plan, the plan's author was unsure of the location of the 2023 survey location. During the physical survey, it was determined that the 2023 L43 survey location was inside the contamination area while the 2024 survey location was outside of the contamination area. Hence, no 2023 radiological data was available for the 2024 comparison.

Gamma radiation dose rate levels at the site are significantly below regulatory radiation dose rate limit values and do not pose human health concerns or environmental risks.

### 2.7 Remaining Survey and Safety Supplies

At the conclusion of the 2024 radiological survey, survey and safety supplies as well as some equipment were packaged in lockable totes (Figure 10) and left at the site in a lockable fenced area. The notable survey and safety items remaining at the site include an LMS trauma kit, pulse-oximeter monitor, digital thermometer, a selection of radiological and safety PPE, two sprayer bottles, and the remaining InstaCote surface fixative (approximately ¼ gallon of CC Fix and ½ gallon of CC Wet). The combination to the locks on the totes is 6-4-5-3. LMS radiological survey instruments and radioactive check sources were sent back to the LMFSC at the end of the survey.



Figure 10. Remaining Survey and Safety Supplies

## 3.0 2024 Survey Conclusion

LMS RCTs mobilized to the BONUS site and performed the annual radiological survey of the interior of the reactor containment building. The radiological survey was performed in accordance with the survey plan and LMS Radiological Control organization procedures, manuals, and plans.

In accordance with the survey plan, it was determined that:

- 1. Noncontamination area accessible site surfaces are below established regulatory limits of 10 CFR 835 Appendix D for surface contamination.
- 2. General area radiation levels are below established regulatory limits of 10 CFR 835.2.
- 3. The two surface contamination areas at the site are properly controlled and posted in accordance with *Radiological Control Manual*.
- 4. The 2024 radiological conditions at the site compare favorably to the 2023 conditions, and where there was a difference, a review and evaluation of the change(s) were performed and documented in this survey report.

Two previously identified contamination areas in the reactor containment building remain contamination areas and are radiologically posted as such. No new radiological areas were identified during the survey. No previously posted radiological areas were deposted.

The 2024 radiological survey results, along with the two radiologically posted and controlled contamination areas at the site, provide continued confidence that human health and the environment remain protected from radiological hazards at the site.

### 4.0 References

10 CFR 835. U.S. Nuclear Regulatory Commission, "Occupational Radiation Protection," Code of Federal Regulations.

DOE (U.S. Department of Energy), 2023a. *Radiological Control Manual*, LMS/POL/S04322-7.0, Office of Legacy Management, August.

DOE (U.S. Department of Energy), 2023b. *Radiological Control Technician (RCT) Training and Qualification Program Description*, LMS/PRO/S08621-5.0, Office of Legacy Management, March.

DOE (U.S. Department of Energy), 2024a. *Annual LMS Radiological Characterization Survey Plan for the BONUS, Puerto Rico, Decommissioned Reactor Site, LMS RadCon Survey Plan Number: 24-001,* LMS/BON/48092-0.0, Office of Legacy Management, June.

DOE (U.S. Department of Energy), 2024b. *Contamination Surveys and Equipment and Material Release*, LMS/PRO/S20079-2.0, Office of Legacy Management, August.

DOE (U.S. Department of Energy), 2024c. *Counting Systems Daily Operation*, LMS/PRO/S20076-2.0, Office of Legacy Management, May.

DOE (U.S. Department of Energy), 2024d. *Documenting Radiological Surveys*, LMS/PRO/S20073-2.0, Office of Legacy Management, August.

DOE (U.S. Department of Energy), 2024e. *Portable Radiation Survey Instrument Response Checks*, LMS/PRO/S20074-2.0, Office of Legacy Management, July.

DOE (U.S. Department of Energy), 2024f. *Radiation Protection Program Plan*, LMS/POL/S04373-10.0, Office of Legacy Management, June.

DOE Order 435.1 Chg 2 (Admin Chg), *Radioactive Waste Management*, U.S. Department of Energy, January 11, 2021.

NRC (U.S. Nuclear Regulatory Commission), 2020. *Multi-Agency Radiation Survey and Site Investigation Manual*, NUREG-1557, Rev. 1, August.

Attachment 1

Annual LMS Radiological Characterization Survey Plan for the BONUS, Puerto Rico, Decommissioned Reactor Site LMS RadCon Survey Plan Number: 24-001, June 2024, LMS/BON/48092



LMS/BON/48092-0.0 Level 4 Issue Date: 06/11/2024 Effective Date: 07/11/2024

# Annual LMS Radiological Characterization Survey Plan for the BONUS, Puerto Rico, Decommissioned Reactor Site LMS RadCon Survey Plan Number: 24-001

June 2024

Work performed under DOE contract number 89303020DLM000001 for the U.S. Department of Energy Office of Legacy Management.

This document is designed for online viewing.

Attachment 1, Page 1

### Annual LMS Radiological Characterization Survey Plan for the BONUS, Puerto Rico, Decommissioned Reactor Site LMS RadCon Survey Plan Number: 24-001 Document History

| Version No./<br>Revision No. | Revised   | Description of Change |
|------------------------------|-----------|-----------------------|
| 0.0                          | June 2024 | Initial issue.        |

Date

Approved:

(Affiliate) (Affiliate) (Affiliate) Digitally signed by MICHAEL MCDONALD (Affiliate) Date: 2024.06.11 14:44:24 -06'00'

Michael McDonald Radiological Control Manager RSI EnTech, LLC

### Contents

| Abbre | eviations                                | ii |
|-------|------------------------------------------|----|
| Form  | s Referenced in This Manuali             | ii |
| 1.0   | Introduction                             | 1  |
|       | 1.1 Purpose and Scope                    | 1  |
|       | 1.2 Limitations                          |    |
| 2.0   | Survey and S&H Equipment and Supplies    | 2  |
| 3.0   | Survey Requirements                      | 3  |
|       | 3.1 Gamma Radiation Exposure Rate Survey |    |
|       | 3.2 Contamination Level Survey           |    |
| 4.0   | Survey Instrumentation                   |    |
| 5.0   | Survey Documentation                     | 5  |
| 6.0   | Survey Result Evaluation                 | 5  |
| 7.0   | Survey Result Comparison                 | 5  |
|       | 7.1 Regulatory Limit Comparison          |    |
|       | 7.2 Previous Year's Results Comparison   |    |
|       | Figures                                  |    |
|       | References                               |    |

## Figures

| Figure 1. Main Floor Survey Locations     | 7 |
|-------------------------------------------|---|
| Figure 2. Basement Floor Survey Locations | 8 |
| Figure 3. Monolith Top Plug Structure     |   |
| Figure 4. Entombment System—North View1   |   |
| Figure 5. Entombment System—South View1   | 1 |
| Figure 6. Entombment System—North View1   | 2 |

### Attachment

Attachment 1 BONUS Annual Survey Location and Results Data Sheet

### Abbreviations

| BONUS          | Boiling Nuclear Superheater                            |
|----------------|--------------------------------------------------------|
| $dpm/100 cm^2$ | disintegrations per minute per 100 centimeters squared |
| LMS            | Legacy Management Support                              |
| μR/h           | microroentgens per hour                                |
| RadCon         | Radiological Control                                   |
| RCT            | radiological control technician                        |
| S&H            | Safety and Health                                      |

### Forms Referenced in This Manual

LMS forms are accessible on the **Document Management** homepage > LMS Forms.

Radiological Survey Map

LMS 1553

### 1.0 Introduction

Legacy Management Support (LMS) contractor personnel are responsible for performing the annual LMS radiological characterization survey (characterization survey) at the BONUS, Puerto Rico, Decommissioned Reactor Site in Rincon, Puerto Rico.

This Annual LMS Radiological Characterization Survey Plan provides information and guidance necessary for an LMS qualified radiological control technician (RCT) to perform the survey. The results of the survey will be used to verify that:

- 1. Accessible site surfaces are below established regulatory limits of Title 10 *Code of Federal Regulations* Section 835 (10 CFR 835) Appendix D, "Surface Contamination Values," for surface radioactive contamination.
- 2. Accessible area radiation levels are below established regulatory limits of 10 CFR 835.2, "Definitions," for a radiation area.
- 3. Accessible areas or surfaces that exceed regulatory radiological limits are properly controlled and posted in accordance with *Radiological Control Manual* (LMS/POL/S04322).
- 4. Survey results have not changed by more than 2 sigma (standard deviations) when compared to the previous year's survey results, and if they have changed by more than 2 sigma, a review and evaluation of the change(s) will be performed and documented by an LMS senior health physicist and the evaluation results shared with the LMS site lead.

### 1.1 Purpose and Scope

- 1. The purpose of this survey plan is to provide guidance to the RCT conducting the characterization survey. It also provides the requirements associated with the evaluation of the characterization survey results, including the comparison of the current characterization survey results to the previous year's survey results and to the regulatory limits associated with both surface contamination and general area gamma radiation exposure rates.
- 2. The scope of the plan pertains only to the characterization survey performed at the site (specifically the internal parts of the enclosed domed building).

### 1.2 Limitations

- Beta-gamma contamination and gamma radiation surveys performed during this survey should only be used as described in the introduction section of this plan. Survey results shall not be used to make release decisions for the site.
- The characterization survey shall be performed by a qualified LMS RCT using functional and calibrated LMS radiological survey instruments and equipment or appropriate and acceptable vendor-supplied radiological instrumentation.
- Characterization surveys, instrument preoperational checks, and recording of the survey results shall be performed in accordance with the *Radiation Protection Program Plan* (LMS/POL/S04373), *Radiological Control Manual* (LMS/POL/S04322), and Radiological Control (RadCon) implementing procedures. If a conflict exists between this plan and the *Radiation Protection Program Plan*, *Radiological Control Manual*, or the RadCon

implementing procedures, then the RCT shall follow the requirements and guidance identified in the *Radiation Protection Program Plan*, *Radiological Control Manual*, and the RadCon implementing procedures.

• As of 2024, the enclosed domed building is not ventilated or heated or cooled, and ambient outside temperatures likely drive internal dome temperatures. During the summer months, it is expected that internal dome temperatures will reach temperatures at which heat stress monitoring and controls will be required and implemented. During the winter months, it is expected that internal dome temperatures will reach temperatures at which cold stress monitoring and controls will be required and implemented. Work restrictions and controls for heat or cold stress will be identified on the site's job safety analysis and shall be followed in accordance with appropriate LMS Safety and Health (S&H) procedure and requirements.

### 2.0 Survey and S&H Equipment and Supplies

Knowing that the site is located out of the country and that necessary LMS S&H and RadCon supplies and equipment might be limited or not available in San Juan or Rincón, Puerto Rico, it is necessary to identify needed equipment and supplies and then purchase them in the United States and have the equipment and supplies shipped to the site (if equipment and supplies are not already there) along with other LMS radiological instrumentation.

Recommended S&H and RadCon supplies and equipment include the following:

- 2 each: Bicron/ThermoScientific Microrem Meter instrument or equivalent
- 2 each: Ludlum Model 26 instrument or equivalent
- 200 Rad Dawg smears or equivalent
- 5 radiological waste plastic bags
- 3 each: Radioactive Material Area and Contamination Area signs and attachment mechanisms
- 10 pairs of Tyvek coveralls (appropriate sizes) or equivalent
- 2 boxes of nitrile gloves (appropriate sizes) or equivalent
- 1 roll of duct tape
- 2 pairs of rubber overshoes
- 10 pairs of plastic liners
- 2 one-gallon pump-sprayer bottles
- 4 pairs of clear safety glasses
- 1 Wet Bulb Globe Temperature thermometer or equivalent thermometer

## 3.0 Survey Requirements

In accordance with the Long-Term Surveillance and Maintenance Plan for the Boiling Nuclear Superheater (BONUS) Reactor Facility, Rincón, Puerto Rico (LMS/BON/S01091); Radiation Protection Program Plan; and the Radiological Control Manual, several different characterization surveys are required for the site and are included as part of this plan.

### 3.1 Gamma Radiation Exposure Rate Survey

General area gamma radiation exposure rate surveys will be obtained at the 73 defined locations (Figure 1 through Figure 6) to determine the radiation level (in microroentgens per hour  $[\mu R/h]$  or similar dose rate result units) associated with the entombment structure and the accessible enclosed domed building. Additionally, five nonbiased gamma radiation exposure rate surveys will be performed in accessible areas commonly permitted for public access.

Results of the gamma radiation exposure rate surveys will be evaluated in real time and confirmatory, biased gamma radiation exposure rate surveys performed when any of the following survey result or physical site conditions exist:

- The RCT observes excessive deterioration of the structure(s) during the survey when compared to the previous year's structural condition
- Survey results from the identified survey locations indicate a gamma radiation exposure rate in excess of 0.4 milliroentgen per hour (400  $\mu$ R/h)
- The RCT observes any conditions that justify an additional gamma radiation exposure rate survey be performed, at their discretion

Gamma radiation exposure rate survey results will be reported on the *BONUS Annual Survey Location and Results Data Sheet* (Attachment 1). In addition, gamma radiation exposure rate survey results will be recorded on a *Radiological Survey Map* form (LMS 1553) and be considered the official record of the characterization survey and its results.

If additional gamma radiation exposure rate surveys are performed, then identify the following information on the *BONUS Annual Survey Location and Results Data Sheet* (Attachment 1) and on the *Radiological Survey Map* form in the comments section:

- The reason for performing the additional survey(s)
- The location of the additional survey(s)
- Observations and conclusions relative to the survey(s), such as site conditions or equipment or item physical condition (e.g., extreme rust, paint chipping)

## 3.2 Contamination Level Survey

Direct beta-gamma surface contamination and transferable surface contamination smear surveys will be obtained at the 73 defined locations (Figure 1 through Figure 6) to determine the surface's contamination levels (in disintegrations per minute per 100 centimeters squared [dpm/100 cm<sup>2</sup>] or similar surface contamination result units) for both transferable and total surface activity associated with the entombment structure and the accessible enclosed domed building. Additionally, five nonbiased direct beta-gamma surface contamination and transferable

surface contamination smear surveys will be performed in accessible areas commonly permitted for public access.

Results of the direct beta-gamma surface contamination and transferable surface contamination smear surveys will be evaluated in real-time and confirmatory, biased beta-gamma surface contamination and transferable surface contamination smear surveys will be performed when any of the following survey result or physical site conditions exist:

- The RCT observes excessive deterioration of the structure(s) during the survey when compared to the previous year's structural condition
- Survey results from the identified survey locations indicate contamination levels in excess of 1000 dpm (beta/gamma)/100 cm<sup>2</sup> transferable contamination or 5000 dpm (beta/gamma)/100 cm<sup>2</sup> total surface contamination
- The RCT observes any conditions that justify additional surface contamination surveys be performed, at their discretion

Results of direct beta-gamma surface contamination and transferable surface contamination smear surveys will be reported on the *BONUS Annual Survey Location and Results Data Sheet* (Attachment 1). In addition, the same results will be recorded on a *Radiological Survey Map* form and be considered the official record of the characterization survey and its results.

If additional direct beta-gamma surface contamination and transferable surface contamination smear surveys are performed, then identify the following information on the *BONUS Annual Survey Location and Results Data Sheet* (Attachment 1) and on the *Radiological Survey Map* form in the comments section:

- The reason for performing the additional survey(s)
- The location of the additional survey(s)
- Observations and conclusions relative to the survey result(s), such as site conditions or equipment or item physical condition (e.g., extreme rust, paint chipping)

### 4.0 Survey Instrumentation

Calibrated and functional radiological survey instruments shall be used to perform the characterization survey at the site. Appropriate beta-gamma surface contamination survey instruments include Ludlum Model 26, Ludlum Model 3000 with 44-9 Geiger Mueller (GM) probe, and Thermo Scientific FH40 Geiger (G) with FHZ 732 GM probe. Appropriate gamma radiation exposure rate survey instruments include Thermo Scientific or Bicron microrem meter, ThermoScientific FH 40 G, and Ludlum ion chamber meters. Instruments shall be operated in accordance with the instrument's operating manual and LMS RadCon implementing procedures.

Knowing that the site is located out of the country and that radiological survey instrumentation is likely not available in San Juan or Rincón, it is recommended that two of each instrument type (gamma radiation exposure rate and surface contamination) be acquired (either from the LMS radiological instrument inventory or from an acceptable radiological instrument vendor), packaged for shipment, and then shipped to the site (if radiological instrumentation is not already there).

### 5.0 Survey Documentation

Characterization surveys shall be documented on a *Radiological Survey Map* in accordance with the *Radiological Control Manual* and the *Documenting Radiological Surveys* (LMS/PRO/S20073) procedure. In addition, characterization survey results shall be recorded on the *BONUS Annual Survey Location and Results Data Sheet* (Attachment 1).

### 6.0 Survey Result Evaluation

Characterization survey results shall be evaluated initially for correctness and completeness. This is accomplished by submitting the completed survey documentation (e.g., *Radiological Survey Map*) to an LMS senior health physicist for review and approval.

### 7.0 Survey Result Comparison

Reviewed and approved characterization survey results shall be compared against regulatory limits and also against the previous year's characterization survey results.

### 7.1 Regulatory Limit Comparison

- [1] Using reviewed and approved characterization survey results, compare surface contamination values against Table 2, "Summary of Surface Contamination Values in dpm/100 cm2 (10 CFR 835 Appendix D)," in the *Radiological Control Manual*.
  - [a] If removable or fixed surface contamination characterization survey results exceed *Radiological Control Manual* limits for areas at the site that are not currently radiologically controlled, then contact the RadCon manager immediately.
  - [b] If removable or fixed surface contamination characterization survey results are equal to or below *Radiological Control Manual* limits for areas at the site that are not currently radiologically controlled, then inform the site lead that surface contamination is within regulatory limits.
- [2] Using reviewed and approved characterization survey results, compare gamma radiation exposure rate values against 400  $\mu$ R/h (above background).

  - [b] If gamma radiation exposure rate characterization survey results are equal to or less than 400  $\mu$ R/h (above background) for areas at the site that are not currently radiologically controlled, then inform the site lead that gamma radiation exposure rates are equal to or below 400  $\mu$ R/h (above background).

### 7.2 Previous Year's Results Comparison

Using the characterization survey results recorded on the *BONUS Annual Survey Location and Results Data Sheet* (Attachment 1), compare them against the previous year's characterization survey results.

If current characterization survey results are different by more than 2 sigma of the previous year's characterization survey results, then an LMS senior health physicist shall perform a review of the difference(s), document the review, and submit the review to the LMS site lead.



