

Rocky Flats Site, Colorado, Quarterly Report of Site Surveillance and Maintenance Activities, First Quarter, Calendar Year 2025

July 2025

Contents

Execu	itive Si	ummary	<i>/</i>		iv
1.0	Introd	luction.			1
2.0	Site C	1		ntenance	
	2.1	Annua	1 CERCLA	Site Inspection	2
	2.2	Landfi	11s		2
		2.2.1	Present La	ndfill	2
		2.2.2	Original L	andfill	3
			2.2.2.1	Inspection Results	3
			2.2.2.2	Settlement Monuments	
	2.3	COU I	nspections.		3
	2.4			ek Slump	
	2.5			enance	
	2.6	Ground	dwater Trea	atment Systems	4
		2.6.1		e Plume Collection System	
		2.6.2		ches Plume Treatment System	
		2.6.3		ds Plume Treatment System	
		2.6.4		ndfill Treatment System	
	2.7	Sign Ir		······································	
	2.8	Erosio	n Control a	nd Revegetation	7
3.0	Envir			ng	
	3.1				
		3.1.1	_	nitoring Highlights	
		3.1.2		itoring	
			3.1.2.1	Monitoring Location WALPOC	
			3.1.2.2	Monitoring Location WOMPOC	
		3.1.3	POE Moni	itoring	
			3.1.3.1	Monitoring Location GS10	
			3.1.3.2	Monitoring Location SW027	
			3.1.3.3	Monitoring Location SW093	
		3.1.4	AOC Well	ls and Surface Water Support Location SW018	
		3.1.5		/ells	
		3.1.6		ı Wells	
		3.1.7		toring	
		3.1.8		itoring	
		3.1.9		ter Treatment System Monitoring	
			3.1.9.1	Mound Site Plume Collection System	
			3.1.9.2	East Trenches Plume Treatment System	
			3.1.9.3	Solar Ponds Plume Treatment System	
			3.1.9.4	Present Landfill Treatment System	
		3.1.10	Predischar	ge Monitoring	
4.0	Adve			ditions	
5.0			-		
6.0		_	_		

Figures

Figure 1. Rocky Flats Site Water Monitoring Locations and Precipitation Gages	9
Year Ending First Quarter 2025	10
Figure 3. Volume-Weighted 12-Month Rolling Average Pu and Am Activities at	
WALPOC: Year Ending First Quarter 2025	11
Figure 4. Volume-Weighted 30-Day Average Uranium Concentrations at WALPOC: Year	
Ending First Quarter 2025	11
Figure 5. Volume-Weighted 12-Month Rolling Average Uranium Concentrations at	
WALPOC: Year Ending First Quarter 2025	12
Figure 6. Volume-Weighted 30-Day Average Nitrate + Nitrite as Nitrogen Concentrations	
at WALPOC: Year Ending First Quarter 2025	12
Figure 7. Volume-Weighted 12-Month Rolling Average Nitrate + Nitrite as Nitrogen	
Concentrations at WALPOC: Year Ending First Quarter 2025	13
Figure 8. Volume-Weighted 30-Day Average Pu and Am Activities at WOMPOC:	
Year Ending First Quarter 2025	14
Figure 9. Volume-Weighted 12-Month Rolling Average Pu and Am Activities at	
WOMPOC: Year Ending First Quarter 2025	14
Figure 10. Volume-Weighted 30-Day Average Uranium Concentrations at WOMPOC:	
Year Ending First Quarter 2025	15
Figure 11. Volume-Weighted 12-Month Rolling Average Uranium Concentrations at	
WOMPOC: Year Ending First Quarter 2025	15
Figure 12. Volume-Weighted 12-Month Rolling Average Pu and Am Activities at GS10:	
Year Ending First Quarter 2025	16
Figure 13. Volume-Weighted 12-Month Rolling Average Uranium Concentrations at	
GS10: Year Ending First Quarter 2025	17
Figure 14. Volume-Weighted 12-Month Rolling Average Pu and Am Activities at SW027:	
Year Ending First Quarter 2025	18
Figure 15. Volume-Weighted 12-Month Rolling Average Uranium Concentrations at	
SW027: Year Ending First Quarter 2025	18
Figure 16. Volume-Weighted 12-Month Rolling Average Pu and Am Activities at SW093:	10
Year Ending First Quarter 2025.	19
Figure 17. Volume-Weighted 12-Month Rolling Average Uranium Concentrations at	20
SW093: Year Ending First Quarter 2025	∠0

Appendixes

- Appendix A Landfill Inspection Forms and Survey Data, First Quarter 2025
- Appendix B Analytical Results for Water Samples, First Quarter 2025

Abbreviations

Am americium

AOC Area of Concern

BMP best management practice

CAD/ROD Corrective Action Decision/Record of Decision

CERCLA Comprehensive Environmental Response, Compensation, and Liability Act

COU Central Operable Unit

CR Contact Record
CY calendar year

DOE U.S. Department of Energy

ETPTS East Trenches Plume Treatment System

IC institutional control

ITSS Interceptor Trench System Sump

LM Office of Legacy Management

M&M Plan Monitoring and Maintenance Plan

MSPCS Mound Site Plume Collection System

NWCS North Walnut Creek Slump

OLF Original Landfill

PLF Present Landfill

PLFTS Present Landfill Treatment System

POC Point of Compliance

POE Point of Evaluation

Pu plutonium

RCRA Resource Conservation and Recovery Act

RFLMA Rocky Flats Legacy Management Agreement

RFSOG Rocky Flats Site Operations Guide

SPPTS Solar Ponds Plume Treatment System

UTC uranium treatment component

Executive Summary

This report for the first quarter (January 1–March 31) of calendar year (CY) 2025 includes information about the remedy-related surveillance, monitoring, and maintenance activities conducted at the Rocky Flats Site, Colorado (Site), managed by the U.S. Department of Energy Office of Legacy Management. This report summarizes the maintenance and inspection of the two closed landfills, the Central Operable Unit (COU) and former building areas, perimeter signs, and four groundwater collection or treatment systems; water and ecological monitoring activities; and erosion control and revegetation activities.

The 2025 annual Comprehensive Environmental Response, Compensation, and Liability Act Site inspection was conducted on March 27, 2025. No evidence of violations of institutional or physical controls was observed, and no adverse biological conditions were noted during the inspection. A few shallow depressions up to 4 inches deep were noted across the inspection area but were not close to any subsurface features. Site subject matter experts concluded that the depressions were not new nor were they significant enough to warrant a response. The depressions and the lack of a response are not a sign of problems; the Site is being maintained as required. Most inspection observations were related to debris or trash on the surface.

Verification that the Notice of Environmental Use Restriction remains in the Administrative Record and on file in Jefferson County records is required annually. This verification was conducted on April 15, 2025.

The quarterly Present Landfill inspection for the first quarter of CY 2025 was conducted on February 19, 2025. Two barometric gas vent caps were found on the ground next to the vents and were immediately reattached. These vent caps are often removed by elk and would be damaged if affixed to the vents. No other issues were identified during this inspection. A weather-related inspection was conducted on March 31, 2025, after the Site received approximately 1.62 inches of rain. No issues were identified during this inspection. Routine maintenance was performed at the Present Landfill Treatment System (PLFTS) throughout the quarter.

The Original Landfill monthly inspections for the first quarter of CY 2025 were conducted on January 23, February 24, and March 20, 2025. A weather-related inspection was conducted on March 31, 2025, after the Site received approximately 1.62 inches of rain. No issues were identified during these inspections. Minor repairs were made to erosion controls in the West Perimeter Channel throughout the quarter. An erosion control wattle was placed on top of Berm 5 after a 2024 berm survey identified a few locations that are lower than required. The wattle remained in good condition during the first quarter of CY 2025. The amount of fill needed to reestablish the required berm height does not currently warrant operating large equipment through newly established vegetation. The berms will be resurveyed in summer 2026.

The quarterly COU inspection for the first quarter of CY 2025 was conducted on March 13, 2025. A weather-related inspection was conducted on March 31, 2025, after the Site received approximately 1.62 inches of rain. No new depressions or areas of slumping were identified in former building areas, and all roads and grounds were in good condition.

The quarterly COU sign inspection for the first quarter of CY 2025 was conducted on February 25 and 27, 2025. A few signs were reattached, and one sign was replaced. A section of downed fence near the northeast corner of the Site was also repaired during the first quarter.

The North Walnut Creek Slump on the hillside east of the Solar Ponds Plume Treatment System (SPPTS) is monitored as a best management practice. The slump block moved 0.06 foot during the first quarter of CY 2025, as indicated by the results of monthly monitoring of 22 survey points in total on both sides of the current scarp face.

Routine maintenance was performed at the Mound Site Plume Collection System, the East Trenches Plume Treatment System, the SPPTS, and the PLFTS during the first quarter of CY 2025. In addition, projects continued at the SPPTS to prepare for the upcoming installation of a new uranium treatment component. These projects included upgrades to the utilities, selected components (e.g., plumbing, data and power lines, pumps), and the groundwater collection infrastructure. Installation of a new uranium treatment component is planned for summer 2025.

Water monitoring met the targeted monitoring objectives required by the *Rocky Flats Legacy Management Agreement* (RFLMA). During the quarter, 12 flow-paced, composite surface water samples; 9 surface water grab samples; 13 treatment system grab samples; and 10 groundwater samples were collected, in accordance with RFLMA-required protocols, and were submitted for laboratory analysis.

All RFLMA analyte concentrations at Points of Evaluation GS10, SW027, and SW093 remained below reportable condition levels during the first quarter of CY 2025.

All RFLMA analyte concentrations at Points of Compliance WALPOC and WOMPOC also remained below reportable condition levels during the first quarter of CY 2025.

RFLMA-required groundwater monitoring during the first quarter of CY 2025 was conducted at the Resource Conservation and Recovery Act monitoring wells. One location was dry. Results were generally consistent with previous data. Groundwater monitoring data presented in this quarterly report will be evaluated as part of the CY 2025 annual report.

Ecological activities conducted during the first quarter of CY 2025 included vegetation enhancement activities (interseeding with native species) and prairie dog surveys.

1.0 Introduction

The U.S. Department of Energy (DOE) Office of Legacy Management (LM) is responsible for implementing the final response action at the Rocky Flats Site, Colorado (Site). The final response action was selected in the *Corrective Action Decision/Record of Decision for Rocky Flats Plant (USDOE) Peripheral Operable Unit and Central Operable Unit* (DOE et al. 2006), hereafter referred to as the Corrective Action Decision/Record of Decision (CAD/ROD), issued September 29, 2006, and amended September 21, 2011 (DOE et al. 2011). The Peripheral Operable Unit was transferred from DOE to the U.S. Department of the Interior in July 2007 to establish the Rocky Flats National Wildlife Refuge. DOE implements the monitoring and maintenance requirements of the CAD/ROD for the Central Operable Unit (COU) as described in the *Rocky Flats Legacy Management Agreement* (CDPHE et al. 2007) (RFLMA). The RFLMA was executed on March 14, 2007. Attachment 2 to the RFLMA has been revised since, most recently in 2018. Results of that 2018 revision were implemented beginning January 1, 2019.

RFLMA Attachment 2 specifies remedy performance standards; monitoring, inspection, and maintenance requirements; evaluation criteria for the results of monitoring and inspection; and COU remedy reporting. These requirements include environmental monitoring; maintenance of required erosion controls, access controls (signs), landfill covers, and groundwater collection and treatment systems; and operation of the groundwater collection and treatment systems. The RFLMA also requires that the institutional controls (ICs), in the form of use restrictions as established in the CAD/ROD, be maintained.

This report is required in accordance with Section 7.0, "Periodic Reporting Requirements," of RFLMA Attachment 2. The purpose of this report is to inform the regulatory agencies and stakeholders of the remedy-related surveillance, monitoring, and maintenance activities conducted at the Site during the first quarter (January 1–March 31) of calendar year (CY) 2025. LM provides periodic communications through several means, including this report, web-based tools, and public meetings.

LM maintains the *Rocky Flats Site*, *Colorado*, *Site Operations Guide* (DOE 2021), also called the Rocky Flats Site Operations Guide (RFSOG), as the primary document to guide the work performed to satisfy the requirements of the RFLMA and to implement best management practices (BMPs) at the Site. Several other Site-specific documents provide additional details regarding the requirements described in RFLMA Attachment 2, including data evaluation protocols and all aspects of surveillance, monitoring, and maintenance activities.

Monitoring data and summaries of the monitoring and maintenance activities for past quarters are available in the quarterly reports. Extensive discussion and evaluation of the surveillance, monitoring, and maintenance activities are presented each calendar year in the annual reports of Site surveillance and maintenance activities. This report summarizes the following activities:

- Annual Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Site inspection
- Maintenance and inspection of the Present Landfill (PLF) and the Original Landfill (OLF)
- Maintenance and inspection of the COU and associated infrastructure, such as signage and roads

- Maintenance and inspection of the groundwater collection and treatment systems
- Routine water monitoring (in accordance with the RFLMA)
- Erosion control and revegetation activities
- Ecological monitoring

2.0 Site Operations and Maintenance

2.1 Annual CERCLA Site Inspection

The Site is inspected annually for evidence of significant erosion and IC violations, in accordance with Sections 5.3.4 and 5.3.6 of RFLMA Attachment 2 (CDPHE et al. 2007).

The 2025 annual CERCLA Site inspection was conducted on March 27, 2025. No evidence of violations of institutional or physical controls was observed, and no adverse biological conditions were noted during the inspection. A few shallow depressions up to 4 inches deep were noted across the inspection area but were not close to any subsurface features. Site subject matter experts concluded that the depressions were not new nor were they significant enough to warrant a response, which would disturb well-established vegetation in and around the depressions. The depressions and the lack of a response are not a sign of problems; the Site is being maintained as required. Most inspection observations were related to debris or trash on the surface.

Verification that the Notice of Environmental Use Restriction remains in the Administrative Record and on file in Jefferson County records is required annually. This verification was conducted on April 15, 2025.

2.2 Landfills

2.2.1 Present Landfill

The PLF is inspected quarterly and after major precipitation events in accordance with the requirements of the *Present Landfill Monitoring and Maintenance Plan and Post-Closure Plan, U.S. Department of Energy Rocky Flats, Colorado, Site* (DOE 2014) and Attachment 2 of the RFLMA (CDPHE et al. 2007).

The quarterly PLF inspection for the first quarter of CY 2025 was conducted on February 19, 2025. Two barometric gas vent caps were found on the ground next to the vents and were immediately reattached. These vent caps are often removed by elk and would be damaged if affixed to the vents. No other issues were identified during this inspection. A weather-related inspection was conducted on March 31, 2025, after the Site received approximately 1.62 inches of rain. No issues were identified during this inspection. Routine maintenance was performed at the Present Landfill Treatment System (PLFTS) throughout the quarter (e.g., mechanical pipe cleaning). Copies of the landfill inspection forms and reports are presented in Appendix A.

2.2.2 Original Landfill

The OLF is inspected monthly and following major precipitation events in accordance with requirements in the *Rocky Flats Site Original Landfill Monitoring and Maintenance Plan* (DOE 2009), also called the OLF Monitoring and Maintenance Plan (M&M Plan), and Attachment 2 of the RFLMA (CDPHE et al. 2007). The design features installed as part of the OLF Slope Stabilization Project in 2019 and 2020 are expected to provide long-term stability to areas of the landfill that were prone to movement in the past; the OLF M&M Plan is in the process of being updated to include the stabilization features. At a minimum, monthly inspections of the OLF will continue until a reduction in inspection frequency is established through the RFLMA consultative process. In addition to the RFLMA-required inspections, the OLF is walked down weekly as a BMP.

2.2.2.1 Inspection Results

The OLF monthly inspections for the first quarter of CY 2025 were conducted on January 23, February 24, and March 20, 2025. A weather-related inspection was conducted on March 31, 2025, after the Site received approximately 1.62 inches of rain. No issues were identified during these inspections. Minor repairs were made to erosion controls in the West Perimeter Channel throughout the quarter. Copies of the landfill inspection forms and reports are presented in Appendix A.

An erosion control wattle was placed on top of Berm 5 after a 2024 berm survey identified locations that are lower than required. The wattle remained in good condition during the first quarter of CY 2025. Adding a relatively small amount of fill at this time would disturb newly established vegetation for a relatively large distance. The berms will be resurveyed in summer 2026. Tracking over established vegetation to add a small amount of fill is a significantly smaller disturbance and generally leaves roots intact.

Seeps at the OLF are observed during monthly and weather-related inspections. Historical seep locations 2/3, 5, 6, 8A, 8C, 9, and 10 have been dry since the stabilization effort was completed in 2020. Seep locations 1, 4, 7, 8, and 8B had flows or moisture generally consistent with that observed during previous first quarter inspections. Estimates for individual seep flow rates are included in the monthly OLF inspection reports (Appendix A).

2.2.2.2 Settlement Monuments

The settlement monuments at the OLF are surveyed quarterly in accordance with the OLF M&M Plan. The CY 2025 first quarter survey was performed on March 3, 2025. Survey data indicate that vertical settling at each monument is within the calculated settlements specified in Figure 3-1 of the OLF M&M Plan. The survey results are presented in Appendix A.

2.3 COU Inspections

In accordance with the RFLMA, the COU is inspected for significant erosion annually and following major precipitation events. Particular attention is paid to areas near remaining subsurface features (e.g., former buildings, ash pits, and trenches). Additional inspections are conducted quarterly as a BMP, focusing on the areas of former Buildings 371, 771, 881, and 991, as well as the Ash Pits and East Trenches.

The quarterly COU inspection for the first quarter of CY 2025 was conducted on March 13, 2025. A weather-related inspection was conducted on March 31, 2025, after the Site received approximately 1.62 inches of rain. There were no new depressions or areas of slumping identified in former building areas, and the roads and grounds were observed to be in good condition.

2.4 North Walnut Creek Slump

The hillside east of the Solar Ponds Plume Treatment System (SPPTS) is the site of a slump that is monitored as a BMP. This feature is referred to as the North Walnut Creek Slump (NWCS). The slump block moved approximately 0.06 foot during the first quarter of CY 2025, as indicated by the results of monthly monitoring of 22 total survey points on both sides of the current scarp face. Observations of the North Walnut Creek hillside show that movement of approximately 4 to 6.6 feet along the scarp has occurred since the hillside was regraded in 2017. Soils are also heaving along the toe of the slope because of the continued movement.

In fall 2020, three inclinometers (location codes 74520, 74620, and 74720) were installed in the hillside. Since installation, inclinometer 74520, which is immediately adjacent to the eastern portion of the SPPTS groundwater collection trench, has shown movement of up to 0.5 inch down to 10 feet below grade and movement of up to 0.3 inch down to 16 feet below grade. The inclinometer upgradient of the Interceptor Trench System Sump (ITSS), 74720, has shown movement up to 1.1 inch 10 feet below grade and movement of up to 0.3 inch down to 32 feet below grade. The third inclinometer, 74620, nearest the ITSS, has shown movement up to 0.8 inch 10 feet below grade and movement up to 0.5 inch down to 35 feet below grade. Inclinometer 74620 also shows variations of up to 0.3 inch in the upper 6 feet, likely caused by cycles of drying and wetting in the soils. These inclinometers continue to be monitored.

2.5 Site Roads Maintenance

No road maintenance was performed in the first quarter of CY 2025. Roads remained in good condition.

2.6 Groundwater Treatment Systems

Four groundwater collection systems and three associated treatment facilities are monitored, operated, and maintained in accordance with requirements defined in the RFLMA and the additional implementation detail in the RFSOG. Three of these systems (Mound Site Plume Collection System [MSPCS], ¹ East Trenches Plume Treatment System [ETPTS], and SPPTS) include a groundwater collection trench, which is similar to a French drain but with an impermeable membrane on the downgradient side. The fourth system, the PLFTS, passively treats water collected from the northern and southern components of the PLF Groundwater Intercept System and the PLF seep.

U.S. Department of Energy

¹ The MSPCS, formerly the Mound Site Plume Treatment System, no longer treats groundwater; it was reconfigured in 2016 to collect groundwater and route it to the ETPTS for treatment.

2.6.1 Mound Site Plume Collection System

Routine maintenance performed at the MSPCS during the first quarter of CY 2025 included the following activities:

- Inspecting the wiring, batteries, and other power components
- Adjusting the heating and cooling components for the batteries based on seasonal conditions
- Clearing debris from the solar panels as necessary
- Checking flow rates and water levels at the collection trench and lift station
- Cleaning and calibrating water-level transducers and flow meters
- Exercising valves and cleaning piping
- Checking the operation of the lift station transfer pump
- Periodically transferring excess sample and purge water from the backup storage tanks to the lift station

Refer to Section 3.1.9.1 for information on water quality monitoring.

2.6.2 East Trenches Plume Treatment System

Routine maintenance at the ETPTS in the first quarter of CY 2025 included the following activities:

- Inspecting the wiring, batteries, and other power components
- Adjusting the heating and cooling components for the batteries and plumbing based on seasonal conditions
- Clearing debris from the solar panels as necessary
- Exercising valves
- Adjusting valves and controller settings to modify water-flow and airflow rates and maintaining air stripper operation
- Replacing the air stripper door and trays with clean units when appropriate due to accumulation of hard-water scale
- Cleaning or replacing the demister pad as necessary
- Cleaning the influent and effluent pumps
- Inspecting and greasing the blower motor as necessary
- Recording water levels in the collection trench and influent and effluent tanks
- Cleaning and calibrating the water-level transducers and flow meters
- Cleaning the airflow sensor and diffuser
- Inspecting and cleaning piping as needed
- Adjusting the air stripper timer control to accommodate solar charging availability

Refer to Section 3.1.9.2 for information on water quality monitoring.

2.6.3 Solar Ponds Plume Treatment System

Routine maintenance during the first quarter of CY 2025 at the SPPTS included the following activities:

- Inspecting the wiring, batteries, and other power components
- Adjusting the heating and cooling components for the batteries based on seasonal conditions
- Clearing debris from the solar panels as necessary
- Cleaning flow meters, air release valves, pumps, pipes, and other plumbing components
- Cleaning and adjusting or replacing water-level transducers
- Exercising valves
- Flushing piping to clear clogs and maintain flows
- Periodically transferring water from the storage tank used for excess sample and purge water to the nitrate treatment component
- Adjusting the water depth in the nitrate treatment component to maintain a suitable residence time
- Adjusting the nutrient dose rate as appropriate to accommodate seasonal temperature changes
- Ensuring an adequate supply of the nutrient solution is on hand
- Pumping water out of the vaults as necessary

A larger-scale effort continued through the first quarter to install and upgrade utilities (primarily power and data lines and plumbing, but also pumps and controls), enhance the groundwater collection infrastructure, and prepare the SPPTS area to support the uranium treatment component (UTC) that is planned to be installed in summer 2025. These and other UTC-associated activities will continue until the UTC is installed and online. The UTC project will be discussed further in the annual report for CY 2025.

Refer to Section 3.1.9.3 for information on water quality monitoring.

2.6.4 Present Landfill Treatment System

Routine maintenance during the first quarter of CY 2025 at the PLFTS included inspecting the system for potential problems, primarily by checking flow conditions. Influent piping was cleaned using a mechanical pipe cleaner. No issues were identified.

Refer to Section 3.1.9.4 for information on water quality monitoring.

2.7 Sign Inspection

The RFLMA requires that signs ("U.S. Department of Energy – No Trespassing") be posted at intervals around the perimeter of the COU sufficient to notify people that they are at the COU boundary. In addition, signs listing the ICs and providing contact information must be posted at COU access points. The signs are required by the remedy as physical controls, are

inspected quarterly, and are maintained through repair or replacement as needed. Physical controls protect the engineered components of the remedy, including landfill covers, groundwater collection and treatment systems, and water monitoring equipment, which are also inspected routinely during monitoring and maintenance activities.

The quarterly COU sign inspection for the first quarter of CY 2025 was conducted on February 25 and 27, 2025. A few signs were reattached, and one sign was replaced. A section of downed fence near the northeast corner of the Site was also repaired during the first quarter.

2.8 Erosion Control and Revegetation

Monitoring and maintenance of the Site erosion control features were performed throughout the first quarter of CY 2025, including extra inspections following high-wind or precipitation events. Stakes securing the erosion wattles, matting, and GeoRidge erosion controls that were loosened or displaced by high winds, precipitation, or wildlife were routinely resecured. Sediment was removed from behind wattles and GeoRidges as needed and spread in vegetated areas upgradient of the erosion controls. As required by the RFLMA ICs, erosion controls were installed and maintained, according to the *Erosion Control Plan for Rocky Flats Property Central Operable Unit* (DOE 2007), for projects that disturbed soil during the first quarter of CY 2025. Details of projects that disturbed soil will be included in the annual report for CY 2025.

3.0 Environmental Monitoring

This section summarizes the environmental monitoring conducted in accordance with RFLMA Attachment 2 (CDPHE et al. 2007). RFLMA Attachment 2, Table 1, "Surface Water Standards," is used in conjunction with the evaluation flowcharts also found in the attachment to evaluate analytical data and determine reportable conditions. Reportable conditions, as defined in RFLMA Attachment 2, Section 6.0, "Action Determinations," require consultation between the RFLMA Parties (DOE, the Colorado Department of Public Health and Environment, and the U.S. Environmental Protection Agency) to determine appropriate actions.

In this report, a condition described as "reportable" means that an analyte concentration at a surface water Point of Compliance (POC) or Point of Evaluation (POE) monitoring location has exceeded a RFLMA Table 1 water quality standard consistent with the evaluation flowcharts in Attachment 2 of the RFLMA. This term can also be applied to groundwater monitoring wells classified as Area of Concern (AOC) wells, also described in the flowcharts in Attachment 2 of the RFLMA. DOE is required to inform the RFLMA Parties and the public of a reportable condition within 15 days of receiving validated data. Within 30 days of receiving validated data, DOE is required to submit a plan and schedule to the regulatory agencies for an evaluation to address the occurrence.

In this report, plutonium (Pu) refers to plutonium-239, 240 or ²³⁹Pu + ²⁴⁰Pu; americium (Am) refers to americium-241 or ²⁴¹Am; and nitrate refers to nitrate + nitrite as nitrogen. In addition, the terms "activity" and "concentration" are used interchangeably for both Pu and Am to represent the amount of radioactivity or radioactive material per unit of water (e.g., picocuries per liter).

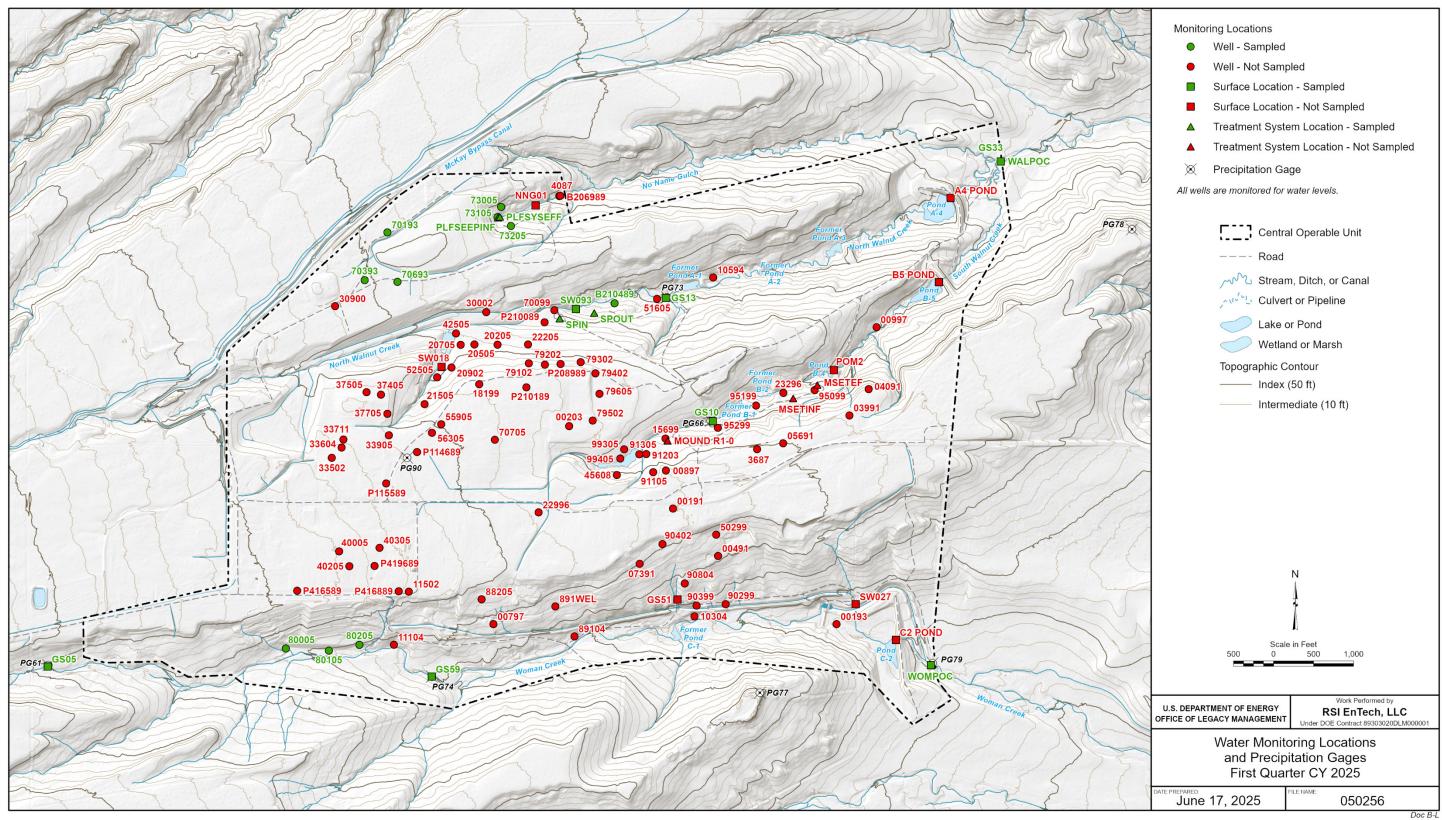
3.1 Water Monitoring

This section includes:

- A discussion of the routine analytical results for the POC, POE, PLF, and OLF surface water monitoring objectives and identification of any reportable conditions.
- Summaries of the routine groundwater monitoring at AOC wells, Sentinel wells, Evaluation wells, and Resource Conservation and Recovery Act (RCRA) wells; treatment system and associated performance monitoring; and Surface Water Support monitoring at the Site.

RFLMA Attachment 2 and the RFSOG offer details about the monitoring locations, sampling criteria, and evaluation protocols for the water monitoring objectives mentioned in the following sections. Appendix B of this report provides analytical water quality data for the first quarter of CY 2025. The annual report for CY 2025 will provide a more detailed interpretation and discussion of the water quality data.

3.1.1 Water Monitoring Highlights


During the first quarter of CY 2025, water monitoring met the targeted monitoring objectives required by the RFLMA. The routine RFLMA network consists of 8 automated gaging stations, 11 surface water grab sampling locations, 7 groundwater treatment system locations, and 88 groundwater monitoring locations. Additional locations are occasionally sampled in support of investigations in response to reportable conditions. During the first quarter, 12 flow-paced, composite surface water samples; 9 surface water grab samples; 13 treatment system grab samples; and 10 groundwater samples were collected (in accordance with RFLMA protocols) and submitted for analysis. Figure 1 shows the monitoring locations sampled during the first quarter of CY 2025.

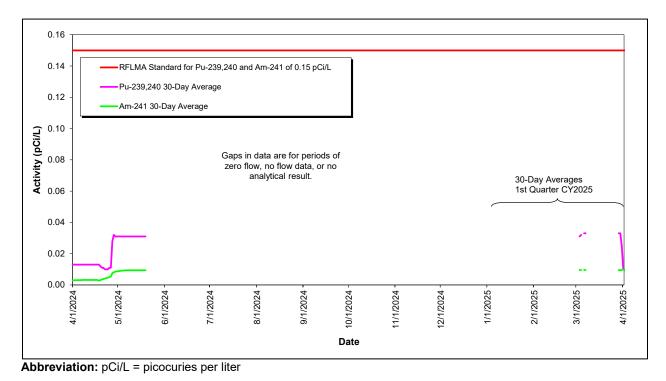
All RFLMA analyte concentrations at POE locations GS10, SW027, and SW093 remained below reportable condition levels during the first quarter of CY 2025.

All RFLMA analyte concentrations at POC locations WALPOC and WOMPOC also remained below reportable condition levels during the first quarter of CY 2025.

٠

² Composite samples consist of multiple aliquots ("grabs") of identical volume. Each grab is delivered by the automatic sampler to the composite container at each predetermined flow volume or time interval. During the first quarter of CY 2025, the 12 flow-paced composites comprised 461 individual grabs.

Note: Locations were not sampled because they were dry or not scheduled for routine RFLMA sampling during the first quarter. **Abbreviations:** ft = feet, OU = Operable Unit

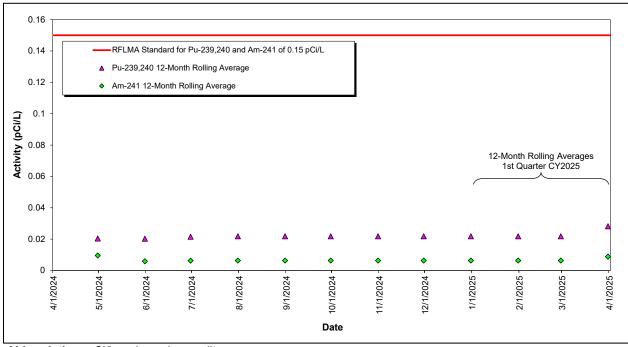

Figure 1. Rocky Flats Site Water Monitoring Locations and Precipitation Gages

3.1.2 POC Monitoring

The following sections include summary tables and plots showing the applicable 30-day and 12-month rolling averages for the POC analytes.^{3,4}

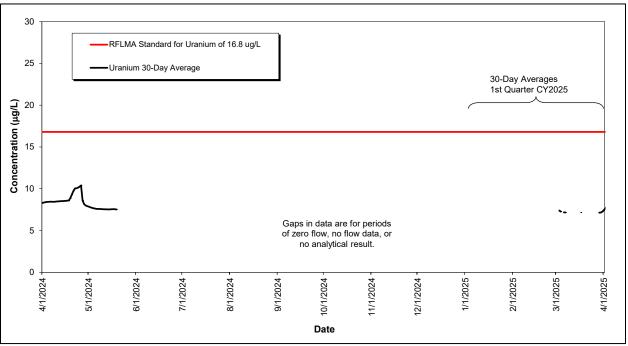
3.1.2.1 Monitoring Location WALPOC

Monitoring location WALPOC is on Walnut Creek at the eastern COU boundary. Figure 2 through Figure 7 show no occurrence of a reportable condition for 30-day or 12-month rolling averages for Am, Pu, uranium, or nitrate during the first quarter of CY 2025. The methods for calculating the 30-day and 12-month rolling averages are detailed in each annual report.



at WALPOC: Year Ending First Quarter 2025

Figure 2. Volume-Weighted 30-Day Average Pu and Am Activities


³ According to RFLMA protocols, 30-day averages are calculated only for days with greater than zero flow and include the previous 30 days of greater-than-zero flow (may be more than 30 calendar days). The 12-month rolling averages are calculated only for the last day of each month when complete flow and analytical data are available up to that day for the previous 12 calendar months.

⁴ Due to hold-time requirements, nitrate samples are collected as grab samples at the start of each composite sample, and the result is considered representative of the entire composite period for calculation purposes.

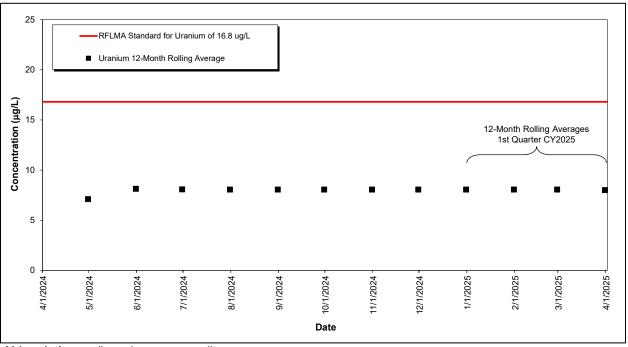

Abbreviation: pCi/L = picocuries per liter

Figure 3. Volume-Weighted 12-Month Rolling Average Pu and Am Activities at WALPOC: Year Ending First Quarter 2025

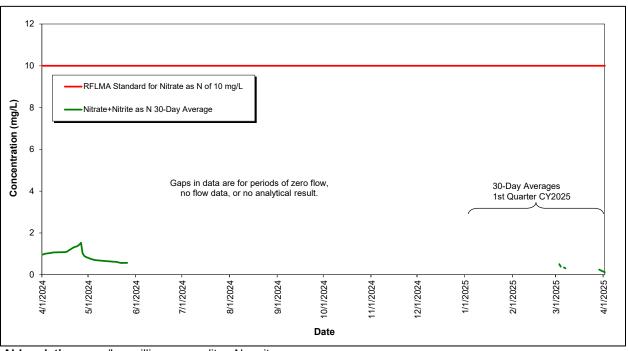

Abbreviation: µg/L = micrograms per liter

Figure 4. Volume-Weighted 30-Day Average Uranium Concentrations at WALPOC: Year Ending First Quarter 2025

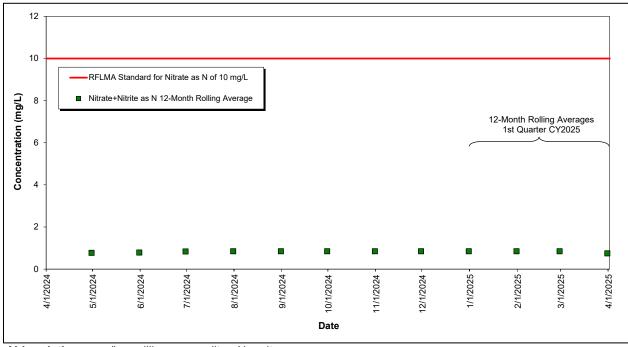
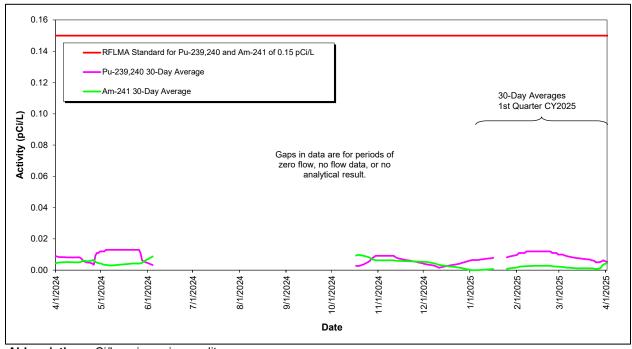

Abbreviation: µg/L = micrograms per liter

Figure 5. Volume-Weighted 12-Month Rolling Average Uranium Concentrations at WALPOC: Year Ending First Quarter 2025

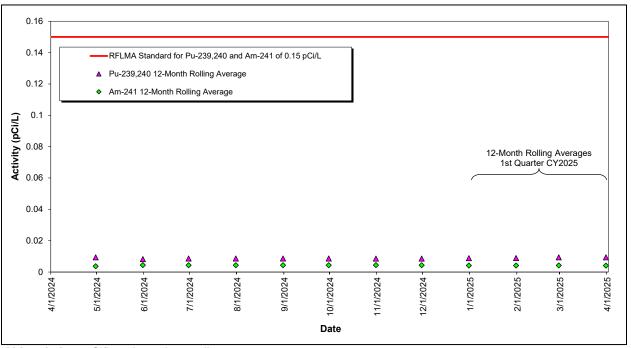
Abbreviations: mg/L = milligrams per liter, N = nitrogen

Figure 6. Volume-Weighted 30-Day Average Nitrate + Nitrite as Nitrogen Concentrations at WALPOC: Year Ending First Quarter 2025



Abbreviations: mg/L = milligrams per liter, N = nitrogen

Figure 7. Volume-Weighted 12-Month Rolling Average Nitrate + Nitrite as Nitrogen Concentrations at WALPOC: Year Ending First Quarter 2025


3.1.2.2 Monitoring Location WOMPOC

Monitoring location WOMPOC is on Woman Creek at the eastern COU boundary. Figure 8 through Figure 11 show no occurrence of a reportable condition for 30-day or 12-month rolling averages for Am, Pu, or uranium during the first quarter of CY 2025. The methods for calculating the 30-day and 12-month rolling averages are detailed in the annual report.

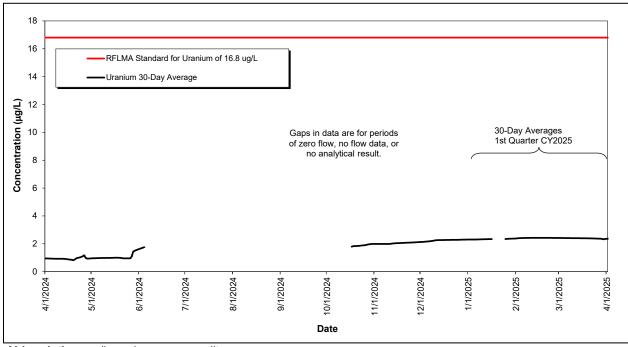

Abbreviation: pCi/L = picocuries per liter

Figure 8. Volume-Weighted 30-Day Average Pu and Am Activities at WOMPOC: Year Ending First Quarter 2025

Abbreviation: pCi/L = picocuries per liter

Figure 9. Volume-Weighted 12-Month Rolling Average Pu and Am Activities at WOMPOC: Year Ending First Quarter 2025

Abbreviation: μg/L = micrograms per liter

Figure 10. Volume-Weighted 30-Day Average Uranium Concentrations at WOMPOC: Year Ending First Quarter 2025

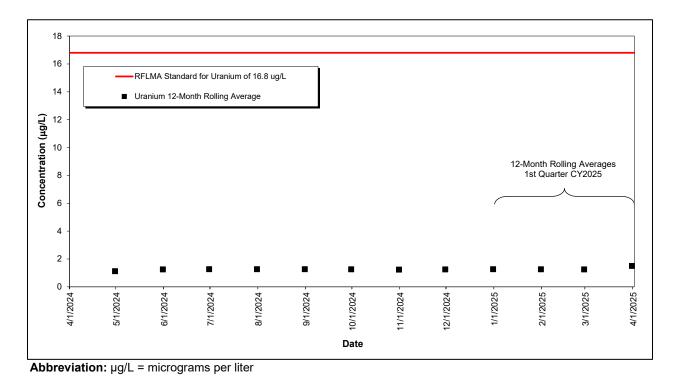


Figure 11. Volume-Weighted 12-Month Rolling Average Uranium Concentrations at WOMPOC: Year Ending First Quarter 2025

3.1.3 POE Monitoring

The following sections include summary plots showing the applicable 12-month rolling averages for the POE analytes.

3.1.3.1 Monitoring Location GS10

Monitoring location GS10 is on South Walnut Creek just upstream of the B-Series ponds. Figure 12 and Figure 13 show no occurrence of a reportable condition for Am, Pu, or uranium during the first quarter of CY 2025. The method for calculating 12-month rolling averages is detailed in each annual report.

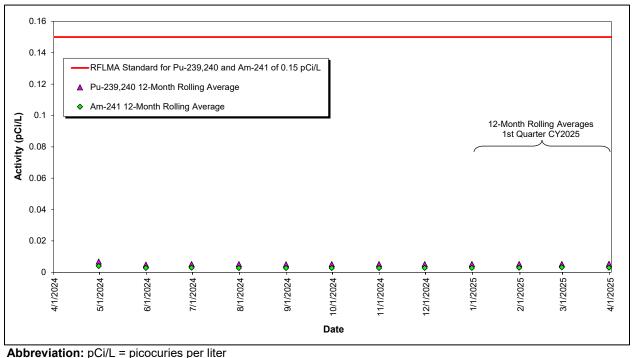
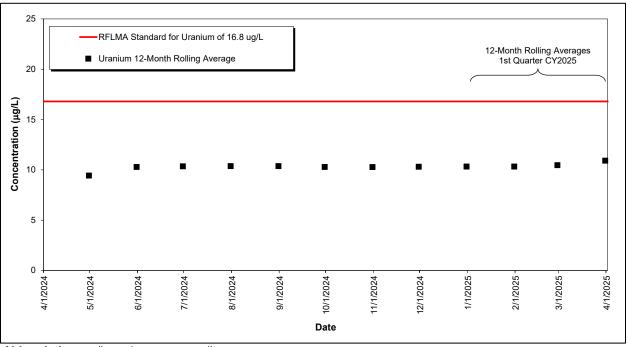
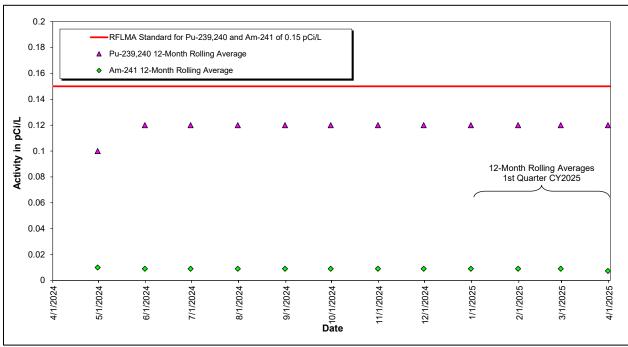
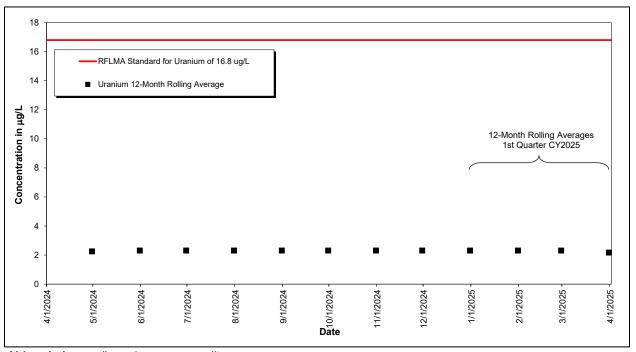



Figure 12. Volume-Weighted 12-Month Rolling Average Pu and Am Activities at GS10: Year Ending First Quarter 2025



Abbreviation: μg/L = micrograms per liter

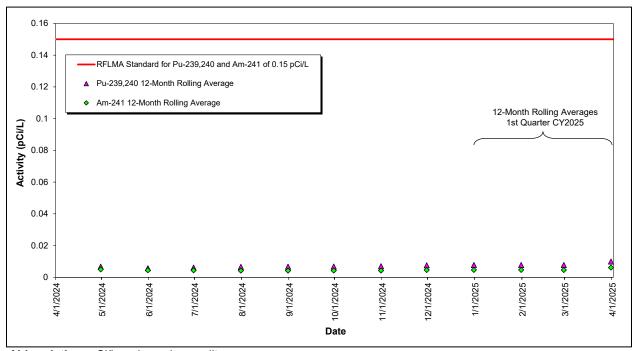
Figure 13. Volume-Weighted 12-Month Rolling Average Uranium Concentrations at GS10: Year Ending First Quarter 2025


3.1.3.2 Monitoring Location SW027

Monitoring location SW027 is at the downstream end of the South Interceptor Ditch at the inlet to Pond C-2. Figure 14 and Figure 15 show no occurrence of a reportable condition for Am, Pu, or uranium during the first quarter of CY 2025. The method for calculating the 12-month rolling averages is detailed in the annual report.

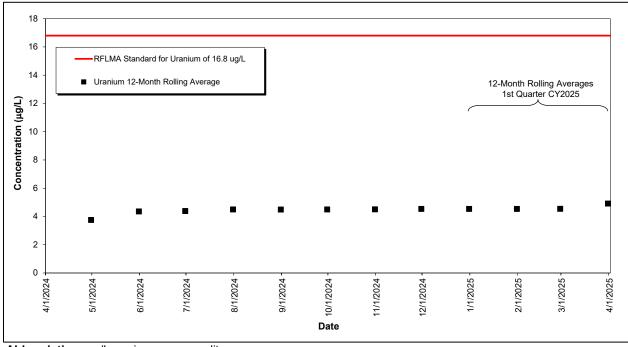
Abbreviation: pCi/L = picocuries per liter

Figure 14. Volume-Weighted 12-Month Rolling Average Pu and Am Activities at SW027: Year Ending First Quarter 2025



Abbreviation: µg/L = micrograms per liter

Figure 15. Volume-Weighted 12-Month Rolling Average Uranium Concentrations at SW027: Year Ending First Quarter 2025


3.1.3.3 Monitoring Location SW093

Monitoring location SW093 is on North Walnut Creek, 1300 feet upstream of former Pond A-1. Figure 16 and Figure 17 show no occurrence of a reportable condition for Am, Pu, or uranium during the first quarter of CY 2025. The method for calculating the 12-month rolling averages is detailed in the annual report.

Abbreviation: pCi/L = picocuries per liter

Figure 16. Volume-Weighted 12-Month Rolling Average Pu and Am Activities at SW093: Year Ending First Quarter 2025

Abbreviation: µg/L = micrograms per liter

Figure 17. Volume-Weighted 12-Month Rolling Average Uranium Concentrations at SW093: Year Ending First Quarter 2025

3.1.4 AOC Wells and Surface Water Support Location SW018

Neither the AOC wells nor the Surface Water Support location SW018 were scheduled for RFLMA monitoring in the first quarter of CY 2025.

3.1.5 Sentinel Wells

None of the Sentinel wells were scheduled for RFLMA monitoring in the first quarter of CY 2025.

3.1.6 Evaluation Wells

None of the Evaluation wells were scheduled for RFLMA monitoring in the first quarter of CY 2025. However, Evaluation well B210489 was sampled to support consideration of its replacement due to encroachment of the NWCS. The annual report for CY 2025 will provide additional discussion of this topic.

3.1.7 PLF Monitoring

The six RCRA wells at the PLF were scheduled for RFLMA monitoring during the first quarter of CY 2025. Analytical results (Appendix B) were generally consistent with previous data. Additional discussion and statistical evaluation will be provided in the annual report for CY 2025. Section 3.1.9.4 discusses monitoring at the PLFTS.

3.1.8 **OLF Monitoring**

The four RCRA wells at the OLF were scheduled for RFLMA monitoring during the first quarter of CY 2025. Upgradient well P416589 was dry. Analytical results (Appendix B) for the downgradient wells were generally consistent with previous data. Additional discussion and statistical evaluation will be provided in the annual report for CY 2025.

During the first quarter of CY 2025, when routine surface water sampling was performed in Woman Creek downstream of the OLF (location GS59), the mean concentrations for all analytes were below the applicable surface water standards.

3.1.9 Groundwater Treatment System Monitoring

As described in Section 2.6, contaminated groundwater is intercepted and treated by the onsite groundwater treatment systems. The MSPCS,⁵ ETPTS, and SPPTS each include a groundwater intercept trench. The PLFTS treats groundwater from the northern and southern components of the Groundwater Intercept System and groundwater that discharges from the PLF seep.

3.1.9.1 Mound Site Plume Collection System

None of the MSPCS monitoring locations were scheduled for RFLMA monitoring in the first quarter of CY 2025.

3.1.9.2 East Trenches Plume Treatment System

None of the ETPTS monitoring locations were scheduled for RFLMA monitoring in the first quarter of CY 2025.

3.1.9.3 Solar Ponds Plume Treatment System

None of the SPPTS monitoring locations were scheduled for RFLMA monitoring in the first quarter of CY 2025. However, nonroutine samples were collected at the SPPTS during the first quarter of CY 2025 to support the *Surface Water Configuration Adaptive Management Plan for the Rocky Flats Site, Colorado* (DOE 2023), also called the Adaptive Management Plan. Further discussion will be provided in the 2025 Adaptive Management Plan annual report, and these data will be included in the annual report for CY 2025.

3.1.9.4 Present Landfill Treatment System

During collection of the first quarter of CY 2025 samples from the PLFTS, the seep influent flow rate was measured at 1.36 gallons per minute. The routine quarterly effluent samples were collected on January 8, 2025. Concentrations for all analytes in the effluent sample, except boron, were below the applicable RFLMA standards.

U.S. Department of Energy

⁵ The MSPCS is discussed in this section for consistency and convenience, even though treatment is no longer performed there.

Although the PLFTS is not intended to treat metals, the boron concentration at the system effluent regularly exceeds the RFLMA Table 1 standard. A year of additional sampling for boron downstream of the PLFTS effluent was completed at the end of the third quarter of CY 2023; the RFLMA Parties are currently evaluating the data and determining a path forward. Details regarding RFLMA consultations related to PLFTS boron concentrations can be found in Contact Record (CR) 2006-02 and CR 2022-02.

3.1.10 Predischarge Monitoring

No predischarge samples were collected from Ponds A-4, B-5, or C-2 during the first quarter of CY 2025. All three ponds were continuously operated in a flow-through configuration.

4.0 Adverse Biological Conditions

No evidence of adverse biological conditions (e.g., unexpected mortality or morbidity) was observed during monitoring and maintenance activities in the first quarter of CY 2025.

5.0 Ecological Monitoring

During the first quarter of CY 2025, few ecological field activities were conducted because it was winter. Vegetation management actives included interseeding native species in areas that had low vegetation growth. Wildlife-related activities consisted of observing elk population and impacts, maintaining bird nest boxes, deploying small mammal camera traps, and checking for the presence of black-tailed prairie dogs.

No active prairie dog towns were observed within the Site boundaries; however, prairie dog activity was noted northeast of the Site boundary. Numerous black-tailed prairie dogs and burrows were noted to the northeast of the COU, south of Highway 128 near the Rocky Flats National Wildlife Refuge parking lot.

More details on ecological monitoring and land management activities will be provided in the annual report for CY 2025.

6.0 References

CDPHE (Colorado Department of Public Health and Environment), DOE (U.S. Department of Energy), and EPA (U.S. Environmental Protection Agency), 2007. *Rocky Flats Legacy Management Agreement*, executed on March 14, Attachment 2 updated December 2018.

DOE (U.S. Department of Energy), 2007. Erosion Control Plan for Rocky Flats Property Central Operable Unit, DOE-LM/1497-2007, Office of Legacy Management, July.

DOE (U.S. Department of Energy), 2009. *Rocky Flats Site Original Landfill Monitoring and Maintenance Plan*, LMS/RFS/S05516-1.0, Office of Legacy Management, September.

- DOE (U.S. Department of Energy), 2014. Present Landfill Monitoring and Maintenance Plan and Post-Closure Plan, U.S. Department of Energy Rocky Flats, Colorado, Site, LMS/RFS/S03965-1.0, Office of Legacy Management, December.
- DOE (U.S. Department of Energy), 2021. *Rocky Flats Site, Colorado, Site Operations Guide*, LMS/RFS/S03037-8.0, Office of Legacy Management, December.
- DOE (U.S. Department of Energy), 2023. *Surface Water Configuration Adaptive Management Plan for the Rocky Flats Site, Colorado*, LMS/RFS/S07698, Rev. 6, Office of Legacy Management, September.
- DOE (U.S. Department of Energy), EPA (U.S. Environmental Protection Agency), and CDPHE (Colorado Department of Public Health and Environment), 2006. *Corrective Action Decision/Record of Decision for Rocky Flats Plant (USDOE) Peripheral Operable Unit and Central Operable Unit*, EPA/541/R-06/197, September 29, amended September 21, 2011.
- DOE (U.S. Department of Energy), EPA (U.S. Environmental Protection Agency), and CDPHE (Colorado Department of Public Health and Environment), 2011. *Corrective Action Decision/Record of Decision Amendment for Rocky Flats Plant (USDOE) Peripheral Operable Unit and Central Operable Unit*, September 21.