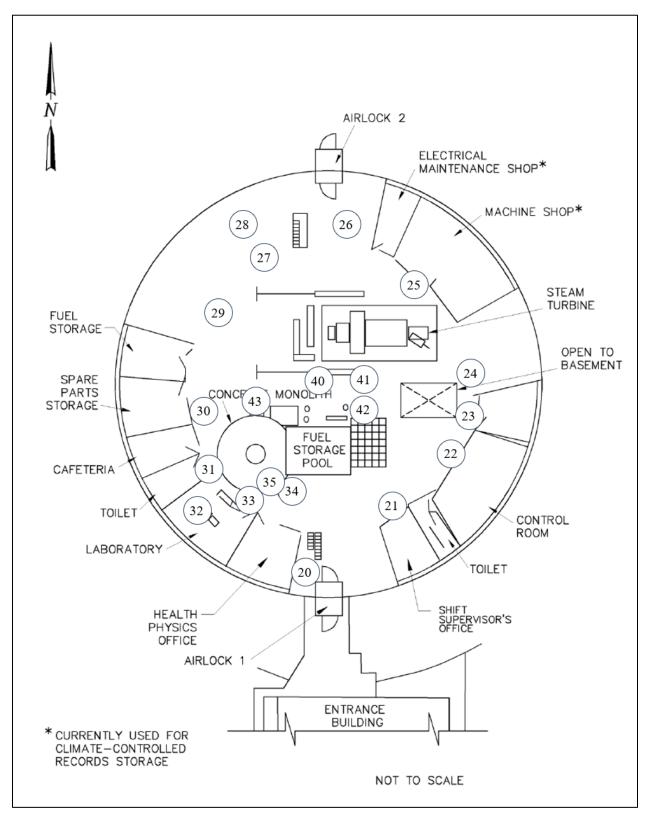



Figure 1. Main Floor Survey Locations

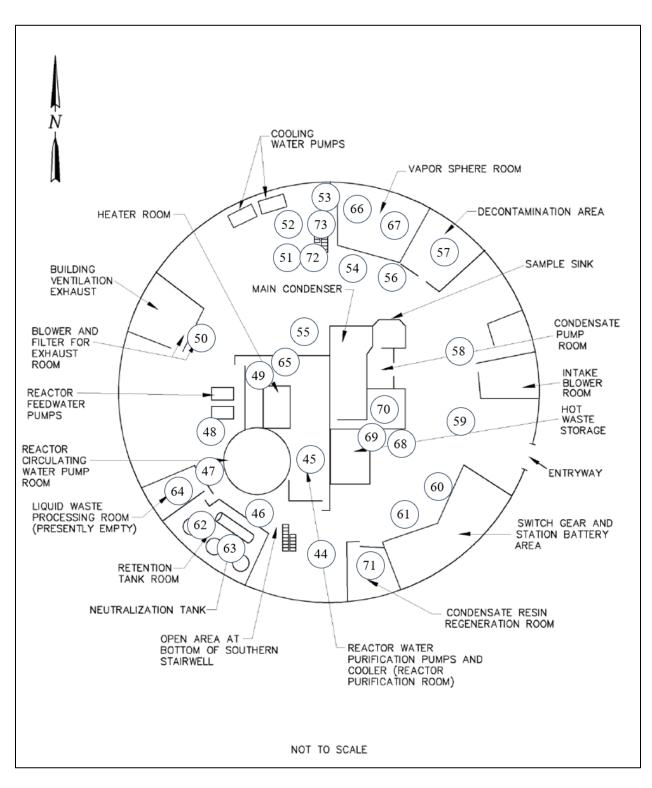



Figure 2. Basement Floor Survey Locations

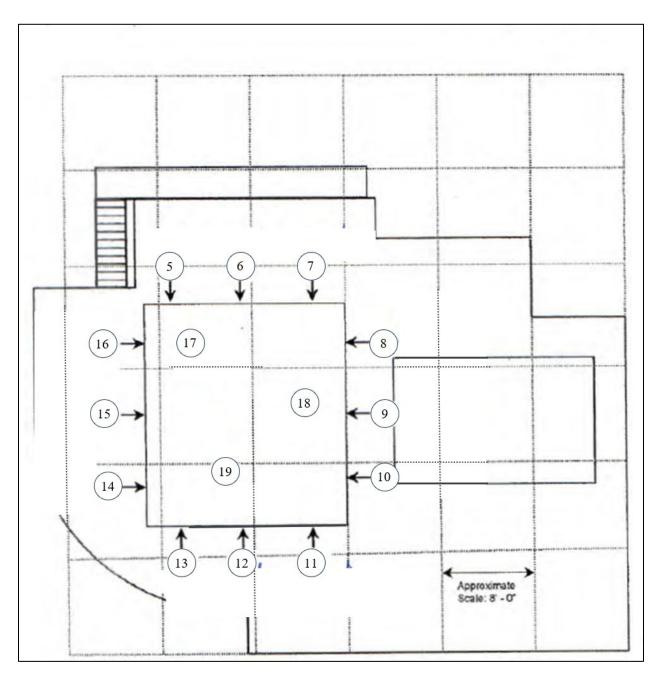



Figure 3. Monolith Top Plug Structure

Attachment 1, Page 14

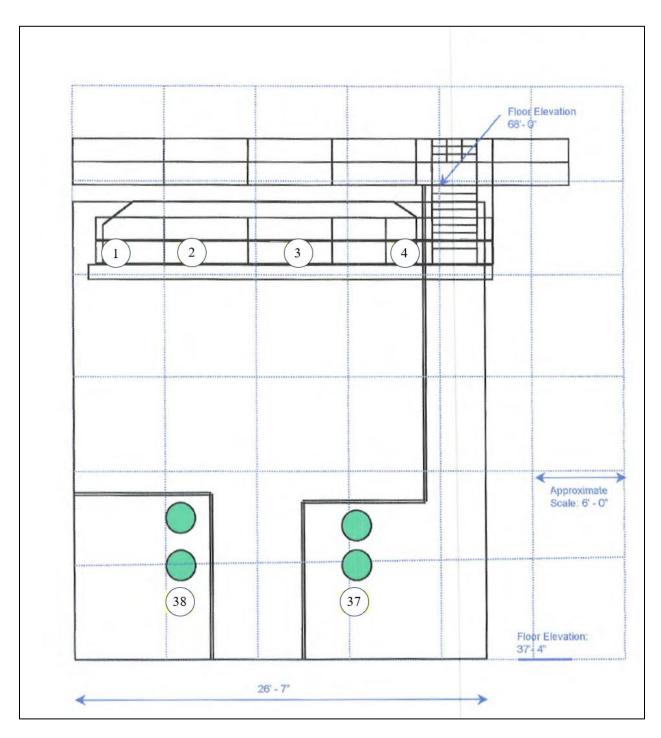



Figure 4. Entombment System—North View

Attachment 1, Page 15

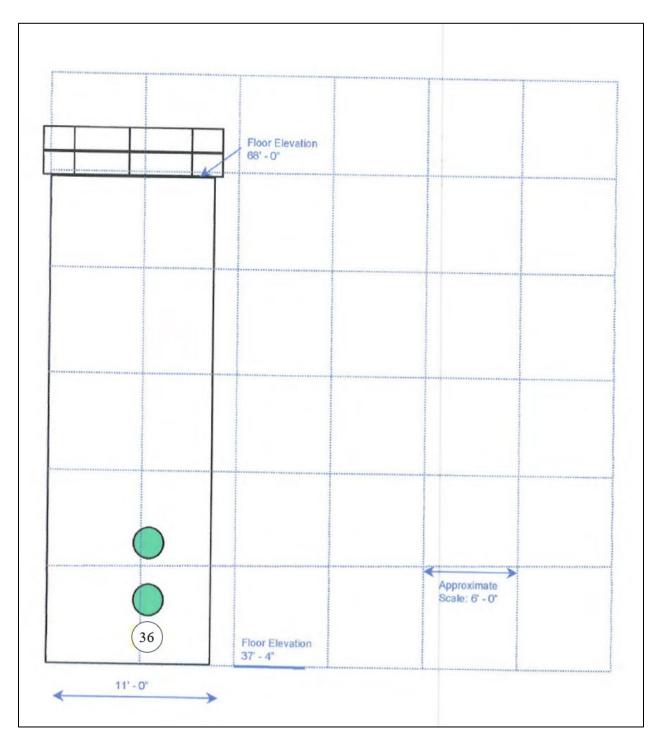



Figure 5. Entombment System—South View

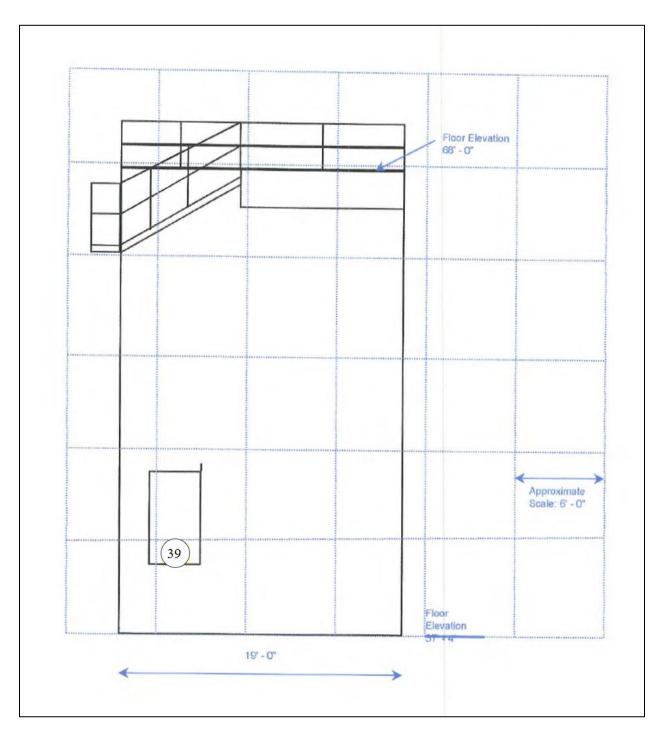



Figure 6. Entombment System—North View

### 9.0 References

10 CFR 835. "Occupational Radiation Protection," Code of Federal Regulations.

*Documenting Radiological Surveys*, LMS/PRO/S20073, continually updated, prepared by the LMS contractor for the U.S. Department of Energy Office of Legacy Management.

Long-Term Surveillance and Maintenance Plan for the Boiling Nuclear Superheater (BONUS) Reactor Facility, Rincón, Puerto Rico, LMS/BON/S01091, continually updated, prepared by the LMS contractor for the U.S. Department of Energy Office of Legacy Management.

*Radiation Protection Program Plan*, LMS/POL/S04373, continually updated, prepared by the LMS contractor for the U.S. Department of Energy Office of Legacy Management.

*Radiological Control Manual*, LMS/POL/S04322, continually updated, prepared by the LMS contractor for the U.S. Department of Energy Office of Legacy Management.

*Records and Information Management*, LM-Policy-1-11-1.0, continually updated, prepared by the Office of Legacy Management, March.

Attachment 1

**BONUS** Annual Survey Location and Results Data Sheet

| RCT Name:                            | Survey Date:                                 |  |  |
|--------------------------------------|----------------------------------------------|--|--|
| Exposure Rate Instrument Information | Surface Contamination Instrument Information |  |  |
| Survey Instrument Model:             | Survey Instrument Model:                     |  |  |
| Instrument Serial Number:            | Instrument Serial Number:                    |  |  |
| Calibration Due Date:                | Calibration Due Date:                        |  |  |
| Time of Daily Response Check:        | Time of Daily Response Check:                |  |  |
| Background Exposure Rate (µR/h):     |                                              |  |  |

| Survey ID | Survey Location                    | Exposure<br>Result<br>(µR/h) | Removable<br>Contamination<br>(dpm/100cm <sup>2</sup> ) | Total<br>Contamination<br>(dpm/100cm <sup>2</sup> ) | Comment                  |
|-----------|------------------------------------|------------------------------|---------------------------------------------------------|-----------------------------------------------------|--------------------------|
| 1         | Pipe Chase Face #1                 |                              |                                                         |                                                     | Monolith Top             |
| 2         | Pipe Chase Face #2                 |                              |                                                         |                                                     | Monolith Top             |
| 3         | Pipe Chase Face #3                 |                              |                                                         |                                                     | Monolith Top             |
| 4         | Pipe Chase Face #4                 |                              |                                                         |                                                     | Monolith Top             |
| 5         | Top Plug Face #1—Left              |                              |                                                         |                                                     | Monolith Top             |
| 6         | Top Plug Face #1—Center            |                              |                                                         |                                                     | Monolith Top             |
| 7         | Top Plug Face #1—Right             |                              |                                                         |                                                     | Monolith Top             |
| 8         | Top Plug Face #2—Top               |                              |                                                         |                                                     | Monolith Top             |
| 9         | Top Plug Face #2—Center            |                              |                                                         |                                                     | Monolith Top             |
| 10        | Top Plug Face #2—Bottom            |                              |                                                         |                                                     | Monolith Top             |
| 11        | Top Plug Face #3—Right             |                              |                                                         |                                                     | Monolith Top             |
| 12        | Top Plug Face #3—Center            |                              |                                                         |                                                     | Monolith Top             |
| 13        | Top Plug Face #3—Left              |                              |                                                         |                                                     | Monolith Top             |
| 14        | Top Plug Face #4—Bottom            |                              |                                                         |                                                     | Monolith Top             |
| 15        | Top Plug Face #4—Center            |                              |                                                         |                                                     | Monolith Top             |
| 16        | Top Plug Face #4—Top               |                              |                                                         |                                                     | Monolith Top             |
| 17        | Top Plug Top Surface—Upper Left    |                              |                                                         |                                                     | Monolith Top             |
| 18        | Top Plug Top Surface—Center Right  |                              |                                                         |                                                     | Monolith Top             |
| 19        | Top Plug Top Surface—Center Bottom |                              |                                                         |                                                     | Monolith Top             |
| 20        | Main Floor—Zone 1                  |                              |                                                         |                                                     | Main Level—Public Access |
| 21        | Main Floor—Zone 2                  |                              |                                                         |                                                     | Main Level—Public Access |
| 22        | Main Floor—Zone 3                  |                              |                                                         |                                                     | Main Level—Public Access |
| 23        | Main Floor—Zone 4                  |                              |                                                         |                                                     | Main Level—Public Access |
| 24        | Main Floor—Zone 5                  |                              |                                                         |                                                     | Main Level—Public Access |
| 25        | Main Floor—Zone 6                  |                              |                                                         |                                                     | Main Level—Public Access |

Annual LMS Radiological Characterization Survey Plan for the BONUS Site, LMS RadCon Survey Plan Number: 24-001 Doc. No. 48092-0.0

| Survey ID | Survey Location             | Exposure<br>Result<br>(µR/h) | Removable<br>Contamination<br>(dpm/100cm <sup>2</sup> ) | Total<br>Contamination<br>(dpm/100cm <sup>2</sup> ) | Comment                      |
|-----------|-----------------------------|------------------------------|---------------------------------------------------------|-----------------------------------------------------|------------------------------|
| 26        | Main Floor—Zone 7           |                              |                                                         |                                                     | Main Level—Public Access     |
| 27        | Main Floor—Zone 8           |                              |                                                         |                                                     | Main Level—Public Access     |
| 28        | Main Floor—Zone 9           |                              |                                                         |                                                     | Main Level—Public Access     |
| 29        | Main Floor—Zone 10          |                              |                                                         |                                                     | Main Level—Public Access     |
| 30        | Main Floor—Zone 11          |                              |                                                         |                                                     | Main Level—Public Access     |
| 31        | Main Floor—Zone 12          |                              |                                                         |                                                     | Main Level—Public Access     |
| 32        | Main Floor—Zone 13          |                              |                                                         |                                                     | Main Level—Public Access     |
| 33        | Main Floor—Zone 14          |                              |                                                         |                                                     | Main Level—Public Access     |
| 34        | Main Floor Water Column #1  |                              |                                                         |                                                     | Main Level—Controlled Area   |
| 35        | Main Floor Water Column #2  |                              |                                                         |                                                     | Main Level—Controlled Area   |
| 36        | Instrument Thimble #1       |                              |                                                         |                                                     | Main Level—Controlled Area   |
| 37        | Instrument Thimble #2       |                              |                                                         |                                                     | Main Level—Controlled Area   |
| 38        | Instrument Thimble #3       |                              |                                                         |                                                     | Main Level—Controlled Area   |
| 39        | Pipe Chase Exit Hatch       |                              |                                                         |                                                     | Main Level—Controlled Area   |
| 40        | Fuel Pool Purifier—Floor #1 |                              |                                                         |                                                     | Main Level—Contaminated Area |
| 41        | Fuel Pool Purifier—Floor #2 |                              |                                                         |                                                     | Main Level—Controlled Area   |
| 42        | Fuel Pool Purifier—Floor #3 |                              |                                                         |                                                     | Main Level—Controlled Area   |
| 43        | Fuel Pool Purifier—Floor #4 |                              |                                                         |                                                     | Main Level—Controlled Area   |
| 44        | Basement Floor—Zone 1       |                              |                                                         |                                                     | Basement Level               |
| 45        | Basement Floor—Zone 2       |                              |                                                         |                                                     | Basement Level               |
| 46        | Basement Floor—Zone 3       |                              |                                                         |                                                     | Basement Level               |
| 47        | Basement Floor—Zone 4       |                              |                                                         |                                                     | Basement Level               |
| 48        | Basement Floor—Zone 5       |                              |                                                         |                                                     | Basement Level               |
| 49        | Basement Floor—Zone 6       |                              |                                                         |                                                     | Basement Level               |
| 50        | Basement Floor—Zone 7       |                              |                                                         |                                                     | Basement Level               |
| 51        | Basement Floor—Zone 8       |                              |                                                         |                                                     | Basement Level               |
| 52        | Basement Floor—Zone 9       |                              |                                                         |                                                     | Basement Level               |
| 53        | Basement Floor—Zone 10      |                              |                                                         |                                                     | Basement Level               |
| 54        | Basement Floor—Zone 11      |                              |                                                         |                                                     | Basement Level               |
| 55        | Basement Floor—Zone 12      |                              |                                                         |                                                     | Basement Level               |
| 56        | Basement Floor—Zone 13      |                              |                                                         |                                                     | Basement Level               |
| 57        | Basement Floor—Zone 14      |                              |                                                         |                                                     | Basement Level               |

| Survey ID | Survey Location                         | Exposure<br>Result<br>(µR/h) | Removable<br>Contamination<br>(dpm/100cm <sup>2</sup> ) | Total<br>Contamination<br>(dpm/100cm <sup>2</sup> ) | Comment        |
|-----------|-----------------------------------------|------------------------------|---------------------------------------------------------|-----------------------------------------------------|----------------|
| 58        | Basement Floor—Zone 15                  |                              |                                                         |                                                     | Basement Level |
| 59        | Basement Floor—Zone 16                  |                              |                                                         |                                                     | Basement Level |
| 60        | Basement Floor—Zone 17                  |                              |                                                         |                                                     | Basement Level |
| 61        | Basement Floor—Zone 18                  |                              |                                                         |                                                     | Basement Level |
| 62        | Side of Liquid Waste Tank #1            |                              |                                                         |                                                     | Basement Level |
| 63        | Side of Liquid Waste Tank #2            |                              |                                                         |                                                     | Basement Level |
| 64        | Column 4 and 5 Inside Room              |                              |                                                         |                                                     | Basement Level |
| 65        | Heater Room (Wall)                      |                              |                                                         |                                                     | Basement Level |
| 66        | Vapor Sphere Room—Upper Left            |                              |                                                         |                                                     | Basement Level |
| 67        | Vapor Sphere Room—Center Right          |                              |                                                         |                                                     | Basement Level |
| 68        | Water Pump Room to the Right, Enter 50A |                              |                                                         |                                                     | Basement Level |
| 69        | Condenser Room Entry Wall—Block         |                              |                                                         |                                                     | Basement Level |
| 70        | Condenser Room Entry Wall—Concrete      |                              |                                                         |                                                     | Basement Level |
| 71        | South Room with 2 pumps                 |                              |                                                         |                                                     | Basement Level |
| 72        | Under Stairs Near North Door—Floor #1   |                              |                                                         |                                                     | Basement Level |
| 73        | Under Stairs Near North Door—Floor #2   |                              |                                                         |                                                     | Basement Level |
| 74        |                                         |                              |                                                         |                                                     |                |
| 75        |                                         |                              |                                                         |                                                     |                |
| 76        |                                         |                              |                                                         |                                                     |                |
| 77        |                                         |                              |                                                         |                                                     |                |
| 78        |                                         |                              |                                                         |                                                     |                |
|           |                                         |                              |                                                         |                                                     |                |
|           |                                         |                              |                                                         |                                                     |                |
|           |                                         |                              |                                                         |                                                     |                |
|           |                                         |                              |                                                         |                                                     |                |
|           |                                         |                              |                                                         |                                                     |                |

Abbreviations: dpm/100cm<sup>2</sup> = disintegrations per minute per 100 square centimeters, ID = identifier, µR/h = microroentgens per hour, RCT = radiological control technician

Attachment 2

Completed BONUS Annual Survey Location and Results Data Sheet, from the Annual LMS Radiological Characterization Survey Plan for the BONUS, Puerto Rico, Decommissioned Reactor Site LMS RadCon Survey Plan Number: 24-001, June 2024, LMS/BON/48092

#### Radiological Survey Number: 240722-002 RCT Name: Larry Oeffner/Mike McDonald

| <b>RCT Name</b> . Larry Dermen/Mike McDonaid |                       |  |  |  |
|----------------------------------------------|-----------------------|--|--|--|
| Exposure Rate Instrument Info                |                       |  |  |  |
| Survey Instrument Model:                     | Thermo Microrem       |  |  |  |
| Instrument Serial Number:                    | 19288                 |  |  |  |
| Calibration Due Date:                        | 8/17/2024             |  |  |  |
| Time of Daily Response Check:                | 0947/0830             |  |  |  |
| Background Exposure Rate (µR/h):             | 17/38 (main/basement) |  |  |  |