Appendix A

Landfill Inspection Forms and Survey Data, First Quarter 2025

PRESENT LANDFILL - MONITORING AND MAINTENANCE PROGRAM

1st Quarter Inspection INSPECTION FORM APRIL TISCHER Digitally signed by APRIL TISCHER (Affiliate) INSPECTOR: Nathan Krohn DATE: 2/19/25 TIME: 1215 REVIEWED BY: TEMPERATURE: 19° F (ambient) WEATHER CONDITIONS: Clear skies, 19° F REVIEW DATE: METEOROLOGICAL STATION LOCATION: REMET = 1.75 inches since previous inspection (11/21/24) SUBSIDENCE/CONSOLIDATION EVIDENCE OF EVIDENCE OF SINK EVIDENCE OF OTHER REGION EVIDENCE OF CRACKS? DEPRESSIONS? HOLES? PONDING? (DESCRIBE BELOW) TOP OF COVER - WEST Yes X No Yes No Yes X No Yes No TOP OF COVER - EAST Yes No Yes X No Yes No Yes 🔀 No COVER SIDESLOPE - NORTH Yes No Yes No Yes No Yes No Yes No COVER SIDESLOPE - SOUTH Yes No Yes No Yes No Yes No EAST FACE SLOPE - NORTH Yes No Yes No Yes No Yes No EAST FACE SLOPE - SOUTH Yes No Yes No Yes No EAST FACE SLOPE - CENTRAL Yes No Yes No Yes No Yes No EAST FACE SLOPE - NORTH SEEP* Yes No Yes No Yes No Yes No Settlement Plates and side-slope monitoring points to be inspected for integrity. Integrity intact? During Year 1, they will be surveyed quarterly, and annually thereafter Yes No MAINTENANCE REQUIRED/COMMENTS/PHOTO LOG

Two barometric gas vent's caps were found to have fallen off and were reattached immediately.

No other issues were noted.

* AREA OF SEEP IS OUTSIDE OF LANDFILL COVER AND EAST OF THE COVER ANCHOR TRENCH

-	SLOPE STABI	LITY		
REGION	EVIDENCE OF CRACKS?	EVIDENCE OF BLOCK OR CIRCULAR FAILURE?	EVIDENCE OF SEEPS?	OTHER (DESCRIBE BELOW
COVER SIDESLOPE - NORTH	Yes No	☐ Yes ☒ No	Yes No	
COVER SIDESLOPE - SOUTH	Yes No	☐ Yes ⋈ No	Yes No	
PERIMETER CHANNEL OUTER SLOPE - NORTH	☐ Yes ☒ No	Yes No	Yes No	
PERIMETER CHANNEL OUTER SLOPE - SOUTH	☐ Yes 🔀 No	Yes No	Yes No	
EAST FACE SLOPE - NORTH	Yes 🔀 No	☐ Yes ► No	Yes No	
EAST FACE SLOPE - SOUTH	☐ Yes ☑ No	Yes No	Yes No	
EAST FACE SLOPE - CENTRAL	☐ Yes 🔀 No	Yes No	☐ Yes ☑ No	
EAST FACE SLOPE - NORTH SEEP*	☐ Yes 🔀 No	Yes No	☐ Yes ☑ No	
No issuer noted.				

^{*} AREA OF SEEP IS OUTSIDE OF LANDFILL COVER AND EAST OF THE COVER ANCHOR TRENCH

E			-	
	EVIDENCE OF SOIL DEPOSITION OR EROSION?	EVIDENCE OF EROSION RILLS/GULLIES?	EVIDENCE OF BURROWING ANIMALS?	OTHER (DESCRIBE BELOW)
TOP OF COVER - WEST	Yes No	Yes No	Yes No	(DESCREES BEEOW)
TOP OF COVER - EAST	Yes No	Yes No	Yes No	
COVER SIDESLOPE - NORTH	Yes No	Yes No	Yes No	
COVER SIDESLOPE - SOUTH	Yes No	Yes No	Yes No	
EAST FACE SLOPE - NORTH	Yes No	Yes No	☐ Yes ☑ No	
EAST FACE SLOPE - SOUTH	Yes No	Yes No	Yes No	
EAST FACE SLOPE — CENTRAL	Yes No	Yes No	☐ Yes ☒ No	
AREA WHERE EAST SLOPE CENTRAL MEETS EAST SLOPE NORTH	Yes No	☐ Yes ☑ No	☐ Yes ☑ No	
AREA WHERE EAST SLOPE CENTRAL MEETS EAST SLOPE SOUTH	Yes No	Yes No	☐ Yes ⋈ No	
	VENT CAPS IN PLACE & SECURE?	STANDPIPES IN GOOD CONDITION?	BIRDS OR INSECTS IN VENT CAPS?	
COVER - BAROMETRIC VENTS	Yes No	Yes No	☐ Yes 🔀 No	Two vent caps on ground

PAGE 3 OF 9

REGION	EVIDENCE OF PLUGGING, OBSTRUCTIONS, OR EXCESS DEBRIS?	EVIDENCE OF CRACKS OR DETERIORATION?	OTHER (DESCRIBE BELOW)
GWIS INLET PIPES	· Yes 🔀 No	Yes 🔀 No	
STRIP DRAIN INLET PIPE	Yes No	☐ Yes ► No	
ORTH MANHOLE OUTLET PIPE	Yes No	Yes No	
OUTH MANHOLE OUTLET PIPE	Yes No	Yes No	
TREATMENT UNIT	Yes No	Yes No	
REATMENT UNIT OUTLET PIPE	Yes No	Yes No	~
NORTH MANHOLE	Yes No	Yes No	
SOUTH MANHOLE	Yes No	Yes No	
TREATMENT UNIT GRATING	NA	Yes No	
No issues he pipe cleaner, as	ted. North and s	outh marhole outle	A piper cleaned with a mechanic

STORMWATER MANAGEMENT STRUCT	TURES
------------------------------	-------

CHANNELS/LINING

STRUCTURE	EVIDENCE OF EXCESSIVE EROSION, GULLYING, SCOUR, OR UNDERMINING?	EVIDENCE OF SETTLEMENT/ SUBSIDENCE OR DEPRESSIONS?	EVIDENCE OF BREACHING OR BANK FAILURE?	EVIDENCE OF BURROWING ANIMALS?	EVIDENCE OF SEDIMENT BUILD-UP OR OTHER BLOCKAGE?	EVIDENCE OF LINING DETERIORATION, HOLES, RIPS, OR SEPARATION?	EVIDENCE OF LINING DISPLACEMENT
DIVERSION BERM	Yes No	Yes No	Yes No	Yes No	Yes 🔀 No	Yes No	Yes No
VEGETATION-LINED PERIMETER CHANNEL – NORTH	☐ Yes ⋈ No	Yes No	Yes No	Yes No	Yes No	Yes No	Yes No
VEGETATION-LINED PERIMETER CHANNEL – SOUTH	Yes No	Yes No	Yes No	Yes No	Yes No	Yes No	Yes No
RIPRAP-LINED PERIMETER CHANNEL	Yes No	Yes No	☐ Yes ☑ No	Yes No	Yes No	Yes No	Yes No
C350-LINED EAST FACE	Yes Mo	Yes No	Yes 🔀 No	Yes No	Yes No	Yes No	Yes No
EAST FACE RIPRAP CHANNEL – NORTH	☐ Yes ☑ No	Yes No	☐ Yes ☑ No	Yes No	Yes No	Yes No	Yes No
EAST FACE RIPRAP CHANNEL – SOUTH	☐ Yes 🔀 No	Yes No	☐ Yes ☑ No	Yes No	☐ Yes ► No	Yes No	
OTHER DEFICIENCIES?			-				
MAINTENANCE REQUIRED/CO	DMMENTS/PHOTO LOG	ì			1		
No irrues	noted.						

PAGE 5 OF 9

STORMWATER MANAGEMENT STRUCTURES (CONTINUED)

OUTFALLS

CHECK EACH STRUCTURE FOR EXCESSIVE EROSION AND SEDIMENT DEPTH. IF SEDIMENT DEPTH IS COMPROMISING THE DESIGN CHARACTERISTICS, REMOVE SEDIMENT.

STRUCTURE	And the second s	CONDITION/SEDIMENT DEPTH		
DIVERSION BERM OUTFALL - NORTH	oK	*		
DIVERSION BERM OUTFALL - SOUTH	oK			
CULVERT 1 OUTFALL	0 K			
CULVERT 2 OUTFALL	ok			
SOUTHWEST CULVERT OUTFALL	o K			

CULVERTS

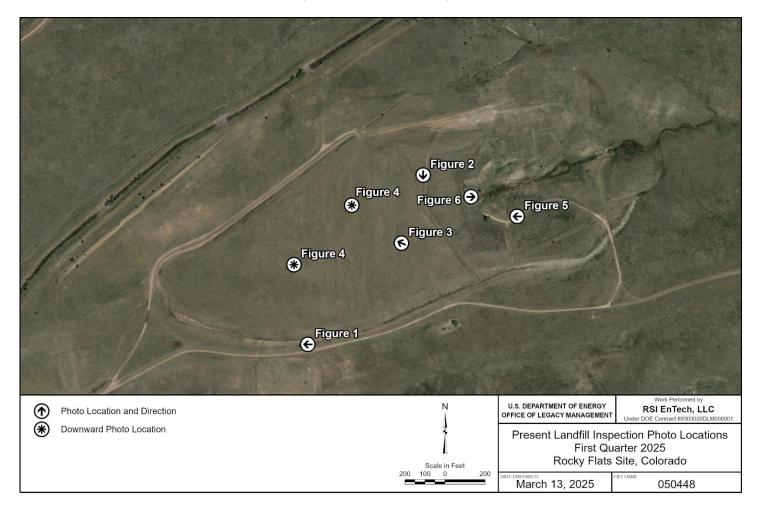
CHECK EACH STRUCTURE FOR BLOCKAGE, SURROUNDING CONDITIONS, BREACHING, SEDIMENT BUILD-UP, AND INLET/OUTLET CONDITIONS.

STRUCTURE	CONDIT	TION
CULVERT 1	ok	
CULVERT 2	o K	
SOUTHWEST CULVERT	ok .	

MAINTENANCE REQUIRED/PHOTO LOG

No issues noted

RUN-ON INTO PERIMETER CHANNEL - NORTH RUN-ON INTO PERIMETER CHANNEL - SOUTH NATURAL DRAINAGE FED BY CULVERT 1 NATURAL DRAINAGE FED BY NORTHEAST PERIMETER CHANNEL NATURAL DRAINAGE FED BY RIPRAP Yes No COMMENT: COMMENT: COMMENT: Yes No COMMENT: Yes No COMMENT: COMMENT: COMMENT: COMMENT: COMMENT: COMMENT: NATURAL DRAINAGE FED BY RIPRAP Yes No COMMENT:	AREA			ADVERSELY AFFECTING PLF?	
NATURAL DRAINAGE FED BY CULVERT 1 Yes No COMMENT: NATURAL DRAINAGE FED BY NORTHEAST Yes No COMMENT: NATURAL DRAINAGE FED BY RIPRAP Yes No COMMENT: NATURAL DRAINAGE FED BY RIPRAP Yes No COMMENT:		Yes	No No		
NATURAL DRAINAGE FED BY NORTHEAST PERIMETER CHANNEL NATURAL DRAINAGE FED BY RIPRAP Yes No COMMENT: COMMENT:		Yes	No	COMMENT:	25
PERIMETER CHANNEL Yes No COMMENT: NATURAL DRAINAGE FED BY RIPRAP Yes No COMMENT:	NATURAL DRAINAGE FED BY CULVERT 1	Yes	No	COMMENT:	
	NATURAL DRAINAGE FED BY NORTHEAST PERIMETER CHANNEL	Yes	≥ No	COMMENT:	121
MAINTENANCE REQUIRED/PHOTO LOG	NATURAL DRAINAGE FED BY RIPRAP	Yes	No	COMMENT:	
No irruer noted.	AINTENANCE REQUIRED/PHOTO LOG				-


ITEM EVIDENCE OF EXCAVATION(S) OF COVER AND IMMEDIATE VICINITY OF COVER? EVIDENCE OF CONSTRUCTION OF ROADS OR TRAILS ON COVER OR	⊠No	COMMENT:
COVER AND IMMEDIATE VICINITY OF COVER? EVIDENCE OF CONSTRUCTION OF	№No	COMMENT:
	-	effective and the second secon
BUILDINGS?	No No	COMMENT:
EVIDENCE OF UNAUTHORIZED Yes	No No	COMMENT:
EVIDENCE OF DRILLING OF WELLS OR USE OF GROUNDWATER?	No No	COMMENT:
DISRUPTION OR DAMAGE OF SEEP TREATMENT SYSTEM? Yes	No No	COMMENT:
DAMAGE OR REMOVAL OF ANY SIGNAGE OR GROUNDWATER MONITORING WELLS?	No No	COMMENT:

		ACTION ITEMS		
DEFICIENCY	DATE NOTED	ACTION	DATE COMPLETED	COMMENTS
Two faller vent caps	2/19/2025	Reattached during inspection	2/19/25	
		V) + () + (
				The state of the s
				To the control for the control of th
				•
				German Communication Communica
				-
				West of the second seco
-				

PAGE 9 OF 9

1st Quarter 2025 PLF Inspection photos

(Photos taken 2/19/2025)

Locations of PLF Inspection Report Figure Photographs, Rocky Flats Site, Colorado

Figure 1. Looking West at the Southern Vegetation-lined Perimeter Channel, Which Was in Good Condition.

Figure 2. Looking South at a Diversion Berm that Runs Along the Eastern Pediment, Which Was in Good Condition

Figure 3. Looking West-Northwest at the Settlement Monuments on the Cover, Which Were in Good Condition.

Figure 4. Looking at two Barometric Gas Vents, where the Vent Caps Needed to Be Reattached

Figure 5. Looking West at the East Face Slope of the Present Landfill, Which Was in Good Condition

Figure 6. Looking East-Northeast at the Present Landfill Treatment System, Which Was Functioning Properly. Small amounts of Bio-growth were removed from the North and South Manhole Outlet Pipes, treatment unit outlet pipe, and system outfall using a mechanical pipe cleaner as part of routine preventative maintenance.

PRESENT LANDFILL - MONITORING AND MAINTENANCE PROGRAM

INSPECTION FORM *Weather-Related *

	SUBS	IDENCE/CONSOI	LIDATION		
REGION	EVIDENCE OF CRACKS?	EVIDENCE OF DEPRESSIONS?	EVIDENCE OF SINK HOLES?	EVIDENCE OF PONDING?	OTHER (DESCRIBE BELOW)
TOP OF COVER - WEST	Yes No	Yes No	Yes No	Yes No	(
TOP OF COVER - EAST	Yes No	Yes No	Yes No	Yes No	e de la companya de l
COVER SIDESLOPE - NORTH	Yes No	Yes No	Yes No	Yes No	
COVER SIDESLOPE - SOUTH	Yes No	Yes No	Yes No	Yes No	STATES STATES STATES STATES STATES STATES STATES
EAST FACE SLOPE - NORTH	Yes No	Yes No	Yes No	Yes No	·
EAST FACE SLOPE - SOUTH	Yes No	Yes No	☐ Yes ☑ No	Yes No	
EAST FACE SLOPE - CENTRAL	Yes No	Yes No	Yes No	Yes No	
EAST FACE SLOPE - NORTH SEEP*	Yes No	Yes No	Yes No	Yes No	were mental and the second
tlement Plates and side-slope monitoring pring Year 1, they will be surveyed quarterly		Integrity intact? ☑ Yes ☐ No	n non-		<u> </u>

AREA OF SEEP IS OUTSIDE OF LANDFILL COVER AND EAST OF THE COVER ANCHOR TRENCH

REGION	EVIDENCE OF CRACKS?	EVIDENCE OF BLOCK OR CIRCULAR FAILURE?	EVIDENCE OF SEEPS?	OTHER (DESCRIBE BELOY
COVER SIDESLOPE - NORTH	Yes No	Yes No	Yes No	
COVER SIDESLOPE - SOUTH	Yes No	Yes No	Yes No	
PERIMETER CHANNEL OUTER SLOPE - NORTH	Yes No	Yes No	Yes No	
PERIMETER CHANNEL OUTER SLOPE - SOUTH	Yes No	Yes No	☐ Yes ☑ No	
EAST FACE SLOPE - NORTH	☐ Yes ☒ No	Yes No	Yes No	
EAST FACE SLOPE - SOUTH	☐ Yes ⋈ No	Yes No	Yes No	
EAST FACE SLOPE - CENTRAL	Yes X No	Yes No	Yes No	
EAST FACE SLOPE - NORTH SEEP*	Yes No	Yes No	Yes No	
AINTENANCE REQUIRED/COMMENTS/PHOTO LOG				

PAGE 2 OF 9

		SOIL COVE	CR .	
REGION	EVIDENCE OF SOIL DEPOSITION OR EROSION?	EVIDENCE OF EROSION RILLS/GULLIES?	EVIDENCE OF BURROWING ANIMALS?	OTHER (DESCRIBE BELOW)
TOP OF COVER - WEST	Yes No	Yes 🔀 No	Yes No	
TOP OF COVER - EAST	Yes No	Yes No	Yes No	
COVER SIDESLOPE - NORTH	☐ Yes ☒ No	Yes No	Yes No	
COVER SIDESLOPE - SOUTH	Yes No	Yes No	Yes No	9400-9941800 (- 119
EAST FACE SLOPE - NORTH	Yes No	Yes No	Yes No	саниванный сестему на политический по выдачения в под на средне в санива в санива на под на под на под на под По
EAST FACE SLOPE - SOUTH	Yes No	Yes No	Yes No	ne per mentre de la transportation de la company de la com
EAST FACE SLOPE — CENTRAL	Yes No	Yes No	☐ Yes ☒ No	ому у разментор по при предоставления на при предоставления на предоставления разментор на предоставления на п Предоставления на предоставления на предоставления на предоставления на предоставления на предоставления на пр
AREA WHERE EAST SLOPE CENTRAL MEETS EAST SLOPE NORTH	Yes No ·	Yes No	Yes No	
AREA WHERE EAST SLOPE CENTRAL MEETS EAST SLOPE SOUTH	Yes No	Yes No	Yes No	
× 1	VENT CAPS IN PLACE & SECURE?	STANDPIPES IN GOOD CONDITION?	BIRDS OR INSECTS IN VENT CAPS?	
COVER - BAROMETRIC VENTS	Yes No	Yes No	Yes No	

REGION	EVIDENCE OF PLUGGING, OBSTRUCTIONS, OR EXCESS DEBRIS?	EVIDENCE OF CRACKS OR DETERIORATION?	OTHER (DESCRIBE BELOW)
GWIS INLET PIPES	· Yes 🔀 No	Yes No	
STRIP DRAIN INLET PIPE	Yes No	Yes No	
NORTH MANHOLE OUTLET PIPE	☐ Yes ☒ No	Yes No	
SOUTH MANHOLE OUTLET PIPE	Yes No	Yes No	
TREATMENT UNIT	Yes No	Yes No	
TREATMENT UNIT OUTLET PIPE	Yes No	Yes No	÷
NORTH MANHOLE	Yes No	Yes No	
SOUTH MANHOLE	Yes No	Yes No	
TREATMENT UNIT GRATING	NA	Yes No	

STORMWATER MANAGEMENT S	TRUCTURES
-------------------------	-----------

CHANNELS/LINING

STRUCTURE	EVIDENCE OF EXCESSIVE EROSION, GULLYING, SCOUR, OR UNDERMINING?	EVIDENCE OF SETTLEMENT/ SUBSIDENCE OR DEPRESSIONS?	EVIDENCE OF BREACHING OR BANK FAILURE?	EVIDENCE OF BURROWING ANIMALS?	EVIDENCE OF SEDIMENT BUILD-UP OR OTHER BLOCKAGE?	EVIDENCE OF LINING DETERIORATION, HOLES, RIPS, OR SEPARATION?	EVIDENCE OF LINING DISPLACEMENT?
DIVERSION BERM	Yes No	Yes No	Yes No	Yes No	Yes No	Yes No	Yes No
VEGETATION-LINED PERIMETER CHANNEL – NORTH	☐ Yes ☒ No	Yes No	Yes No	Yes No	Yes No	Yes No	Yes No
VEGETATION-LINED PERIMETER CHANNEL – SOUTH	Yes No	Yes No	Yes No	Yes No	Yes No	Yes No	Yes No
RIPRAP-LINED PERIMETER CHANNEL	Yes No	Yes No	Yes No	Yes No	Yes No	Yes No	Yes No
C350-LINED EAST FACE	Yes No	Yes No	Yes No	Yes No	Yes No	Yes No	Yes No
EAST FACE RIPRAP CHANNEL - NORTH	Yes No	Yes No	Yes No	Yes No	Yes No	Yes No	Yes No
EAST FACE RIPRAP CHANNEL – SOUTH	Yes No	Yes No	Yes No	Yes No	Yes No	Yes No	
OTHER DEFICIENCIES?							
MAINTENANCE REQUIRED/CO	DMMENTS/PHOTO LOC				at .		
-							

PAGE 5 OF 9

STORMWATER MANAGEMENT STRUCTURES (CONTINUED)

OUTFALLS

CHECK EACH STRUCTURE FOR EXCESSIVE EROSION AND SEDIMENT DEPTH. IF SEDIMENT DEPTH IS COMPROMISING THE DESIGN CHARACTERISTICS, REMOVE SEDIMENT.

STRUCTURE	CONDITION/SEDIMENT DEPTH	
DIVERSION BERM OUTFALL - NORTH	OK	
DIVERSION BERM OUTFALL - SOUTH	OK	
CULVERT 1 OUTFALL	orc	
CULVERT 2 OUTFALL	o K	
SOUTHWEST CULVERT OUTFALL	6K	

CULVERTS

CHECK EACH STRUCTURE FOR BLOCKAGE, SURROUNDING CONDITIONS, BREACHING, SEDIMENT BUILD-UP, AND INLET/OUTLET CONDITIONS.

STRUCTURE	CON	DITION
CULVERT 1	ok	~
CULVERT 2	oK	
SOUTHWEST CULVERT	ok.	→

MAINTENANCE REQUIRED/PHOTO LOG

No issues

	"R	UN-ON" EF	ROSION CONTROL	
AREA			ADVERSELY AFFECTING PLF?	
RUN-ON INTO PERIMETER CHANNEL – NORTH	Yes	No	COMMENT:	
RUN-ON INTO PERIMETER CHANNEL – SOUTH	Yes	No	COMMENT:	- 4
NATURAL DRAINAGE FED BY CULVERT 1	Yes	≥ No	COMMENT:	
NATURAL DRAINAGE FED BY NORTHEAST PERIMETER CHANNEL	Yes	No No	COMMENT:	je j
NATURAL DRAINAGE FED BY RIPRAP	Yes	No No	COMMENT:	
MA ISSUES-				

PAGE 7 OF 9

		INSTIT	UTIONAL CONTROLS	
ITEM		- 14.		
EVIDENCE OF EXCAVATION(S) OF COVER AND IMMEDIATE VICINITY OF COVER?	Yes	No No	COMMENT:	
EVIDENCE OF CONSTRUCTION OF ROADS OR TRAILS ON COVER OR BUILDINGS?	Yes	No No	COMMENT:	
EVIDENCE OF UNAUTHORIZED ENTRY?	Yes	No No	COMMENT:	
EVIDENCE OF DRILLING OF WELLS OR USE OF GROUNDWATER?	Yes	✓ No	COMMENT:	-
DISRUPTION OR DAMAGE OF SEEP TREATMENT SYSTEM?	Yes	- No	COMMENT:	
DAMAGE OR REMOVAL OF ANY SIGNAGE OR GROUNDWATER MONITORING WELLS?	Yes	≥ No	COMMENT:	
OTHER DEFICIENCIES/PHOTO LOG				
			-	·
			*	

ACTION ITEMS DATE DEFICIENCY DATE NOTED ACTION COMMENTS COMPLETED None. 3/31/2025 NA NA Nathan S. Krohn Digitally signed by Nathan S. Krohn Date: 2025.04.01 08:12:04 -06'00' DATE: APRIL TISCHER Digitally signed by APRIL TISCHER (Affiliate) Date: 2025.04.01 14:10:35 DATE: -06'00' INSPECTOR SIGNATURE: REVIEWER SIGNATURE:

PAGE 9 OF 9

Inspector: Nat	han Krol	^h			Date: 1/23/25 Time: 1150		
Precipitation: MET*	1.05 inche		Weather:	Mostly Clear 43°F	Report Type: 🔀 Monthly 🗆 Weather-related	*	
Reviewed by: APRIL	TISCHER Digital	ly signed by APRIL Review (date:		-, · · · · · · · · · · · · · · · · · · ·		
*Since last repor(Affilia		025.01.27 12:10:34		And the state of t			
Subsidence/Consolid	lation						
Region	Visible Cracks	Visible Depressions	Visible Ponding	Within Waste Footprint	Other (Describe Below)		
Berm 1 Basin - West	No	No	No	NA			
Berm 1 Basin - East	No	No	No	1			
Berm 2 Basin	No	No	No				
Berm 3 Basin	No	No	No			-	
Berm 4 Basin	No	N6	No			-	
Berm 5 Basin	No	No	NO				
Berm 6 Basin	No	No	No			-	
Berm 7 Basin	No	No	No			-	
Buttress fill	No	No	No	V		-	
Settlement monuments	—inspect integ	rity. Intact:	YES				
Maintenance required,	comments, and	I photo log:	- (*)	so so be de viene	the inspection		
snowfall on	Jan 17-18	3 and 19-20	was still be	esent auting	the inspection.		

Slope Stability								
Region	Visible Cracks	Visible Seeps	Visible Block or Circular Failure	Other (Describe Below)				
Cover- West	No	YES	No	Seep 4, Seep 7				
Cover– East	No	No	No					
Buttress fill side slope	No	NO	NO					
West perimeter channel side slopes	NO	No	20					
East perimeter channel side slopes	NO	No	No					

Maintenance required, comments, and photo log:

Large drifts have formed along side slopes after strong winds from the previous day. No issues.

Soil Cover and Buttres	S			
Region	Visible Erosion	Visible Gullies	Visible Animal Burrows	Other (Describe Below)
Cover- West	No	10	No	
Cover- East	No	No	No	
Buttress fill	NO	No	No	
Buttress fill side slope	No	No	No	

Maintenance required, comments, and photo log:

No issues; soil cover and buttress cannot be fully observed due to snow.

Seep Evaluation				
Seep	Visible Saturation	Visible Flow	Approximate Flow	Description
Seep 1*	No			Covered in snow drift
Seep 2/3*	NO			0401.04 111.013.01
Seep 4*	No			Covered in snow
Seep 5*	No			0,10,00
Seep 6*	No			
Seep 7*	No			Covered in snow
Seep 8a	No	-	7.	101000 111 011000
Seep 8b	NO			
Seep 8c	No			
Seep 9	No			
Seep 10	No		,	
Seep 10a	MA	NA	NA	Not a seep; see foot note
Jeep 8	140		147	Covered in snow
-				
F				

Maintenance required, comments, and photo log:

Seeps are obscured by snow and flow rates cannot be estimated.

<u>NOTE:</u> A seep is defined as an area where water percolates to the land surface <u>or</u> an area persistently moist whose source, as observed in multiple inspections, is confirmed to be groundwater and not surface water.

^{*} Indicates seep was observed during or shortly after OLF closure in 2005.

Water Management Str	uctures					
Channels						
Structure	N (COA) (CA) (CA) (CA) (CA) (CA) (CA) (CA) (C	Visible Settlement, Subsidence, or Depressions	Visible Breaching Bank Failu	or Visible Animal re Burrows	Visible Sediment Build-Up or Other Blockage	Comments
Diversion Berm 1	No	No	NO	No	NO	
Diversion Berm 2	No	No	No	No	No	
Diversion Berm 3	No	No	No	No	No	
Diversion Berm 4	No	NO	No	No	No	
Diversion Berm 5	No	No	No	No	No	
Diversion Berm 6	No	100	No	No	No	
Diversion Berm 7	NO	20	No	No	No	
West perimeter channel	NO	No	NO	No	No	
East perimeter channel	1,70	No	No	No	No	
Drains/Outfalls			<u> </u>		13-	
Structure	Visible Excessive Erosion, or Gullying	Visible Sediment or Other Blockag		ls Water Draining o		
East Subsurface Drain – Solid pipe	No	20		NO	A 10 A 10 A 1 A 10 CO	l in snow
East Subsurface Drain – Perforated pipe	No	70		NA	covered	in snow
French Drain (SID)	No	No		YES	1-2 gpi	44

Maintenance required and photo log:

No irrner channels and outfalls covered in snow

"Run-On" Control		
Area	Adversely Affecting OLF	Comments
Run-on to the OLF (any direction)	NA	
Maintenance required and photo lo	g:	

Run-on cannot be observed due to snow. [no issues known] evaluated

Violations of Institutional Controls						
Item		Comments				
Evidence of unauthorized¹ excavations of cover and immediate vicinity of cover?	No					
Evidence of unauthorized¹ construction of roads, trails, or buildings on cover?	No					
Evidence of unauthorized¹ drilling of wells or use of groundwater?	No					
Damage to groundwater monitoring wells at OLF (upgradient or downgradient)?	20					

Other observations, maintenance required, comments, and photo log:

No issues.

If "Yes" is marked on any item in the Institutional Controls section, immediately notify your supervisor.

¹ Unauthorized means not approved by RFLMA parties (DOE, EPA, CDPHE) through the consultative process. Actions covered under an approved soil disturbance review plan are authorized actions.

Action Items			
Deficiency	Action	Date Completed	Comments
None	NA	AM	
Signatures			
Inspector signature:		Date: 1/23	17.5
Reviewer signature: APR	IL TISCHER Digitally signed by APRIL TISCHER (Affiliate) Date: 2025.01.27 12:10:58 -07'00'	Date: //23	

Attachment 1: January 2025 Monthly Report of the Original Landfill Inspection at the Rocky Flats Site, Colorado

The monthly inspection of the Original Landfill (OLF) at the Rocky Flats Site, Colorado, was completed on January 23, 2025. The weather was mostly clear with an ambient temperature of 43 °F during the inspection. The Rocky Flats Site meteorological tower recorded 1.05 inches of precipitation between this inspection and the previous monthly inspection performed on December 23, 2024.

Monthly inspection forms are completed to document current conditions at the OLF. Items previously indicated as deficient on inspection forms that have since been repaired are not marked again on the form unless further action is required.

Figure 1 provides an aerial view of the OLF hillside with the approximate locations of the report photographs (the photographs in **Figure 2** through **Figure 9** were taken on January 23, 2024).

Snowfall from January 17–20 was still present during the inspection. Large wind-blown drifts were observed in several channels and outfalls. No issues were noted with Berms 1–3 (**Figure 2**) or Berms 4–7 (**Figure 3**). The East Perimeter Channel (EPC) was in good condition (**Figure 4**). The West Perimeter Channel (WPC) was in good condition (**Figure 5**).

Seep locations were covered in snow. The Seep 7 location (**Figure 6**) and Seep 8 location (**Figure 7**) flow rates could not be estimated.

The East Subsurface Drain (ESSD) (**Figure 8**) was covered in snow and flow rates could not be estimated. No issues were noted with the South Interceptor Ditch (SID) (**Figure 9**), which receives groundwater from the ESSD outfall and an interceptor drain on the eastern hillside. It had a flow of 1–2 gpm.

The revegetation of recently disturbed areas on the OLF is managed and monitored under the *Erosion Control Plan for Rocky Flats Property Central Operable Unit* (DOE 2007)¹ and under sitewide vegetation and revegetation plans, as appropriate. Established vegetation is visible across the hillside areas that were reseeded after the stabilization effort in 2019–2020.

Summary of January 2025 Inspection Findings

Snowfall from January 17–20 was still present during the inspection. Large wind-blown drifts were observed in several channels and outfalls. Berms 1–7 were in good condition. The EPC and WPC were in good condition. Seep locations were covered in snow. Flow rates at the Seep 7 and Seep 8 locations could not be estimated. The ESSD was covered in snow and flow rates could not be estimated. No issues were noted with the SID, which receives groundwater from the ESSD outfall and an interceptor drain on the eastern hillside. It had a flow of 1–2 gpm.

¹ DOE (U.S. Department of Energy), 2007. *Erosion Control Plan for Rocky Flats Property Central Operable Unit*, DOE-LM/1497-2007, LMS/RFS/S03416, Office of Legacy Management, July.

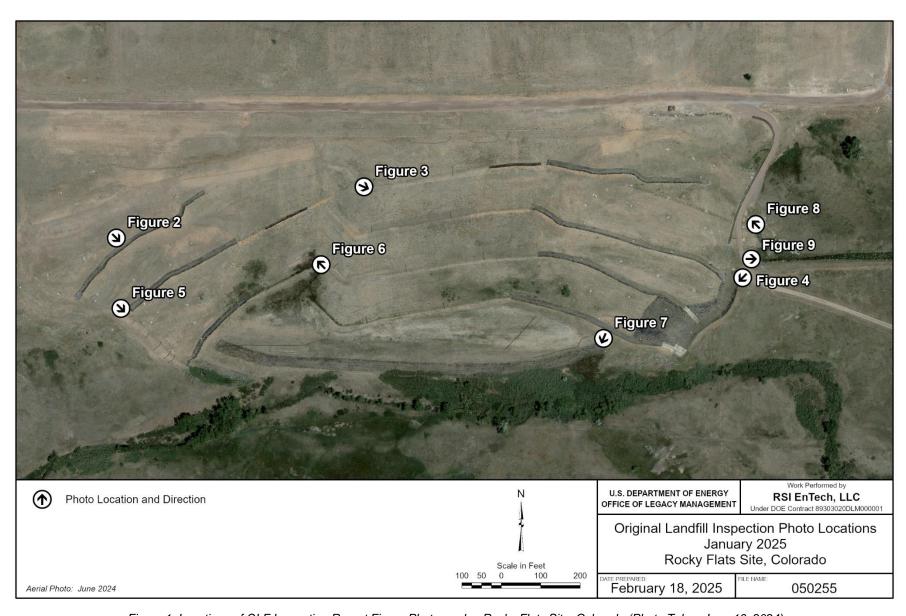


Figure 1. Locations of OLF Inspection Report Figure Photographs, Rocky Flats Site, Colorado (Photo Taken June 16, 2024)

Figure 2. Looking East-Southeast at Berms 1–3, Which Were in Good Condition

Figure 3. Looking East-Southeast at Berms 4–7, Which Were in Good Condition

Figure 4. Looking Southwest at the EPC, Which Was in Good Condition

Figure 5. Looking East-Southeast at the WPC, Which Was in Good Condition

Figure 6. Looking Northwest at the Seep 7 Location, Which Was Covered by Snow

Figure 7. Looking Southwest at the Seep 8 Location, Which Was Covered by Snow

Figure 8. Looking Northwest at the ESSD, Which Had Snow at the Outfall

Figure 9. Looking East at the SID, Which Receives Groundwater from the ESSD Outfall and an Interceptor Drain on the Eastern Hillside and Had a Flow of 1–2 gpm

Inspector:	than Ki							
Precipitation: MET*	0.67 inch	NREL*	Weather: 🖓	rtly Cloudy, 60		☐ Weather-related		
		ally signed by APR Review da	te:	1,19 = 10000199				
The state of the s		2025.02.25 12:09:32						
Subsidence/Consolid	ation			Language.		The state of the s		
Region	Visible Cracks	Visible Depressions	Visible Ponding	Within Waste Footprint	Other (Describe Below)			
Berm 1 Basin - West	20	No	No	NA				
Berm 1 Basin - East	N6	No	NO					
Berm 2 Basin	No	No	No					
Berm 3 Basin	NO	No	NO					
Berm 4 Basin	NO	No	No					
Berm 5 Basin	NO	No	NO	lif a zigen		.4		
Berm 6 Basin	NO	NO	No					
Berm 7 Basin	NO	No	NO					
Buttress fill	NO	No	No	J				
Settlement monuments			J					
Maintenance required,		photo log:						
No issues t	o note							
_								

Slope Stability							
Region	Visible Cracks	Visible Seeps	Visible Block or Circular Failure	Other (Describe Below)			
Cover- West	No	YES	No	Seep 4 and seep 7 on cover			
Cover– East	No	No	Nô				
Buttress fill side slope	NO	No	N6				
West perimeter channel side slopes	No	NO	No				
East perimeter channel side slopes	No	No	No				

Maintenance required, comments, and photo log:

No issues noted.

Soil Cover and Buttress				
Region	Visible Erosion	Visible Gullies	Visible Animal Burrows	Other (Describe Below)
Cover– West	NO	No	NO	
Cover- East	No	NO	NO	
Buttress fill	No	No	NO	
Buttress fill side slope	No	No	No	

Maintenance required, comments, and photo log:

No issuer noted.

Seep Evaluation				
Seep	Visible Saturation	Visible Flow	Approximate Flow	Description
Seep 1*	YES	No		
Seep 2/3*	NO	,		
Seep 4*	YES	No		
Seep 5*	No			
Seep 6*	No.			
Seep 7*	YES	YES	< 1 gpm	
Seep 8a	No			
Seep 8b	YES	No		
Seep 8c	No			
Seep 9	No			
Seep 10	No			
Seep 10a	NA	NA	NA	single-year appearance, not a seep
52e, 8	YES	YES	1-2 gpm	The year are property are year.
		f.		
,				
8. E St				

Maintenance required, comments, and photo log:

No issues noted.

NOTE: A seep is defined as an area where water percolates to the land surface or an area persistently moist whose source, as observed in multiple inspections, is confirmed to be groundwater and not surface water.

^{*} Indicates seep was observed during or shortly after OLF closure in 2005.

Water Management Structures						
Channels						
Structure	Visible Excessive Erosion, Gullying, or Undermining	Visible Settlement, Subsidence, or Depressions	Visible Breaching Bank Failur	or Visible Animal e Burrows	Visible Sediment Build-Up or Other Blockage	Comments
Diversion Berm 1	NO	No	No	No	No	
Diversion Berm 2	NO	NO	NO	NO	No	
Diversion Berm 3	No	NO	NO	NO	No	
Diversion Berm 4	NO	NO	No	No	No	
Diversion Berm 5	No	NO	NO	No.	NO	
Diversion Berm 6	No	NO	NO	NO	No	
Diversion Berm 7	NO	No	NO	NO	No	
West perimeter channel	No	NO	NO	NO	No	
East perimeter channel	No	NO	NO	NO	No	
Drains/Outfalls						
Structure	Visible Excessive Erosion, or Gullying	Visible Sediment or Other Blockag		s Water Draining of Flowing from Struc	or cture? Comments	
East Subsurface Drain – Solid pipe	No	No	The or	No		
East Subsurface Drain – Perforated pipe	No	NO		YES, < 1	9pm	

YES, 1-2 gpm

20

Maintenance required and photo log:

NO

French Drain (SID)

No irrner noted.

"Run-On" Control					
Area	Adversely Affecting OLF	Comments			
Run-on to the OLF (any direction)	N6				
Maintenance required and photo lo	g:				

No issues noted.

Violations of Institutional Controls				
Item		Comments		
Evidence of unauthorized¹ excavations of cover and immediate vicinity of cover?	No			
Evidence of unauthorized¹ construction of roads, trails, or buildings on cover?	No			
Evidence of unauthorized¹ drilling of wells or use of groundwater?	No			
Damage to groundwater monitoring wells at OLF (upgradient or downgradient)?	No			

Other observations, maintenance required, comments, and photo log:

No issues noted.

If "Yes" is marked on any item in the Institutional Controls section, immediately notify your supervisor.

¹ Unauthorized means not approved by RFLMA parties (DOE, EPA, CDPHE) through the consultative process. Actions covered under an approved soil disturbance review plan are authorized actions.

Action Items						
Deficiency		Action	Date Completed	Comments		
None		NA	NA			
,			* g: 0			
		2				
Signatures						
Inspector signature:	NATHAN KRO	OHN (Affiliate) Digitally signed by NATHAN KROHN (Affiliate) Date: 2025.02.24 14:35:45 -07'00'	Date:			
Reviewer signature:	APRIL (Affilia	TISCHER Digitally signed by APRIL TISCHER (Affiliate) te) Date: 2025.02.25 12:07:51 -07'00'	Date:			

Attachment 1: February 2025 Monthly Report of the Original Landfill Inspection at the Rocky Flats Site, Colorado

The monthly inspection of the Original Landfill (OLF) at the Rocky Flats Site, Colorado, was completed on February 24, 2025. The weather was partly cloudy with an ambient temperature of 60 °F during the inspection. The Rocky Flats Site meteorological tower recorded 0.67 inch of precipitation between this inspection and the previous monthly inspection performed on January 23, 2025.

Monthly inspection forms are completed to document current conditions at the OLF. Items previously indicated as deficient on inspection forms that have since been repaired are not marked again on the form unless further action is required.

Figure 1 provides an aerial view of the OLF hillside with the approximate locations of the report photographs (the photographs in **Figure 2** through **Figure 9** were taken on February 24, 2025).

No issues were noted with Berms 1–3 (**Figure 2**) or Berms 4–7 (**Figure 3**). The East Perimeter Channel (EPC) was in good condition (**Figure 4**). The West Perimeter Channel (WPC) was in good condition (**Figure 5**).

The ground surface showed moisture in many areas due to recent snowmelt. Seep locations 1, 4, 7, 8, and 8b showed moisture. The Seep 7 location (**Figure 6**) had a flow rate of less than 1 gallon per minute (gpm) and Seep 8 location (**Figure 7**) had a flow rate of 1–2 gpm.

No issues were noted with the East Subsurface Drain (ESSD) (**Figure 8**), which had a flow of less than 1 gpm. No issues were noted with the South Interceptor Ditch (SID) (**Figure 9**), which receives groundwater from the ESSD outfall and an interceptor drain on the eastern hillside. It had a flow of 1–2 gpm.

The revegetation of recently disturbed areas on the OLF is managed and monitored under the *Erosion Control Plan for Rocky Flats Property Central Operable Unit* (DOE 2007)¹ and under sitewide vegetation and revegetation plans, as appropriate. Established vegetation is visible across the hillside areas that were reseeded after the stabilization effort in 2019–2020.

Summary of February 2025 Inspection Findings

Berms 1–7 were in good condition. The EPC and WPC were in good condition. The Seep 1, 4, 7, 8, and 8b locations showed moisture. The Seep 7 location had a flow of less than 1 gpm. The Seep 8 location had a flow of 1–2 gpm. No issues were noted with the ESSD, which had a flow of less than 1 gpm. No issues were noted with the SID, which receives groundwater from the ESSD outfall and an interceptor drain on the eastern hillside. It had a flow of 1–2 gpm.

¹ DOE (U.S. Department of Energy), 2007. *Erosion Control Plan for Rocky Flats Property Central Operable Unit*, DOE-LM/1497-2007, LMS/RFS/S03416, Office of Legacy Management, July.

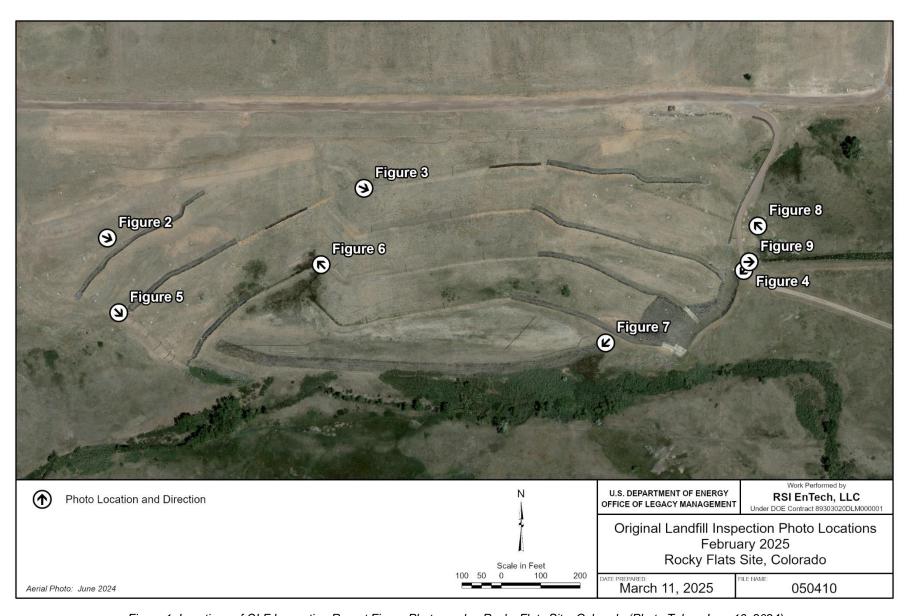


Figure 1. Locations of OLF Inspection Report Figure Photographs, Rocky Flats Site, Colorado (Photo Taken June 16, 2024)

Figure 2. Looking East-Southeast at Berms 1–3, Which Were in Good Condition

Figure 3. Looking East-Southeast at Berms 4–7, Which Were in Good Condition

Figure 4. Looking Southwest at the EPC, Which Was in Good Condition

Figure 5. Looking Southeast at the WPC, Which Was in Good Condition

Figure 6. Looking Northwest at the Seep 7 Location, Which Had a Flow of Less than 1 gpm

Figure 7. Looking Southwest at the Seep 8 Location, Which Had a Flow of 1–2 gpm

Figure 8. Looking Northwest at the ESSD, Which Had a Flow of Less than 1 gpm

Figure 9. Looking East at the SID, Which Receives Groundwater from the ESSD Outfall and an Interceptor Drain on the Eastern Hillside and Had a Flow of 1–2 gpm

Inspector: Na+	han Kr	ohn		11	Date: 3/20/25 Time: 815	
Precipitation: MET*	0.32 inch	NREL*	Weather:	Partly Cloudy, 43°F	Report Type: Monthly 🗆 Weather-rel	ated
	RIL TISCHER Digital TISC	CHER (Affiliate) Review	date:	7 7	-	
*Since last report (Aff	filiate) Date -06'	e: 2025.03.25 10:24:45 00'		*		1 *
Subsidence/Consolid	lation					
Region	Visible Cracks	Visible Depressions	Visible Ponding	Within Waste Footprint	Other (Describe Below)	
Berm 1 Basin - West	No	No	No	NA		
Berm 1 Basin - East	No	No	NO	7		
Berm 2 Basin	No	No	No	"J		
Berm 3 Basin	No	No	No			
Berm 4 Basin	NO	No	No			
Berm 5 Basin	No	No	NO			
Berm 6 Basin	No	NO	NO			
Berm 7 Basin	No	NO	No			
Buttress fill	No	NO	No	V		
Settlement monuments	s—inspect inte	grity. Intact:	YES			
Maintenance required,	comments, an	d photo log:				
No issues &	noted.					

Slope Stability						
Region	Visible Cracks	Visible Seeps	Visible Block or Circular Failure	Other (Describe Below)		
Cover– West	No	YES	No	Seep 4 + 7.		
Cover– East	No	No	No	Seep 8B not on Cover.		
Buttress fill side slope	No	No	No			
West perimeter channel side slopes	No	No	No			
East perimeter channel side slopes	No	NO	No			

Maintenance required, comments, and photo log:

No issuer noted.

Soil Cover and Buttress	并在一种的数数			
Region	Visible Erosion	Visible Gullies	Visible Animal Burrows	Other (Describe Below)
Cover- West	No	NO	No	
Cover- East	NO	NO	No	
Buttress fill	No	No	No	
Buttress fill side slope	No	No	No	

Maintenance required, comments, and photo log:

No issues noted.

Seep Evaluation				
Seep	Visible Saturation	Visible Flow	Approximate Flow	Description
Seep 1*	No			
Seep 2/3*	No			
Seep 4*	No			
Seep 5*	NO		:We	
Seep 6*	NO			
Seep 7*	YES	YES	< 1 gpm	
Seep 8a			Jim	
Seep 8b	No			
Seep 8c	NO			**
Seep 9	NO			
Seep 10	No			· Same
Seep 10a	NA	NA	NA	Not an official seep
Seep 8	YES	YES	~ 1 gpm	
-1507		7.0	JF	L. m
			~	
	·			
			-	

Maintenance required, comments, and photo log:

No issues noted.

<u>NOTE:</u> A seep is defined as an area where water percolates to the land surface <u>or</u> an area persistently moist whose source, as observed in multiple inspections, is confirmed to be groundwater and not surface water.

^{*} Indicates seep was observed during or shortly after OLF closure in 2005.

Water Management Str	uctures	Marie Proximal Const				
Channels						
Structure	Erosion, Gullying,	Visible Settlement, Subsidence, or Depressions	Visible Breaching Bank Failu	or Visible Animal re Burrows	Visible Sediment Build-Up or Other Blockage	Comments
Diversion Berm 1	No	No	No	NO	NO	
Diversion Berm 2	No	No	No	No	NO	
Diversion Berm 3	No	No	No	No	No	
Diversion Berm 4	No	No	No	No	NO	
Diversion Berm 5	No	No	No	No	No	
Diversion Berm 6	N6	No	No	No	NO	
Diversion Berm 7	NO	No	No	No	No	
West perimeter channel	No	No	No	No	NO	
East perimeter channel	No	No	N9	No	No	
Drains/Outfalls						
Structure	Visible Excessive Erosion, or Gullying	Visible Sediment or Other Blockag		ls Water Draining of Flowing from Struc		
East Subsurface Drain – Solid pipe	No	70	No		· 2	
East Subsurface Drain – Perforated pipe	No	No		YES	~)	gpm
French Drain (SID)	No	No		YES	1-2	gpm

Maintenance required and photo log:

No issues noted.

Area	Adversely Affecting OLF	Comments
Run-on to the OLF (any direction)	No	·
Maintenance required and photo lo	Ju.	

No issues no hed.

iolations of Institutional Controls					
Item		Comments			
Evidence of unauthorized ¹ excavations of cover and immediate vicinity of cover?	No				
Evidence of unauthorized¹ construction of roads, trails, or buildings on cover?	No				
Evidence of unauthorized¹ drilling of wells or use of groundwater?	No				
Damage to groundwater monitoring wells at OLF (upgradient or downgradient)?	N6				

Other observations, maintenance required, comments, and photo log:

No Issuer noted.

If "Yes" is marked on any item in the Institutional Controls section, immediately notify your supervisor.

¹ Unauthorized means not approved by RFLMA parties (DOE, EPA, CDPHE) through the consultative process. Actions covered under an approved soil disturbance review plan are authorized actions.

Action Items	STATE OF THE STATE		Control of the Contro
Deficiency	Action	Date Completed	Comments
None	N/A	N/t	
			The factor of th
Signatures			
Inspector signature:		Date:	
Reviewer signature:		Date:	

NATHAN Digitally signed (Affiliate) 15:24:42 -06'00'

by NATHAN KROHN (Affiliate) Date: 2025.03.24

Digitally signed **APRIL** by APRIL TISCHER **TISCHER** (Affiliate) (Affiliate) Date: 2025.03.25 Date: 2025.03.25

Attachment 1: March 2025 Monthly Report of the Original Landfill Inspection at the Rocky Flats Site, Colorado

The monthly inspection of the Original Landfill (OLF) at the Rocky Flats Site, Colorado, was completed on March 20, 2025. The weather was partly cloudy with an ambient temperature of 43 °F during the inspection. The Rocky Flats Site meteorological tower recorded 0.32 inch of precipitation between this inspection and the previous monthly inspection performed on February 24, 2025.

Monthly inspection forms are completed to document current conditions at the OLF. Items previously indicated as deficient on inspection forms that have since been repaired are not marked again on the form unless further action is required.

Figure 1 provides an aerial view of the OLF hillside with the approximate locations of the report photographs (the photographs in **Figure 2** through **Figure 9** were taken on March 20, 2025).

No issues were noted with Berms 1–3 (**Figure 2**) or Berms 4–7 (**Figure 3**). The East Perimeter Channel (EPC) was in good condition (**Figure 4**). The West Perimeter Channel (WPC) was in good condition (**Figure 5**).

The Seep 7 location (**Figure 6**) had a flow rate of less than 1 gallon per minute (gpm), and the Seep 8 location (**Figure 7**) had a flow rate of approximately 1 gpm. Historical seep locations 1, 2/3, 4, 5, 6, 9, and 10 were dry at the time of the inspection.

No issues were noted with the East Subsurface Drain (ESSD) (**Figure 8**), which had a flow of less than 1 gpm. No issues were noted with the South Interceptor Ditch (SID) (**Figure 9**), which receives groundwater from the ESSD outfall and an interceptor drain on the eastern hillside. The SID had a flow of 1–2 gpm.

The revegetation of recently disturbed areas on the OLF is managed and monitored under the *Erosion* Control Plan for Rocky Flats Property Central Operable Unit (DOE 2007)¹ and under sitewide vegetation and revegetation plans, as appropriate. Established vegetation is visible across the hillside areas that were reseeded after the stabilization effort in 2019–2020.

Summary of March 2025 Inspection Findings

Berms 1–7 were in good condition. The EPC and WPC were in good condition. The Seep 7 location had a flow of less than 1 gpm. The Seep 8 location had a flow of approximately 1 gpm. No issues were noted with the ESSD, which had a flow of less than 1 gpm. No issues were noted with the SID, which receives groundwater from the ESSD outfall and an interceptor drain on the eastern hillside. The SID had a flow of 1–2 gpm.

¹ DOE (U.S. Department of Energy), 2007. *Erosion Control Plan for Rocky Flats Property Central Operable Unit*, DOE-LM/1497-2007, LMS/RFS/S03416, Office of Legacy Management, July.

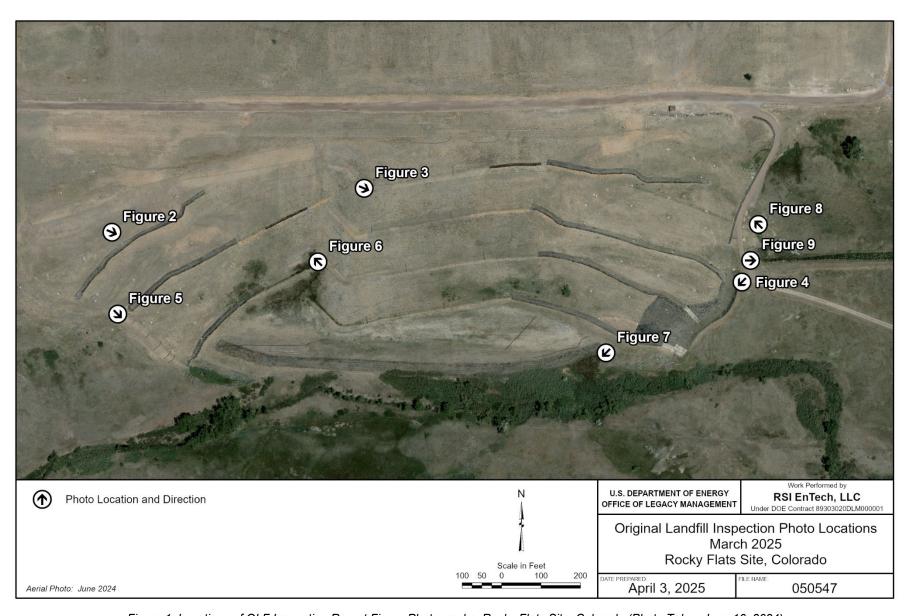


Figure 1. Locations of OLF Inspection Report Figure Photographs, Rocky Flats Site, Colorado (Photo Taken June 16, 2024)

Figure 2. Looking East-Southeast at Berms 1–3, Which Were in Good Condition

Figure 3. Looking East-Southeast at Berms 4–7, Which Were in Good Condition

Figure 4. Looking Southwest at the EPC, Which Was in Good Condition

Figure 5. Looking Southeast at the WPC, Which Was in Good Condition

Figure 6. Looking Northwest at the Seep 7 Location, Which Had a Flow of Less than 1 gpm

Figure 7. Looking Southwest at the Seep 8 Location, Which Had a Flow of Approximately 1 gpm

Figure 8. Looking Northwest at the ESSD, Which Had a Flow of Less than 1 gpm

Figure 9. Looking East at the SID, Which Receives Groundwater from the ESSD Outfall and an Interceptor Drain on the Eastern Hillside and Had a Flow of 1–2 gpm

Inspector: NA	han Kroh	h	Date: 3/31/25 Time: 1600		
Precipitation: MET* /	.62 inches	NREL*	Weather: F	Fog Cloudy 55°F	Date: 3/31/25 _ Time:
APRI	I IIX(HER	ly signed by APRIReview da	te:	JI STATE TO	
*Since last report(Affil	Date: 2	:R (Affiliate)	-		
Subsidence/Consolid	lation.				
Region	Visible Cracks	Visible Depressions	Visible Ponding	Within Waste Footprint	Other (Describe Below)
Berm 1 Basin - West	No	NO	No	NA	
Berm 1 Basin - East	No	NO	No	1	
Berm 2 Basin	NO	NO	NO		
Berm 3 Basin	NO	NO	NIO		
Berm 4 Basin	NO	NO	No		
Berm 5 Basin	NO	No	NO		
Berm 6 Basin	No	No	No		
Berm 7 Basin	No	NO	No		
Buttress fill	No	No	NO	V	
Settlement monuments	s—inspect integr	ity. Intact:	ES		
Maintenance required,	comments, and	photo log:			
Being perfor	ned after	r the site	received	1.62 inches	s from 3/29 to 3/30.
No Issues no	ted.				