#### Survey Date: 7-16/17-2024 Surface Contamination Instrument Info

| Survey Instrument Model: Ludlu      | m 26 |
|-------------------------------------|------|
| Instrument Serial Number: PF00      | 9836 |
| Calibration Due Date: 2/6/20        | )25  |
| Time of Daily Response Check: 0947/ | 0830 |
|                                     |      |

| Survey ID | Survey Location                         | 2024 Exposure<br>Result<br>(μrem/hr) | 2024 Removable<br>Contamination<br>(dpm/100cm <sup>2</sup> ) | 2024 Total<br>Contamination<br>(dpm/100cm <sup>2</sup> ) | General Location             | Comment |
|-----------|-----------------------------------------|--------------------------------------|--------------------------------------------------------------|----------------------------------------------------------|------------------------------|---------|
| L1        | Pipe Chase Face #1                      | 20                                   | 26                                                           | < Sc                                                     | Monolith Top                 |         |
| L2        | Pipe Chase Face #2                      | 20                                   | < Sc                                                         | < Sc                                                     | Monolith Top                 |         |
| L3        | Pipe Chase Face #3                      | 20                                   | < Sc                                                         | < Sc                                                     | Monolith Top                 |         |
| L4        | Pipe Chase Face #4                      | 20                                   | < Sc                                                         | 495                                                      | Monolith Top                 |         |
| L5        | Top Plug Face #1 - left                 | 12                                   | < Sc                                                         | < Sc                                                     | Monolith Top                 |         |
| L6        | Top Plug Face #1 - center               | 10                                   | < Sc                                                         | < Sc                                                     | Monolith Top                 |         |
| L7        | Top Plug Face #1 - right                | 10                                   | < Sc                                                         | 495                                                      | Monolith Top                 |         |
| L8        | Top Plug Face #2 - top                  | 11                                   | < Sc                                                         | 730                                                      | Monolith Top                 |         |
| L9        | Top Plug Face #2 - center               | 12                                   | < Sc                                                         | 1908                                                     | Monolith Top                 |         |
| L10       | Top Plug Face #2 - bottom               | 10                                   | < Sc                                                         | 683                                                      | Monolith Top                 |         |
| L11       | Top Plug Face #3 - right                | 10                                   | < Sc                                                         | 447                                                      | Monolith Top                 |         |
| L12       | Top Plug Face #3 - center               | 12                                   | < Sc                                                         | 565                                                      | Monolith Top                 |         |
| L13       | Top Plug Face #3 - left                 | 13                                   | < Sc                                                         | < Sc                                                     | Monolith Top                 |         |
| L14       | Top Plug Face #4 - bottom               | 12                                   | < Sc                                                         | < Sc                                                     | Monolith Top                 |         |
| L15       | Top Plug Face #4 - center               | 12                                   | < Sc                                                         | 612                                                      | Monolith Top                 |         |
| L16       | Top Plug Face #4 - top                  | 12                                   | < Sc                                                         | 612                                                      | Monolith Top                 |         |
| L17       | Top Plug Top Surface - upper left       | 12                                   | < Sc                                                         | 471                                                      | Monolith Top                 |         |
| L18       | Top Plug Top Surface - center right     | 12                                   | < Sc                                                         | < Sc                                                     | Monolith Top                 |         |
| L19       | Top Plug Top Surface - center bottom    | 14                                   | 35                                                           | < Sc                                                     | Monolith Top                 |         |
| L20       | Main Floor Zone 1                       | 14                                   | < Sc                                                         | < Sc                                                     | Main Level-Public Access     |         |
| L21       | Main Floor Zone 2                       | 14                                   | < Sc                                                         | < Sc                                                     | Main Level-Public Access     |         |
| L22       | Main Floor Zone 3                       | 15                                   | < Sc                                                         | < Sc                                                     | Main Level-Public Access     |         |
| L23       | Main Floor Zone 4                       | 17                                   | < Sc                                                         | 707                                                      | Main Level-Public Access     |         |
| L24       | Main Floor Zone 5                       | 17                                   | < Sc                                                         | 777                                                      | Main Level-Public Access     |         |
| L25       | Main Floor-Zone 6                       | 17                                   | < Sc                                                         | 942                                                      | Main Level-Public Access     |         |
| L26       | Main Floor-Zone 7                       | 18                                   | < Sc                                                         | < Sc                                                     | Main Level-Public Access     |         |
| L27       | Main Floor-Zone 8                       | 17                                   | < Sc                                                         | < Sc                                                     | Main Level-Public Access     |         |
| L28       | Main Floor-Zone 9                       | 17                                   | < Sc                                                         | < Sc                                                     | Main Level-Public Access     |         |
| L29       | Main Floor-Zone 10                      | 17                                   | 28                                                           | 683                                                      | Main Level-Public Access     |         |
| L30       | Main Floor-Zone 11                      | 15                                   | < Sc                                                         | < Sc                                                     | Main Level-Public Access     |         |
| L31       | Main Floor-Zone 12                      | 17                                   | < Sc                                                         | < Sc                                                     | Main Level-Public Access     |         |
| L32       | Main Floor-Zone 13                      | 18                                   | < Sc                                                         | 542                                                      | Main Level-Public Access     |         |
| L33       | Main Floor-Zone 14                      | 17                                   | < Sc                                                         | 777                                                      | Main Level-Public Access     |         |
| L34       | Main Floor Water Column - center bottom | 18                                   | 28                                                           | 542                                                      | Main Level-Controlled Area   |         |
| L35       | Main Floor Water Column - right middle  | 15                                   | < Sc                                                         | < Sc                                                     | Main Level-Controlled Area   |         |
| L36       | Instrument Thimble #1                   | 22                                   | < Sc                                                         | < Sc                                                     | Main Level-Controlled Area   |         |
| L37       | Instrument Thimble #2                   | 20                                   | < Sc                                                         | < Sc                                                     | Main Level-Controlled Area   |         |
| L38       | Instrument Thimble #3                   | 16                                   | < Sc                                                         | < Sc                                                     | Main Level-Controlled Area   |         |
| L39       | Pipe Chase Ext Hatch                    | 22                                   | 26                                                           | < Sc                                                     | Main Level-Controlled Area   |         |
| L40       | Fuel Pool Purifier. Floor #1            | 30                                   | < Sc                                                         | 18699                                                    | Main Level-Contaminated Area |         |
| L41       | Fuel Pool Purifier. Floor #2            | 30                                   | < Sc                                                         | 942                                                      | Main Level-Controlled Area   |         |
| L42       | Fuel Pool Purifier. Floor #3            | 30                                   | < Sc                                                         | 495                                                      | Main Level-Controlled Area   |         |

#### Radiological Survey Number: 240722-002

| RCT Name: Larry Oeffner/Mike McDonald |                       |  |  |  |
|---------------------------------------|-----------------------|--|--|--|
| Exposure Rate Instrument Info         |                       |  |  |  |
| Survey Instrument Model:              | Thermo Microrem       |  |  |  |
| Instrument Serial Number:             | 19288                 |  |  |  |
| Calibration Due Date:                 | 8/17/2024             |  |  |  |
| Time of Daily Response Check:         | 0947/0830             |  |  |  |
| Background Exposure Rate (µR/h):      | 17/38 (main/basement) |  |  |  |

#### Survey Date: 7-16/17-2024 Surface Contamination Instrument Info

| earrage containing of the     |           |
|-------------------------------|-----------|
| Survey Instrument Model:      | Ludlum 26 |
| Instrument Serial Number:     | PF009836  |
| Calibration Due Date:         | 2/6/2025  |
| Time of Daily Response Check: | 0947/0830 |
|                               |           |

| Survey ID | Survey Location                         | 2024 Exposure<br>Result<br>(μrem/hr) | 2024 Removable<br>Contamination<br>(dpm/100cm <sup>2</sup> ) | 2024 Total<br>Contamination<br>(dpm/100cm <sup>2</sup> ) | General Location           | Comment                                     |
|-----------|-----------------------------------------|--------------------------------------|--------------------------------------------------------------|----------------------------------------------------------|----------------------------|---------------------------------------------|
| L43       | Fuel Pool Purifier. Floor #4            | 30                                   | < Sc                                                         | < Sc                                                     | Main Level-Controlled Area |                                             |
| L44       | Basement Floor-Zone 1                   | 40                                   | < Sc                                                         | < Sc                                                     | Basement Level             |                                             |
| L45       | Basement Floor-Zone 2                   | 40                                   | < Sc                                                         | < Sc                                                     | Basement Level             |                                             |
| L46       | Basement Floor-Zone 3                   | 40                                   | < Sc                                                         | < Sc                                                     | Basement Level             |                                             |
| L47       | Basement Floor-Zone 4                   | 35                                   | 35                                                           | < Sc                                                     | Basement Level             |                                             |
| L48       | Basement Floor-Zone 5                   | 35                                   | < Sc                                                         | < Sc                                                     | Basement Level             |                                             |
| L49       | Basement Floor-Zone 6                   | 35                                   | < Sc                                                         | < Sc                                                     | Basement Level             |                                             |
| L50       | Basement Floor-Zone 7                   | 40                                   | < Sc                                                         | < Sc                                                     | Basement Level             |                                             |
| L51       | Basement Floor-Zone 8                   | 40                                   | < Sc                                                         | < Sc                                                     | Basement Level             |                                             |
| L52       | Basement Floor-Zone 9                   | 40                                   | < Sc                                                         | < Sc                                                     | Basement Level             |                                             |
| L53       | Basement Floor-Zone 10                  | 35                                   | < Sc                                                         | < Sc                                                     | Basement Level             |                                             |
| L54       | Basement Floor-Zone 11                  | 35                                   | < Sc                                                         | < Sc                                                     | Basement Level             |                                             |
| L55       | Basement Floor-Zone 12                  | 40                                   | < Sc                                                         | < Sc                                                     | Basement Level             |                                             |
| L56       | Basement Floor-Zone 13                  | 35                                   | < Sc                                                         | < Sc                                                     | Basement Level             |                                             |
| L57       | Basement Floor-Zone 14                  | 35                                   | < Sc                                                         | < Sc                                                     | Basement Level             |                                             |
| L58       | Basement Floor-Zone 15                  | 35                                   | < Sc                                                         | < Sc                                                     | Basement Level             |                                             |
| L59       | Basement Floor-Zone 16                  | 40                                   | < Sc                                                         | 495                                                      | Basement Level             |                                             |
| L60       | Basement Floor-Zone 17                  | 35                                   | < Sc                                                         | < Sc                                                     | Basement Level             |                                             |
| L61       | Basement Floor-Zone 18                  | 40                                   | < Sc                                                         | < Sc                                                     | Basement Level             |                                             |
| L62       | Side of Liq. Waste Ret. Tank #1         | 40                                   | < Sc                                                         | < Sc                                                     | Basement Level             |                                             |
| L63       | Side of Liq. Waste Ret. Tank #2         | 40                                   | < Sc                                                         | < Sc                                                     | Basement Level             |                                             |
| L64       | Column 4 and 5 inside room              | 40                                   | < Sc                                                         | < Sc                                                     | Basement Level             |                                             |
| L65       | F.W. Heater Room (Wall)                 | 40                                   | < Sc                                                         | < Sc                                                     | Basement Level             |                                             |
| L66       | Vapor Sphere Room - upper left          | 40                                   | < Sc                                                         | < Sc                                                     | Basement Level             |                                             |
| L67       | Vapor Sphere Room - center right        | 35                                   | < Sc                                                         | < Sc                                                     | Basement Level             |                                             |
| L68       | Water pump room to the right, enter 50A | 40                                   | < Sc                                                         | < Sc                                                     | Basement Level             |                                             |
| L69       | Condenser Room Entry Wall - block       | 40                                   | < Sc                                                         | < Sc                                                     | Basement Level             |                                             |
| L70       | Condenser Room Entry Wall - concrete    | 40                                   | < Sc                                                         | < Sc                                                     | Basement Level             |                                             |
| L71       | South room with 2 pumps                 | 40                                   | < Sc                                                         | < Sc                                                     | Basement Level             |                                             |
| L72       | Under stairs near north door. Floor #1  | 40                                   | < Sc                                                         | 471                                                      | Basement Level             |                                             |
| L73       | Under stairs near north door. Floor #2  | 40                                   | < Sc                                                         | < Sc                                                     | Basement Level             |                                             |
| L74       | Condensate Pump #2 Pedestal             | 40                                   | < Sc                                                         | 942                                                      | Basement Level             | Nonbiased survey location chosen by the RCT |
| L75       | Basement Floor-Zone 5                   | 35                                   | < Sc                                                         | < Sc                                                     | Basement Level             | Nonbiased survey location chosen by the RCT |
| L76       | Display Area                            | 19                                   | < Sc                                                         | < Sc                                                     | Main Level-Public Access   | Nonbiased survey location chosen by the RCT |
| L77       | RadCon Storage Area                     | 20                                   | < Sc                                                         | < Sc                                                     | Main Level-Public Access   | Nonbiased survey location chosen by the RCT |
| L78       | Building Airlock Main Entry             | 18                                   | < Sc                                                         | < Sc                                                     | Main Level-Public Access   | Nonbiased survey location chosen by the RCT |

Attachment 3

*Radiological Survey Map* Form (LMS 1553) for the BONUS, Puerto Rico, Decommissioned Reactor Site, July 16–17, 2024, Radiological Survey Number 240722-002