Slope Stability							
Region	Visible Cracks	Visible Seeps	Visible Block or Circular Failure	Other (Describe Below)			
Cover– West	NO	NO		All ground surface wet			
Cover– East	NO	No.					
Buttress fill side slope	NO	No					
West perimeter channel side slopes	No	NB					
East perimeter channel side slopes	20	No					

Maintenance required, comments, and photo log:

No issues.

Soil Cover and Buttress				
Region	Visible Erosion	Visible Gullies	Visible Animal Burrows	Other (Describe Below)
Cover– West	No	No	NO	
Cover- East	NO	NO	NO	
Buttress fill	NO	NO	NO	
Buttress fill side slope	No	No	No	

Maintenance required, comments, and photo log:

No issues.

Seep	Visible Saturation	Visible Flow	Approximate Flow	Description
Seep 1*	YES			•
Seep 2/3*	1			
Seep 4*			* 2	
Seep 5*				
Seep 6*			i i	*
Seep 7*	,			
Seep 8a				
Seep 8b			= , -	*
Seep 8c			7 7	
Seep 9				
Seep 10	V			
Seep 10a	NA	NA	NA	

Entire surface wet and can not evaluate seeps and flows. No issues.

NOTE: A seep is defined as an area where water percolates to the land surface or an area persistently moist whose source, as observed in multiple inspections, is confirmed to be groundwater and not surface water.

^{*} Indicates seep was observed during or shortly after OLF closure in 2005.

Water Management Str	uctures					
Channels						
Structure	Erosion, Gullying,	Visible Settlement, Subsidence, or Depressions	Visible Breaching of Bank Failur	or Visible Animal e Burrows	Visible Sediment Build-Up or Other Blockage	Comments
Diversion Berm 1	NO	No	NO	No	No	
Diversion Berm 2	No	NO	No	NO	No	
Diversion Berm 3	No	NO	No	No	NO	
Diversion Berm 4	NO	No	NO	No	NO	
Diversion Berm 5	NO	No	NO	No	No	
Diversion Berm 6	NO	NO	NO	NO	No	
Diversion Berm 7	NO	No	No	No	NO	
West perimeter channel	NO	No	No	No	No	
East perimeter channel	20	NO	NO	No	NO	
Drains/Outfalls						
Structure	Visible Excessive Erosion, or Gullying	Visible Sediment or Other Blockag		Water Draining of lowing from Struc	or eture? Comments	
East Subsurface Drain – Solid pipe	No	.^		No		,
East Subsurface Drain – Perforated pipe	No V			YES	e 1 9pr	^
French Drain (SID)	No	No		YES	2-13 9	N ion
N/1 = 1 = 1						1

Maintenance required and photo log:

No issues.

"Run-On" Control		
Area	Adversely Affecting OLF	Comments
Run-on to the OLF (any direction)	NO	
Maintenance required and photo lo	g:	

No issues.

Violations of Institutional Controls		
Item		Comments
Evidence of unauthorized ¹ excavations of cover and immediate vicinity of cover?	No	
Evidence of unauthorized¹ construction of roads, trails, or buildings on cover?	No	
Evidence of unauthorized¹ drilling of wells or use of groundwater?	No	
Damage to groundwater monitoring wells at OLF (upgradient or downgradient)?	20	

Other observations, maintenance required, comments, and photo log:

No Isrues

If "Yes" is marked on any item in the Institutional Controls section, immediately notify your supervisor.

¹ Unauthorized means not approved by RFLMA parties (DOE, EPA, CDPHE) through the consultative process. Actions covered under an approved soil disturbance review plan are authorized actions.

Action Items				
Deficiency		Action	Date Completed	Comments
None		NA	NA	
Signatures				
Inspector signature:		ROHN (Affiliate) Digitally signed by NATHAN KROHN (Affiliate) Date: 2025.04.01 08:14:17 -06'00'	Date:	
Reviewer signature:	APRIL TIS	TISCHER (Affiliate)	Date:	

Rocky Flats Site

Original Landfill - Settlement Plates Monitoring

Quarterly Survey March 3, 2025 Comparison to Previous December 9, 2024

03-03-2025 OBSER	VATIONS				DELTA	DELTA	DELTA	12-09-2024 OBSE	RVATIONS			
POINT NUMBER I	NORTHING	EASTING	ELEVATION	DESCRIPTION	NORTHING	EASTING	ELEVATION	POINT NUMBER	NORTHING	EASTING	ELEVATION	DESCRIPTION
69826	747913.24	2082234.19	6004.87 N	RIM PIPE AA 030325	0.02	0.01	-0.01	69696	747913.26	2082234.19	6004.86 N	RIM PIPE AA 120924
69827	747644.86	2081851.22	5975.23 N	RIM PIPE BB 030325	0.01	0.00	0.02	69697	747644.86	2081851.22	5975.24 N	RIM PIPE BB 120924
69831	747883.14	2081665.95	6019.50 N	RIM PIPE CC 030325	-0.01	-0.01	0.01	69701	747883.14	2081665.95	6019.51 N	RIM PIPE CC 120924
69832	747803.26	2081642.33	6006.06 N	RIM PIPE DD 030325	-0.01	-0.01	0.02	69702	747803.25	2081642.33	6006.08 N	RIM PIPE DD 120924
69833	747700.64	2081620.55	5988.52 N	RIM PIPE EE 030325	-0.01	-0.02	0.02	69703	747700.63	2081620.53	5988.55 N	RIM PIPE EE 120924
69835	747703.22	2081407.70	5997.13 N	RIM PIPE FF 030325	-0.01	-0.01	0.01	69705	747703.21	2081407.69	5997.15 N	RIM PIPE FF 120924
69834	747563.07	2081656.30	5974.11 N	RIM PIPE GG 030325	-0.02	-0.01	0.02	69704	747563.05	2081656.29	5974.13 N	RIM PIPE GG 120924
69836	747776 77	2081215 23	6021 90 N	RIM PIPE HH 030325	-0.02	0.02	0.02	69706	747776 75	2081215 25	6021 92 N	RIM PIPE HH 120924

PIPE AA THE SOIL SURROUNDING PIPE AA WAS TEMPORARLY EXCAVATED OUT AND THEN BACKFILLED AND COVERED, THE SURROUNDING GROUND SURFACE IS HIGHER, PIPE AA WAS NEVER MOVED. BASELINE RE-SET AS BEST PRACTICE. PIPE HH WAS REPLACED AND HAS A NEW LOCATION FIRST OBSERVED ON 08-31-2020

PIPE HH HAS BEEN REMOVED FOR 06-02-2020 COMPARISON AND NO LONGER EXISTS

DELTAS ARE CALCULATED AS THE DIFFERENCE BETWEEN THE 03-03-2025 OBSERVATION AND THE 12-09-2024 OBSERVATION

POINTS ARE GRID BASED COLORADO STATE PLANE COORDINATE SYSTEM, CENTRAL ZONE, NAD 27, NGVD 29

POINTS ARE GRID	BASED COLO	<u>DRADO STATI</u>	<u>E PLANE COOF</u>	<u>RDINATE SYSTEM, CENTE</u>	<u>RAL ZONE, NAD 83, N</u>	<u>IAVD 88</u>						
03-03-2025 OBSEF	RVATIONS				DELTA	DELTA	DELTA	12-09-2024 OBSEF	RVATIONS			
POINT NUMBER	NORTHING	EASTING	ELEVATION	DESCRIPTION	NORTHING	EASTING	ELEVATION	POINT NUMBER	NORTHING	EASTING	ELEVATION	DESCRIPTION
69826	1747922.69	3082079.54	6008.41 N	RIM PIPE AA 030325	0.02	0.01	-0.01	69696	1747922.71	3082079.55	6008.40 1	N RIM PIPE AA 120924
69827	1747654.31	3081696.57	5978.77 N	RIM PIPE BB 030325	0.01	0.00	0.02	69697	1747654.31	3081696.57	5978.78	N RIM PIPE BB 120924
69831	1747892.59	3081511.30	6023.04 N	RIM PIPE CC 030325	-0.01	-0.01	0.01	69701	1747892.59	3081511.30	6023.05	N RIM PIPE CC 120924
69832	1747812.71	3081487.69	6009.60 N	RIM PIPE DD 030325	-0.01	-0.01	0.02	69702	1747812.70	3081487.68	6009.62	N RIM PIPE DD 120924
69833	1747710.09	3081465.90	5992.06 N	RIM PIPE EE 030325	-0.01	-0.02	0.02	69703	1747710.08	3081465.89	5992.09 1	N RIM PIPE EE 120924
69835	1747712.67	3081253.05	6000.67 N	RIM PIPE FF 030325	-0.01	-0.01	0.01	69705	1747712.66	3081253.04	6000.69 1	N RIM PIPE FF 120924
69834	1747572.52	3081501.65	5977.65 N	RIM PIPE GG 030325	-0.02	-0.01	0.02	69704	1747572.51	3081501.65	5977.67	N RIM PIPE GG 120924
69836	1747786.22	3081060.58	6025.44 N	RIM PIPE HH 030325	-0.02	0.01	0.02	69706	1747786.20	3081060.60		N RIM PIPE HH 120924

PIPE HH WAS REPLACED AND HAS A NEW LOCATION FIRST OBSERVED ON 08-31-2020 PIPE HH HAS BEEN REMOVED FOR 06-02-2020 COMPARISON AND NO LONGER EXISTS

DELTAS ARE CALCULATED AS THE DIFFERENCE BETWEEN THE 03-03-2025 OBSERVATION AND THE 12-09-2024 OBSERVATION

POINTS ARE GRID BASED COLORADO STATE PLANE COORDINATE SYSTEM, CENTRAL ZONE, NAD 83, NAVD 88

Appendix B

Analytical Results for Water Samples, First Quarter 2025

						RFLMA Data				_					
LOCATION CODE	LOCATION TYPE	DATE SAMPLED	SAMPLE CODE	CAS	ANALYTE	FILTRATION STATUS	RESULT	UNITS	LAB QUALIFIERS	SAMPLE TYPE	DETECTION LIMIT	UNCER- TAINTY	DATA VALIDATION QUALIFIERS	COLLECTION METHOD	LAB CODE
70193	WL	2/4/2025	RFS01-10.2501074-036	71-55-6	1,1,1-Trichloroethane	N	0.25	ug/L	U	F	0.25		FQ	G	STD
70193	WL	2/4/2025	RFS01-10.2501074-036	79-34-5	1,1,2,2-Tetrachloroethane	N	0.25	ug/L	U	F	0.25		FQ	G	STD
70193	WL	2/4/2025	RFS01-10.2501074-036	79-00-5	1,1,2-Trichloroethane	N	0.25	ug/L	U	F	0.25		FQ	G	STD
70193	WL	2/4/2025	RFS01-10.2501074-036	75-35-4	1,1-Dichloroethene	N	0.25	ug/L	U	F	0.25		FQ	G	STD
70193	WL	2/4/2025	RFS01-10.2501074-036	120-82-1	1,2,4-Trichlorobenzene	N	0.5	ug/L	U	F	0.5		FQ	G	STD
70193	WL	2/4/2025	RFS01-10.2501074-036	95-50-1	1,2-Dichlorobenzene	N	0.25	ug/L	U	F	0.25		FQ	G	STD
70193	WL	2/4/2025	RFS01-10.2501074-036	107-06-2	1,2-Dichloroethane	N	0.25	ua/L	U	F	0.25		FQ	G	STD
70193	WL	2/4/2025	RFS01-10.2501074-036	78-87-5	1,2-Dichloropropane	N	0.25	ug/L	U	F	0.25		FQ	G	STD
70193	WL	2/4/2025	RFS01-10.2501074-036	541-73-1	1,3-Dichlorobenzene	N	0.25	ug/L	U	F	0.25		FQ	G	STD
70193	WL	2/4/2025	RFS01-10.2501074-036	106-46-7	1,4-Dichlorobenzene	N	0.25		U	F	0.25		FQ	G	STD
70193	WL	2/4/2025	RFS01-10.2501074-036	7440-38-2	Arsenic	Y	0.5	Ŭ	U	F	0.5		FQ	G	STD
70193	WL	2/4/2025	RFS01-10.2501074-036	71-43-2	Benzene	N	0.25		U	F	0.25		FQ	G	STD
70193	WL	2/4/2025	RFS01-10.2501074-036	7440-41-7	Beryllium	Y	0.25	- U	U	F	0.25		FQ	G	STD
70193	WL	2/4/2025	RFS01-10.2501074-036	7440-42-8	Boron	Y	22	J.	J	F	15		FQ	G	STD
70193	WL	2/4/2025	RFS01-10.2501074-036	75-25-2	Bromoform	N	0.5		Ŭ	F	0.5		FQ	G	STD
70193	WL	2/4/2025	RFS01-10.2501074-036	7440-43-9	Cadmium	Y	0.25	ug/L	U	F	0.25		FQ	G	STD
70193	WL	2/4/2025	RFS01-10.2501074-036	56-23-5	Carbon tetrachloride	N	0.25	ug/L ug/L	U	F	0.25		FQ	G	STD
70193	WL	2/4/2025	RFS01-10.2501074-036	108-90-7	Chlorobenzene	N	0.25		U	F	0.25		FQ	G	STD
70193	WL	2/4/2025	RFS01-10.2501074-036	67-66-3	Chloroform	N	0.25		U	F	0.25		FQ	G	STD
70193	WL	2/4/2025	RFS01-10.2501074-036	74-87-3	Chloromethane	N	0.25	J.	U	F	0.25		FQ	G	STD
		2/4/2025		7440-47-3		Y	0.5	ug/L	U	F	0.5			G	STD
70193	WL		RFS01-10.2501074-036		Chromium cis-1.2-Dichloroethene		0.25	ug/L	U	F	0.25		FQ FO	_	
70193	WL	2/4/2025	RFS01-10.2501074-036	156-59-2	,	N Y	0.25	3, -	_	F	0.25		FQ FO	G G	STD
70193	WL	2/4/2025	RFS01-10.2501074-036	7440-50-8	Copper		0.05	ug/L	U	F	0.05		FQ		STD STD
70193	WL	2/4/2025	RFS01-10.2501074-036	100-41-4	Ethylbenzene	N	0.25	ug/L	U	F	0.25		FQ	G	
70193	WL	2/4/2025	RFS01-10.2501074-036	87-68-3	Hexachlorobutadiene	N V	0.5	3,	U	F	0.5		FQ	G	STD
70193	WL	2/4/2025	RFS01-10.2501074-036	7439-92-1	Lead	'	0.5	ug/L	U	'	0.5		FQ	G	STD
70193	WL	2/4/2025	RFS01-10.2501074-036	7439-97-6	Mercury	Y	0.06		U	F	0.06		FQ	G	STD
70193	WL	2/4/2025	RFS01-10.2501074-036	75-09-2	Methylene chloride	N	1	ug/L	U	F	1		FQ	G	STD
70193	WL	2/4/2025	RFS01-10.2501074-036	91-20-3	Naphthalene	N	1	ug/L	U	F -	1		FQ	G	STD
70193	WL	2/4/2025	RFS01-10.2501074-036	7440-02-0	Nickel	Y	1	ug/L	U	F	1		FQ	G	STD
70193	WL	2/4/2025	RFS01-10.2501074-036	7782-49-2	Selenium	Y	6.3	ug/L		F	0.5		FQ	G	STD
70193	WL	2/4/2025	RFS01-10.2501074-036	7440-22-4	Silver	Y	0.25	J.	U	F	0.25		FQ	G	STD
70193	WL	2/4/2025	RFS01-10.2501074-036	100-42-5	Styrene	N	0.25		U	F	0.25		FQ	G	STD
70193	WL	2/4/2025	RFS01-10.2501074-036	127-18-4	Tetrachloroethene	N	0.25	ug/L	U	F	0.25		FQ	G	STD
70193	WL	2/4/2025	RFS01-10.2501074-036	108-88-3	Toluene	N	0.38	ug/L	J	F	0.25		FQ	G	STD
70193	WL	2/4/2025	RFS01-10.2501074-036	1330-20-7	Total Xylenes	N	0.25	ug/L	U	F	0.25		FQ	G	STD
70193	WL	2/4/2025	RFS01-10.2501074-036	156-60-5	trans-1,2-Dichloroethene	N	0.25	ug/L	U	F	0.25		FQ	G	STD
70193	WL	2/4/2025	RFS01-10.2501074-036	79-01-6	Trichloroethene	N	0.25	ug/L	U	F	0.25		FQ	G	STD
70193	WL	2/4/2025	RFS01-10.2501074-036	7440-61-1	Uranium	Υ	0.25	ug/L	J	F	0.25		FQ	G	STD
70193	WL	2/4/2025	RFS01-10.2501074-036	75-01-4	Vinyl chloride	N	0.25	ug/L	U	F	0.25		FQ	G	STD
70193	WL	2/4/2025	RFS01-10.2501074-036	7440-66-6	Zinc	Υ	5	ug/L	U	F	5		FQ	G	STD
70393	WL	2/4/2025	RFS01-10.2501074-037	71-55-6	1,1,1-Trichloroethane	N	0.25	ug/L	U	F	0.25		FQ	G	STD
70393	WL	2/4/2025	RFS01-10.2501074-037	79-34-5	1,1,2,2-Tetrachloroethane	N	0.25	ug/L	U	F	0.25		FQ	G	STD
70393	WL	2/4/2025	RFS01-10.2501074-037	79-00-5	1,1,2-Trichloroethane	N	0.25	ug/L	U	F	0.25		FQ	G	STD
70393	WL	2/4/2025	RFS01-10.2501074-037	75-35-4	1,1-Dichloroethene	N	1	ug/L		F	0.25		FQ	G	STD
70393	WL	2/4/2025	RFS01-10.2501074-037	120-82-1	1,2,4-Trichlorobenzene	N	0.5	·	U	F	0.5		FQ	G	STD
70393	WL	2/4/2025	RFS01-10.2501074-037	95-50-1	1,2-Dichlorobenzene	N	0.25		U	F	0.25		FQ	G	STD
70393	WL	2/4/2025	RFS01-10.2501074-037	107-06-2	1,2-Dichloroethane	N	0.25		U	F	0.25		FQ	G	STD
70393	WL	2/4/2025	RFS01-10.2501074-037	78-87-5	1,2-Dichloropropane	N	0.25	J.	U	F	0.25		FQ	G	STD
70393	WL	2/4/2025	RFS01-10.2501074-037	541-73-1	1,3-Dichlorobenzene	N	0.25	J.	U	F	0.25		FQ	G	STD
70393	WL	2/4/2025	RFS01-10.2501074-037	106-46-7	1,4-Dichlorobenzene	N	0.25	_	U	F	0.25		FQ	G	STD
70393	WL	2/4/2025	RFS01-10.2501074-037	7440-38-2	Arsenic	Y	0.5	Ŭ	U	F.	0.5		FQ	G	STD
70393	WL	2/4/2025	RFS01-10.2501074-037	71-43-2	Benzene	N	0.25	_	U	F	0.25		FQ	G	STD
70393	WL	2/4/2025	RFS01-10.2501074-037	7440-41-7	Beryllium	Y	0.25	·	U	F	0.25		FQ	G	STD
70393	WL	2/4/2025	RFS01-10.2501074-037	7440-42-8	Boron	Y	15	- U	U	F	15		FQ	G	STD
70393	WL	2/4/2025	RFS01-10.2501074-037	75-25-2	Bromoform	N	0.5		U	F	0.5		FQ	G	STD
70393	WL	2/4/2025	RFS01-10.2501074-037	7440-43-9	Cadmium	Y	0.25	_	U	F	0.25		FQ	G	STD
70393	WL	2/4/2025	RFS01-10.2501074-037	56-23-5	Carbon tetrachloride	N	0.25		U	F	0.25		FQ	G	STD
70393	۷VL	2/4/2023	NC301-10.23010/4-03/	30-23-3	Carbon tetrachionide	IN	0.25	ug/L	U	F	0.25		ΓŲ	9	עוט

LOCATION CODE	LOCATION TYPE	DATE SAMPLED	SAMPLE CODE	CAS	ANALYTE	FILTRATION STATUS	RESULT	UNITS	LAB QUALIFIERS	SAMPLE TYPE	DETECTION LIMIT	UNCER- TAINTY	DATA VALIDATION QUALIFIERS	COLLECTION METHOD	LAB CODE
70393	WL	2/4/2025	RFS01-10.2501074-037	108-90-7	Chlorobenzene	N	0.25	ug/L	U	F	0.25		FQ	G	STD
70393	WL	2/4/2025	RFS01-10.2501074-037	67-66-3	Chloroform	N	0.25	ug/L	U	F	0.25		FQ	G	STD
70393	WL	2/4/2025	RFS01-10.2501074-037	74-87-3	Chloromethane	N	0.5	ug/L	U	F	0.5		FQ	G	STD
70393	WL	2/4/2025	RFS01-10.2501074-037	7440-47-3	Chromium	Υ	1	ua/L	U	F	1		FQ	G	STD
70393	WL	2/4/2025	RFS01-10.2501074-037	156-59-2	cis-1,2-Dichloroethene	N	0.25)	U	F	0.25		FQ	G	STD
70393	WL	2/4/2025	RFS01-10.2501074-037	7440-50-8	Copper	Y	1	ug/L	U	F	1		FQ	G	STD
70393	WL	2/4/2025	RFS01-10.2501074-037	100-41-4	Ethylbenzene	N	0.25		Ü	F	0.25		FQ	G	STD
70393	WL	2/4/2025	RFS01-10.2501074-037	87-68-3	Hexachlorobutadiene	N	0.5	ug/L	U	F	0.5		FQ	G	STD
70393	WL	2/4/2025	RFS01-10.2501074-037	7439-92-1	Lead	Y	0.5	ug/L ug/L	U	F	0.5		FQ	G	STD
70393	WL	2/4/2025	RFS01-10.2501074-037	7439-92-1	Mercury	Y	0.06	<u> </u>	U	F	0.06			G	STD
					,	'	0.06	J.		F	0.00		FQ	_	
70393	WL	2/4/2025	RFS01-10.2501074-037	75-09-2	Methylene chloride	N	1	ug/L	U	· ·	1		FQ	G	STD
70393	WL	2/4/2025	RFS01-10.2501074-037	91-20-3	Naphthalene	N	1	ug/L	U	F	1		FQ	G	STD
70393	WL	2/4/2025	RFS01-10.2501074-037	7440-02-0	Nickel	Y	1.1	ug/L	J	F	1		FQ	G	STD
70393	WL	2/4/2025	RFS01-10.2501074-037	7782-49-2	Selenium	Υ	0.96	J.	J	F	0.5		FQ	G	STD
70393	WL	2/4/2025	RFS01-10.2501074-037	7440-22-4	Silver	Υ	0.25	ug/L	U	F	0.25		FQ	G	STD
70393	WL	2/4/2025	RFS01-10.2501074-037	100-42-5	Styrene	N	0.25	ug/L	U	F	0.25		FQ	G	STD
70393	WL	2/4/2025	RFS01-10.2501074-037	127-18-4	Tetrachloroethene	N	0.67	ug/L	J	F	0.25		FQ	G	STD
70393	WL	2/4/2025	RFS01-10.2501074-037	108-88-3	Toluene	N	0.38	ug/L	J	F	0.25		FQ	G	STD
70393	WL	2/4/2025	RFS01-10.2501074-037	1330-20-7	Total Xylenes	N	0.25	ug/L	U	F	0.25		FQ	G	STD
70393	WL	2/4/2025	RFS01-10.2501074-037	156-60-5	trans-1,2-Dichloroethene	N	0.25	ug/L	U	F	0.25		FQ	G	STD
70393	WL	2/4/2025	RFS01-10.2501074-037	79-01-6	Trichloroethene	N	3.9	ug/L		F	0.25		FQ	G	STD
70393	WL	2/4/2025	RFS01-10.2501074-037	7440-61-1	Uranium	Y	0.25		U	F	0.25		FQ	G	STD
70393	WL	2/4/2025	RFS01-10.2501074-037	75-01-4	Vinyl chloride	N	0.25		U	F	0.25		FQ	G	STD
70393	WL	2/4/2025	RFS01-10.2501074-037	7440-66-6	Zinc	V V	5.20	ug/L	Ü	F	5.20		FQ	G	STD
70693	WL	2/4/2025	RFS01-10.2501074-038	71-55-6	1,1,1-Trichloroethane	N	0.25		U	F	0.25		F	G	STD
70693	WL	2/4/2025	RFS01-10.2501074-038	79-34-5	1,1,2,2-Tetrachloroethane	N	0.25)	U	F	0.25		F	G	STD
70693		2/4/2025		79-00-5				J.	U	F	0.25		F	G	STD
	WL		RFS01-10.2501074-038		1,1,2-Trichloroethane	N	0.25	J.	_	F			F F	_	
70693	WL	2/4/2025	RFS01-10.2501074-038	75-35-4	1,1-Dichloroethene	N	0.59	ug/L	J		0.25		<u>'</u>	G	STD
70693	WL	2/4/2025	RFS01-10.2501074-038	120-82-1	1,2,4-Trichlorobenzene	N	0.5	3,	U	F	0.5		F	G	STD
70693	WL	2/4/2025	RFS01-10.2501074-038	95-50-1	1,2-Dichlorobenzene	N	0.25		U	F	0.25		F	G	STD
70693	WL	2/4/2025	RFS01-10.2501074-038	107-06-2	1,2-Dichloroethane	N	0.25	U	U	F	0.25		F	G	STD
70693	WL	2/4/2025	RFS01-10.2501074-038	78-87-5	1,2-Dichloropropane	N	0.25	J.	U	F	0.25		F	G	STD
70693	WL	2/4/2025	RFS01-10.2501074-038	541-73-1	1,3-Dichlorobenzene	N	0.25		U	F	0.25		F	G	STD
70693	WL	2/4/2025	RFS01-10.2501074-038	106-46-7	1,4-Dichlorobenzene	N	0.25	ug/L	U	F	0.25		F	G	STD
70693	WL	2/4/2025	RFS01-10.2501074-038	7440-38-2	Arsenic	Υ	0.5	ug/L	U	F	0.5		F	G	STD
70693	WL	2/4/2025	RFS01-10.2501074-038	71-43-2	Benzene	N	0.25	ug/L	J	F	0.25		F	G	STD
70693	WL	2/4/2025	RFS01-10.2501074-038	7440-41-7	Beryllium	Υ	0.25	ug/L	U	F	0.25		F	G	STD
70693	WL	2/4/2025	RFS01-10.2501074-038	7440-42-8	Boron	Υ	26	ug/L	J	F	15		F	G	STD
70693	WL	2/4/2025	RFS01-10.2501074-038	75-25-2	Bromoform	N	0.5	ug/L	U	F	0.5		F	G	STD
70693	WL	2/4/2025	RFS01-10.2501074-038	7440-43-9	Cadmium	Υ	0.25		U	F	0.25		F	G	STD
70693	WL	2/4/2025	RFS01-10.2501074-038	56-23-5	Carbon tetrachloride	N	0.25		U	F	0.25		F	G	STD
70693	WL	2/4/2025	RFS01-10.2501074-038	108-90-7	Chlorobenzene	N	0.25	3, -	U	F	0.25		F	G	STD
70693	WL	2/4/2025	RFS01-10.2501074-038	67-66-3	Chloroform	N	0.25	J.	U	F	0.25		F	G	STD
70693	WL	2/4/2025	RFS01-10.2501074-038	74-87-3	Chloromethane	N	0.5		U	F	0.5		F.	G	STD
70693	WL	2/4/2025	RFS01-10.2501074-038	7440-47-3	Chromium	Y	1	ug/L	U	F	1		F '	G	STD
70693	WL	2/4/2025	RFS01-10.2501074-038	156-59-2	cis-1,2-Dichloroethene	N	0.25		U	F	0.25		F	G	STD
70693	WL	2/4/2025	RFS01-10.2501074-038	7440-50-8	Cis-1,2-Dichloroetherie Copper	Y	0.25	ug/L ug/L	U	F	0.25		F	G	STD
70693	WL	2/4/2025	RFS01-10.2501074-038	100-41-4	Ethylbenzene	N N	0.25		U	F	0.25		F	G	STD
					,			J.		F			F F	_	
70693	WL	2/4/2025	RFS01-10.2501074-038	87-68-3	Hexachlorobutadiene	N	0.5)	U		0.5		'	G	STD
70693	WL	2/4/2025	RFS01-10.2501074-038	7439-92-1	Lead	Y	0.5	3, -	U	F	0.5		F	G	STD
70693	WL	2/4/2025	RFS01-10.2501074-038	7439-97-6	Mercury	Y	0.06	,	U	F	0.06		F	G	STD
70693	WL	2/4/2025	RFS01-10.2501074-038	75-09-2	Methylene chloride	N	1	ug/L	U	F	1		F	G	STD
70693	WL	2/4/2025	RFS01-10.2501074-038	91-20-3	Naphthalene	N	1	ug/L	U	F	1		F	G	STD
70693	WL	2/4/2025	RFS01-10.2501074-038	7440-02-0	Nickel	Y	1	ug/L	U	F	1		F	G	STD
70693	WL	2/4/2025	RFS01-10.2501074-038	7782-49-2	Selenium	Υ	0.81	ug/L	J	F	0.5		F	G	STD
70693	WL	2/4/2025	RFS01-10.2501074-038	7440-22-4	Silver	Υ	0.25	ug/L	U	F	0.25		F	G	STD
70693	WL	2/4/2025	RFS01-10.2501074-038	100-42-5	Styrene	N	0.25	ug/L	U	F	0.25		F	G	STD
70693	WL	2/4/2025	RFS01-10.2501074-038	127-18-4	Tetrachloroethene	N	0.41	ug/L	J	F	0.25	·	F	G	STD

						RFLMA Data									
LOCATION CODE	LOCATION TYPE	DATE SAMPLED	SAMPLE CODE	CAS	ANALYTE	FILTRATION STATUS	RESULT	UNITS	LAB QUALIFIERS	SAMPLE TYPE	DETECTION LIMIT	UNCER- TAINTY	DATA VALIDATION QUALIFIERS	COLLECTION METHOD	LAB CODE
70693	WL	2/4/2025	RFS01-10.2501074-038	108-88-3	Toluene	N	0.25	ug/L	U	F	0.25		F	G	STD
70693	WL	2/4/2025	RFS01-10.2501074-038	1330-20-7	Total Xylenes	N	0.25	ug/L	U	F	0.25		F	G	STD
70693	WL	2/4/2025	RFS01-10.2501074-038	156-60-5	trans-1,2-Dichloroethene	N	0.25	ug/L	U	F	0.25		F	G	STD
70693	WL	2/4/2025	RFS01-10.2501074-038	79-01-6	Trichloroethene	N	1.6	ug/L		F	0.25		F	G	STD
70693	WL	2/4/2025	RFS01-10.2501074-038	7440-61-1	Uranium	Y	0.25	ug/L	U	F	0.25		F	G	STD
70693	WL	2/4/2025	RFS01-10.2501074-038	75-01-4	Vinyl chloride	N	0.25	ug/L	U	F	0.25		F	G	STD
70693	WL	2/4/2025	RFS01-10.2501074-038	7440-66-6	Zinc	Υ	5	ug/L	U	F	5		F	G	STD
73005	WL	2/4/2025	RFS01-10.2501074-039	71-55-6	1,1,1-Trichloroethane	N	0.25	ug/L	U	F	0.25		FQ	G	STD
73005	WL	2/4/2025	RFS01-10.2501074-039	79-34-5	1,1,2,2-Tetrachloroethane	N	0.25	ug/L	U	F	0.25		FQ	G	STD
73005	WL	2/4/2025	RFS01-10.2501074-039	79-00-5	1,1,2-Trichloroethane	N	0.25	ug/L	U	F	0.25		FQ	G	STD
73005	WL	2/4/2025	RFS01-10.2501074-039	75-35-4	1,1-Dichloroethene	N	0.25	ug/L	U	F	0.25		FQ	G	STD
73005	WL	2/4/2025	RFS01-10.2501074-039	120-82-1	1,2,4-Trichlorobenzene	N	0.5	ug/L	U	F	0.5		FQ	G	STD
73005	WL	2/4/2025	RFS01-10.2501074-039	95-50-1	1,2-Dichlorobenzene	N	0.25	ug/L	U	F	0.25		FQ	G	STD
73005	WL	2/4/2025	RFS01-10.2501074-039	107-06-2	1,2-Dichloroethane	N	0.25	ug/L	U	F	0.25		FQ	G	STD
73005	WL	2/4/2025	RFS01-10.2501074-039	78-87-5	1,2-Dichloropropane	N	0.25	ug/L	U	F	0.25		FQ	G	STD
73005	WL	2/4/2025	RFS01-10.2501074-039	541-73-1	1,3-Dichlorobenzene	N	0.25	ug/L	U	F	0.25		FQ	G	STD
73005	WL	2/4/2025	RFS01-10.2501074-039	106-46-7	1,4-Dichlorobenzene	N	0.25	ug/L	U	F	0.25		FQ	G	STD
73005	WL	2/4/2025	RFS01-10.2501074-039	7440-38-2	Arsenic	Y	0.5	ug/L	U	F	0.5		FQ	G	STD
73005	WL	2/4/2025	RFS01-10.2501074-039	71-43-2	Benzene	N	0.25	ug/L	U	F	0.25		FQ	G	STD
73005	WL	2/4/2025	RFS01-10.2501074-039	7440-41-7	Beryllium	Y	0.25	ug/L	U	F	0.25		FQ	G	STD
73005	WL	2/4/2025	RFS01-10.2501074-039	7440-42-8	Boron	Y	43	ug/L	J	F	15		FQ	G	STD
73005	WL	2/4/2025	RFS01-10.2501074-039	75-25-2	Bromoform	N	0.5	ug/L	U	F	0.5		FQ	G	STD
73005	WL	2/4/2025	RFS01-10.2501074-039	7440-43-9	Cadmium	Υ	0.25	ug/L	U	F	0.25		FQ	G	STD
73005	WL	2/4/2025	RFS01-10.2501074-039	56-23-5	Carbon tetrachloride	N	0.25	ug/L	U	F	0.25		FQ	G	STD
73005	WL	2/4/2025	RFS01-10.2501074-039	108-90-7	Chlorobenzene	N	0.25	ug/L	U	F	0.25		FQ	G	STD
73005	WL	2/4/2025	RFS01-10.2501074-039	67-66-3	Chloroform	N	0.25	ug/L	U	F	0.25		FQ	G	STD
73005	WL	2/4/2025	RFS01-10.2501074-039	74-87-3	Chloromethane	N	0.5	ug/L	U	F	0.5		FQ	G	STD
73005	WL	2/4/2025	RFS01-10.2501074-039	7440-47-3	Chromium	Υ	1	ug/L	U	F	1		FQ	G	STD
73005	WL	2/4/2025	RFS01-10.2501074-039	156-59-2	cis-1,2-Dichloroethene	N	0.25	ug/L	U	F	0.25		FQ	G	STD
73005	WL	2/4/2025	RFS01-10.2501074-039	7440-50-8	Copper	Υ	1	ug/L	U	F	1		FQ	G	STD
73005	WL	2/4/2025	RFS01-10.2501074-039	100-41-4	Ethylbenzene	N	0.25	ug/L	U	F	0.25		FQ	G	STD
73005	WL	2/4/2025	RFS01-10.2501074-039	87-68-3	Hexachlorobutadiene	N	0.5	ug/L	U	F	0.5		FQ	G	STD
73005	WL	2/4/2025	RFS01-10.2501074-039	7439-92-1	Lead	Y	0.5	ug/L	U	F	0.5		FQ	G	STD
73005	WL	2/4/2025	RFS01-10.2501074-039	7439-97-6	Mercury	Υ	0.06	ug/L	U	F	0.06		FQ	G	STD
73005	WL	2/4/2025	RFS01-10.2501074-039	75-09-2	Methylene chloride	N	1	ug/L	U	F	1		FQ	G	STD
73005	WL	2/4/2025	RFS01-10.2501074-039	91-20-3	Naphthalene	N	1	ug/L	U	F	1		FQ	G	STD
73005	WL	2/4/2025	RFS01-10.2501074-039	7440-02-0	Nickel	Υ	1.5	ug/L	J	F	1		FQ	G	STD
73005	WL	2/4/2025	RFS01-10.2501074-039	7782-49-2	Selenium	Y	3.7	ug/L		F	0.5		FQ	G	STD
73005	WL	2/4/2025	RFS01-10.2501074-039	7440-22-4	Silver	Y	0.25	ug/L	U	F	0.25		FQ	G	STD
73005	WL	2/4/2025	RFS01-10.2501074-039	100-42-5	Styrene	N	0.25	ug/L	U	F	0.25		FQ	G	STD
73005	WL	2/4/2025	RFS01-10.2501074-039	127-18-4	Tetrachloroethene	N	0.25	ug/L	U	F	0.25		FQ	G	STD
73005	WL	2/4/2025	RFS01-10.2501074-039	108-88-3	Toluene	N	0.25	ug/L	U	F	0.25		FQ	G	STD
73005	WL	2/4/2025	RFS01-10.2501074-039	1330-20-7	Total Xylenes	N	0.25	ug/L	U	F	0.25		FQ	G	STD
73005	WL	2/4/2025	RFS01-10.2501074-039	156-60-5	trans-1,2-Dichloroethene	N	0.25	ug/L	U	F	0.25		FQ	G	STD
73005	WL	2/4/2025	RFS01-10.2501074-039	79-01-6	Trichloroethene	N	0.25	ug/L	U	F	0.25		FQ	G	STD
73005	WL	2/4/2025	RFS01-10.2501074-039	7440-61-1	Uranium	Υ	33	ug/L		F	0.25		FQ	G	STD
73005	WL	2/4/2025	RFS01-10.2501074-039	75-01-4	Vinyl chloride	N	0.25	ug/L	U	F	0.25		FQ	G	STD
73005	WL	2/4/2025	RFS01-10.2501074-039	7440-66-6	Zinc	Υ	7.3	ug/L	J	F	5		FQ	G	STD
73105	WL	2/4/2025	RFS01-10.2501074-040	71-55-6	1,1,1-Trichloroethane	N	0.25	ug/L	U	F	0.25		FQ	G	STD
73105	WL	2/4/2025	RFS01-10.2501074-040	79-34-5	1,1,2,2-Tetrachloroethane	N	0.25	ug/L	U	F	0.25		FQ	G	STD
73105	WL	2/4/2025	RFS01-10.2501074-040	79-00-5	1,1,2-Trichloroethane	N	0.25	ug/L	U	F	0.25		FQ	G	STD
73105	WL	2/4/2025	RFS01-10.2501074-040	75-35-4	1,1-Dichloroethene	N	0.25	ug/L	U	F	0.25		FQ	G	STD
73105	WL	2/4/2025	RFS01-10.2501074-040	120-82-1	1,2,4-Trichlorobenzene	N	0.5	ug/L	U	F	0.5		FQ	G	STD
73105	WL	2/4/2025	RFS01-10.2501074-040	95-50-1	1,2-Dichlorobenzene	N	0.25	ug/L	U	F	0.25		FQ	G	STD
73105	WL	2/4/2025	RFS01-10.2501074-040	107-06-2	1,2-Dichloroethane	N	0.25	ug/L	U	F	0.25		FQ	G	STD
73105	WL	2/4/2025	RFS01-10.2501074-040	78-87-5	1,2-Dichloropropane	N	0.25	ug/L	U	F	0.25		FQ	G	STD
73105	WL	2/4/2025	RFS01-10.2501074-040	541-73-1	1,3-Dichlorobenzene	N	0.25	ug/L	U	F	0.25		FQ	G	STD
73105	WL	2/4/2025	RFS01-10.2501074-040	106-46-7	1,4-Dichlorobenzene	N	0.25	ug/L	U	F	0.25		FQ	G	STD

						RFLMA Data									
LOCATION CODE	LOCATION TYPE	DATE SAMPLED	SAMPLE CODE	CAS	ANALYTE	FILTRATION STATUS	RESULT	UNITS	LAB QUALIFIERS	SAMPLE TYPE	DETECTION LIMIT	UNCER- TAINTY	DATA VALIDATION QUALIFIERS	COLLECTION METHOD	LAB CODE
73105	WL	2/4/2025	RFS01-10.2501074-040	7440-38-2	Arsenic	Υ	0.5	ug/L	U	F	0.5		FQ	G	STD
73105	WL	2/4/2025	RFS01-10.2501074-040	71-43-2	Benzene	N	0.25	ug/L	U	F	0.25		FQ	G	STD
73105	WL	2/4/2025	RFS01-10.2501074-040	7440-41-7	Beryllium	Υ	0.25	ug/L	U	F	0.25		FQ	G	STD
73105	WL	2/4/2025	RFS01-10.2501074-040	7440-42-8	Boron	Y	120	ug/L		F	15		FQ	G	STD
73105	WL	2/4/2025	RFS01-10.2501074-040	75-25-2	Bromoform	N	0.5	·	U	F	0.5		FQ	G	STD
73105	WL	2/4/2025	RFS01-10.2501074-040	7440-43-9	Cadmium	Y	0.25	ug/L	U	F	0.25		FQ	G	STD
73105	WL	2/4/2025	RFS01-10.2501074-040	56-23-5	Carbon tetrachloride	N	0.25	_	U	F	0.25		FQ	G	STD
73105	WL	2/4/2025	RFS01-10.2501074-040	108-90-7	Chlorobenzene	N	0.25	U	U	F	0.25		FQ	G	STD
73105	WL	2/4/2025	RFS01-10.2501074-040	67-66-3	Chloroform	N	0.25	U	U	F	0.25		FQ	G	STD
73105	WL	2/4/2025	RFS01-10.2501074-040	74-87-3	Chloromethane	N	0.5	ug/L	U	F	0.5		FQ	G	STD
73105	WL	2/4/2025	RFS01-10.2501074-040	7440-47-3	Chromium	Y	1	ug/L	U	F	1		FQ	G	STD
73105	WL	2/4/2025	RFS01-10.2501074-040	156-59-2	cis-1,2-Dichloroethene	N	0.25	U	U	F	0.25		FQ	G	STD
73105	WL	2/4/2025	RFS01-10.2501074-040	7440-50-8	Copper	Y	0.23	ug/L	Ü	F	1		FQ	G	STD
73105	WL	2/4/2025	RFS01-10.2501074-040	100-41-4	Ethylbenzene	N N	0.25		U	F	0.25		FQ	G	STD
73105	WL	2/4/2025	RFS01-10.2501074-040	87-68-3	Hexachlorobutadiene	N	0.25	,	U	F	0.5		FQ	G	STD
73105	WL	2/4/2025	RFS01-10.2501074-040	7439-92-1	Lead	Y	0.5	ug/L ug/L	U	F	0.5		FQ	G	STD
73105	WL	2/4/2025	RFS01-10.2501074-040	7439-92-1	Mercury	Y	0.06	· ·	U	F	0.06		FQ	G	STD
73105	WL	2/4/2025	RFS01-10.2501074-040	75-09-2	Methylene chloride	N N	0.00	ug/L	U	F	0.00		FQ	G	STD
73105			RFS01-10.2501074-040	91-20-3	<u> </u>	N	1	ug/L	U	F	1		FQ	G	STD
	WL	2/4/2025			Naphthalene	N Y	1 0	ug/L		F	1				
73105	WL	2/4/2025	RFS01-10.2501074-040	7440-02-0	Nickel	Y	1.9	s.g, _	J	F	7		FQ	G	STD
73105	WL	2/4/2025	RFS01-10.2501074-040	7782-49-2	Selenium		0.5		U	F	0.5		FQ	G	STD
73105	WL	2/4/2025	RFS01-10.2501074-040	7440-22-4	Silver	Y	0.25		U	F	0.25		FQ	G	STD
73105	WL	2/4/2025	RFS01-10.2501074-040	100-42-5	Styrene	N	0.25	5	U		0.25		FQ	G	STD
73105	WL	2/4/2025	RFS01-10.2501074-040	127-18-4	Tetrachloroethene	N	0.25	_	U	F	0.25		FQ	G	STD
73105	WL	2/4/2025	RFS01-10.2501074-040	108-88-3	Toluene	N	0.25	5	U	F	0.25		FQ	G	STD
73105	WL	2/4/2025	RFS01-10.2501074-040	1330-20-7	Total Xylenes	N	0.25	5	U	F	0.25		FQ	G	STD
73105	WL	2/4/2025	RFS01-10.2501074-040	156-60-5	trans-1,2-Dichloroethene	N	0.25	5	U	F	0.25		FQ	G	STD
73105	WL	2/4/2025	RFS01-10.2501074-040	79-01-6	Trichloroethene	N	0.25	U	U	F	0.25		FQ	G	STD
73105	WL	2/4/2025	RFS01-10.2501074-040	7440-61-1	Uranium	Y	19	ug/L		F	0.25		FQ	G	STD
73105	WL	2/4/2025	RFS01-10.2501074-040	75-01-4	Vinyl chloride	N	0.25	ug/L	U	F	0.25		FQ	G	STD
73105	WL	2/4/2025	RFS01-10.2501074-040	7440-66-6	Zinc	Y	5	ug/L	U	F	5		FQ	G	STD
73205	WL	2/4/2025	RFS01-10.2501074-041	71-55-6	1,1,1-Trichloroethane	N	0.25	5	U	F	0.25		FQ	G	STD
73205	WL	2/4/2025	RFS01-10.2501074-041	79-34-5	1,1,2,2-Tetrachloroethane	N	0.25	ug/L	U	F	0.25		FQ	G	STD
73205	WL	2/4/2025	RFS01-10.2501074-041	79-00-5	1,1,2-Trichloroethane	N	0.25	ug/L	U	F	0.25		FQ	G	STD
73205	WL	2/4/2025	RFS01-10.2501074-041	75-35-4	1,1-Dichloroethene	N	0.25	ug/L	U	F	0.25		FQ	G	STD
73205	WL	2/4/2025	RFS01-10.2501074-041	120-82-1	1,2,4-Trichlorobenzene	N	0.5	ug/L	J	F	0.5		FQ	G	STD
73205	WL	2/4/2025	RFS01-10.2501074-041	95-50-1	1,2-Dichlorobenzene	N	0.25	ug/L	J	F	0.25		FQ	G	STD
73205	WL	2/4/2025	RFS01-10.2501074-041	107-06-2	1,2-Dichloroethane	N	0.25	ug/L	U	F	0.25		FQ	G	STD
73205	WL	2/4/2025	RFS01-10.2501074-041	78-87-5	1,2-Dichloropropane	N	0.25	ug/L	U	F	0.25		FQ	G	STD
73205	WL	2/4/2025	RFS01-10.2501074-041	541-73-1	1,3-Dichlorobenzene	N	0.25	ug/L	U	F	0.25		FQ	G	STD
73205	WL	2/4/2025	RFS01-10.2501074-041	106-46-7	1,4-Dichlorobenzene	N	0.25	ug/L	U	F	0.25		FQ	G	STD
73205	WL	2/4/2025	RFS01-10.2501074-041	7440-38-2	Arsenic	Υ	0.55	ug/L	J	F	0.5		FQ	G	STD
73205	WL	2/4/2025	RFS01-10.2501074-041	71-43-2	Benzene	N	0.25	Ŭ	U	F	0.25		FQ	G	STD
73205	WL	2/4/2025	RFS01-10.2501074-041	7440-41-7	Beryllium	Y	0.25		U	F	0.25		FQ	G	STD
73205	WL	2/4/2025	RFS01-10.2501074-041	7440-42-8	Boron	Y	71	ug/L		F	15		FQ	G	STD
73205	WL	2/4/2025	RFS01-10.2501074-041	75-25-2	Bromoform	N	0.5	_	U	F	0.5		FQ	G	STD
73205	WL	2/4/2025	RFS01-10.2501074-041	7440-43-9	Cadmium	Y	0.25	_	U	F	0.25		FQ	G	STD
73205	WL	2/4/2025	RFS01-10.2501074-041	56-23-5	Carbon tetrachloride	N	0.25	J	U	F	0.25		FQ	G	STD
73205	WL	2/4/2025	RFS01-10.2501074-041	108-90-7	Chlorobenzene	N	0.25	,	Ü	F	0.25		FQ	G	STD
73205	WL	2/4/2025	RFS01-10.2501074-041	67-66-3	Chloroform	N	0.25	,	U	F	0.25		FQ	G	STD
73205	WL	2/4/2025	RFS01-10.2501074-041	74-87-3	Chloromethane	N	0.25	ug/L	U	F	0.5		FQ	G	STD
73205	WL	2/4/2025	RFS01-10.2501074-041	7440-47-3	Chromium	Y	1	ug/L	U	F	1		FQ	G	STD
73205	WL	2/4/2025	RFS01-10.2501074-041	156-59-2	cis-1,2-Dichloroethene	N	0.25		U	F	0.25		FQ	G	STD
73205	WL	2/4/2025	RFS01-10.2501074-041	7440-50-8	Cis-1,2-Dictilordetrierie Copper	Y	1.4	ug/L ug/L	J	F	0.25		FQ	G	STD
73205	WL	2/4/2025	RFS01-10.2501074-041	100-41-4	Ethylbenzene	N N	0.25		U	F	0.25		FQ	G	STD
73205	WL	2/4/2025	RFS01-10.2501074-041	87-68-3	Hexachlorobutadiene	N	0.25		U	F	0.25		FQ	G	STD
73205	WL	2/4/2025	RFS01-10.2501074-041	7439-92-1	Lead	Y	0.5	Ŭ	U	F	0.5		FQ	G	STD
						Y		5		F				G	STD
73205	WL	2/4/2025	RFS01-10.2501074-041	7439-97-6	Mercury	Υ	0.06	ug/L	U	_ F	0.06		FQ	G	טוט

I						RFLMA Data				-					
LOCATION CODE	LOCATION TYPE	DATE SAMPLED	SAMPLE CODE	CAS	ANALYTE	FILTRATION STATUS	RESULT	UNITS	LAB QUALIFIERS	SAMPLE TYPE	DETECTION LIMIT	UNCER- TAINTY	DATA VALIDATION QUALIFIERS	COLLECTION METHOD	LAB CODE
73205	WL	2/4/2025	RFS01-10.2501074-041	75-09-2	Methylene chloride	N	1	ug/L	U	F	1		FQ	G	STD
73205	WL	2/4/2025	RFS01-10.2501074-041	91-20-3	Naphthalene	N	1	ug/L	U	F	1		FQ	G	STD
73205	WL	2/4/2025	RFS01-10.2501074-041	7440-02-0	Nickel	Υ	2.9	ug/L	J	F	1		FQ	G	STD
73205	WL	2/4/2025	RFS01-10.2501074-041	7782-49-2	Selenium	Y	200		<u> </u>	F	0.5		FQ	G	STD
73205	WL	2/4/2025	RFS01-10.2501074-041	7440-22-4	Silver	Y	0.25	·	U	F	0.25		FQ	G	STD
73205	WL	2/4/2025	RFS01-10.2501074-041	100-42-5	Styrene	N	0.25	·	Ü	F	0.25		FQ	G	STD
73205	WL	2/4/2025	RFS01-10.2501074-041	127-18-4	Tetrachloroethene	N	0.25	5	U	F	0.25		FQ	G	STD
73205	WL	2/4/2025	RFS01-10.2501074-041	108-88-3	Toluene	N	0.23	U	J	F	0.25		FQ	G	STD
73205								ug/L		F F	0.25				STD
	WL	2/4/2025	RFS01-10.2501074-041	1330-20-7	Total Xylenes	N	0.25	5	U	F			FQ	G	
73205	WL	2/4/2025	RFS01-10.2501074-041	156-60-5	trans-1,2-Dichloroethene	N	0.25	·	U	'	0.25		FQ	G	STD
73205	WL	2/4/2025	RFS01-10.2501074-041	79-01-6	Trichloroethene	N	0.25	·	U	F	0.25		FQ	G	STD
73205	WL	2/4/2025	RFS01-10.2501074-041	7440-61-1	Uranium	Υ	120	·		F	0.25		FQ	G	STD
73205	WL	2/4/2025	RFS01-10.2501074-041	75-01-4	Vinyl chloride	N	0.25	ug/L	U	F	0.25		FQ	G	STD
73205	WL	2/4/2025	RFS01-10.2501074-041	7440-66-6	Zinc	Υ	5	ug/L	U	F	5		FQ	G	STD
80005	WL	2/3/2025	RFS01-10.2501074-018	71-55-6	1,1,1-Trichloroethane	N	0.25	ug/L	U	D	0.25		FQ	G	STD
80005	WL	2/3/2025	RFS01-10.2501074-042	71-55-6	1,1,1-Trichloroethane	N	0.25	ug/L	U	F	0.25		FQ	G	STD
80005	WL	2/3/2025	RFS01-10.2501074-018	79-34-5	1,1,2,2-Tetrachloroethane	N	0.25	ug/L	U	D	0.25		FQ	G	STD
80005	WL	2/3/2025	RFS01-10.2501074-042	79-34-5	1,1,2,2-Tetrachloroethane	N	0.25	ug/L	U	F	0.25		FQ	G	STD
80005	WL	2/3/2025	RFS01-10.2501074-018	79-00-5	1,1,2-Trichloroethane	N	0.25	ug/L	U	D	0.25		FQ	G	STD
80005	WL	2/3/2025	RFS01-10.2501074-042	79-00-5	1.1.2-Trichloroethane	N	0.25	_	U	F	0.25		FQ	G	STD
80005	WL	2/3/2025	RFS01-10.2501074-018	75-35-4	1.1-Dichloroethene	N	0.25		U	D	0.25		FQ	G	STD
80005	WL	2/3/2025	RFS01-10.2501074-042	75-35-4	1,1-Dichloroethene	N	0.25	,	U	F	0.25		FQ	G	STD
80005	WL	2/3/2025	RFS01-10.2501074-018	120-82-1	1,2,4-Trichlorobenzene	N	0.25	·	Ü	D	0.5		FQ	G	STD
80005	WL	2/3/2025	1	120-82-1	1,2,4-Trichlorobenzene	N	0.5	_	U	F	0.5		FQ	G	STD
			RFS01-10.2501074-042					ug/L			0.25			_	
80005	WL	2/3/2025	RFS01-10.2501074-018	95-50-1	1,2-Dichlorobenzene	N	0.25	5	U	D F			FQ	G	STD
80005	WL	2/3/2025	RFS01-10.2501074-042	95-50-1	1,2-Dichlorobenzene	N	0.25		U	'	0.25		FQ	G	STD
80005	WL	2/3/2025	RFS01-10.2501074-018	107-06-2	1,2-Dichloroethane	N	0.25	5,	U	D	0.25		FQ	G	STD
80005	WL	2/3/2025	RFS01-10.2501074-042	107-06-2	1,2-Dichloroethane	N	0.25	5	U	F	0.25		FQ	G	STD
80005	WL	2/3/2025	RFS01-10.2501074-018	78-87-5	1,2-Dichloropropane	N	0.25	5	U	D	0.25		FQ	G	STD
80005	WL	2/3/2025	RFS01-10.2501074-042	78-87-5	1,2-Dichloropropane	N	0.25	ug/L	U	F	0.25		FQ	G	STD
80005	WL	2/3/2025	RFS01-10.2501074-018	541-73-1	1,3-Dichlorobenzene	N	0.25	ug/L	U	D	0.25		FQ	G	STD
80005	WL	2/3/2025	RFS01-10.2501074-042	541-73-1	1,3-Dichlorobenzene	N	0.25	ug/L	U	F	0.25		FQ	G	STD
80005	WL	2/3/2025	RFS01-10.2501074-018	106-46-7	1,4-Dichlorobenzene	N	0.25	ug/L	U	D	0.25		FQ	G	STD
80005	WL	2/3/2025	RFS01-10.2501074-042	106-46-7	1,4-Dichlorobenzene	N	0.25	ug/L	U	F	0.25		FQ	G	STD
80005	WL	2/3/2025	RFS01-10.2501074-018	91-58-7	2-Chloronaphthalene	N	1	ug/L	U	D	1		FQ	G	STD
80005	WL	2/3/2025	RFS01-10.2501074-042	91-58-7	2-Chloronaphthalene	N	1	ug/L	U	F	1		FQ	G	STD
80005	WL	2/3/2025	RFS01-10.2501074-018	83-32-9	Acenaphthene	N	0.041	· ·	U	D	0.041		FQ	G	STD
80005	WL	2/3/2025	RFS01-10.2501074-043	83-32-9	Acenaphthene	N	0.041		Ü	F	0.041		FQ	G	STD
80005	WL	2/3/2025	RFS01-10.2501074-018	120-12-7	Anthracene	N	0.041	•	U	D D	0.041		FQ	G	STD
80005	WL	2/3/2025	RFS01-10.2501074-043	120-12-7	Anthracene	N	0.041	ug/L ug/L	U	F	0.041		FQ	G	STD
80005	WL	2/3/2025	RFS01-10.2501074-043	7440-38-2	Arsenic	Y	0.041		U	D	0.041		FQ	G	STD
80005		2/3/2025	RFS01-10.2501074-018	7440-38-2		Y	0.5	5	U	F				G	STD
	WL	2/3/2025			Arsenic	'		3,		'	0.5		FQ FO	_	STD
80005	WL		RFS01-10.2501074-018	71-43-2	Benzene	N	0.25		U	D	0.25		FQ	G	
80005	WL	2/3/2025	RFS01-10.2501074-042	71-43-2	Benzene	N	0.25	_	U	F	0.25		FQ	G	STD
80005	WL	2/3/2025	RFS01-10.2501074-018	50-32-8	Benzo(a)pyrene	N	0.041	ug/L	U	D	0.041		FQ	G	STD
80005	WL	2/3/2025	RFS01-10.2501074-043	50-32-8	Benzo(a)pyrene	N	0.041	ug/L	U	F	0.041		FQ	G	STD
80005	WL	2/3/2025	RFS01-10.2501074-018	191-24-2	Benzo(g,h,i)Perylene	N	0.041	ug/L	U	D	0.041		FQ	G	STD
80005	WL	2/3/2025	RFS01-10.2501074-043	191-24-2	Benzo(g,h,i)Perylene	N	0.041	ug/L	U	F	0.041		FQ	G	STD
80005	WL	2/3/2025	RFS01-10.2501074-018	7440-41-7	Beryllium	Y	0.25	ug/L	U	D	0.25		FQ	G	STD
80005	WL	2/3/2025	RFS01-10.2501074-042	7440-41-7	Beryllium	Υ	0.25	ug/L	U	F	0.25		FQ	G	STD
80005	WL	2/3/2025	RFS01-10.2501074-018	108-60-1	Bis(2-chloroisopropyl) ether	N	4.1	ug/L	U	D	4.1		FQ	G	STD
80005	WL	2/3/2025	RFS01-10.2501074-042	108-60-1	Bis(2-chloroisopropyl) ether	N	4.1	ug/L	U	F	4.1		FQ	G	STD
80005	WL	2/3/2025	RFS01-10.2501074-018	117-81-7	Bis(2-ethylhexyl) phthalate	N	5.1	_	U	D	5.1		FQ	G	STD
80005	WL	2/3/2025	RFS01-10.2501074-042	117-81-7	Bis(2-ethylhexyl) phthalate	N	5.1	_	U	F	5.1		FQ	G	STD
80005	WL	2/3/2025	RFS01-10.2501074-018	7440-42-8	Boron	Y	47	U	J	D	15		FQ	G	STD
80005	WL	2/3/2025	RFS01-10.2501074-042	7440-42-8	Boron	Y	40		J	F	15		FQ	G	STD
80005	WL	2/3/2025	RFS01-10.2501074-018	75-25-2	Bromoform	N N	0.5	3,	U	D	0.5		FQ	G	STD
										F					STD
80005	WL	2/3/2025	RFS01-10.2501074-042	75-25-2	Bromoform	N	0.5	ug/L	U	F	0.5		FQ	G	עופ