|                                                                          |                                                                              |                                                               |                                                                      |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                   |                                                                              | Radiolo                                                      | gical Surv                    | vey Number: 2                                                                                                                                      | 240722-002   |                                                                                                                                                                         |                                       | age 1                                                                                  | of 6                                                                       |  |  |
|--------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--|--|
| Purpose: BON                                                             | NUS Reactor 2                                                                | 024 Annı                                                      | ual Radiologi                                                        | cal Survey                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                   |                                                                              |                                                              |                               |                                                                                                                                                    |              | Truck #:                                                                                                                                                                |                                       | Trailer #:                                                                             |                                                                            |  |  |
| RWP number:                                                              |                                                                              |                                                               |                                                                      |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                   | Time: 9:5                                                                    | 50 AM                                                        | Date: July 16 & 17, 2024      |                                                                                                                                                    |              |                                                                                                                                                                         |                                       |                                                                                        |                                                                            |  |  |
| Site name:                                                               | BONUS, PR,                                                                   | Decomm                                                        | issioned Rea                                                         | actor Site                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                   |                                                                              |                                                              | Location: Rincon, Puerto Rico |                                                                                                                                                    |              |                                                                                                                                                                         |                                       |                                                                                        |                                                                            |  |  |
| RCT (printed):                                                           | Larry Oeffner                                                                | , Mike Mo                                                     | Donald                                                               |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                   |                                                                              | Review                                                       | er signatur                   | e: SCOTT NEW                                                                                                                                       | SOM (Affilia | te) Digitally signed b<br>Date: 2024.08.12                                                                                                                              | oy SCOTT NEWSOM (<br>08:20:56 -06'00' | Affiliate) Date:                                                                       |                                                                            |  |  |
| Counting                                                                 | Instruments:                                                                 |                                                               | Instru                                                               | ment 1                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                   | Instrumen                                                                    | t 2                                                          | Instru                        | ument 3                                                                                                                                            | Radia        | tion Instrum                                                                                                                                                            | ents:                                 | Instrument 4                                                                           |                                                                            |  |  |
| Instrument/prob                                                          | e model:                                                                     |                                                               | Ludlum M                                                             | lodel 3030                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                   |                                                                              |                                                              | Ludlum                        | Model 26                                                                                                                                           | Instrument/  | probe model:                                                                                                                                                            |                                       | ThermoScient Micror                                                                    |                                                                            |  |  |
| Instrument seria                                                         | l number:                                                                    |                                                               | 330                                                                  | 877                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                   |                                                                              |                                                              | PF0                           | 09836                                                                                                                                              | Instrument   | serial numbe                                                                                                                                                            | r:                                    | 19288                                                                                  |                                                                            |  |  |
| Probe serial number:                                                     |                                                                              |                                                               |                                                                      |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                   |                                                                              |                                                              |                               |                                                                                                                                                    | Probe seria  | I number:                                                                                                                                                               | _                                     |                                                                                        |                                                                            |  |  |
| Calibration due:                                                         |                                                                              |                                                               | 8/17/                                                                | /2024                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                   |                                                                              |                                                              | 2/6                           | /2025                                                                                                                                              | Calibration  | due:                                                                                                                                                                    | _                                     | 8/17/2                                                                                 |                                                                            |  |  |
| Efficiency:                                                              |                                                                              | α                                                             | 0.34                                                                 | 0.43                                                                                                                                                                                                                                                                                                                                                                 | α                                                                                                                                                                 | β                                                                            | α                                                            |                               | β 0.276                                                                                                                                            | Background   | d (dose rate):                                                                                                                                                          | _                                     | 17/38 µ                                                                                | rem/hr                                                                     |  |  |
| Background (cp                                                           | ,                                                                            | α                                                             | 0.10                                                                 | 39                                                                                                                                                                                                                                                                                                                                                                   | α                                                                                                                                                                 | β                                                                            | α                                                            |                               | β 46                                                                                                                                               |              |                                                                                                                                                                         | r info (as ne                         | eded):                                                                                 |                                                                            |  |  |
| $S_{C}$ (dpm/100cm <sup>2</sup>                                          | <sup>2</sup> ):                                                              | α                                                             | 2 🛱                                                                  | 3 24                                                                                                                                                                                                                                                                                                                                                                 | α                                                                                                                                                                 | β                                                                            | α                                                            |                               | β 406                                                                                                                                              |              | ackground m                                                                                                                                                             |                                       |                                                                                        |                                                                            |  |  |
| Area probe corr                                                          | ection factor:                                                               |                                                               | 1                                                                    | .0                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                   |                                                                              |                                                              | (                             | 6.5                                                                                                                                                | Dose rate b  | ackground ba                                                                                                                                                            | asement lev                           | vel - 38 µrem                                                                          | /hr                                                                        |  |  |
| Surface Contar                                                           | mination and                                                                 | Radiatio                                                      |                                                                      |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                   |                                                                              |                                                              |                               |                                                                                                                                                    |              |                                                                                                                                                                         |                                       |                                                                                        |                                                                            |  |  |
| Item Surveyed<br>/ Map Location                                          | Counting                                                                     |                                                               | Sn                                                                   | near Surve                                                                                                                                                                                                                                                                                                                                                           | y (Instrumei                                                                                                                                                      | nt 1 or 2)                                                                   |                                                              |                               | Di                                                                                                                                                 | rect Survey  | (Instrument                                                                                                                                                             | : 3)                                  |                                                                                        | Exposur                                                                    |  |  |
|                                                                          | Inst No                                                                      | Gros                                                          | oss Counts Net Coun                                                  |                                                                                                                                                                                                                                                                                                                                                                      | Counts                                                                                                                                                            | ts Activity                                                                  |                                                              | Gross Counts                  |                                                                                                                                                    | Net Counts   |                                                                                                                                                                         | Ac                                    | tivity                                                                                 | Rate                                                                       |  |  |
|                                                                          | Used                                                                         | Alpha cpm                                                     | Beta/gamma<br>cpm                                                    | Alpha<br>cpm                                                                                                                                                                                                                                                                                                                                                         | Beta/gamma<br>cpm                                                                                                                                                 | Alpha<br>dpm/100cm <sup>2</sup>                                              | Beta/gamma<br>dpm/100cm <sup>2</sup>                         | Alpha<br>cpm                  | Beta/gamma cpm                                                                                                                                     | Alpha<br>cpm | Beta/gamma<br>cpm                                                                                                                                                       | Alpha<br>dpm/100cm <sup>2</sup>       | Beta/gamma<br>dpm/100cm <sup>2</sup>                                                   | Survey                                                                     |  |  |
| L1                                                                       | 1                                                                            | 1                                                             | 50                                                                   | 0.9                                                                                                                                                                                                                                                                                                                                                                  | 11.0                                                                                                                                                              | 3                                                                            | 26                                                           | 1                             | 07                                                                                                                                                 |              |                                                                                                                                                                         |                                       | . 0                                                                                    | 20                                                                         |  |  |
| L I                                                                      | · ·                                                                          |                                                               | 50                                                                   | 0.9                                                                                                                                                                                                                                                                                                                                                                  | 11.0                                                                                                                                                              | 3                                                                            | 20                                                           |                               | 37                                                                                                                                                 |              | -9.0                                                                                                                                                                    |                                       | < Sc                                                                                   | 20                                                                         |  |  |
| L1<br>L2                                                                 | 1                                                                            | 1                                                             | 40                                                                   | 0.9                                                                                                                                                                                                                                                                                                                                                                  | 1.0                                                                                                                                                               | 3                                                                            | < Sc                                                         |                               | 55                                                                                                                                                 |              | -9.0<br>9.0                                                                                                                                                             |                                       | < Sc<br>< Sc                                                                           | 20                                                                         |  |  |
|                                                                          | · ·                                                                          |                                                               |                                                                      |                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                 | -                                                                            |                                                              |                               |                                                                                                                                                    |              |                                                                                                                                                                         |                                       |                                                                                        |                                                                            |  |  |
| L2                                                                       | 1                                                                            | 1                                                             | 40                                                                   | 0.9                                                                                                                                                                                                                                                                                                                                                                  | 1.0                                                                                                                                                               | 3                                                                            | < Sc                                                         |                               | 55                                                                                                                                                 |              | 9.0                                                                                                                                                                     |                                       | < Sc                                                                                   | 20                                                                         |  |  |
| L2<br>L3                                                                 | 1<br>1                                                                       | 1<br>0                                                        | 40<br>38                                                             | 0.9                                                                                                                                                                                                                                                                                                                                                                  | 1.0<br>-1.0                                                                                                                                                       | 3<br>< Sc                                                                    | < Sc<br>< Sc                                                 |                               | 55<br>55                                                                                                                                           |              | 9.0<br>9.0                                                                                                                                                              |                                       | < Sc<br>< Sc                                                                           | 20<br>20                                                                   |  |  |
| L2<br>L3<br>L4                                                           | 1<br>1<br>1<br>1                                                             | 1<br>0<br>0                                                   | 40<br>38<br>40                                                       | 0.9<br>-0.1<br>-0.1                                                                                                                                                                                                                                                                                                                                                  | 1.0<br>-1.0<br>1.0                                                                                                                                                | 3<br>< Sc<br>< Sc                                                            | < Sc<br>< Sc<br>< Sc                                         |                               | 55<br>55<br>67                                                                                                                                     |              | 9.0<br>9.0<br>21.0                                                                                                                                                      |                                       | < Sc<br>< Sc<br>495                                                                    | 20<br>20<br>20                                                             |  |  |
| L2<br>L3<br>L4<br>L5                                                     | 1<br>1<br>1<br>1<br>1                                                        | 1<br>0<br>0<br>1                                              | 40<br>38<br>40<br>37                                                 | 0.9<br>-0.1<br>-0.1<br>0.9                                                                                                                                                                                                                                                                                                                                           | 1.0<br>-1.0<br>1.0<br>-2.0                                                                                                                                        | 3<br>< Sc<br>< Sc<br>3                                                       | < Sc<br>< Sc<br>< Sc<br>< Sc                                 |                               | 55<br>55<br>67<br>61                                                                                                                               |              | 9.0<br>9.0<br>21.0<br>15.0                                                                                                                                              |                                       | < Sc<br>< Sc<br>495<br>< Sc                                                            | 20<br>20<br>20<br>12                                                       |  |  |
| L2<br>L3<br>L4<br>L5<br>L6                                               | 1<br>1<br>1<br>1<br>1<br>1<br>1                                              | 1<br>0<br>0<br>1<br>1                                         | 40<br>38<br>40<br>37<br>42                                           | 0.9<br>-0.1<br>-0.1<br>0.9<br>0.9                                                                                                                                                                                                                                                                                                                                    | 1.0<br>-1.0<br>1.0<br>-2.0<br>3.0                                                                                                                                 | 3<br>< Sc<br>< Sc<br>3<br>3                                                  | < Sc<br>< Sc<br>< Sc<br>< Sc<br>< Sc<br>< Sc                 |                               | 55<br>55<br>67<br>61<br>60                                                                                                                         |              | 9.0<br>9.0<br>21.0<br>15.0<br>14.0                                                                                                                                      |                                       | < Sc<br>< Sc<br>495<br>< Sc<br>< Sc                                                    | 20<br>20<br>20<br>12<br>10                                                 |  |  |
| L2<br>L3<br>L4<br>L5<br>L6<br>L7                                         | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                         | 1<br>0<br>0<br>1<br>1<br>0                                    | 40<br>38<br>40<br>37<br>42<br>30                                     | 0.9<br>-0.1<br>-0.1<br>0.9<br>0.9<br>-0.1                                                                                                                                                                                                                                                                                                                            | 1.0<br>-1.0<br>1.0<br>-2.0<br>3.0<br>-9.0                                                                                                                         | 3<br>< Sc<br>< Sc<br>3<br>3<br>< Sc                                          | < Sc<br>< Sc<br>< Sc<br>< Sc<br>< Sc<br>< Sc<br>< Sc         |                               | 55<br>55<br>67<br>61<br>60<br>67                                                                                                                   |              | 9.0<br>9.0<br>21.0<br>15.0<br>14.0<br>21.0                                                                                                                              |                                       | < Sc<br>< Sc<br>495<br>< Sc<br>< Sc<br>495                                             | 20<br>20<br>20<br>12<br>10<br>10                                           |  |  |
| L2<br>L3<br>L4<br>L5<br>L6<br>L7<br>L8                                   | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                    | 1<br>0<br>1<br>1<br>1<br>0<br>0                               | 40<br>38<br>40<br>37<br>42<br>30<br>42                               | 0.9<br>-0.1<br>-0.1<br>0.9<br>0.9<br>-0.1<br>-0.1                                                                                                                                                                                                                                                                                                                    | 1.0<br>-1.0<br>1.0<br>-2.0<br>3.0<br>-9.0<br>3.0                                                                                                                  | 3<br>< Sc<br>< Sc<br>3<br>3<br>< Sc<br>< Sc<br>< Sc                          | < Sc<br>< Sc<br>< Sc<br>< Sc<br>< Sc<br>< Sc<br>< Sc<br>< Sc |                               | 55<br>55<br>67<br>61<br>60<br>67<br>77                                                                                                             |              | 9.0<br>9.0<br>21.0<br>15.0<br>14.0<br>21.0<br>31.0                                                                                                                      |                                       | < Sc<br>< Sc<br>495<br>< Sc<br>< Sc<br>495<br>730                                      | 20<br>20<br>20<br>12<br>10<br>10<br>11                                     |  |  |
| L2<br>L3<br>L4<br>L5<br>L6<br>L7<br>L8<br>L9                             | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                          | 1<br>0<br>1<br>1<br>0<br>0<br>0<br>0                          | 40<br>38<br>40<br>37<br>42<br>30<br>42<br>37                         | 0.9<br>-0.1<br>-0.1<br>0.9<br>0.9<br>-0.1<br>-0.1<br>-0.1                                                                                                                                                                                                                                                                                                            | 1.0<br>-1.0<br>1.0<br>-2.0<br>3.0<br>-9.0<br>3.0<br>-2.0                                                                                                          | 3<br>< Sc<br>< Sc<br>3<br>3<br>< Sc<br>< Sc<br>< Sc<br>< Sc                  | < Sc<br>< Sc<br>< Sc<br>< Sc<br>< Sc<br>< Sc<br>< Sc<br>< Sc |                               | 55<br>55<br>67<br>61<br>60<br>67<br>77<br>127                                                                                                      |              | 9.0<br>9.0<br>21.0<br>15.0<br>14.0<br>21.0<br>31.0<br>81.0                                                                                                              |                                       | < Sc<br>< Sc<br>495<br>< Sc<br>< Sc<br>495<br>730<br>1908                              | 20<br>20<br>20<br>12<br>10<br>10<br>11<br>12                               |  |  |
| L2<br>L3<br>L4<br>L5<br>L6<br>L7<br>L8<br>L9<br>L10                      | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                | 1<br>0<br>1<br>1<br>0<br>0<br>0<br>0<br>1                     | 40<br>38<br>40<br>37<br>42<br>30<br>42<br>37<br>39                   | 0.9<br>-0.1<br>-0.1<br>0.9<br>0.9<br>-0.1<br>-0.1<br>-0.1<br>-0.1<br>0.9                                                                                                                                                                                                                                                                                             | 1.0<br>-1.0<br>1.0<br>-2.0<br>3.0<br>-9.0<br>3.0<br>-2.0<br>0.0                                                                                                   | 3<br>< Sc<br>< Sc<br>3<br>3<br>< Sc<br>< Sc<br>< Sc<br>< Sc<br>3             | < Sc<br>< Sc<br>< Sc<br>< Sc<br>< Sc<br>< Sc<br>< Sc<br>< Sc |                               | 55<br>55<br>67<br>61<br>60<br>67<br>77<br>127<br>75                                                                                                |              | 9.0<br>9.0<br>21.0<br>15.0<br>14.0<br>21.0<br>31.0<br>81.0<br>29.0                                                                                                      |                                       | < Sc<br>< Sc<br>495<br>< Sc<br>< Sc<br>495<br>730<br>1908<br>683                       | 20<br>20<br>20<br>12<br>10<br>10<br>11<br>12<br>10                         |  |  |
| L2<br>L3<br>L4<br>L5<br>L6<br>L7<br>L8<br>L9<br>L10<br>L11               | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                | 1<br>0<br>1<br>1<br>1<br>0<br>0<br>0<br>1<br>1<br>1           | 40<br>38<br>40<br>37<br>42<br>30<br>42<br>37<br>39<br>45             | 0.9<br>-0.1<br>-0.1<br>0.9<br>0.9<br>-0.1<br>-0.1<br>-0.1<br>-0.1<br>0.9<br>0.9                                                                                                                                                                                                                                                                                      | 1.0<br>-1.0<br>1.0<br>-2.0<br>3.0<br>-9.0<br>3.0<br>-2.0<br>0.0<br>6.0                                                                                            | 3<br>< Sc<br>3<br>3<br>< Sc<br>< Sc<br>< Sc<br>3<br>3<br>3                   | < Sc<br>< Sc<br>< Sc<br>< Sc<br>< Sc<br>< Sc<br>< Sc<br>< Sc |                               | 55           55           67           61           60           67           77           127           75           65                           |              | 9.0<br>9.0<br>21.0<br>15.0<br>21.0<br>21.0<br>31.0<br>81.0<br>29.0<br>19.0                                                                                              |                                       | < Sc<br>< Sc<br>495<br>< Sc<br>< Sc<br>495<br>730<br>1908<br>683<br>447                | 20<br>20<br>12<br>10<br>10<br>11<br>11<br>12<br>10<br>10                   |  |  |
| L2<br>L3<br>L4<br>L5<br>L6<br>L7<br>L8<br>L9<br>L10<br>L11<br>L12        | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1      | 1<br>0<br>1<br>1<br>1<br>0<br>0<br>0<br>0<br>1<br>1<br>1<br>1 | 40<br>38<br>40<br>37<br>42<br>30<br>42<br>37<br>39<br>45<br>43       | 0.9           -0.1           -0.1           0.9           0.9           -0.1           -0.1           -0.1           -0.1           -0.1           0.9           0.9           0.9           0.9           0.9           0.9           0.9           0.9           0.9           0.9           0.9                                                                   | 1.0           -1.0           1.0           -2.0           3.0           -9.0           3.0           -2.0           0.0           6.0           4.0               | 3<br>< Sc<br>< Sc<br>3<br>3<br>< Sc<br>< Sc<br>< Sc<br>3<br>3<br>3<br>3      | < Sc<br>< Sc<br>< Sc<br>< Sc<br>< Sc<br>< Sc<br>< Sc<br>< Sc |                               | 55           55           67           61           60           67           77           127           75           65           70              |              | 9.0           9.0           21.0           15.0           14.0           21.0           31.0           81.0           29.0           19.0           24.0                |                                       | < Sc<br>< Sc<br>495<br>< Sc<br>< Sc<br>495<br>730<br>1908<br>683<br>447<br>565         | 20<br>20<br>20<br>12<br>10<br>10<br>11<br>12<br>10<br>10<br>10<br>12       |  |  |
| L2<br>L3<br>L4<br>L5<br>L6<br>L7<br>L8<br>L9<br>L10<br>L11<br>L12<br>L13 | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 1<br>0<br>1<br>1<br>1<br>0<br>0<br>0<br>1<br>1<br>1<br>1<br>2 | 40<br>38<br>40<br>37<br>42<br>30<br>42<br>37<br>39<br>45<br>43<br>40 | 0.9           -0.1           -0.1           0.9           -0.1           -0.1           -0.1           -0.1           -0.1           -0.1           -0.1           -0.1           -0.1           -0.1           -0.1           -0.1           -0.1           -0.1           -0.1           0.9           0.9           0.9           0.9           0.9           1.9 | 1.0           -1.0           1.0           -2.0           3.0           -9.0           3.0           -2.0           0.0           6.0           4.0           1.0 | 3<br>< Sc<br>< Sc<br>3<br>3<br>< Sc<br>< Sc<br>< Sc<br>3<br>3<br>3<br>3<br>6 | < Sc<br>< Sc<br>< Sc<br>< Sc<br>< Sc<br>< Sc<br>< Sc<br>< Sc |                               | 55           55           67           61           60           67           77           127           75           65           70           41 |              | 9.0           9.0           21.0           15.0           14.0           21.0           31.0           81.0           29.0           19.0           24.0           -5.0 |                                       | < Sc<br>< Sc<br>495<br>< Sc<br>< Sc<br>495<br>730<br>1908<br>683<br>447<br>565<br>< Sc | 20<br>20<br>20<br>12<br>10<br>10<br>11<br>12<br>10<br>10<br>10<br>12<br>13 |  |  |

RCT signature: LAWRENCE OEFFNER (Affiliate) Digitally signed by LAWRENCE OEFFNER (Affiliate) Digitally signed by LAWRENCE OEFFNER (Affiliate) Digitally signed by LAWRENCE OEFFNER (Affiliate) (Affili Digitally signed by MICHAEL MCDONALD (Affiliate)

<sup>(</sup>Affiliate) Date: 2024.08.01 08:57:43 -06'00'



|                   |                   | Deallat   |                   |                                                    |                   |                                 | Radiolo                              | gical Sur | vey Number: 24                      | 40722-002  |                   | P                               | age 2                                | <b>of</b> 6    |
|-------------------|-------------------|-----------|-------------------|----------------------------------------------------|-------------------|---------------------------------|--------------------------------------|-----------|-------------------------------------|------------|-------------------|---------------------------------|--------------------------------------|----------------|
| Surface Contan    | lination and      | Radiatio  |                   |                                                    | v (Instrumo       | at 1 or 2                       |                                      |           | Dir                                 | act Survey | (Instrumon        | + 2 \                           |                                      |                |
| Item Surveyed     | Counting          |           |                   | ear Survey (Instrument 1 or 2) Net Counts Activity |                   | Gross Counts                    |                                      |           | ect Survey (Instrumen<br>Net Counts |            | Activity          |                                 |                                      |                |
| Map Location Used | Inst. No.<br>Used | Alpha cpm | Beta/gamma<br>cpm | Alpha                                              | Beta/gamma<br>cpm | Alpha<br>dpm/100cm <sup>2</sup> | Beta/gamma<br>dpm/100cm <sup>2</sup> | Alpha     | Beta/gamma cpm                      | Alpha      | Beta/gamma<br>cpm | Alpha<br>dpm/100cm <sup>2</sup> | Beta/gamma<br>dpm/100cm <sup>2</sup> | Rate<br>Survey |
| L17               | 1                 | 0         | 39                | -0.1                                               | 0.0               | < Sc                            | < Sc                                 |           | 66                                  |            | 20.0              |                                 | 471                                  | 12             |
| L18               | 1                 | 0         | 39                | -0.1                                               | 0.0               | < Sc                            | < Sc                                 |           | 62                                  |            | 16.0              |                                 | < Sc                                 | 12             |
| L19               | 1                 | 1         | 54                | 0.9                                                | 15.0              | 3                               | 35                                   |           | 42                                  |            | -4.0              |                                 | < Sc                                 | 14             |
| L20               | 1                 | 1         | 48                | 0.9                                                | 9.0               | 3                               | < Sc                                 |           | 46                                  |            | 0.0               |                                 | < Sc                                 | 14             |
| L21               | 1                 | 1         | 42                | 0.9                                                | 3.0               | 3                               | < Sc                                 |           | 51                                  |            | 5.0               |                                 | < Sc                                 | 14             |
| L22               | 1                 | 0         | 47                | -0.1                                               | 8.0               | < Sc                            | < Sc                                 |           | 47                                  |            | 1.0               |                                 | < Sc                                 | 15             |
| L23               | 1                 | 0         | 39                | -0.1                                               | 0.0               | < Sc                            | < Sc                                 |           | 76                                  |            | 30.0              |                                 | 707                                  | 17             |
| L24               | 1                 | 1         | 44                | 0.9                                                | 5.0               | 3                               | < Sc                                 |           | 79                                  |            | 33.0              |                                 | 777                                  | 17             |
| L25               | 1                 | 0         | 49                | -0.1                                               | 10.0              | < Sc                            | < Sc                                 |           | 86                                  |            | 40.0              |                                 | 942                                  | 17             |
| L26               | 1                 | 0         | 40                | -0.1                                               | 1.0               | < Sc                            | < Sc                                 |           | 55                                  |            | 9.0               |                                 | < Sc                                 | 18             |
| L27               | 1                 | 0         | 45                | -0.1                                               | 6.0               | < Sc                            | < Sc                                 |           | 62                                  |            | 16.0              |                                 | < Sc                                 | 17             |
| L28               | 1                 | 2         | 40                | 1.9                                                | 1.0               | 6                               | < Sc                                 |           | 57                                  |            | 11.0              |                                 | < Sc                                 | 17             |
| L29               | 1                 | 0         | 51                | -0.1                                               | 12.0              | < Sc                            | 28                                   |           | 75                                  |            | 29.0              |                                 | 683                                  | 17             |
| L30               | 1                 | 0         | 45                | -0.1                                               | 6.0               | < Sc                            | < Sc                                 |           | 61                                  |            | 15.0              |                                 | < Sc                                 | 15             |
| L31               | 1                 | 0         | 31                | -0.1                                               | -8.0              | < Sc                            | < Sc                                 |           | 40                                  |            | -6.0              |                                 | < Sc                                 | 17             |
| L32               | 1                 | 0         | 39                | -0.1                                               | 0.0               | < Sc                            | < Sc                                 |           | 69                                  |            | 23.0              |                                 | 542                                  | 18             |
| L33               | 1                 | 0         | 42                | -0.1                                               | 3.0               | < Sc                            | < Sc                                 |           | 79                                  |            | 33.0              |                                 | 777                                  | 17             |
| L34               | 1                 | 1         | 51                | 0.9                                                | 12.0              | 3                               | 28                                   |           | 69                                  |            | 23.0              |                                 | 542                                  | 18             |
| L35               | 1                 | 0         | 35                | -0.1                                               | -4.0              | < Sc                            | < Sc                                 |           | 54                                  |            | 8.0               |                                 | < Sc                                 | 15             |
| L36               | 1                 | 0         | 36                | -0.1                                               | -3.0              | < Sc                            | < Sc                                 |           | 54                                  |            | 8.0               |                                 | < Sc                                 | 22             |
| L37               | 1                 | 0         | 42                | -0.1                                               | 3.0               | < Sc                            | < Sc                                 |           | 48                                  |            | 2.0               |                                 | < Sc                                 | 20             |
| L38               | 1                 | 0         | 26                | -0.1                                               | -13.0             | < Sc                            | < Sc                                 |           | 46                                  |            | 0.0               |                                 | < Sc                                 | 16             |
| L39               | 1                 | 1         | 50                | 0.9                                                | 11.0              | 3                               | 26                                   |           | 58                                  |            | 12.0              |                                 | < Sc                                 | 22             |
| L40               | 1                 | 1         | 37                | 0.9                                                | -2.0              | 3                               | < Sc                                 |           | 840                                 |            | 794.0             |                                 | 18699                                | 30             |
| L41               | 1                 | 1         | 37                | 0.9                                                | -2.0              | 3                               | < Sc                                 |           | 86                                  |            | 40.0              |                                 | 942                                  | 30             |
|                   |                   | 1         |                   |                                                    |                   |                                 |                                      |           |                                     |            |                   |                                 |                                      |                |