						RFLMA Data									
LOCATION CODE	LOCATION TYPE	DATE SAMPLED	SAMPLE CODE	CAS	ANALYTE	FILTRATION STATUS	RESULT	UNITS	LAB QUALIFIERS	SAMPLE TYPE	DETECTION LIMIT	UNCER- TAINTY	DATA VALIDATION QUALIFIERS	COLLECTION METHOD	LAB CODE
80005	WL	2/3/2025	RFS01-10.2501074-018	7440-43-9	Cadmium	Υ	0.25	ug/L	U	D	0.25		FQ	G	STD
80005	WL	2/3/2025	RFS01-10.2501074-042	7440-43-9	Cadmium	Υ	0.25	ug/L	U	F	0.25		FQ	G	STD
80005	WL	2/3/2025	RFS01-10.2501074-018	56-23-5	Carbon tetrachloride	N	0.25	ug/L	U	D	0.25		FQ	G	STD
80005	WL	2/3/2025	RFS01-10.2501074-042	56-23-5	Carbon tetrachloride	N	0.25	ug/L	U	F	0.25		FQ	G	STD
80005	WL	2/3/2025	RFS01-10.2501074-018	108-90-7	Chlorobenzene	N	0.25	ug/L	U	D	0.25		FQ	G	STD
80005	WL	2/3/2025	RFS01-10.2501074-042	108-90-7	Chlorobenzene	N	0.25	- J	U	F	0.25		FQ	G	STD
80005	WL	2/3/2025	RFS01-10.2501074-018	67-66-3	Chloroform	N	0.25		U	D	0.25		FQ	G	STD
80005	WL	2/3/2025	RFS01-10.2501074-042	67-66-3	Chloroform	N	0.25	Ü	U	F	0.25		FQ	G	STD
80005	WL	2/3/2025	RFS01-10.2501074-018	74-87-3	Chloromethane	N	0.5	Ü	Ü	D	0.5		FQ	G	STD
80005	WL	2/3/2025	RFS01-10.2501074-042	74-87-3	Chloromethane	N	0.5	ug/L	U	F	0.5		FQ	G	STD
80005	WL	2/3/2025	RFS01-10.2501074-018	7440-47-3	Chromium	Y	1	ug/L	U	D	1		FQ	G	STD
80005	WL	2/3/2025	RFS01-10.2501074-042	7440-47-3	Chromium	Y	1	ug/L	U	F	1		FQ	G	STD
80005	WL	2/3/2025	RFS01-10.2501074-018	218-01-9	Chrysene	N	0.041	ug/L	U	D	0.041		FQ	G	STD
80005	WL	2/3/2025	RFS01-10.2501074-043	218-01-9	Chrysene	N	0.041	ug/L	U	F	0.041		FQ	G	STD
80005	WL	2/3/2025	RFS01-10.2501074-018	156-59-2	cis-1,2-Dichloroethene	N	0.25		U	D	0.25		FQ	G	STD
80005	WL	2/3/2025	RFS01-10.2501074-042	156-59-2	cis-1,2-Dichloroethene	N	0.25	Ŭ	U	F	0.25		FQ	G	STD
80005	WL	2/3/2025	RFS01-10.2501074-042	7440-50-8	Cis-1,2-Dictilordetrierie Copper	Y	0.20	ug/L ug/L	U	D	0.25		FQ FQ	G	STD
80005	WL	2/3/2025	RFS01-10.2501074-018	7440-50-8	Copper	Y	1	ug/L ug/L	U	F	1		FQ	G	STD
80005	WL	2/3/2025	RFS01-10.2501074-018	53-70-3	Dibenz(a.h)anthracene	N N	0.041	ug/L ug/L	U	D	0.041		FQ	G	STD
80005	WL	2/3/2025	RFS01-10.2501074-018	53-70-3	Dibenz(a,n)anthracene Dibenz(a,h)anthracene	N N	0.041	ug/L ug/L	U	F	0.041		FQ FQ	G	STD
		2/3/2025		84-66-2	\ ' /		0.041	U	U	D D	0.041			G	STD
80005	WL		RFS01-10.2501074-018		Diethyl phthalate	N	2	ug/L		F F	2		FQ FO	_	
80005 80005	WL	2/3/2025 2/3/2025	RFS01-10.2501074-042	84-66-2	Diethyl phthalate	N		ug/L	U	· · · · · · · · · · · · · · · · · · ·			FQ	G G	STD STD
	WL		RFS01-10.2501074-018	131-11-3	Dimethyl phthalate	N	1	ug/L	U	D F	<u> </u>		FQ		STD
80005	WL	2/3/2025	RFS01-10.2501074-042	131-11-3	Dimethyl phthalate	N	1	ug/L	U		1		FQ	G	
80005	WL	2/3/2025	RFS01-10.2501074-018	84-74-2	Di-n-butyl phthalate	N	4.1	ug/L	U	D F	4.1		FQ	G	STD
80005	WL	2/3/2025	RFS01-10.2501074-042	84-74-2	Di-n-butyl phthalate	N	4.1	ug/L	U	'	4.1		FQ	G	STD
80005	WL	2/3/2025	RFS01-10.2501074-018	100-41-4	Ethylbenzene	N	0.25)	U	D	0.25		FQ	G	STD
80005	WL	2/3/2025	RFS01-10.2501074-042	100-41-4	Ethylbenzene	N	0.25)	U	F	0.25		FQ	G	STD
80005	WL	2/3/2025	RFS01-10.2501074-018	206-44-0	Fluoranthene	N	0.041	ug/L	U	D	0.041		FQ	G	STD
80005	WL	2/3/2025	RFS01-10.2501074-043	206-44-0	Fluoranthene	N	0.041	ug/L	U	F	0.041		FQ	G	STD
80005	WL	2/3/2025	RFS01-10.2501074-018	86-73-7	Fluorene	N	0.041	ug/L	U	D	0.041		FQ	G	STD
80005	WL	2/3/2025	RFS01-10.2501074-043	86-73-7	Fluorene	N	0.041	ug/L	U	F	0.041		FQ	G	STD
80005	WL	2/3/2025	RFS01-10.2501074-018	87-68-3	Hexachlorobutadiene	N	0.5	3	U	D	0.5		FQ	G	STD
80005	WL	2/3/2025	RFS01-10.2501074-042	87-68-3	Hexachlorobutadiene	N	0.5	ug/L	U	F	0.5		FQ	G	STD
80005	WL	2/3/2025	RFS01-10.2501074-018	67-72-1	Hexachloroethane	N	4.1	ug/L	U	D	4.1		FQ	G	STD
80005	WL	2/3/2025	RFS01-10.2501074-042	67-72-1	Hexachloroethane	N	4.1	ug/L	U	F	4.1		FQ	G	STD
80005	WL	2/3/2025	RFS01-10.2501074-018	78-59-1	Isophorone	N	4.1	ug/L	U	D	4.1		FQ	G	STD
80005	WL	2/3/2025	RFS01-10.2501074-042	78-59-1	Isophorone	N	4.1	ug/L	U	F	4.1		FQ	G	STD
80005	WL	2/3/2025	RFS01-10.2501074-018	7439-92-1	Lead	Υ	0.5	ug/L	J	D	0.5		FQ	G	STD
80005	WL	2/3/2025	RFS01-10.2501074-042	7439-92-1	Lead	Υ	0.5	ug/L	U	F	0.5		FQ	G	STD
80005	WL	2/3/2025	RFS01-10.2501074-018	7439-97-6	Mercury	Υ	0.06	ug/L	J	D	0.06		FQ	G	STD
80005	WL	2/3/2025	RFS01-10.2501074-042	7439-97-6	Mercury	Y	0.06	ug/L	U	F	0.06		FQ	G	STD
80005	WL	2/3/2025	RFS01-10.2501074-018	75-09-2	Methylene chloride	N	1	ug/L	U	D	1		FQ	G	STD
80005	WL	2/3/2025	RFS01-10.2501074-042	75-09-2	Methylene chloride	N	1	ug/L	U	F	1		FQ	G	STD
80005	WL	2/3/2025	RFS01-10.2501074-018	91-20-3	Naphthalene	N	0.051	ug/L	U	D	0.051		FQ	G	STD
80005	WL	2/3/2025	RFS01-10.2501074-043	91-20-3	Naphthalene	N	0.051	ug/L	U	F	0.051		FQ	G	STD
80005	WL	2/3/2025	RFS01-10.2501074-018	7440-02-0	Nickel	Υ	1	ug/L	U	D	1		FQ	G	STD
80005	WL	2/3/2025	RFS01-10.2501074-042	7440-02-0	Nickel	Υ	1	ug/L	U	F	1		FQ	G	STD
80005	WL	2/3/2025	RFS01-10.2501074-018	129-00-0	Pyrene	N	0.041	ug/L	U	D	0.041		FQ	G	STD
80005	WL	2/3/2025	RFS01-10.2501074-043	129-00-0	Pyrene	N	0.041	ug/L	U	F	0.041		FQ	G	STD
80005	WL	2/3/2025	RFS01-10.2501074-018	7782-49-2	Selenium	Y	0.5	Ŭ	U	D	0.5		FQ	G	STD
80005	WL	2/3/2025	RFS01-10.2501074-042	7782-49-2	Selenium	Y	0.5		U	F	0.5		FQ	G	STD
80005	WL	2/3/2025	RFS01-10.2501074-018	7440-22-4	Silver	Y	0.25		U	D .	0.25		FQ	G	STD
80005	WL	2/3/2025	RFS01-10.2501074-042	7440-22-4	Silver	Y	0.25		U	F	0.25		FQ	G	STD
80005	WL	2/3/2025	RFS01-10.2501074-018	100-42-5	Styrene	N	0.25	_	Ü	D	0.25		FQ	G	STD
80005	WL	2/3/2025	RFS01-10.2501074-042	100-42-5	Styrene	N	0.25	•	U	F	0.25		FQ	G	STD
80005	WL	2/3/2025	RFS01-10.2501074-018	127-18-4	Tetrachloroethene	N	0.25	J	U	D	0.25		FQ	G	STD
80005	WL	2/3/2025	RFS01-10.2501074-042	127-18-4	Tetrachloroethene	N	0.25		Ü	F	0.25		FQ	G	STD
80003	VV∟	2/3/2023	NI 301-10.23010/4-042	121-10-4	renachioroeniene	IN	∪.∠5	uy/L	U	Г	0.25		ΓŲ	G	טוט

						RFLMA Data									
LOCATION CODE	LOCATION TYPE	DATE SAMPLED	SAMPLE CODE	CAS	ANALYTE	FILTRATION STATUS	RESULT	UNITS	LAB QUALIFIERS	SAMPLE TYPE	DETECTION LIMIT	UNCER- TAINTY	DATA VALIDATION QUALIFIERS	COLLECTION METHOD	LAB CODE
80005	WL	2/3/2025	RFS01-10.2501074-018	108-88-3	Toluene	N	0.25	ug/L	U	D	0.25		FQ	G	STD
80005	WL	2/3/2025	RFS01-10.2501074-042	108-88-3	Toluene	N	0.25	ug/L	U	F	0.25		FQ	G	STD
80005	WL	2/3/2025	RFS01-10.2501074-018	1330-20-7	Total Xylenes	N	0.25	ug/L	U	D	0.25		FQ	G	STD
80005	WL	2/3/2025	RFS01-10.2501074-042	1330-20-7	Total Xylenes	N	0.25	ug/L	U	F	0.25		FQ	G	STD
80005	WL	2/3/2025	RFS01-10.2501074-018	156-60-5	trans-1,2-Dichloroethene	N	0.25	ug/L	U	D	0.25		FQ	G	STD
80005	WL	2/3/2025	RFS01-10.2501074-042	156-60-5	trans-1,2-Dichloroethene	N	0.25	ug/L	U	F	0.25		FQ	G	STD
80005	WL	2/3/2025	RFS01-10.2501074-018	79-01-6	Trichloroethene	N	0.25	ug/L	U	D	0.25		FQ	G	STD
80005	WL	2/3/2025	RFS01-10.2501074-042	79-01-6	Trichloroethene	N	0.25	ug/L	U	F	0.25		FQ	G	STD
80005	WL	2/3/2025	RFS01-10.2501074-018	7440-61-1	Uranium	Υ	5.3	ug/L		D	0.25		FQ	G	STD
80005	WL	2/3/2025	RFS01-10.2501074-042	7440-61-1	Uranium	Υ	5.4	ug/L		F	0.25		FQ	G	STD
80005	WL	2/3/2025	RFS01-10.2501074-018	75-01-4	Vinyl chloride	N	0.25	ug/L	U	D	0.25		FQ	G	STD
80005	WL	2/3/2025	RFS01-10.2501074-042	75-01-4	Vinyl chloride	N	0.25	ug/L	U	F	0.25		FQ	G	STD
80005	WL	2/3/2025	RFS01-10.2501074-018	7440-66-6	Zinc	Υ	5	ug/L	U	D	5		FQ	G	STD
80005	WL	2/3/2025	RFS01-10.2501074-042	7440-66-6	Zinc	Y	5	ug/L	U	F	5		FQ	G	STD
80105	WL	2/3/2025	RFS01-10.2501074-044	71-55-6	1,1,1-Trichloroethane	N	0.25		U	F	0.25		FQ	G	STD
80105	WL	2/3/2025	RFS01-10.2501074-044	79-34-5	1,1,2,2-Tetrachloroethane	N	0.25	3,	U	F	0.25		FQ	G	STD
80105	WL	2/3/2025	RFS01-10.2501074-044	79-00-5	1,1,2-Trichloroethane	N	0.25	J.	U	F	0.25		FQ	G	STD
80105	WL	2/3/2025	RFS01-10.2501074-044	75-35-4	1,1-Dichloroethene	N	0.25	J	U	F	0.25		FQ	G	STD
80105	WL	2/3/2025	RFS01-10.2501074-044	120-82-1	1,2,4-Trichlorobenzene	N	0.5	ug/L	U	F	0.5		FQ	G	STD
80105	WL	2/3/2025	RFS01-10.2501074-044	95-50-1	1,2-Dichlorobenzene	N	0.25	J	U	F	0.25		FQ	G	STD
80105	WL	2/3/2025	RFS01-10.2501074-044	107-06-2	1,2-Dichloroethane	N	0.25	J.	U	F	0.25		FQ	G	STD
80105	WL	2/3/2025	RFS01-10.2501074-044	78-87-5	1,2-Dichloropropane	N	0.25	٠,	U	F	0.25		FQ	G	STD
80105	WL	2/3/2025	RFS01-10.2501074-044	541-73-1	1,3-Dichlorobenzene	N	0.25	3,	U	F	0.25		FQ	G	STD
80105	WL	2/3/2025	RFS01-10.2501074-044	106-46-7	1,4-Dichlorobenzene	N	0.25	9,	U	F	0.25		FQ	G	STD
80105	WL	2/3/2025	RFS01-10.2501074-044	91-58-7	2-Chloronaphthalene	N	1	ug/L	U	F	1		FQ	G	STD
80105	WL	2/3/2025	RFS01-10.2501074-045	83-32-9	Acenaphthene	N	0.041	ug/L	U	F	0.041		FQ	G	STD
80105	WL	2/3/2025	RFS01-10.2501074-045	120-12-7	Anthracene	N	0.041	ug/L	U	F	0.041		FQ	G	STD
80105	WL	2/3/2025	RFS01-10.2501074-044	7440-38-2	Arsenic	Y	0.5	3,	U	F	0.5		FQ	G	STD
80105	WL	2/3/2025	RFS01-10.2501074-044	71-43-2	Benzene	N	0.25	3,	U	F	0.25		FQ	G	STD
80105	WL	2/3/2025	RFS01-10.2501074-045	50-32-8	Benzo(a)pyrene	N	0.041	ug/L	U	F	0.041		FQ	G	STD
80105	WL	2/3/2025	RFS01-10.2501074-045	191-24-2	Benzo(g,h,i)Perylene	N Y	0.041	ug/L	U	F	0.041		FQ FO	G	STD STD
80105	WL	2/3/2025	RFS01-10.2501074-044 RFS01-10.2501074-044	7440-41-7	Beryllium	<u> </u>	0.25	ug/L	U	F	0.25		FQ	G G	STD
80105 80105	WL WL	2/3/2025 2/3/2025	RFS01-10.2501074-044	108-60-1 117-81-7	Bis(2-chloroisopropyl) ether	N N	4.1 5.1	ug/L ug/L	U	F	4.1 5.1		FQ FQ	G	STD
80105	WL	2/3/2025	RFS01-10.2501074-044	7440-42-8	Bis(2-ethylhexyl) phthalate Boron	Y	150		U	F	15		FQ FQ	G	STD
80105	WL	2/3/2025	RFS01-10.2501074-044	75-25-2	Bromoform	N	0.5	J	U	F	0.5		FQ FQ	G	STD
80105		2/3/2025	RFS01-10.2501074-044	7440-43-9	Cadmium	IN V	0.25	J.	U		0.25		FQ FQ	G	STD
80105	WL WL	2/3/2025	RFS01-10.2501074-044	56-23-5	Carbon tetrachloride	N	0.25		U	F	0.25		FQ FQ	G	STD
80105	WL	2/3/2025	RFS01-10.2501074-044	108-90-7	Carbon tetracinonde Chlorobenzene	N	0.25		U	F	0.25		FQ	G	STD
80105	WL	2/3/2025	RFS01-10.2501074-044	67-66-3	Chloroform	N	0.25		U	F	0.25		FQ FQ	G	STD
80105	WL	2/3/2025	RFS01-10.2501074-044	74-87-3	Chloromethane	N	0.25	0	U	F	0.25		FQ FQ	G	STD
80105	WL	2/3/2025	RFS01-10.2501074-044	7440-47-3	Chromium	Y	1	ug/L	Ü	F	1		FQ	G	STD
80105	WL	2/3/2025	RFS01-10.2501074-045	218-01-9	Chrysene	N N	0.041	ug/L	Ü	F	0.041		FQ	G	STD
80105	WL	2/3/2025	RFS01-10.2501074-044	156-59-2	cis-1,2-Dichloroethene	N	0.25		U	F	0.25		FQ	G	STD
80105	WL	2/3/2025	RFS01-10.2501074-044	7440-50-8	Copper	Y	1	ug/L	U	F	1		FQ	G	STD
80105	WL	2/3/2025	RFS01-10.2501074-045	53-70-3	Dibenz(a,h)anthracene	N N	0.041	ug/L	U	F	0.041		FQ	G	STD
80105	WL	2/3/2025	RFS01-10.2501074-044	84-66-2	Diethyl phthalate	N	2	ug/L	Ü	F	2		FQ	G	STD
80105	WL	2/3/2025	RFS01-10.2501074-044	131-11-3	Dimethyl phthalate	N	1	ug/L	U	F	1		FQ	G	STD
80105	WL	2/3/2025	RFS01-10.2501074-044	84-74-2	Di-n-butyl phthalate	N	4.1	ug/L	U	F	4.1		FQ	G	STD
80105	WL	2/3/2025	RFS01-10.2501074-044	100-41-4	Ethylbenzene	N	0.25		U	F	0.25		FQ	G	STD
80105	WL	2/3/2025	RFS01-10.2501074-045	206-44-0	Fluoranthene	N	0.041	ug/L	U	F	0.041		FQ	G	STD
80105	WL	2/3/2025	RFS01-10.2501074-045	86-73-7	Fluorene	N	0.041	ug/L	U	F	0.041		FQ	G	STD
80105	WL	2/3/2025	RFS01-10.2501074-044	87-68-3	Hexachlorobutadiene	N	0.5	_	U	F	0.5		FQ	G	STD
80105	WL	2/3/2025	RFS01-10.2501074-044	67-72-1	Hexachloroethane	N	4.1	ug/L	U	F	4.1		FQ	G	STD
80105	WL	2/3/2025	RFS01-10.2501074-044	78-59-1	Isophorone	N	4.1	ug/L	U	F	4.1		FQ	G	STD
80105	WL	2/3/2025	RFS01-10.2501074-044	7439-92-1	Lead	Υ	0.5	ug/L	U	F	0.5		FQ	G	STD
80105	WL	2/3/2025	RFS01-10.2501074-044	7439-97-6	Mercury	Y	0.06	ug/L	U	F	0.06		FQ	G	STD
80105	WL	2/3/2025	RFS01-10.2501074-044	75-09-2	Methylene chloride	N	1	ug/L	U	F	1		FQ	G	STD
	•	-			•	•			•						