1

1

1

1

1

1

1

0

2

0

0

1

0

0

38

33

25

41

47

54

41

-0.1

1.9

-0.1

-0.1

0.9

-0.1

-0.1

-1.0

-6.0

-14.0

2.0

8.0

15.0

2.0

< Sc

6

< Sc

< Sc

3

< Sc

< Sc

L42

L43

L44

L45

L46

L47

L48

< Sc

< Sc

< Sc

< Sc

< Sc

35

< Sc

67

60

43

38

43

39

38

21.0

14.0

-3.0

-8.0

-3.0

-7.0

-8.0

30

30

40

40

40

35

35

495

< Sc

< Sc

< Sc

< Sc

< Sc

< Sc

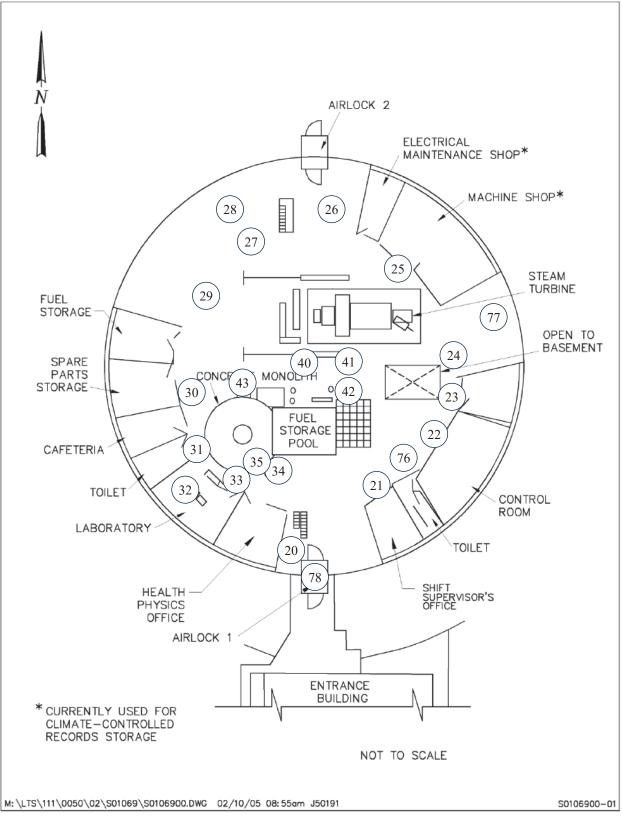


| Surface Contam | ination and | Radiatio                         | n Survev Res      | sults        |                     |                                 | Radiolo                              | gical Sur                    | vey Number: 24 | 40722-002    |                   | P                               | age 3                                | <b>of</b> 6 |
|----------------|-------------|----------------------------------|-------------------|--------------|---------------------|---------------------------------|--------------------------------------|------------------------------|----------------|--------------|-------------------|---------------------------------|--------------------------------------|-------------|
|                | Counting    | Smear Survey (Instrument 1 or 2) |                   |              |                     |                                 |                                      | Direct Survey (Instrument 3) |                |              |                   |                                 |                                      | Exposure    |
| Item Surveyed  | Inst. No.   | Gross Counts                     |                   | Net          | Net Counts Activity |                                 | Gross Counts Net Counts              |                              |                | Counts       | Ac                | Rate                            |                                      |             |
| / Map Location |             | Alpha cpm                        | Beta/gamma<br>cpm | Alpha<br>cpm | Beta/gamma<br>cpm   | Alpha<br>dpm/100cm <sup>2</sup> | Beta/gamma<br>dpm/100cm <sup>2</sup> | Alpha<br>cpm                 | Beta/gamma cpm | Alpha<br>cpm | Beta/gamma<br>cpm | Alpha<br>dpm/100cm <sup>2</sup> | Beta/gamma<br>dpm/100cm <sup>2</sup> | Survey      |
| L49            | 1           | 1                                | 46                | 0.9          | 7.0                 | 3                               | < Sc                                 |                              | 49             |              | 3.0               |                                 | < Sc                                 | 35          |
| L50            | 1           | 1                                | 39                | 0.9          | 0.0                 | 3                               | < Sc                                 |                              | 34             |              | -12.0             |                                 | < Sc                                 | 40          |
| L51            | 1           | 0                                | 38                | -0.1         | -1.0                | < Sc                            | < Sc                                 |                              | 54             |              | 8.0               |                                 | < Sc                                 | 40          |
| L52            | 1           | 0                                | 39                | -0.1         | 0.0                 | < Sc                            | < Sc                                 |                              | 31             |              | -15.0             |                                 | < Sc                                 | 40          |
| L53            | 1           | 0                                | 44                | -0.1         | 5.0                 | < Sc                            | < Sc                                 |                              | 43             |              | -3.0              |                                 | < Sc                                 | 35          |
| L54            | 1           | 0                                | 42                | -0.1         | 3.0                 | < Sc                            | < Sc                                 |                              | 44             |              | -2.0              |                                 | < Sc                                 | 35          |
| L55            | 1           | 0                                | 41                | -0.1         | 2.0                 | < Sc                            | < Sc                                 |                              | 30             |              | -16.0             |                                 | < Sc                                 | 40          |
| L56            | 1           | 0                                | 31                | -0.1         | -8.0                | < Sc                            | < Sc                                 |                              | 43             |              | -3.0              |                                 | < Sc                                 | 35          |
| L57            | 1           | 0                                | 37                | -0.1         | -2.0                | < Sc                            | < Sc                                 |                              | 34             |              | -12.0             |                                 | < Sc                                 | 35          |
| L58            | 1           | 0                                | 37                | -0.1         | -2.0                | < Sc                            | < Sc                                 |                              | 33             |              | -13.0             |                                 | < Sc                                 | 35          |
| L59            | 1           | 1                                | 35                | 0.9          | -4.0                | 3                               | < Sc                                 |                              | 67             |              | 21.0              |                                 | 495                                  | 40          |
| L60            | 1           | 1                                | 32                | 0.9          | -7.0                | 3                               | < Sc                                 |                              | 51             |              | 5.0               |                                 | < Sc                                 | 35          |
| L61            | 1           | 0                                | 42                | -0.1         | 3.0                 | < Sc                            | < Sc                                 |                              | 36             |              | -10.0             |                                 | < Sc                                 | 40          |
| L62            | 1           | 2                                | 33                | 1.9          | -6.0                | 6                               | < Sc                                 |                              | 34             |              | -12.0             |                                 | < Sc                                 | 40          |
| L63            | 1           | 0                                | 33                | -0.1         | -6.0                | < Sc                            | < Sc                                 |                              | 46             |              | 0.0               |                                 | < Sc                                 | 40          |
| L64            | 1           | 0                                | 29                | -0.1         | -10.0               | < Sc                            | < Sc                                 |                              | 45             |              | -1.0              |                                 | < Sc                                 | 40          |
| L65            | 1           | 1                                | 39                | 0.9          | 0.0                 | 3                               | < Sc                                 |                              | 46             |              | 0.0               |                                 | < Sc                                 | 40          |
| L66            | 1           | 0                                | 36                | -0.1         | -3.0                | < Sc                            | < Sc                                 |                              | 32             |              | -14.0             |                                 | < Sc                                 | 40          |
| L67            | 1           | 0                                | 44                | -0.1         | 5.0                 | < Sc                            | < Sc                                 |                              | 37             |              | -9.0              |                                 | < Sc                                 | 35          |
| L68            | 1           | 0                                | 46                | -0.1         | 7.0                 | < Sc                            | < Sc                                 |                              | 40             |              | -6.0              |                                 | < Sc                                 | 40          |
| L69            | 1           | 0                                | 36                | -0.1         | -3.0                | < Sc                            | < Sc                                 |                              | 43             |              | -3.0              |                                 | < Sc                                 | 40          |
| L70            | 1           | 1                                | 47                | 0.9          | 8.0                 | 3                               | < Sc                                 |                              | 23             |              | -23.0             |                                 | < Sc                                 | 40          |
| L71            | 1           | 0                                | 37                | -0.1         | -2.0                | < Sc                            | < Sc                                 |                              | 41             |              | -5.0              |                                 | < Sc                                 | 40          |
| L72            | 1           | 0                                | 34                | -0.1         | -5.0                | < Sc                            | < Sc                                 |                              | 66             |              | 20.0              |                                 | 471                                  | 40          |
| L73            | 1           | 1                                | 39                | 0.9          | 0.0                 | 3                               | < Sc                                 |                              | 62             |              | 16.0              |                                 | < Sc                                 | 40          |
| L74            | 1           | 0                                | 31                | -0.1         | -8.0                | < Sc                            | < Sc                                 |                              | 86             |              | 40.0              |                                 | 942                                  | 40          |
| L75            | 1           | 2                                | 23                | 1.9          | -16.0               | 6                               | < Sc                                 |                              | 55             |              | 9.0               |                                 | < Sc                                 | 35          |
| L76            | 1           | 0                                | 36                | -0.1         | -3.0                | < Sc                            | < Sc                                 |                              | 47             |              | 1.0               |                                 | < Sc                                 | 19          |
| L77            | 1           | 1                                | 34                | 0.9          | -5.0                | 3                               | < Sc                                 |                              | 55             |              | 9.0               |                                 | < Sc                                 | 20          |



|                                 |                   |              |                   |              |                   |                                 | Radiolo                              | gical Sur    | vey Number: 24                        | 40722-002    | 2                    | Р                               | age 4                                | <b>of</b> 6      |
|---------------------------------|-------------------|--------------|-------------------|--------------|-------------------|---------------------------------|--------------------------------------|--------------|---------------------------------------|--------------|----------------------|---------------------------------|--------------------------------------|------------------|
| Surface Contan                  | nination and      | Radiatio     | n Survey Res      | sults        |                   |                                 |                                      |              |                                       |              |                      |                                 |                                      |                  |
| litera Orana d                  | Counting          |              | Sm                | ear Surv     | ey (Instrume      | nt 1 or 2)                      | ) Direct Survey (Instrument 3)       |              |                                       |              |                      |                                 |                                      | Exposure<br>Rate |
| Item Surveyed<br>/ Map Location | Inst. No.<br>Used | Gross Counts |                   | Net Counts   |                   | Activity                        |                                      | Gross Counts |                                       | Net Counts   |                      | Activity                        |                                      |                  |
|                                 |                   | Alpha cpm    | Beta/gamma<br>cpm | Alpha<br>cpm | Beta/gamma<br>cpm | Alpha<br>dpm/100cm <sup>2</sup> | Beta/gamma<br>dpm/100cm <sup>2</sup> | Alpha<br>cpm | Beta/gamma cpm                        | Alpha<br>cpm | Beta/gamma<br>cpm    | Alpha<br>dpm/100cm <sup>2</sup> | Beta/gamma<br>dpm/100cm <sup>2</sup> | Survey           |
| L78                             | 1                 | 0            | 39                | -0.1         | 0.0               | < Sc                            | < Sc                                 |              | 36                                    |              | -10.0                |                                 | < Sc                                 | 18               |
|                                 |                   |              |                   |              |                   |                                 |                                      |              |                                       |              |                      |                                 |                                      |                  |
|                                 |                   |              |                   |              |                   |                                 |                                      |              |                                       |              |                      |                                 |                                      |                  |
|                                 |                   |              |                   |              |                   |                                 |                                      |              |                                       |              |                      |                                 |                                      |                  |
|                                 |                   |              |                   |              |                   |                                 |                                      |              |                                       |              |                      |                                 |                                      |                  |
|                                 |                   |              |                   |              |                   |                                 |                                      |              |                                       |              |                      |                                 |                                      |                  |
|                                 |                   |              |                   |              |                   |                                 |                                      |              |                                       |              |                      |                                 |                                      |                  |
|                                 |                   |              |                   |              |                   |                                 |                                      |              |                                       |              |                      |                                 |                                      |                  |
|                                 |                   |              |                   |              |                   |                                 |                                      |              |                                       |              |                      |                                 |                                      |                  |
|                                 |                   |              |                   |              |                   |                                 |                                      |              |                                       |              | _                    |                                 |                                      |                  |
|                                 |                   |              |                   |              |                   |                                 |                                      |              |                                       |              | _                    |                                 |                                      |                  |
|                                 |                   |              |                   |              |                   |                                 |                                      |              |                                       |              |                      |                                 |                                      |                  |
|                                 |                   |              |                   |              |                   |                                 |                                      |              |                                       |              |                      |                                 |                                      |                  |
|                                 |                   |              |                   |              |                   |                                 |                                      |              |                                       |              |                      |                                 |                                      |                  |
|                                 |                   |              |                   |              |                   |                                 |                                      |              |                                       |              |                      |                                 |                                      |                  |
|                                 |                   |              |                   |              |                   |                                 |                                      |              |                                       |              |                      |                                 |                                      |                  |
|                                 |                   |              |                   |              |                   |                                 |                                      |              |                                       |              |                      |                                 |                                      |                  |
|                                 |                   |              |                   |              |                   |                                 |                                      |              |                                       |              |                      |                                 |                                      |                  |
|                                 |                   |              |                   |              |                   |                                 |                                      |              |                                       |              |                      |                                 |                                      |                  |
| Applicable Surf                 | ace Contami       | nation Li    | mits              |              |                   |                                 | Activity Equa                        | tion         |                                       |              |                      |                                 | APCE                                 |                  |
| Check one for a                 |                   |              |                   |              |                   |                                 |                                      |              | D count = Net c                       | ount         |                      |                                 | 44-9 = 6.5                           |                  |
| Alpha (removabl                 | e/total)          | □ 1          | 000/5000          | □ 200/       | 1000 🗆            | 20/500                          | Net count/Eff :                      | = dpm        |                                       |              |                      |                                 | FHZ 732 (G                           | M) = 6.5         |
| Beta (removable                 | /total)           | ☑ 1          | 000/5000          | □ 200/       | 1000              |                                 | Dpm x Area P                         | robe Corre   | ection Factor (AF                     | PCF) = dpi   | m/100cm <sup>2</sup> |                                 | 43-10-1 = 1                          |                  |
|                                 |                   |              |                   |              |                   |                                 | Remarks:                             |              | , , , , , , , , , , , , , , , , , , , | , I          |                      |                                 |                                      |                  |
| • See attached s                | urvey locatio     | n maps ai    | nd gross instr    | ument re     | ading results     | table.                          |                                      |              |                                       |              |                      |                                 |                                      |                  |
| • 1 minuto back                 | ground vorifie    | ation cou    | inte woro nor     | formodo      | n tho Ludlum      | 2020 offer                      | moor numbor                          | 20 10 6      | 0 and 79 Varific                      | ation cou    | nte woro anni        | opriato and                     | t chowod no                          | instrumont       |

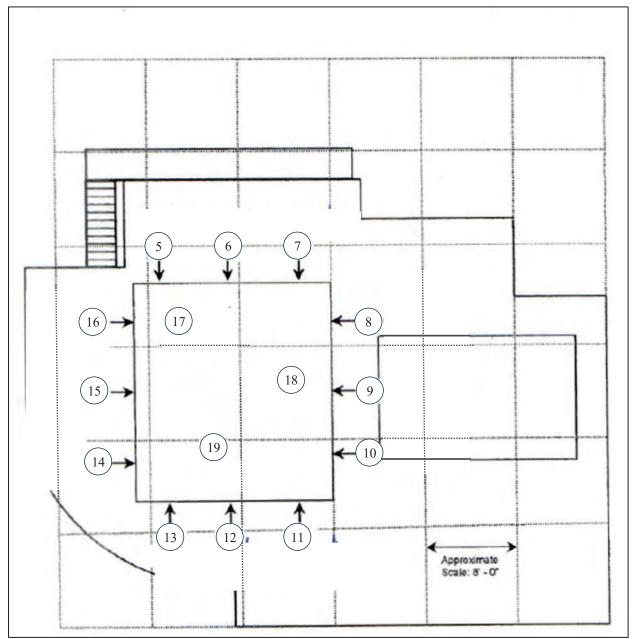
• 1 minute background verification counts were performed on the Ludlum 3030 after smear numbers 20, 40, 60 and 78. Verification counts were appropriate and showed no instrument contamination during smear counting.


### Radiological Survey Map

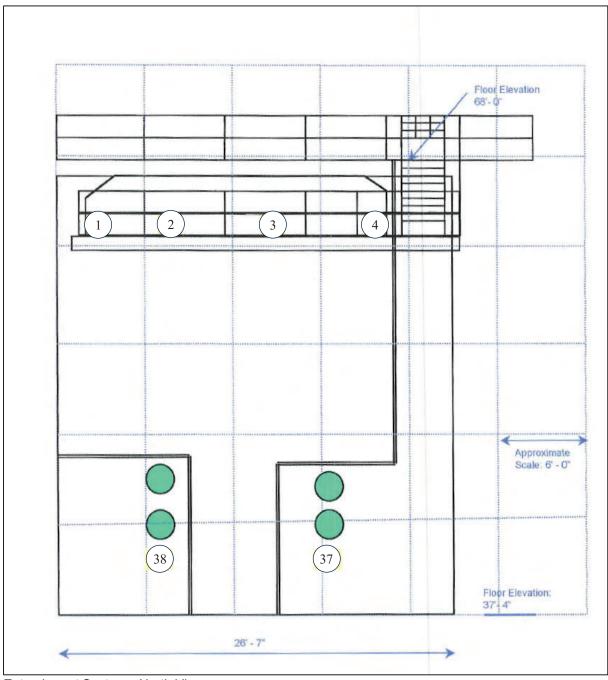



|                                                                                                                                                                                                                                                                                                                                                               |           | Radiological Survey Number: 240722-002 | Page | 5 | of | 6 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------------------------------|------|---|----|---|
| Contamination and Radiation Surv                                                                                                                                                                                                                                                                                                                              | ey Figure |                                        |      |   |    |   |
| Standardized Map Symbols                                                                                                                                                                                                                                                                                                                                      |           |                                        |      |   |    |   |
| <ul> <li>O = Smear/wipe (no. inside)</li> <li>△ = Air sample (no. inside)</li> <li>6.3 = General area exposure rate<br/>(result in µR/hr)</li> <li>★ = Contact exposure rate<br/>(result beside, in µR/hr)</li> <li># = Direct frisk (count rate)<br/>(result beside)</li> <li>☆ = Direct gamma (count rate)<br/>(e.g., 2"x2" Nal) (result beside)</li> </ul> |           |                                        |      |   |    |   |
| Note: Note units used if not identified above.                                                                                                                                                                                                                                                                                                                |           |                                        |      |   |    |   |
|                                                                                                                                                                                                                                                                                                                                                               |           |                                        |      |   |    |   |
|                                                                                                                                                                                                                                                                                                                                                               |           |                                        |      |   |    |   |
|                                                                                                                                                                                                                                                                                                                                                               |           |                                        |      |   |    |   |
|                                                                                                                                                                                                                                                                                                                                                               |           |                                        |      |   |    |   |
|                                                                                                                                                                                                                                                                                                                                                               |           |                                        |      |   |    |   |
|                                                                                                                                                                                                                                                                                                                                                               |           |                                        |      |   |    |   |
|                                                                                                                                                                                                                                                                                                                                                               |           |                                        |      |   |    |   |
|                                                                                                                                                                                                                                                                                                                                                               |           |                                        |      |   |    |   |
|                                                                                                                                                                                                                                                                                                                                                               |           |                                        |      |   |    |   |
|                                                                                                                                                                                                                                                                                                                                                               |           |                                        |      |   |    |   |
|                                                                                                                                                                                                                                                                                                                                                               |           |                                        |      |   |    |   |
|                                                                                                                                                                                                                                                                                                                                                               | Der       | (Place figure in this area.)           |      |   |    |   |
|                                                                                                                                                                                                                                                                                                                                                               | Ren       | narks:                                 |      |   |    |   |
|                                                                                                                                                                                                                                                                                                                                                               |           |                                        |      |   |    |   |

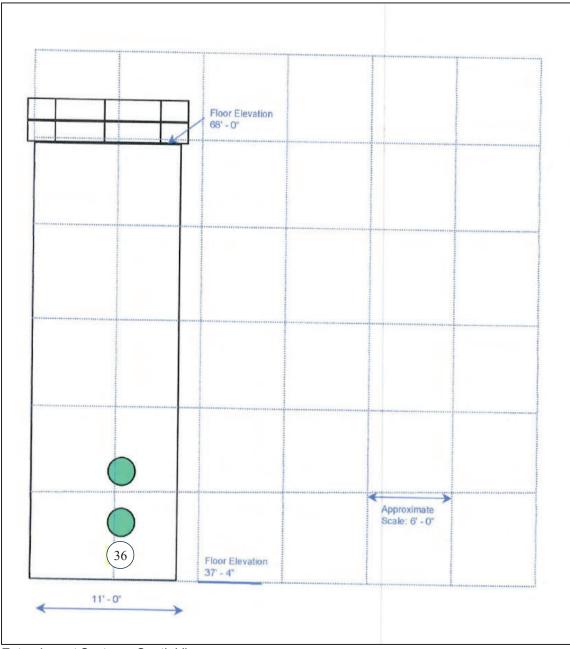



| Radiological Survey Number: 240722-002                                                                   | Page | 6 | of | 6 |
|----------------------------------------------------------------------------------------------------------|------|---|----|---|
| Contamination and Radiation Survey Continuation Sheet                                                    |      |   |    |   |
| Use this sheet to document or record radiological survey information (in addition to page 1 of the form) |      |   |    |   |
|                                                                                                          |      |   |    |   |
|                                                                                                          |      |   |    |   |
|                                                                                                          |      |   |    |   |
|                                                                                                          |      |   |    |   |
|                                                                                                          |      |   |    |   |
|                                                                                                          |      |   |    |   |
|                                                                                                          |      |   |    |   |
|                                                                                                          |      |   |    |   |
|                                                                                                          |      |   |    |   |
|                                                                                                          |      |   |    |   |
|                                                                                                          |      |   |    |   |
|                                                                                                          |      |   |    |   |
|                                                                                                          |      |   |    |   |
|                                                                                                          |      |   |    |   |
|                                                                                                          |      |   |    |   |
|                                                                                                          |      |   |    |   |
|                                                                                                          |      |   |    |   |
|                                                                                                          |      |   |    |   |
|                                                                                                          |      |   |    |   |
|                                                                                                          |      |   |    |   |
|                                                                                                          |      |   |    |   |
|                                                                                                          |      |   |    |   |
|                                                                                                          |      |   |    |   |
|                                                                                                          |      |   |    |   |
|                                                                                                          |      |   |    |   |
|                                                                                                          |      |   |    |   |
|                                                                                                          |      |   |    |   |
|                                                                                                          |      |   |    |   |

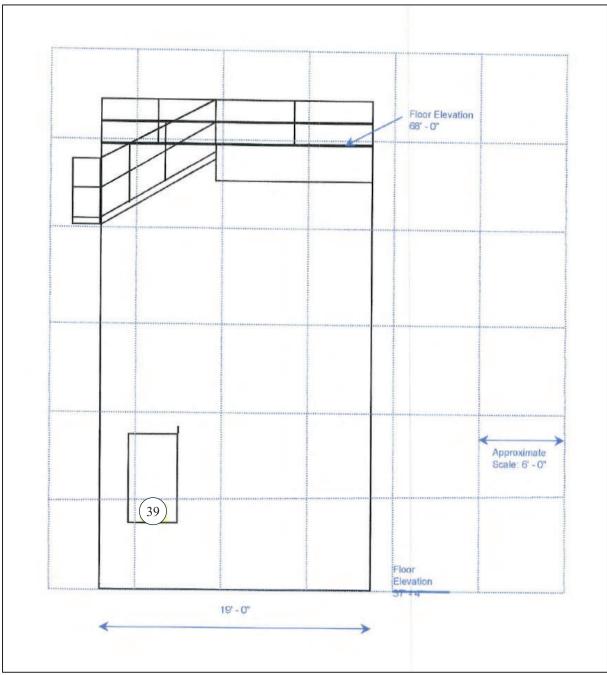



Main Floor Survey Locations




Attachment 3, Page 8




Monolith Top Plug Structure - Mezzanine



Entombment System - North View



Entombment System - South View



Entombment System - North View

#### Radiological Survey Number: 240722-002

### RCT Name: Larry Oeffner/Mike McDonald

| Exposure Rate Instrument Info      |                       |  |  |  |  |  |
|------------------------------------|-----------------------|--|--|--|--|--|
| Survey Instrument Model: 1         | Thermo Microrem       |  |  |  |  |  |
| Instrument Serial Number: 1        | 19288                 |  |  |  |  |  |
| Calibration Due Date: 8            | 8/17/2024             |  |  |  |  |  |
| Time of Daily Response Check: 0    | 0947/0830             |  |  |  |  |  |
| Background Exposure Rate (µR/h): 1 | 17/38 (main/basement) |  |  |  |  |  |
|                                    |                       |  |  |  |  |  |

#### Survey Date: 7-16/17-2024

Surface Contamination Instrument Info Survey Instrument Model: Ludlum 26 Instrument Serial Number: PF009836 Calibration Due Date: 2/6/2025

Time of Daily Response Check: 0947/0830

|           |                                         | 2024 Exposure | 2024 Removable  | 2024 Total      |                              |         |
|-----------|-----------------------------------------|---------------|-----------------|-----------------|------------------------------|---------|
| Survey ID | Survey Location                         | Result        | Contamination   | Contamination   | General Location             | Comment |
|           |                                         | (µrem/hr)     | $(dpm/100cm^2)$ | $(dpm/100cm^2)$ |                              |         |
| L1        | Pipe Chase Face #1                      | 20            | 26              | < Sc            | Monolith Top                 |         |
| L2        | Pipe Chase Face #2                      | 20            | < Sc            | < Sc            | Monolith Top                 |         |
| L3        | Pipe Chase Face #3                      | 20            | < Sc            | < Sc            | Monolith Top                 |         |
| L4        | Pipe Chase Face #4                      | 20            | < Sc            | 495             | Monolith Top                 |         |
| L5        | Top Plug Face #1 - left                 | 12            | < Sc            | < Sc            | Monolith Top                 |         |
| L6        | Top Plug Face #1 - center               | 10            | < Sc            | < Sc            | Monolith Top                 |         |
| L7        | Top Plug Face #1 - right                | 10            | < Sc            | 495             | Monolith Top                 |         |
| L8        | Top Plug Face #2 - top                  | 11            | < Sc            | 730             | Monolith Top                 |         |
| L9        | Top Plug Face #2 - center               | 12            | < Sc            | 1908            | Monolith Top                 |         |
| L10       | Top Plug Face #2 - bottom               | 10            | < Sc            | 683             | Monolith Top                 |         |
| L11       | Top Plug Face #3 - right                | 10            | < Sc            | 447             | Monolith Top                 |         |
| L12       | Top Plug Face #3 - center               | 12            | < Sc            | 565             | Monolith Top                 |         |
| L13       | Top Plug Face #3 - left                 | 13            | < Sc            | < Sc            | Monolith Top                 |         |
| L14       | Top Plug Face #4 - bottom               | 12            | < Sc            | < Sc            | Monolith Top                 |         |
| L15       | Top Plug Face #4 - center               | 12            | < Sc            | 612             | Monolith Top                 |         |
| L16       | Top Plug Face #4 - top                  | 12            | < Sc            | 612             | Monolith Top                 |         |
| L17       | Top Plug Top Surface - upper left       | 12            | < Sc            | 471             | Monolith Top                 |         |
| L18       | Top Plug Top Surface - center right     | 12            | < Sc            | < Sc            | Monolith Top                 |         |
| L19       | Top Plug Top Surface - center bottom    | 14            | 35              | < Sc            | Monolith Top                 |         |
| L20       | Main Floor Zone 1                       | 14            | < Sc            | < Sc            | Main Level-Public Access     |         |
| L21       | Main Floor Zone 2                       | 14            | < Sc            | < Sc            | Main Level-Public Access     |         |
| L22       | Main Floor Zone 3                       | 15            | < Sc            | < Sc            | Main Level-Public Access     |         |
| L23       | Main Floor Zone 4                       | 17            | < Sc            | 707             | Main Level-Public Access     |         |
| L24       | Main Floor Zone 5                       | 17            | < Sc            | 777             | Main Level-Public Access     |         |
| L25       | Main Floor-Zone 6                       | 17            | < Sc            | 942             | Main Level-Public Access     |         |
| L26       | Main Floor-Zone 7                       | 18            | < Sc            | < Sc            | Main Level-Public Access     |         |
| L27       | Main Floor-Zone 8                       | 17            | < Sc            | < Sc            | Main Level-Public Access     |         |
| L28       | Main Floor-Zone 9                       | 17            | < Sc            | < Sc            | Main Level-Public Access     |         |
| L29       | Main Floor-Zone 10                      | 17            | 28              | 683             | Main Level-Public Access     |         |
| L30       | Main Floor-Zone 11                      | 15            | < Sc            | < Sc            | Main Level-Public Access     |         |
| L31       | Main Floor-Zone 12                      | 17            | < Sc            | < Sc            | Main Level-Public Access     |         |
| L32       | Main Floor-Zone 14                      | 18            | < Sc            | 542             | Main Level-Public Access     |         |
| L33       | Main Floor-Zone 13                      | 17            | < Sc            | 777             | Main Level-Public Access     |         |
| L34       | Main Floor Water Column - center bottom | 18            | 28              | 542             | Main Level-Controlled Area   |         |
| L35       | Main Floor Water Column - right middle  | 15            | < Sc            | < Sc            | Main Level-Controlled Area   |         |
| L36       | Instrument Thimble #1                   | 22            | < Sc            | < Sc            | Main Level-Controlled Area   |         |
| L37       | Instrument Thimble #2                   | 20            | < Sc            | < Sc            | Main Level-Controlled Area   |         |
| L38       | Instrument Thimble #3                   | 16            | < Sc            | < Sc            | Main Level-Controlled Area   |         |
| L39       | Pipe Chase Ext Hatch                    | 22            | 26              | < Sc            | Main Level-Controlled Area   |         |
| L40       | Fuel Pool Purifier. Floor #1            | 30            | < Sc            | 18699           | Main Level-Contaminated Area |         |
| L41       | Fuel Pool Purifier. Floor #2            | 30            | < Sc            | 942             | Main Level-Controlled Area   |         |
| L42       | Fuel Pool Purifier. Floor #3            | 30            | < Sc            | 495             | Main Level-Controlled Area   |         |
| L43       | Fuel Pool Purifier. Floor #4            | 30            | < Sc            | < Sc            | Main Level-Controlled Area   |         |

#### Radiological Survey Number: 240722-002

# RCT Name: Larry Oeffner/Mike McDonald Exposure Rate Instrument Info

| Exposure Rate Instrument Info |  |
|-------------------------------|--|
|-------------------------------|--|

| Surv | ey Date:    | 7-16/17-2024              |   |
|------|-------------|---------------------------|---|
| S    | urface Cont | amination Instrument Info | о |

| Expool of Rate motion            |                       |
|----------------------------------|-----------------------|
| Survey Instrument Model:         | Thermo Microrem       |
| Instrument Serial Number:        | 19288                 |
| Calibration Due Date:            | 8/17/2024             |
| Time of Daily Response Check:    | 0947/0830             |
| Background Exposure Rate (µR/h): | 17/38 (main/basement) |
|                                  |                       |

| Survey Instrument Model:      | Ludlum 26 |
|-------------------------------|-----------|
| Instrument Serial Number:     | PF009836  |
| Calibration Due Date:         | 2/6/2025  |
| Time of Daily Response Check: | 0947/0830 |

|           |                                         | 2024 Exposure | 2024 Removable  | 2024 Total        |                          |                                             |
|-----------|-----------------------------------------|---------------|-----------------|-------------------|--------------------------|---------------------------------------------|
| Survey ID | Survey Location                         | Result        | Contamination   | Contamination     | General Location         | Comment                                     |
| -         | -                                       | (µrem/hr)     | $(dpm/100cm^2)$ | $(dpm/100cm^{2})$ |                          |                                             |
| L44       | Basement Floor-Zone 1                   | 40            | < Sc            | < Sc              | Basement Level           |                                             |
| L45       | Basement Floor-Zone 2                   | 40            | < Sc            | < Sc              | Basement Level           |                                             |
| L46       | Basement Floor-Zone 3                   | 40            | < Sc            | < Sc              | Basement Level           |                                             |
| L47       | Basement Floor-Zone 4                   | 35            | 35              | < Sc              | Basement Level           |                                             |
| L48       | Basement Floor-Zone 5                   | 35            | < Sc            | < Sc              | Basement Level           |                                             |
| L49       | Basement Floor-Zone 6                   | 35            | < Sc            | < Sc              | Basement Level           |                                             |
| L50       | Basement Floor-Zone 7                   | 40            | < Sc            | < Sc              | Basement Level           |                                             |
| L51       | Basement Floor-Zone 8                   | 40            | < Sc            | < Sc              | Basement Level           |                                             |
| L52       | Basement Floor-Zone 9                   | 40            | < Sc            | < Sc              | Basement Level           |                                             |
| L53       | Basement Floor-Zone 10                  | 35            | < Sc            | < Sc              | Basement Level           |                                             |
| L54       | Basement Floor-Zone 11                  | 35            | < Sc            | < Sc              | Basement Level           |                                             |
| L55       | Basement Floor-Zone 12                  | 40            | < Sc            | < Sc              | Basement Level           |                                             |
| L56       | Basement Floor-Zone 13                  | 35            | < Sc            | < Sc              | Basement Level           |                                             |
| L57       | Basement Floor-Zone 14                  | 35            | < Sc            | < Sc              | Basement Level           |                                             |
| L58       | Basement Floor-Zone 15                  | 35            | < Sc            | < Sc              | Basement Level           |                                             |
| L59       | Basement Floor-Zone 16                  | 40            | < Sc            | 495               | Basement Level           |                                             |
| L60       | Basement Floor-Zone 17                  | 35            | < Sc            | < Sc              | Basement Level           |                                             |
| L61       | Basement Floor-Zone 18                  | 40            | < Sc            | < Sc              | Basement Level           |                                             |
| L62       | Side of Lig. Waste Ret. Tank #1         | 40            | < Sc            | < Sc              | Basement Level           |                                             |
| L63       | Side of Lig. Waste Ret. Tank #2         | 40            | < Sc            | < Sc              | Basement Level           |                                             |
| L64       | Column 4 and 5 inside room              | 40            | < Sc            | < Sc              | Basement Level           |                                             |
| L65       | F.W. Heater Room (Wall)                 | 40            | < Sc            | < Sc              | Basement Level           |                                             |
| L66       | Vapor Sphere Room - upper left          | 40            | < Sc            | < Sc              | Basement Level           |                                             |
| L67       | Vapor Sphere Room - center right        | 35            | < Sc            | < Sc              | Basement Level           |                                             |
| L68       | Water pump room to the right, enter 50A | 40            | < Sc            | < Sc              | Basement Level           |                                             |
| L69       | Condenser Room Entry Wall - block       | 40            | < Sc            | < Sc              | Basement Level           |                                             |
| L70       | Condenser Room Entry Wall - concrete    | 40            | < Sc            | < Sc              | Basement Level           |                                             |
| L71       | South room with 2 pumps                 | 40            | < Sc            | < Sc              | Basement Level           |                                             |
| L72       | Under stairs near north door. Floor #1  | 40            | < Sc            | 471               | Basement Level           |                                             |
| L73       | Under stairs near north door. Floor #2  | 40            | < Sc            | < Sc              | Basement Level           |                                             |
| L74       | Condensate Pump #2 Pedestal             | 40            | < Sc            | 942               | Basement Level           | Nonbiased survey location chosen by the RCT |
| L75       | Basement Floor-Zone 5                   | 35            | < Sc            | < Sc              | Basement Level           | Nonbiased survey location chosen by the RCT |
| L76       | Display Area                            | 19            | < Sc            | < Sc              | Main Level-Public Access | Nonbiased survey location chosen by the RCT |
| L77       | RadCon Storage Area                     | 20            | < Sc            | < Sc              | Main Level-Public Access | Nonbiased survey location chosen by the RCT |
| L78       | Building Airlock Main Entry             | 18            | < Sc            | < Sc              | Main Level-Public Access | Nonbiased survey location chosen by the RCT |

Attachment 4

Radiological Instrument Calibration Certificates, *After-Calibration Source Response Checks Data Sheet* Forms (LMS 1974), and *Daily Instrument Response* Forms (LMS 1974a)



### After-Calibration Source Response Checks Data Sheet

| Location: L             | M Field Support Center  | at Grand Junction, Colorado     | )                       | Date:                                           | 7/3/2024                 |
|-------------------------|-------------------------|---------------------------------|-------------------------|-------------------------------------------------|--------------------------|
| Su                      | rvey Instrument Da      | ita                             | Detect                  | or/Probe Data (if app                           | licable)                 |
| Manufacturer: L         | udlum Measurements I    | nc.                             | Manufacturer            |                                                 |                          |
| Model No.: 2            | 26                      |                                 | Model No.               |                                                 |                          |
| Serial No.: F           | PF009836                |                                 | Serial No.              |                                                 |                          |
| Calibration Due Date: 2 | 2/6/2025                |                                 | Calibration Due Date    |                                                 |                          |
| Instrument Units: c     | :pm                     | Source/Detector<br>Distance:    | 0.5 cm                  | Shielding/Geometry:                             | Source in jig on contact |
|                         |                         | Check Sour                      | rce Data                | 100 - 18 - 18 - 18 - 19 - 19 - 19 - 19 - 19     |                          |
| #1 Isotope: C           | 21-36                   | Source ID No.: W                | /1-932                  | Activity & Units:                               | 2.762 nCi                |
| #2 Isotope:             |                         | Source ID No.:                  |                         | Activity & Units:                               |                          |
|                         |                         | Source Respons                  | se #1 Isotope           |                                                 |                          |
| 1 <sup>st</sup> Reading | 2 <sup>nd</sup> Reading | 3 <sup>rd</sup> Reading         | 4 <sup>th</sup> Reading | 5 <sup>th</sup> Reading                         | Total                    |
| 1148                    | 1187                    | 1162                            | 1129                    | 1166                                            | 5792                     |
| Average:                | 1158.4                  | -20% of Avg:                    | 926.72                  | +20% of Avg:                                    | 1390.08                  |
|                         |                         | Source Respons                  | se #2 Isotope           |                                                 |                          |
| 1 <sup>st</sup> Reading | 2 <sup>nd</sup> Reading | 3 <sup>rd</sup> Reading         | 4 <sup>th</sup> Reading | 5 <sup>th</sup> Reading                         | Total                    |
| Average:                |                         | –20% of Avg:                    |                         | +20% of Avg:                                    |                          |
|                         |                         | Comments                        |                         |                                                 | - HALSTON -              |
| Defermed by             | (print name)            |                                 | rformed by (signature   |                                                 | Data                     |
| Performed by            | (print name)            | Pe                              | erformed by (signatur   |                                                 | Date                     |
| Jessica U               | Iglesich                | JESSICA UGLESICH<br>(Affiliate) | (Affiliate)             | ed by JESSICA UGLESICH<br>7.03 15:11:00 -06'00' | 7/3/2024                 |
| Reviewed by (           | (print name)            | Re                              | eviewed by (signatur    | e)                                              | Date                     |
| Mikem                   | Donald                  |                                 |                         |                                                 | 7.3.2024                 |

Portable Radiation Survey Instrument Response Checks (LMS/PRO/S20074) LMS 1974-4.0

Page 1 of 1

10/24/2023



# **Daily Instrument Response**

| Instrument model: 26  | Serial number: | PF009836 | Detector model:  | Serial number:                     |
|-----------------------|----------------|----------|------------------|------------------------------------|
| Source ID number:     | W1-932         | Isotope: | CI-36            | Scale units: cpm                   |
| Calibration due date: | 02/06/2025     |          | Acceptable range | ( <b>± 20%):</b> <u>927</u> - 1390 |
| Month July            | Year 2024      |          |                  |                                    |
|                       |                |          |                  |                                    |

|     | Initial if daily response check is satisfactory |              |                  |                       |            |              |                        |             |          |  |
|-----|-------------------------------------------------|--------------|------------------|-----------------------|------------|--------------|------------------------|-------------|----------|--|
| Day |                                                 | Response (   | Scale or Decade) |                       |            | Battery      | Physical<br>Inspection | In          | Initials |  |
| Day | cpm                                             | Satisfactory | Unsatisfactory   | 2 <sup>nd</sup> Check | Sat/Failed | Check        | Inspection             | Calibration | muais    |  |
| 1   |                                                 |              |                  |                       |            |              |                        |             |          |  |
| 2   |                                                 |              |                  |                       |            |              |                        |             |          |  |
| 3   | 1100                                            | X            |                  |                       |            | SAT          | SAT                    | YES         | JU       |  |
| 4   |                                                 |              |                  |                       |            |              |                        |             |          |  |
| 5   |                                                 |              |                  |                       |            |              |                        |             |          |  |
| 6   |                                                 |              |                  |                       |            |              |                        |             |          |  |
| 7   |                                                 |              |                  |                       |            |              |                        |             |          |  |
| 8   |                                                 |              |                  |                       |            |              |                        |             |          |  |
| 9   |                                                 |              |                  |                       |            |              |                        |             |          |  |
| 10  |                                                 |              |                  |                       |            |              |                        |             |          |  |
| 11  |                                                 |              |                  |                       |            |              |                        |             |          |  |
| 12  |                                                 |              |                  |                       |            |              |                        |             |          |  |
| 13  |                                                 |              |                  |                       |            |              |                        |             |          |  |
| 14  |                                                 |              |                  |                       |            |              |                        |             |          |  |
| 15  |                                                 |              |                  |                       |            |              |                        |             |          |  |
| 16  | 1360                                            | X            |                  |                       |            | $\checkmark$ | $\checkmark$           | -~          | 6        |  |
| 17  | 1296                                            | X            |                  |                       |            | V            | V                      |             | 10       |  |
| 18  |                                                 |              |                  |                       |            |              |                        |             |          |  |
| 19  |                                                 |              |                  |                       |            |              |                        |             |          |  |
| 20  |                                                 |              |                  |                       |            |              |                        |             |          |  |
| 21  |                                                 |              |                  |                       |            |              |                        |             |          |  |
| 22  |                                                 |              |                  |                       |            |              |                        |             |          |  |
| 23  |                                                 |              |                  |                       |            |              |                        |             |          |  |
| 24  |                                                 |              |                  |                       |            |              |                        |             |          |  |
| 25  |                                                 |              |                  |                       |            |              |                        |             |          |  |
| 26  |                                                 |              |                  |                       |            |              |                        |             |          |  |
| 27  |                                                 |              |                  |                       |            |              |                        |             |          |  |
| 28  |                                                 |              |                  |                       |            |              |                        |             |          |  |
| 29  |                                                 |              |                  |                       |            |              |                        |             |          |  |
| 30  |                                                 |              |                  |                       |            |              |                        |             |          |  |
| 31  |                                                 |              |                  |                       |            |              |                        |             |          |  |

Reviewed by the LMS Radiological Control Manager or designee (print and sign)



### After-Calibration Source Response Checks Data Sheet

| Location: L              | M Field Support Center  | at Grand Junction, Colorad      | 0                       | Date:                   | 7/3/2024                      |
|--------------------------|-------------------------|---------------------------------|-------------------------|-------------------------|-------------------------------|
| Sur                      | vey Instrument Da       | ita                             | Detecto                 | r/Probe Data (if appl   | icable)                       |
| Manufacturer: T          | hermo Scientific        |                                 | Manufacturer:           |                         |                               |
| Model No.: M             | licro Rem               |                                 | Model No.:              |                         |                               |
| Serial No.: 19           | 9288                    |                                 | Serial No.:             |                         |                               |
| Calibration Due Date: 8/ | /17/2024                |                                 | Calibration Due Date:   |                         |                               |
| Instrument Units: µ      | rem/hr                  | Source/Detector<br>Distance:    | On contact              |                         | On contact with + on<br>front |
| E Jona ME Barre Ha       |                         | Check Sou                       | rce Data                |                         |                               |
| #1 Isotope: C            | s-137                   | Source ID No.: 2                | 48                      | Activity & Units:       | 0.25 µCi                      |
| #2 Isotope:              |                         | Source ID No.:                  |                         | Activity & Units:       |                               |
|                          |                         | Source Respons                  | se #1 Isotope           |                         |                               |
| 1 <sup>st</sup> Reading  | 2 <sup>nd</sup> Reading | 3 <sup>rd</sup> Reading         | 4 <sup>th</sup> Reading | 5 <sup>th</sup> Reading | Total                         |
| 128                      | 125                     | 132                             | 126                     | 131                     | 642                           |
| Average:                 | 128.4                   | -20% of Avg:                    | 102.72                  | +20% of Avg:            | 154.08                        |
| 1000                     |                         | Source Respons                  | se #2 Isotope           |                         |                               |
| 1 <sup>st</sup> Reading  | 2 <sup>nd</sup> Reading | 3 <sup>rd</sup> Reading         | 4 <sup>th</sup> Reading | 5 <sup>th</sup> Reading | Total                         |
| Average:                 |                         | –20% of Avg:                    |                         | +20% of Avg:            | and the property of the       |
|                          |                         | Comm                            | ents                    |                         | THE REAL PROPERTY.            |
|                          |                         |                                 |                         |                         |                               |
| Performed by (           | print name)             | Pe                              | erformed by (signature) |                         | Date                          |
| Jessica Ug               | glesich                 | JESSICA UGLESICI<br>(Affiliate) | UGLESICH (Affil         |                         | 7/3/2024                      |
| Reviewed by (            | print name)             | R                               | eviewed by (signature)  | 4                       | Date                          |
| Milce ma                 | Donald                  |                                 |                         |                         | 7-3-2024                      |

Portable Radiation Survey Instrument Response Checks (LMS/PRO/S20074) LMS 1974-4.0

Page 1 of 1

10/24/2023



## **Daily Instrument Response**

| Instrum  | ent model: R  | licro<br>em <b>Se</b> | rial numb   | <b>er:</b> 19288 | Dete                  | ctor model  | :          | Serial nu            | mber:       |          |  |
|----------|---------------|-----------------------|-------------|------------------|-----------------------|-------------|------------|----------------------|-------------|----------|--|
| Source   | ID number:    | 248                   |             | Isotope          | Cs-1                  | 37          | Scale      | Scale units: µrem/hr |             |          |  |
| Calibrat | ion due date: | 08/1                  | 7/2024      |                  | Acce                  | eptable ran | ge (± 20%  | ): 103 - 154         |             |          |  |
| Month    | July          | Year                  | 2024        |                  |                       |             |            |                      |             |          |  |
|          |               |                       |             | Initial if da    | ily respor            | ise check i | s satisfac | tory                 |             |          |  |
| Davi     |               |                       | Response (  | Scale or Decade) |                       |             | Battery    | Physical             | In          | 1.11.1   |  |
| Day      | µrem/hr       | S                     | atisfactory | Unsatisfactory   | 2 <sup>nd</sup> Check | Sat/Failed  | Check      | Inspection           | Calibration | Initials |  |
| 1        |               |                       |             |                  |                       |             |            |                      |             |          |  |
| 2        |               |                       |             |                  |                       |             |            |                      | -           |          |  |
| 3        | 129           |                       | Х           |                  |                       |             | SAT        | SAT                  | YES         | JU       |  |
| 4        |               |                       |             |                  |                       |             |            |                      |             |          |  |
| 5        |               |                       |             |                  |                       |             |            |                      |             |          |  |
| 6        |               |                       |             |                  |                       |             |            |                      |             |          |  |
| 7        |               |                       |             |                  |                       |             |            |                      |             |          |  |
| 8        |               |                       |             |                  |                       |             |            |                      |             |          |  |
| 9        |               |                       |             |                  |                       |             |            |                      |             |          |  |
| 10       |               |                       |             |                  |                       |             |            |                      |             |          |  |
| 11       |               |                       |             |                  |                       |             |            |                      |             |          |  |
| 12       |               |                       |             |                  |                       |             |            |                      |             |          |  |
| 13       |               |                       |             |                  |                       |             |            |                      |             |          |  |
| 14       |               |                       |             |                  |                       |             |            |                      |             |          |  |
| 15       |               |                       |             |                  |                       |             |            |                      |             |          |  |
| 16       | 115           |                       | X           |                  |                       |             | SAT        | SAT                  | Ves         | 10       |  |
| 17       | 130           |                       | ×           |                  |                       |             | Sat        | Sat                  | yes         | LO       |  |
| 18       |               |                       |             |                  |                       |             |            | 3.00                 | ( -         |          |  |
| 19       |               |                       |             |                  |                       |             |            |                      |             |          |  |
| 20       |               |                       |             |                  |                       |             |            |                      |             |          |  |
| 21       |               |                       |             |                  |                       |             |            |                      |             |          |  |
| 22       |               |                       |             |                  |                       |             |            |                      |             |          |  |
| 23       |               |                       |             |                  |                       |             |            |                      |             |          |  |
| 24       |               |                       |             |                  |                       |             |            |                      |             |          |  |
| 25       |               |                       |             |                  |                       |             |            |                      |             |          |  |
| 26       |               |                       |             |                  |                       |             |            |                      |             |          |  |
| 27       |               |                       |             |                  |                       |             |            |                      |             |          |  |
| 28       |               |                       |             |                  |                       |             |            |                      |             |          |  |

29 30 31



### Scaler Chi-Squared (x2) Test Data Sheet

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u> </u>                      | 2020                       |                                        | 0                  | 000077                                                        |                            |                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|----------------------------|----------------------------------------|--------------------|---------------------------------------------------------------|----------------------------|---------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Scaler model                  |                            |                                        | Serial No.         | 330877                                                        | Calibra                    | tion due date             |
| D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | etector model                 | N/A                        |                                        | Serial No.         | N/A                                                           |                            | 8/17/2024                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Source ID no.                 | FR 693                     |                                        |                    | Source ID no.                                                 | FR 706                     |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ource isotope                 | Th-230                     |                                        |                    | ource isotope                                                 | CI-36                      |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Source activity               |                            | dpm                                    |                    | Source activity                                               | 5060                       | dpm                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | urce diameter                 | 47                         | mm                                     |                    | urce diameter                                                 | 47                         | mm                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ce assay date                 |                            |                                        |                    | ce assay date                                                 |                            |                           |
| Da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ate performed                 | 7/1/2024                   |                                        | Location           | performed at                                                  | GJO-B810, F                | RM 163                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Chi-Squared ( $\chi^2$ ) Test |                            |                                        |                    |                                                               |                            |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Alp                           | oha                        |                                        |                    | Be                                                            | ta                         |                           |
| n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | x <sub>i</sub>                | $(x_i)$ - $(\overline{x})$ | $[(x_i)-(\overline{x})]^2$             | n                  | x <sub>i</sub>                                                | $(x_i)$ - $(\overline{x})$ | $[(x_{i})-(\bar{x})]^{2}$ |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6510                          | -28.65                     | 820.8                                  | 1                  | 2214                                                          | -12.3                      | 151.3                     |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6518                          | -20.65                     | 426.4                                  | 2                  | 2215                                                          | -11.3                      | 127.7                     |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6554                          | 15.35                      | 235.6                                  | 3                  | 2180                                                          | -46.3                      | 2143.7                    |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6615                          | 76.35                      | 5829.3                                 | 4                  | 2264                                                          | 37.7                       | 1421.3                    |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6367                          | -171.65                    | 29463.7                                | 5                  | 2196                                                          | -30.3                      | 918.1                     |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6633                          | 94.35                      | 8901.9                                 | 6                  | 2183                                                          | -43.3                      | 1874.9                    |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6505                          | -33.65                     | 1132.3                                 | 7                  | 2217                                                          | -9.3                       | 86.5                      |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6696                          | 157.35                     | 24759.0                                | 8                  | 2261                                                          | 34.7                       | 1204.1                    |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6622                          | 83.35                      | 6947.2                                 | 9                  | 2286                                                          | 59.7                       | 3564.1                    |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6455                          | -83.65                     | 6997.3                                 | 10                 | 2315                                                          | 88.7                       | 7867.7                    |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6484                          | -54.65                     | 2986.6                                 | 11                 | 2239                                                          | 12.7                       | 161.3                     |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6464                          | -74.65                     | 5572.6                                 | 12                 | 2219                                                          | -7.3                       | 53.3                      |
| 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6687                          | 148.35                     | 22007.7                                | 13                 | 2239                                                          | 12.7                       | 161.3                     |
| 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6585                          | 46.35                      | 2148.3                                 | 14                 | 2242                                                          | 15.7                       | 246.5                     |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6388                          | -150.65                    | 22695.4                                | 15                 | 2313                                                          | 86.7                       | 7516.9                    |
| 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6568                          | 29.35                      | 861.4                                  | 16                 | 2176                                                          | -50.3                      | 2530.1                    |
| 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6415                          | -123.65                    | 15289.3                                | 17                 | 2242                                                          | 15.7                       | 246.5                     |
| 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6608                          | 69.35                      | 4809.4                                 | 18                 | 2175                                                          | -51.3                      | 2631.7                    |
| 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6586                          | 47.35                      | 2242.0                                 | 19                 | 2176                                                          | -50.3                      | 2530.1                    |
| 20<br>Tatala                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6513                          | -25.65                     | 657.9                                  | 20                 | 2174                                                          | -52.3                      | 2735.3                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 130773                        | na                         | 164784.6                               | Totals             | 44526                                                         | na                         | 38172.2                   |
| =<br>2σ=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6538.7<br>186.3               | σ =<br>3σ =                | 93.1<br>279.4                          | <br>2σ =           | 2226.3<br>89.6                                                | σ=<br>3σ=                  | 44.8<br>134.5             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                               | •                          |                                        | 20 =               |                                                               |                            | 134.3                     |
| Me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ean                           | Sig                        |                                        |                    | Chi-Sq                                                        |                            |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\sum x_i$                    | Σ                          | $(x_i - \overline{x})^2$               |                    | $x^2 = \frac{\sum_{i=1}^{n} (x_i)^2}{\sum_{i=1}^{n} (x_i)^2}$ | $(x_i - \overline{x})^2$   |                           |
| x =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $=\frac{\sum n_i}{20}$        | $o - \sqrt{-}$             | $\frac{(x_i - \overline{x})^2}{(n-1)}$ |                    | x = -                                                         | $\overline{r}$             |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                             |                            |                                        |                    |                                                               | л                          |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                               | Values                     |                                        |                    | Beta V                                                        |                            |                           |
| mean + $2\sigma =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               | mean - $2\sigma =$         | 6352.4                                 | mean + $2\sigma =$ |                                                               | mean -2σ =                 | 2136.7                    |
| mean $+3\sigma =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               | mean $-3\sigma =$          | 6259.3                                 | mean +3 $\sigma$ = |                                                               | mean $-3\sigma =$          | 2091.8                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                               | ge: 8.91 to 32.            |                                        |                    | i-squared rang                                                |                            |                           |
| $x^{2} =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 25.2                          | Test result                | Pass                                   | $x^{2} =$          | 17.1                                                          | Test result                | Pass                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                               |                            |                                        |                    |                                                               |                            |                           |
| Performed:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Chad Goodric                  | h                          |                                        |                    | Date:                                                         | 7/1/2                      | 2024                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                               | Printed Name and S         | Signature                              |                    |                                                               |                            |                           |
| Reviewed:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               |                            |                                        |                    | Data                                                          |                            |                           |
| i tevieweu.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               | Printed Name and S         | Signature                              |                    | Dale.                                                         |                            |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                               |                            |                                        |                    |                                                               |                            |                           |
| Provide the second secon |                               |                            |                                        |                    |                                                               |                            |                           |



| Scaler model 3030                                        |              | Serial No. 330877                    | Calib           | ration due dat |
|----------------------------------------------------------|--------------|--------------------------------------|-----------------|----------------|
| Detector model N/A                                       |              | Serial No. N/A                       |                 | 8/17/2024      |
| α Source ID no. FR 693                                   |              | $\beta$ - $\gamma$ Source ID no.     | FR 706          |                |
| α Source isotope Th-230                                  |              | $\beta - \gamma$ Source isotope      | CI-36           |                |
| α Source activity 19400                                  | dpm          | $\beta$ - $\gamma$ Source activity   |                 | dpm            |
| α Source diameter 47                                     | mm           | $\beta$ - $\gamma$ Source diameter   | 47              | mm             |
| α Source assay date <u>9/1/199</u> 7                     | ,            | $\beta$ - $\gamma$ Source assay date |                 |                |
| Date performed 7/1/2024                                  | <u> </u>     | Location performed at                | GJO-B81         | 0, RM 163      |
|                                                          | Backgrou     | ind Data                             |                 |                |
| α Background counts 5                                    | cts (20 min) | β-γ Background counts                | 822             | cts (20 min    |
| α Background 0.25                                        | cpm          | β-γ Background                       | 41.1            | cpm            |
|                                                          | Scaler Ef    | ficiency                             |                 |                |
| Alpha                                                    |              | Be                                   |                 |                |
| 20 minute source count 130773                            |              | 20 minute source count               |                 | cts            |
| Gross count rate 6538.7                                  | cpm          | Gross count rate                     | 2226.3          | cpm            |
| Net count rate 6538.4                                    | cpm          | Net count rate                       | 2185.2          | cpm            |
| Source activity 19400                                    | dpm          | Source activity                      |                 | dpm            |
| Efficiency 0.34                                          | cpm/dpm      | Efficiency                           | 0.43            | cpm/dpm        |
|                                                          | Acceptable S | -                                    |                 |                |
| Alpha<br>20 minute count 130773                          | ata          | 20 minute count                      |                 | ata            |
| 20 minute count <u>130773</u><br>Gross count rate 6538.7 |              | Gross count rate                     | 44526<br>2226.3 | cts            |
| Net count rate 6538.4                                    | cpm<br>cpm   | Net count rate                       | 2185.2          | cpm<br>cpm     |
| $\sigma = \sqrt{Rg + Rb}$                                | where        |                                      | he net coun     | <u> </u>       |
| $\sqrt{\frac{1}{1}}$ $\frac{1}{20}$                      |              | Rb = background count rate           | *               |                |
| Alpha σ <u>80.86</u>                                     | cpm          | Beta-Gamma $\sigma$                  | 47.21           | cpm            |
| Alpha Acceptable Source Rang                             | ges (cpm)    | Beta Acceptable So                   | urce Range      | es (cpm)       |
| 1σ <u>6458</u> to                                        | 6619         | 1σ <u>2138</u>                       | to              | 2232           |
| 2σ <u>6377</u> to                                        | 6700         | 2σ2091                               | to              | 2280           |
| Performed: <u>Chad Goodrich</u><br>Printed name a        | nd signature | Date:                                | 7/              | 1/2024         |
| Reviewed:                                                |              | Date:                                |                 |                |

Attachment 4, Page 6



|                        |                     | l'                   | Scaler Daily    |                 |                           |                |           |
|------------------------|---------------------|----------------------|-----------------|-----------------|---------------------------|----------------|-----------|
| Scaler model 3030      |                     |                      | Serial no.      | 330877          | Calibrat                  | tion due dat   |           |
| C                      | Detector model N/A  |                      | Serial no.      | . N/A           |                           | 8/17/2024      |           |
| Month/y                | ear performed       | 7/2024               |                 | Locatio         | n performed at            | GJO-B810, R    | M 163     |
| -                      |                     |                      |                 |                 | -                         | value (cpm)    |           |
| α                      | Source ID no.       | FR 693               |                 | Alpha           | Acceptable Sc             |                |           |
|                        | Source isotope      |                      |                 | -               | 6458                      | to             | 6619      |
|                        | Source activity     |                      | dpm             |                 | 6377                      | to             | 6700      |
|                        | Alpha               | Alpha                | Alpha           | Alaba           | Critical                  | Daily          |           |
| Date                   | Alpha<br>Background | Alpha<br>Background  | Alpha<br>Source | Alpha<br>Source | Critical<br>Value         | Daily<br>Check | Initials  |
| Date                   | Counts              | срт                  | Counts          | cpm             | (dpm/100cm <sup>2</sup> ) | Sat/Unsat      | IIIItidis |
| 7/4/0004               |                     |                      |                 |                 |                           |                |           |
| 7/1/2024               | 5                   | 0.25                 | 6447            | 6447            | 2.5<br>2.7                | Sat            | CG        |
| 7/2/2024<br>7/3/2024   | 0                   | 0.30                 | 6513            | 6513            | 2.1                       | Sat            | NH        |
| 7/4/2024               |                     |                      |                 |                 |                           |                |           |
| 7/5/2024               |                     |                      |                 |                 |                           |                |           |
| 7/6/2024               |                     |                      |                 |                 |                           |                |           |
| 7/7/2024               |                     |                      |                 |                 |                           |                |           |
| 7/8/2024               |                     |                      |                 |                 |                           |                |           |
| 7/9/2024               |                     |                      |                 |                 |                           |                |           |
| 7/10/2024              | 4                   | 0.20                 | 6452            | 6452            | 2.2                       | Sat            | CG        |
| 7/11/2024              |                     |                      |                 |                 |                           |                |           |
| 7/12/2024              |                     |                      |                 |                 |                           |                |           |
| 7/13/2024              |                     |                      |                 |                 |                           |                |           |
| 7/14/2024              |                     |                      |                 |                 |                           |                |           |
| 7/15/2024              |                     |                      |                 |                 |                           |                |           |
| 7/16/2024              | 5                   | 0.25                 | 6647            | 6647            | 2.5                       | Sat            | NH        |
| 7/17/2024              | 3                   | 0.15                 | 6607            | 6607            | 1.9                       | Sat            | KC        |
| 7/18/2024              |                     |                      |                 |                 |                           |                |           |
| 7/19/2024              |                     |                      |                 |                 |                           |                |           |
| 7/20/2024              |                     |                      |                 |                 |                           |                |           |
| 7/21/2024              |                     |                      |                 |                 |                           |                |           |
| 7/22/2024              | 2                   | 0.10                 | 6524            | 6524            | 1.6                       | Set            |           |
| 7/23/2024<br>7/24/2024 | 2                   | 0.10                 | 6534            | 6534            | 1.6                       | Sat            | NH        |
| 7/25/2024              |                     |                      |                 |                 |                           |                |           |
| 7/26/2024              |                     |                      |                 |                 |                           |                |           |
| 7/27/2024              |                     |                      |                 |                 |                           |                |           |
| 7/28/2024              |                     |                      |                 |                 |                           |                |           |
| 7/29/2024              |                     |                      |                 |                 | 1                         |                |           |
| 7/30/2024              | 2                   | 0.10                 | 6495            | 6495            | 1.6                       | Sat            | KC        |
| 7/31/2024              |                     |                      |                 |                 | 1                         |                |           |
| Reviewed:              |                     | Printed name and sig |                 |                 | Date:                     |                |           |

Attachment 4, Page 7



|                        | Scaler model    | 3030       |        | Serial no. | 330877                    | Calibrat      | ion due dat |
|------------------------|-----------------|------------|--------|------------|---------------------------|---------------|-------------|
| Γ                      | Detector model  | N/A        |        | Serial no. | N/A                       | -             | 8/17/2024   |
| Month/\                | /ear performed  | 7/2024     |        |            |                           | GJO-B810, R   | M 163       |
| ·····,                 | · [             |            |        |            | -                         | e value (cpm) | 2185.2      |
| <b>β-</b> γ            | Source ID no.   | FR 706     |        | Beta A     |                           | ource Ranges  |             |
|                        | Source isotope  |            |        | 1σ         | -                         | to            | 2232        |
|                        | Source activity |            | dpm    | 2σ         |                           | to            | 2280        |
|                        |                 |            |        |            |                           |               |             |
|                        | Beta            | Beta       | Beta   | Beta       | Critical                  | Daily         |             |
| Date                   |                 | Background | Source | Source     | Value                     | Check         | Initials    |
|                        | Counts          | cpm        | Counts | cpm        | (dpm/100cm <sup>2</sup> ) | Sat/Unsat     |             |
| 7/1/2024               | 822             | 41         | 2271   | 2230       | 25                        | Sat           | CG          |
| 7/2/2024               | 795             | 40         | 2290   | 2250       | 25                        | Sat           | NH          |
| 7/3/2024               |                 |            |        |            |                           |               |             |
| 7/4/2024               |                 |            |        |            |                           |               |             |
| 7/5/2024               |                 |            |        |            |                           |               |             |
| 7/6/2024               |                 |            |        |            |                           |               |             |
| 7/7/2024               |                 |            |        |            |                           |               |             |
| 7/8/2024               |                 |            |        |            |                           |               |             |
| 7/9/2024               |                 |            |        |            |                           |               |             |
| 7/10/2024              | 818             | 41         | 2228   | 2187       | 25                        | Sat           | CG          |
| 7/11/2024              |                 |            |        |            |                           |               |             |
| 7/12/2024              |                 |            |        |            |                           |               |             |
| 7/13/2024 7/14/2024    | 1               |            |        |            |                           |               |             |
| 7/15/2024              |                 |            |        |            |                           |               |             |
| 7/16/2024              | 799             | 40         | 2221   | 2181       | 25                        | Sat           | NH          |
| 7/17/2024              | 808             | 40         | 2240   | 2200       | 25                        | Sat           | KC          |
| 7/18/2024              |                 |            |        |            |                           |               |             |
| 7/19/2024              |                 |            |        |            |                           |               |             |
| 7/20/2024              | 1               |            |        |            |                           |               |             |
| 7/21/2024              |                 |            |        |            |                           |               |             |
| 7/22/2024              |                 |            |        |            |                           |               |             |
| 7/23/2024              | 768             | 38         | 2246   | 2208       | 24                        | Sat           | NH          |
| 7/24/2024              |                 | 1          |        |            |                           | <b> </b>      |             |
| 7/25/2024              |                 |            |        |            |                           |               |             |
| 7/26/2024              |                 | ļ ļ        |        |            |                           |               |             |
| 7/27/2024              |                 | ├          |        |            |                           |               |             |
| 7/28/2024              |                 |            |        |            |                           |               |             |
| 7/29/2024              | 707             | 20         | 2212   | 0170       | 04                        | Set           | 00          |
| 7/30/2024<br>7/31/2024 | 787             | 39         | 2212   | 2173       | 24                        | Sat           | CG          |
| 1101/2024              | ł               | <u> </u> I |        | <u>.</u>   | <u> </u>                  | <u> </u>      |             |
| Reviewed:              | :               |            |        |            | Date:                     |               |             |

Attachment 4, Page 8

## **CERTIFICATE OF CALIBRATION** (COUNT-RATE INSTRUMENT)



**RSA Laboratories, Inc.** 

19 Pendleton Drive, P.O. Box 61Hebron, Connecticut 06248(860) 228-0721 Fax (860) 228-4402

| Customer and Contact:<br>Customer Address:           | RSI EnTech, Attn: Anthony<br>2597 Legacy Way, Grand Ju |                   |                     |                     |              |
|------------------------------------------------------|--------------------------------------------------------|-------------------|---------------------|---------------------|--------------|
| Inst. Mfr. & Model                                   | Ludlum Model 26                                        | Inst. Type        | Survey meter        | Inst. s/n 9         | 836          |
| Det. Mfr. & Model                                    | not indicated                                          | Det. Type         | <b>G-M</b> Pancake  | Det. s/n n          | ot indicated |
| Calibration Date                                     | 06 February 2024                                       | Due Date          | 06 February 2025    | Cal Interval 1      | year         |
| Environmental conditions:<br>Pre-calibration Checks: | Temperature 71°F                                       | Relative Humidity | 26% Atmospheric     | c Pressure 29.85 ir | nches Hg     |
| X Contamination survey                               | X Battery check                                        |                   | Slow response check |                     |              |
| X Mechanical check                                   | X Audio check                                          |                   | Window Operation    | X Det. Volts        | s 900 Vdc    |
| Meter zero                                           | Reset check                                            |                   | Plateau check       |                     |              |
| Geotropism check                                     | Fast response check                                    |                   | Alarm set           | X Input sens        | s. 1800 mV   |
| X Pulse generator s/n 9492                           | 26 🗌 Oscilloscope                                      | s/n 171-04928     | □ Voltmeter s/      | /n 574100002        |              |

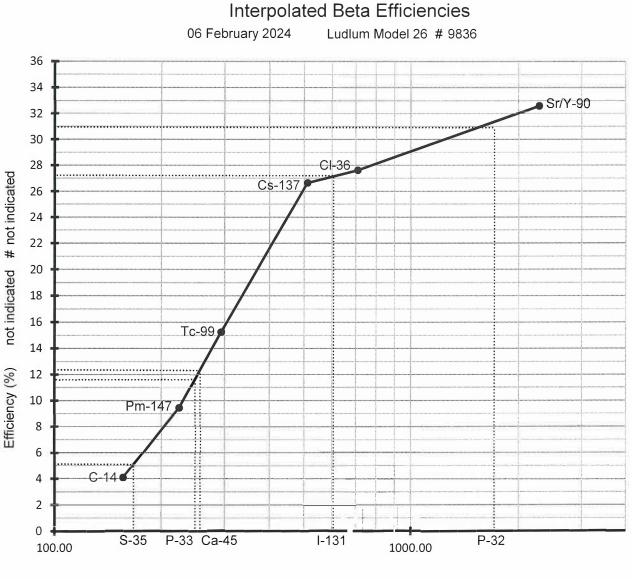
Comments: All efficiencies measured at near contact, cap off.

| Precision check souce $s/n$ IReading #16,620Precision: $X \pm < 10\%$ |                             | Dedicated Source?<br>m Reading #3<br>at of tolerance | ☐ Yes<br>6,590 cpm | X No<br>Mean | 6,580 cpm                     |  |
|-----------------------------------------------------------------------|-----------------------------|------------------------------------------------------|--------------------|--------------|-------------------------------|--|
| Range Multiplier                                                      | Reference Calibration Point | Instrument Indi<br>"As Found                         |                    |              | iment Indication<br>"As Left" |  |
| n/a                                                                   | 80,000 cpm                  | 80.0 kcpm                                            |                    |              | 80.0 kcpm                     |  |
| n/a                                                                   | 20,000 cpm                  | 20.0 kcpm                                            |                    | 20.0 kcj     |                               |  |
| n/a                                                                   | 8,000 cpm                   | 8.0 kcpm                                             | 8.0 kcpm           |              | 8.0 kcpm                      |  |
| n/a                                                                   | 2,000 cpm                   | 2.0 kcpm                                             |                    |              | 2.0 kcpm                      |  |
| n/a                                                                   | 800 cpm                     | 800 cpm                                              |                    |              | 800 cpm                       |  |
| n/a                                                                   | 200 cpm                     | 200 cpm                                              |                    |              | 200 срт                       |  |
| n/a 80 cpm                                                            |                             | 80 cpm                                               | 80 cpm             |              | 80 cpm                        |  |
| n/a 20 cpm                                                            |                             | 20 cpm                                               | 20 cpm             |              | 20 cpm                        |  |

All ranges calibrated electronically.

| (                |                                    | Local background (cpm) $\approx$ |                             |                                 |  |
|------------------|------------------------------------|----------------------------------|-----------------------------|---------------------------------|--|
| Range Multiplier | Cal. Source Used (isotope and s/n) | Source Activity (dpm)            | Instrument Reading<br>(cpm) | 4π Instrument<br>Efficiency (%) |  |
| 1 min. count     | C-14 #4456                         | 202,100                          | 8,310                       | 4.08                            |  |
| 1 min. count     | Pm-147 #1613-32                    | 1,089                            | 165                         | 9.46                            |  |
| 1 min. count     | Tc-99 #D702                        | 23,064                           | 3,580                       | 15.25                           |  |
| 1 min. count     | Cs-137 #2886                       | 11,399                           | 3,100                       | 26.65                           |  |
| 1 min. count     | Cl-36 #D700                        | 23,598                           | 6,580                       | 27.62                           |  |
| 1 min. count     | Sr/Y-90 #D711                      | 27,845                           | 9,140                       | 32.60                           |  |
| 1 min. count     | Th-230 #91TH2200210                | 38,900                           | 4,370                       | 11.07                           |  |

Instrument indicates within  $\pm 10\%$  of calibration points unless otherwise indicated. Source-to-detector entry window distance for efficiency determination is 1 cm unless otherwise specified. RSA Laboratories certifies that the above instrument has been calibrated with standards traceable to the National Institute of Standards and Technology, or have been derived from accepted values of natural physical constants, or have been derived by the ratio-type of calibration techniques.


RSA Laboratories ID# 24687

Calibrated by: Kurt D. Newton

Date: 06 February 2024

### **CERTIFICATE OF CALIBRATION** (COUNT-RATE INSTRUMENT)





Maximum Beta Energy (keV)

Calibrated by: Kurt D. Newton

Date: 06 February 2024

## **CERTIFICATE OF CALIBRATION** (COUNT-RATE INSTRUMENT)



**RSA Laboratories, Inc.** 

19 Pendleton Drive, P.O. Box 61Hebron, Connecticut 06248(860) 228-0721 Fax (860) 228-4402

| Customer and Contact:<br>Customer Address: | RSI EnTech, Attn: Anthony<br>2597 Legacy Way, Grand Ju |                 | ,                   |             |              |              |        |
|--------------------------------------------|--------------------------------------------------------|-----------------|---------------------|-------------|--------------|--------------|--------|
| Inst. Mfr. & Model                         | Ludlum Model 3030                                      | Inst. Type      | Dual Scaler         |             | Inst. s/n    | 330877       |        |
| Det. Mfr. & Model                          | not indicated                                          | Det. Type       | Alpha/Beta Scin     | ntillator   | Det. s/n     | not indicate | d      |
| Calibration Date                           | 17 August 2023                                         | Due Date        | 17 August 2024      |             | Cal Interval | 1 year       |        |
| Environmental conditions:                  | Temperature 72°F                                       | Relative Humidi | ty 57% Atm          | ospheric Pr | essure 29.75 | inches Hg    |        |
| Pre-calibration Checks:                    |                                                        |                 |                     |             |              |              |        |
| X Contamination survey                     | X Battery check                                        | [               | Slow response check |             |              |              |        |
| X Mechanical check                         | X Audio check                                          | [               | X Window Operation  |             | X Det. Vo    | olts 700     | Vdc    |
| X Meter zero                               | X Reset check                                          | [               | Plateau check       |             |              |              |        |
| Geotropism check                           | □ Fast response check                                  | (               | Alarm set           |             | Input se     | ens. see com | aments |
| X Pulse generator s/n 9492                 | 26 🗌 Oscilloscope                                      | s/n 171-04928   | U Volt              | meter s/n 5 | 74100002     |              |        |

Comments: Alpha channel threshold = 120 mV, window = 120 mV to ∞. Beta channel threshold = 4.6 mV, window = 4.6 mV to 60 mV. Calibrated using AC line power.

| Precision check<br>Reading #1<br>Precision: | x source s/n <b>D700</b><br><b>8,883</b> cpm<br>$X \pm <10\%$ | Isotop<br>Reading #2<br>==================================== | be Cl-36<br>8,847 cpm<br>☐ Out of t | Dedicated Source<br>Reading #3<br>tolerance | ? Yes<br>8,878 cpm | X No<br>Mean | 8,869 cpm                     |
|---------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------|---------------------------------------------|--------------------|--------------|-------------------------------|
| Ran                                         | ge Multiplier                                                 | Reference Calib                                              | oration Point                       | Instrument In<br>"As Four                   |                    | Instr        | ument Indication<br>"As Left" |
|                                             | 1 min.                                                        | 50 ср                                                        | m                                   | 50 cour                                     | its                |              | 50 counts                     |
|                                             | 1 min.                                                        | 500 cg                                                       | om                                  | 500 cou                                     | nts                |              | 500 counts                    |
|                                             | 1 min.                                                        | 5,000 c                                                      | рт                                  | 5,000 cou                                   | ints               |              | 5,000 counts                  |
|                                             | 1 min.                                                        | 50,000                                                       | epm                                 | 50,001 co                                   | unts               |              | 50,001 counts                 |
|                                             | 1 min.                                                        | 500,000                                                      | cpm                                 | 500,012 co                                  | ounts              | 5            | 00,012 counts                 |
|                                             |                                                               |                                                              |                                     |                                             |                    |              |                               |
|                                             |                                                               |                                                              | 12                                  |                                             |                    |              |                               |
|                                             |                                                               |                                                              |                                     |                                             |                    |              |                               |
|                                             |                                                               |                                                              |                                     |                                             |                    |              |                               |

| All ranges calibrated | electronically.                    | Local background (cpm) $\approx$ | 0 (α)                       | 25 (β)                          |
|-----------------------|------------------------------------|----------------------------------|-----------------------------|---------------------------------|
| Range Multiplier      | Cal. Source Used (isotope and s/n) | Source Activity (dpm)            | Instrument Reading<br>(cpm) | 4π Instrument<br>Efficiency (%) |
| 1 min. count          | Th-230 #91TH4700001                | 33,000                           | 9,798 (α)                   | 29.69                           |
| 1 min. count          | Cl-36 #D700                        | 23,598                           | 8,869 (β)                   | 37.48                           |
|                       |                                    | 0                                |                             |                                 |

Instrument indicates within  $\pm 10\%$  of calibration points unless otherwise indicated. Source-to-detector entry window distance for efficiency determination is 1 cm unless otherwise specified. RSA Laboratories certifies that the above instrument has been calibrated with standards traceable to the National Institute of Standards and Technology, or have been derived from accepted values of natural physical constants, or have been derived by the ratio-type of calibration techniques.

RSA Laboratories ID#

# 24456

Calibrated by:

Kurt D. Newton

Date: 17 August 2023

?

## **CERTIFICATE OF CALIBRATION** (EXPOSURE RATE INSTRUMENT)



**RSA Laboratories, Inc.** 

19 Pendleton Drive, P.O. Box 61 Hebron, Connecticut 06248 (860) 228-0721 Fax (860) 228-4402

|                            | RSI EnTech, Attn: Anthony 2<br>2597 Legacy Way, Grand Jun |                   |                             |                |               |
|----------------------------|-----------------------------------------------------------|-------------------|-----------------------------|----------------|---------------|
| Inst. Mfr. & Model         | Thermo Scientific Micro Ren                               | n Inst. Type      | Survey Meter                | Inst. s/n      | 19288         |
| Det. Mfr. & Model          | not indicated                                             | Det. Type         | <b>Organic Scintillator</b> | Det. s/n       | not indicated |
| Calibration Date           | 17 August 2023                                            | Due Date          | 17 August 2024              | Cal Interval   | 1 year        |
| Environmental conditions:  | Temperature 72°F                                          | Relative Humidity | 57% Atmospheric             | Pressure 29.75 | inches Hg     |
| Pre-calibration Checks:    |                                                           |                   |                             |                |               |
| X Contamination survey     | X Battery check                                           | X                 | Slow response check         |                |               |
| X Mechanical check         | X Audio check                                             |                   | Window Operation            | Det. Vol       | lts Vdc       |
| X Meter zero               | X Reset check                                             |                   | Plateau check               |                |               |
| X Geotropism check         | X Fast response check                                     |                   | Alarm set                   | Input set      | ns. mV        |
| X Pulse generator s/n 9492 | 6 Oscilloscope s                                          | s/n 171-04928     | □ Voltmeter s/r             | n 574100002    |               |

Comments:

| recision check source s/n5leading #1 $1,400 \mu \text{rem/h}$ Readrecision: $X \pm < 10\%$ | Isotope Cs-137<br>ing #2 1,400 μrem/h Reading #3<br>□ ±10-20% □ Out of | Dedicated Source?<br>1,400 µrem/h Mean<br>tolerance<br>Yes<br>1,400 µrem/h | X No                               |
|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------|
| Range Multiplier                                                                           | Reference Calibration Point                                            | Instrument Indication<br>"As Found"                                        | Instrument Indication<br>"As Left" |
| x 1000                                                                                     | 154,402 μR/h                                                           | 155,000 μrem/h                                                             | 155,000 μrem/h                     |
| x 1000                                                                                     | 48,811 μR/h                                                            | 50,000 μrem/h                                                              | 50,000 μrem/h                      |
| x 100                                                                                      | 14,444 μR/h                                                            | 14,500 μrem/h                                                              | 14,500 μrem/h                      |
| x 100                                                                                      | 4,981 μR/h                                                             | 5,000 µrem/h                                                               | 5,000 µrem/h                       |
| x 10                                                                                       | 1,544 μR/h                                                             | 1,550 µrem/h                                                               | 1,550 µrem/h                       |
| x 10                                                                                       | 498 µR/h                                                               | 500 μrem/h                                                                 | 500 μrem/h                         |
| x 1                                                                                        | 149 µR/h                                                               | 150 μrem/h                                                                 | 150 μrem/h                         |
| x 1                                                                                        | 50 μR/h                                                                | 50 μrem/h                                                                  | 50 µrem/h                          |
| x 1                                                                                        | 4,200 cpm @ 800 mV                                                     | 150 μrem/h                                                                 | 150 μrem/h                         |
| x 1                                                                                        | 2,700 cpm @ 800 mV                                                     | 50 μrem/h                                                                  | 50 μrem/h                          |
| x 0.1                                                                                      | 420 cpm @ 800 mV                                                       | 15.0 µrem/h                                                                | 15.0 μrem/h                        |
| x 0.1                                                                                      | x 0.1 270 cpm @ 800 mV                                                 |                                                                            | 5.0 µrem/h                         |

**x 0.1** range calibrated electronically.

Sources used:  $^{137}Cesium$  750 mCi s/n KR-6244 and KR-6250, and  $^{137}Cesium$  750  $\mu Ci$  s/n 163.

Calibration points calculated to center of detector volume unless otherwise specified. Instrument indicates within  $\pm 10\%$  of calibration points unless otherwise indicated. RSA Laboratories certifies that the above instrument has been calibrated with standards traceable to the National Institute of Standards and Technology, or have been derived from accepted values of natural physical constants, or have been derived by the ratio-type of calibration techniques.

| RSA Laboratories | ID# <b>24454</b> |   |   |  |                |
|------------------|------------------|---|---|--|----------------|
| Calibrated by:   | Kurt D. Newton   | 5 |   |  | 17 August 2023 |
|                  |                  |   | ~ |  |                |