						RFLMA Data									
LOCATION CODE	LOCATION TYPE	DATE SAMPLED	SAMPLE CODE	CAS	ANALYTE	FILTRATION STATUS	RESULT	UNITS	LAB QUALIFIERS	SAMPLE TYPE	DETECTION LIMIT	UNCER- TAINTY	DATA VALIDATION QUALIFIERS	COLLECTION METHOD	LAB CODE
80105	WL	2/3/2025	RFS01-10.2501074-045	91-20-3	Naphthalene	N	0.051	ug/L	U	F	0.051		FQ	G	STD
80105	WL	2/3/2025	RFS01-10.2501074-044	7440-02-0	Nickel	Υ	1	ug/L	U	F	1		FQ	G	STD
80105	WL	2/3/2025	RFS01-10.2501074-045	129-00-0	Pyrene	N	0.041	ug/L	U	F	0.041		FQ	G	STD
80105	WL	2/3/2025	RFS01-10.2501074-044	7782-49-2	Selenium	Y	0.5	ug/L	U	F	0.5		FQ	G	STD
80105	WL	2/3/2025	RFS01-10.2501074-044	7440-22-4	Silver	Y	0.25	ug/L	U	F	0.25		FQ	G	STD
80105	WL	2/3/2025	RFS01-10.2501074-044	100-42-5	Styrene	N	0.25	- J	U	F	0.25		FQ	G	STD
80105	WL	2/3/2025	RFS01-10.2501074-044	127-18-4	Tetrachloroethene	N	0.25	ug/L	U	F	0.25		FQ	G	STD
80105	WL	2/3/2025	RFS01-10.2501074-044	108-88-3	Toluene	N	0.25	ug/L	U	F	0.25		FQ	G	STD
80105	WL	2/3/2025	RFS01-10.2501074-044	1330-20-7	Total Xvlenes	N	0.25	ug/L	U	F	0.25		FQ	G	STD
80105	WL	2/3/2025	RFS01-10.2501074-044	156-60-5	trans-1,2-Dichloroethene	N	0.25		U	F	0.25		FQ	G	STD
80105	WL	2/3/2025	RFS01-10.2501074-044	79-01-6	Trichloroethene	N	0.25		U	F F	0.25		FQ	G	STD
80105	WL	2/3/2025	RFS01-10.2501074-044	7440-61-1	Uranium	Y	9.1	ug/L	J	F	0.25		FQ	G	STD
80105	WL	2/3/2025	RFS01-10.2501074-044	75-01-4	Vinyl chloride	N	0.25	·	U	F	0.25		FQ	G	STD
80105	WL	2/3/2025	RFS01-10.2501074-044	7440-66-6	Zinc	Y	5.25	ug/L	U	F	5.25		FQ	G	STD
80205	WL	2/6/2025	RFS01-10.2501074-046	71-55-6	1.1.1-Trichloroethane	N N	0.25		U	F	0.25		FQ	G	STD
80205	WL	2/6/2025	RFS01-10.2501074-046	79-34-5	1,1,2,2-Tetrachloroethane	N	0.25	ug/L ug/L	U	F	0.25		FQ	G	STD
80205	WL	2/6/2025	RFS01-10.2501074-046	79-34-5 79-00-5	1,1,2-Trichloroethane	N N	0.25	ug/L ug/L	U	F	0.25		FQ FQ	G	STD
80205	WL	2/6/2025	RFS01-10.2501074-046	75-35-4	1,1-Dichloroethene	N	0.25		U	F	0.25		FQ	G	STD
80205		2/6/2025		120-82-1	1,2,4-Trichlorobenzene	N	0.25	_	U	F	0.25		FQ FQ	G	STD
	WL		RFS01-10.2501074-046					3,		F				_	
80205	WL	2/6/2025	RFS01-10.2501074-046	95-50-1	1,2-Dichlorobenzene	N	0.25		U	F	0.25		FQ	G	STD
80205	WL	2/6/2025	RFS01-10.2501074-046	107-06-2	1,2-Dichloroethane	N	0.25	ug/L	U	F	0.25		FQ	G	STD
80205	WL	2/6/2025	RFS01-10.2501074-046	78-87-5	1,2-Dichloropropane	N	0.25	J.	U		0.25		FQ	G	STD
80205	WL	2/6/2025	RFS01-10.2501074-046	541-73-1	1,3-Dichlorobenzene	N	0.25	ug/L	U	F	0.25		FQ	G	STD
80205	WL	2/6/2025	RFS01-10.2501074-046	106-46-7	1,4-Dichlorobenzene	N	0.25	ug/L	U	F	0.25		FQ	G	STD
80205	WL	2/6/2025	RFS01-10.2501074-046	91-58-7	2-Chloronaphthalene	N	1	ug/L	U	F	1		FQ	G	STD
80205	WL	2/6/2025	RFS01-10.2501074-047	83-32-9	Acenaphthene	N	0.041	ug/L	U	F	0.041		FQ	G	STD
80205	WL	2/6/2025	RFS01-10.2501074-047	120-12-7	Anthracene	N	0.041	ug/L	U	F	0.041		FQ	G	STD
80205	WL	2/6/2025	RFS01-10.2501074-046	7440-38-2	Arsenic	Y	0.5	ug/L	U	F	0.5		FQ	G	STD
80205	WL	2/6/2025	RFS01-10.2501074-046	71-43-2	Benzene	N	0.25	J.	U	F	0.25		FQ	G	STD
80205	WL	2/6/2025	RFS01-10.2501074-047	50-32-8	Benzo(a)pyrene	N	0.041	ug/L	U	F	0.041		FQ	G	STD
80205	WL	2/6/2025	RFS01-10.2501074-047	191-24-2	Benzo(g,h,i)Perylene	N	0.041	ug/L	U	F	0.041		FQ	G	STD
80205	WL	2/6/2025	RFS01-10.2501074-046	7440-41-7	Beryllium	Υ	0.25	ug/L	U	F	0.25		FQ	G	STD
80205	WL	2/6/2025	RFS01-10.2501074-046	108-60-1	Bis(2-chloroisopropyl) ether	N	4	ug/L	U	F	4		FQ	G	STD
80205	WL	2/6/2025	RFS01-10.2501074-046	117-81-7	Bis(2-ethylhexyl) phthalate	N	5	ug/L	U	F	5		FQ	G	STD
80205	WL	2/6/2025	RFS01-10.2501074-046	7440-42-8	Boron	Υ	54	ug/L		F	15		FQ	G	STD
80205	WL	2/6/2025	RFS01-10.2501074-046	75-25-2	Bromoform	N	0.5	ug/L	J	F	0.5		FQ	G	STD
80205	WL	2/6/2025	RFS01-10.2501074-046	7440-43-9	Cadmium	Υ	0.25	ug/L	J	F	0.25		FQ	G	STD
80205	WL	2/6/2025	RFS01-10.2501074-046	56-23-5	Carbon tetrachloride	N	0.25	ug/L	U	F	0.25		FQ	G	STD
80205	WL	2/6/2025	RFS01-10.2501074-046	108-90-7	Chlorobenzene	N	0.25	ug/L	U	F	0.25		FQ	G	STD
80205	WL	2/6/2025	RFS01-10.2501074-046	67-66-3	Chloroform	N	0.25	ug/L	U	F	0.25		FQ	G	STD
80205	WL	2/6/2025	RFS01-10.2501074-046	74-87-3	Chloromethane	N	0.5	ug/L	U	F	0.5		FQ	G	STD
80205	WL	2/6/2025	RFS01-10.2501074-046	7440-47-3	Chromium	Υ	1	ug/L	U	F	1		FQ	G	STD
80205	WL	2/6/2025	RFS01-10.2501074-047	218-01-9	Chrysene	N	0.041	ug/L	U	F	0.041		FQ	G	STD
80205	WL	2/6/2025	RFS01-10.2501074-046	156-59-2	cis-1,2-Dichloroethene	N	0.25		U	F	0.25		FQ	G	STD
80205	WL	2/6/2025	RFS01-10.2501074-046	7440-50-8	Copper	Y	1	ug/L	U	F	1		FQ	G	STD
80205	WL	2/6/2025	RFS01-10.2501074-047	53-70-3	Dibenz(a,h)anthracene	N	0.041	ug/L	U	F	0.041		FQ	G	STD
80205	WL	2/6/2025	RFS01-10.2501074-046	84-66-2	Diethyl phthalate	N	2	ug/L	U	F	2		FQ	G	STD
80205	WL	2/6/2025	RFS01-10.2501074-046	131-11-3	Dimethyl phthalate	N	1	ug/L	U	F.	1		FQ	G	STD
80205	WL	2/6/2025	RFS01-10.2501074-046	84-74-2	Di-n-butyl phthalate	N	4	ug/L	U	F	4		FQ	G	STD
80205	WL	2/6/2025	RFS01-10.2501074-046	100-41-4	Ethylbenzene	N	0.25		U	F	0.25		FQ	G	STD
80205	WL	2/6/2025	RFS01-10.2501074-047	206-44-0	Fluoranthene	N	0.23	ug/L ug/L	U	F	0.041		FQ	G	STD
80205	WL	2/6/2025	RFS01-10.2501074-047	86-73-7	Fluorene	N	0.041	ug/L ug/L	U	F	0.041		FQ	G	STD
80205	WL	2/6/2025	RFS01-10.2501074-046	87-68-3	Hexachlorobutadiene	N	0.041	_	U	F	0.041		FQ	G	STD
80205	WL	2/6/2025	RFS01-10.2501074-046	67-72-1	Hexachloroethane	N	0.5	ug/L ug/L	U	F	0.5		FQ	G	STD
80205	WL	2/6/2025	RFS01-10.2501074-046	78-59-1	Isophorone	N	4	ug/L ug/L	U	F	4		FQ FQ	G	STD
80205				7439-92-1	•	Y	0.5	- J	U	F	0.5			G	STD
	WL	2/6/2025	RFS01-10.2501074-046		Lead	Y		3, -		F F			FQ FO		STD
80205	WL	2/6/2025	RFS01-10.2501074-046	7439-97-6	Mercury Methylene ableride		0.06	J.	U		0.06		FQ	G	
80205	WL	2/6/2025	RFS01-10.2501074-046	75-09-2	Methylene chloride	N	1	ug/L	U	F	1		FQ	G	STD

Color FPE			1				RFLMA Data				•			1		
March Marc			DATE SAMPLED	SAMPLE CODE	CAS	ANALYTE		RESULT	UNITS				_			LAB CODE
## State ## State	80205	WL	2/6/2025	RFS01-10.2501074-047	91-20-3	Naphthalene	N	0.051	ug/L	U	F	0.051		FQ	G	STD
Micros Wilson 2-50008 Figs 1-32-5017-1-040 7-72-6-1-2 Selectan Y 0.28 1.5	80205	WL	2/6/2025	RFS01-10.2501074-046	7440-02-0	Nickel	Υ	2.4	ug/L	J	F	1		FQ	G	STD
POSTS W.	80205	WL	2/6/2025	RFS01-10.2501074-047	129-00-0	Pyrene	N	0.041	ug/L	U	F	0.041		FQ	G	STD
2005 W.	80205	WL	2/6/2025	RFS01-10.2501074-046	7782-49-2	Selenium	Y	0.52	ug/L	J	F	0.5		FQ	G	STD
March Miles Mile	80205	WL	2/6/2025	RFS01-10.2501074-046	7440-22-4	Silver	Y	0.25	ug/L	U	F	0.25		FQ	G	STD
600.05 WL 2800.025 RFS011.200174.08 10.88.3 Tourse N 0.25 ugl. U F 0.25 FO G STD	80205	WL	2/6/2025	RFS01-10.2501074-046	100-42-5	Styrene	N	0.25	ug/L	U	F	0.25		FQ	G	STD
## 2000 MI	80205	WL	2/6/2025	RFS01-10.2501074-046		Tetrachloroethene	N	0.25	ug/L	U	F	0.25		FQ	G	STD
## Color ## Color	80205	WL	2/6/2025	RFS01-10.2501074-046	108-88-3	Toluene	N	0.25	ug/L	U	F	0.25		FQ	G	STD
B0055 W. 280228 RF01-10.250174-06 Fib.14 Tishloureline N 0.28 upl. U F 2.25 FO G STD	80205	WL	2/6/2025		1330-20-7	Total Xylenes	N	0.25	ug/L	U	F	0.25			G	STD
MODE M. 200222 PSS 12,500 TV-64 Tel-10 Trentm	80205	WL	2/6/2025	RFS01-10.2501074-046	156-60-5	trans-1,2-Dichloroethene	N	0.25	ug/L	U	F	0.25		FQ	G	STD
Mail	80205	WL	2/6/2025	RFS01-10.2501074-046	79-01-6	Trichloroethene	N	0.25	ug/L	U	F	0.25		FQ	G	STD
B07565 W.	80205	WL	2/6/2025	RFS01-10.2501074-046	7440-61-1	Uranium	Y	28	ug/L		F	0.25		FQ	G	STD
B07565 W.						Vinyl chloride	N	0.25	ug/L	U	F	0.25			G	STD
Ext 1949 W.L. 28/2002 RFS01 - 102.0107 - 403 NO3-NOVA & N. Nitroto + Nitroto & Nit		WL		RFS01-10.2501074-046		Zinc	Y	5	ua/L	U	F	5			G	
Be14498 WIL 2800005 RFS01 - 102010 (1074-008) 7440-11 Unminm Y 98 193 F 0.50 F G STD						Nitrate + Nitrite as Nitrogen	N	500			F	12			_	
G0065 SI						•)		F			F		
SSSS SIL 19/20/20 RFS911-02/20/07/00-04 74404-04-17 Benyllium N 0.25 UgL U F 0.25 C STD							•		ug/L	J	F				C	
C896 St. 169/2026 RF 801-02/2040/PO040 7440428 Celeminal Y 205 (apt. U F 10 C STD C895 St. 169/2026 RF 801-02/2040/PO040 7440473 Celeminal Y 205 (apt. U F 0.25 C STD C895 St. 169/2026 RF 801-02/2040/PO040 7440-958 Chromitam N 11 (apt. U F 1 C STD C895 St. 169/2026 RF 801-02/2040/PO040 7440-958 Chromitam N 11 (apt. U F 1 C STD C895 St. 169/2026 RF 801-02/2040/PO040 7440-958 Chromitam N 11 (apt. U F 0.5 C STD C895 St. 169/2026 RF 801-02/2040/PO040 7440-924 Store Y 1 (apt. U F 0.5 C STD C895 St. 169/2026 RF 801-02/2040/PO040 7440-924 Store Y 0.25 (apt. U F 0.25 C STD C895 St. 169/2026 RF 801-02/2040/PO040 7440-924 Store Y 0.26 (apt. U F 0.25 C STD C895 St. 169/2026 RF 801-02/2040/PO040 7440-924 Store Y 0.26 (apt. U F 0.25 C STD C895 St. 169/2026 RF 801-02/2040/PO040 7440-924 Store Y 0.26 (apt. U F 0.25 C STD C895 St. 169/2026 RF 801-02/2040/PO040 7440-924 Store Y 0.26 (apt. U F 0.25 C STD C895 St. 169/2026 RF 801-02/2040/PO040 7440-924 Store Y 0.26 (apt. U F 0.25 C STD C895 St. 169/2026 RF 801-02/2040/PO040 7440-924 Store Y 0.29 (apt. U F 0.25 C STD C895 St. 169/2026 RF 801-02/2040/PO040 7440-924 Store Y 0.29 (apt. U F 0.25 C STD C895 St. 169/2026 RF 801-02/2040/PO040 7440-924 Store Y 0.29 (apt. U F 0.25 C STD C895 St. 169/2026 RF 801-02/2040/PO040 7440-924 Store Y 0.29 (apt. U F 0.25 C STD C895 St. 169/2026 RF 801-02/2040/PO040 7440-924 Store Y 0.29 (apt. U F 0.25 C STD C895 St. 169/2026 RF 801-02/2040/PO040 7440-924 Store Y 0.29 (apt. U F 0.25 C STD C895 St. 169/2026 RF 801-02/2040/PO040 7440-924 Store Y 0.29 (apt. U F 0.25 C STD C895 St. 169/2026 RF 801-02/204										U	F				C	
GS86 St. 1/69/2026 RFS01-02/2000/T-0040 74404-149 Cadmium Y 0.28 U F 0.28 C STD GS86 St. 1/69/205 RFS01-02/2000/T-0040 7440-143 Crossmium N 1.1 upl. U F 1 C STD GS86 St. 1/69/205 RFS01-02/2000/T-0040 7440-50 8 Copper Y 1 upl. U F 1 C STD STD C STD C STD C STD C STD C STD C STD						,				_	F					
GSSS St. 1987/205 RFSS1102/2260470-004 744-00-9 Copper Y 11 Ug\L U F 1 C STD									_		F					
G896 St. 16/20/26 RFS9110/22/26/04/07/0004 74/40-90/8 Copper Y								1 1			F	1			•	
GS95								1.1	U	-	'	1			~	
GS05 SI							·	0.5	Ŭ	_		0.5				
GS0S SI							•	0.5	_			0.5				
GS05 SI							•	0.5	_			0.5			•	
GS05 St. 1,670205 RFS91-02.2564070-004 7440-61-1 Uranium N 1 ug/L F 0.25 C STD GS05 St. 1,670205 RFS91-02.2561060-005 71-55-6 1,1,1-rhothorethane N 0.25 ug/L U F 0.25 G STD GS05 St. 1,870205 RFS91-02.2561060-005 77-50-5 1,1,1-rhothorethane N 0.25 ug/L U F 0.25 G STD GS05 St. 1,870205 RFS91-02.2561060-005 79-00-5 1,1,2-rhothorethane N 0.25 ug/L U F 0.25 G STD GS05 St. 1,870205 RFS91-02.2561060-005 79-00-5 1,1,2-rhothorethane N 0.25 ug/L U F 0.25 G STD GS05 St. 1,870205 RFS91-02.2561060-005 75-00-5 1,1,2-rhothorethane N 0.25 ug/L U F 0.25 G STD GS05 St. 1,870205 RFS91-02.2561060-005 75-53-4 1,1,2-rhothorethane N 0.25 ug/L U F 0.25 G STD GS05 St. 1,870205 RFS91-02.2561060-005 59-50-1 1,2-2-thichorethane N 0.25 ug/L U F 0.25 G STD GS05 St. 1,870205 RFS91-02.2561060-005 59-50-1 1,2-2-thichorethane N 0.25 ug/L U F 0.25 G STD GS05 St. 1,870205 RFS91-02.2561060-005 67-50-2 1,2-2-thichorethane N 0.25 ug/L U F 0.25 G STD GS05 St. 1,870205 RFS91-02.2561060-005 67-50-2 1,2-2-thichorethane N 0.25 ug/L U F 0.25 G STD GS05 St. 1,870205 RFS91-02.2561060-005 541-73-1 1,3-2-thichorethane N 0.25 ug/L U F 0.25 G STD GS05 St. 1,870205 RFS91-02.2561060-005 541-73-1 1,3-2-thichorethane N 0.25 ug/L U F 0.25 G STD GS05 St. 1,870205 RFS91-02.2561060-005 541-73-1 1,3-2-thichorethane N 0.25 ug/L U F 0.25 G STD GS05 St. 1,870205 RFS91-02.2561060-005 541-73-1 1,3-2-thichorethane N 0.25 ug/L U F 0.25 G STD GS05 St. 1,870205 RFS91-02.2561060-005 541-73-1 1,3-2-thichorethane N 0.25 ug/L U F 0.25 G STD GS05 St. 1,870205 RFS91-02.2561060-005 541-73-1 1,3-2-thichorethane N 0.25 ug/L U F 0.25 G STD GS05 St. 1,870205 RFS91-02.2561060-005 54									5,							
GS05 St. 1,672025 RFS01-02.2504070.004 7440-66-6 Zinc Y S. ug/l. U F 0.55 G STD GS05 St. 1,872025 RFS01-02.2501068-005 79-34-5 1,1-1,1-1100cethane N 0.25 ug/l. U F 0.25 G STD GS05 St. 1,872025 RFS01-02.2501068-005 79-34-5 1,1-2,7-11cethancethane N 0.25 ug/l. U F 0.25 G STD GS05 St. 1,872025 RFS01-02.2501068-005 79-34-5 1,1-2,7-11cethancethane N 0.25 ug/l. U F 0.25 G STD GS05 St. 1,872025 RFS01-02.2501068-005 75-35-4 1,1-Dichtorethane N 0.25 ug/l. U F 0.25 G STD GS05 St. 1,872025 RFS01-02.2501068-005 75-35-4 1,1-Dichtorethane N 0.25 ug/l. U F 0.25 G STD GS05 St. 1,872025 RFS01-02.2501068-005 95-50-1 1,2-Dichtorethane N 0.25 ug/l. U F 0.25 G STD GS05 St. 1,872025 RFS01-02.2501068-005 95-50-1 1,2-Dichtorethane N 0.25 ug/l. U F 0.25 G STD GS05 St. 1,872025 RFS01-02.2501068-005 75-87-5 1,2-Dichtorethane N 0.25 ug/l. U F 0.25 G STD GS05 St. 1,872025 RFS01-02.2501068-005 75-87-5 1,2-Dichtorethane N 0.25 ug/l. U F 0.25 G STD GS05 St. 1,872025 RFS01-02.2501068-005 75-87-5 1,2-Dichtorethane N 0.25 ug/l. U F 0.25 G STD GS05 St. 1,872025 RFS01-02.2501068-005 75-87-5 1,2-Dichtorethane N 0.25 ug/l. U F 0.25 G STD GS05 St. 1,872025 RFS01-02.2501068-005 St. 1,47-1 1,3-Dichtorethane N 0.25 ug/l. U F 0.25 G STD GS05 St. 1,870025 RFS01-02.2501068-005 T-48-2 Banzane N 0.25 ug/l. U F 0.25 G STD GS05 St. 1,870025 RFS01-02.2501068-005 T-48-2 Banzane N 0.25 ug/l. U F 0.25 G STD GS05 St. 1,870025 RFS01-02.2501068-005 T-48-2 Banzane N 0.25 ug/l. U F 0.25 G STD GS05 St. 1,870025 RFS01-02.2501068-005 T-48-2 Banzane N 0.25 ug/l. U F 0.25 G STD GS05 St. 1,870025 RFS01-02.2501068-005 T-48-2 Ban							•	0.25	g. –	U	'				C	
GS05 S.L 1/8/2025 RFS101-02 2501066-005 71-55-6 1.1.1-Trichinorethane N 0.25 ug/L U F 0.25 G STD								I	_	- 11	'	0.25			C	
GS05 SL 108/2025 RFS01-02/2501060-005 79-30-5 1.1,2-Trichrichtenhame N 0.25 ugl. U F 0.25 G STD							·	5	5		'	5			~	
SS95 SL 18/2025 RFS01-02/25/1086-005 79-00-5 11,2-Dichlorochane N 0.25 ug/L U F 0.25 G STD						, ,									_	
GS05 SI. 1/8/2025 RFS01-02 2501069-005 72-824 1.2.4-Trichtoresthene N 0.25 ug/L U F 0.25 G STD									·	_	<u> </u>					
GS05 S.L 1/8/2025 RFS01-02/2501068-005 120-92-1 12,2-Hitchtonbenzene N 0.5 ug/L U F 0.5 G STD						, ,					'					
GS05 SL 1/8/2025 RFS01-02/2501068-0.05 102-06-2 12-Dichloroethane N 0.25 ug/L U F 0.25 G STD GS05 SL 1/8/2025 RFS01-02/2501068-0.05 17-8-1 1.3-Dichloroethane N 0.25 ug/L U F 0.25 G STD GS05 SL 1/8/2025 RFS01-02/2501068-0.05 78-87-5 1.2-Dichloroethane N 0.25 ug/L U F 0.25 G STD GS05 SL 1/8/2025 RFS01-02/2501068-0.05 541-73-1 1.3-Dichloroethane N 0.25 ug/L U F 0.25 G STD GS05 SL 1/8/2025 RFS01-02/2501068-0.05 541-73-1 1.3-Dichloroethane N 0.25 ug/L U F 0.25 G STD GS05 SL 1/8/2025 RFS01-02/2501068-0.05 71-43-2 Benzene N 0.25 ug/L U F 0.25 G STD GS05 SL 1/8/2025 RFS01-02/2501068-0.05 71-43-2 Benzene N 0.25 ug/L U F 0.25 G STD GS05 SL 1/8/2025 RFS01-02/2501068-0.05 71-43-2 Benzene N 0.25 ug/L U F 0.25 G STD GS05 SL 1/8/2025 RFS01-02/2501068-0.05 71-43-2 Benzene N 0.25 ug/L U F 0.25 G STD GS05 SL 1/8/2025 RFS01-02/2501068-0.05 71-43-2 Benzene N 0.25 ug/L U F 0.25 G STD GS05 SL 1/8/2025 RFS01-02/2501068-0.05 71-43-2 Garbon tetrachloride N 0.25 ug/L U F 0.25 G STD GS05 SL 1/8/2025 RFS01-02/2501068-0.05 66-23-5 Carbon tetrachloride N 0.25 ug/L U F 0.25 G STD GS05 SL 1/8/2025 RFS01-02/2501068-0.05 67-66-3 Chloroform N 0.25 ug/L U F 0.25 G STD GS05 SL 1/8/2025 RFS01-02/2501068-0.05 74-8-3 Chloroform N 0.25 ug/L U F 0.25 G STD GS05 SL 1/8/2025 RFS01-02/2501068-0.05 74-8-3 Chloroform N 0.25 ug/L U F 0.25 G STD GS05 SL 1/8/2025 RFS01-02/2501068-0.05 74-8-3 Chloroform N 0.25 ug/L U F 0.25 G STD GS05 SL 1/8/2025 RFS01-02/2501068-0.05 74-8-3 Chloroform N 0.25 ug/L U F 0.25 G STD GS05 SL 1/8/2025 RFS01-02/2501068-0.05 74-8-3 Chloroforme N 0.25									5		<u>'</u>				_	
GS05 SIL						, ,		0.0								
GS05 SL 1/8/2025 RFS01-02/2501066-005 78-87-5 1,2-Dichloropropane N 0.25 ug/L U F 0.25 G STD						•		0.25	_ ·	_	<u> </u>				_	
GS05 SL 1/8/2025 RFS01-02 2501066-005 541-73-1 1,3-Dichlorobenzene N 0,25 ug/L U F 0,25 G STD						-		0.25			'				_	
GS05 SL 1/8/2025 RFS01-02.2501066-005 106-46-7 1.4-Dichlorobenzene N 0.25 ug/L U F 0.25 G STD									_		F					
GS05 SL 1/8/2025 RFS01-02/2501066-005 71-43-2 Benzene N 0.25 ug/L U F 0.25 G STD									_		F					
GS05 S.L 1/8/2025 RFS01-02.2501066-005 75-25-2 Bromoform N 0.5 ug/L U F 0.5 G STD						,			0	_	'				_	
GS05 S.L 118/2025 RFS01-02.2501066-005 56-23-5 Carbon tetrachloride N 0.25 ug/L U F 0.25 G STD									·	_	· · · · · · · · · · · · · · · · · · ·				_	
GS05 S.L 1/8/2025 RFS01-02.2501066-005 108-90-7 Chlorobenzene N 0.25 ug/L U F 0.25 G STD									,						_	
GS05 SL 1/8/2025 RFS01-02.2501066-005 67-66-3 Chloroform N 0.25 ug/L U F 0.25 G STD									5						_	
GS05 SL 1/8/2025 RFS01-02.2501066-005 74-87-3 Chloromethane N 0.5 ug/L U F 0.5 G STD											'				_	
GS05 SL 1/8/2025 RFS01-02.2501066-005 156-59-2 cis-1,2-Dichloroethene N 0.25 ug/L U F 0.25 G STD											·				_	
GS05 SL 1/8/2025 RFS01-02.2501066-005 100-41-4 Ethylbenzene N 0.25 ug/L U F 0.25 G STD															_	
GS05 SL 1/8/2025 RFS01-02.2501066-005 87-68-3 Hexachlorobutadiene N 0.5 ug/L U F 0.5 G STD						7			5						_	
GS05 SL 1/8/2025 RFS01-02.2501066-005 7439-97-6 Mercury N 0.06 ug/L U F 0.06 G STD GS05 SL 1/8/2025 RFS01-02.2501066-005 75-09-2 Methylene chloride N 1 ug/L U F 1 G STD GS05 SL 1/8/2025 RFS01-02.2501066-005 91-20-3 Naphthalene N 1 ug/L U F 1 G STD GS05 SL 1/8/2025 RFS01-02.2501066-005 100-42-5 Styrene N 0.25 ug/L U F 0.25 G STD GS05 SL 1/8/2025 RFS01-02.2501066-005 127-18-4 Tetrachloroethene N 0.25 ug/L U F 0.25 G STD GS05 SL 1/8/2025 RFS01-02.2501066-005 108-88-3 Toluene N 0.25 ug/L U F 0.25 G STD <td></td> <td></td> <td></td> <td></td> <td></td> <td>,</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td>						,									_	
GS05 SL 1/8/2025 RFS01-02.2501066-005 75-09-2 Methylene chloride N 1 ug/L U F 1 G STD GS05 SL 1/8/2025 RFS01-02.2501066-005 91-20-3 Naphthalene N 1 ug/L U F 1 G STD GS05 SL 1/8/2025 RFS01-02.2501066-005 100-42-5 Styrene N 0.25 ug/L U F 0.25 G STD GS05 SL 1/8/2025 RFS01-02.2501066-005 127-18-4 Tetrachloroethene N 0.25 ug/L U F 0.25 G STD GS05 SL 1/8/2025 RFS01-02.2501066-005 108-88-3 Toluene N 0.25 ug/L U F 0.25 G STD GS05 SL 1/8/2025 RFS01-02.2501066-005 1330-20-7 Total Xylenes N 0.25 ug/L U F 0.25 G STD										_	<u> </u>				_	
GS05 SL 1/8/2025 RFS01-02.2501066-005 91-20-3 Naphthalene N 1 ug/L U F 1 G STD						,		0.06	,			0.06			_	
GS05 SL 1/8/2025 RFS01-02.2501066-005 100-42-5 Styrene N 0.25 ug/L U F 0.25 G STD GS05 SL 1/8/2025 RFS01-02.2501066-005 127-18-4 Tetrachloroethene N 0.25 ug/L U F 0.25 G STD GS05 SL 1/8/2025 RFS01-02.2501066-005 108-88-3 Toluene N 0.25 ug/L U F 0.25 G STD GS05 SL 1/8/2025 RFS01-02.2501066-005 1330-20-7 Total Xylenes N 0.25 ug/L U F 0.25 G STD GS05 SL 1/8/2025 RFS01-02.2501066-005 156-60-5 trans-1,2-Dichloroethene N 0.25 ug/L U F 0.25 G STD GS05 SL 1/8/2025 RFS01-02.2501066-005 79-01-6 Trichloroethene N 0.25 ug/L U F 0.25 G								1	·			1				
GS05 SL 1/8/2025 RFS01-02.2501066-005 127-18-4 Tetrachloroethene N 0.25 ug/L U F 0.25 G STD GS05 SL 1/8/2025 RFS01-02.2501066-005 108-88-3 Toluene N 0.25 ug/L U F 0.25 G STD GS05 SL 1/8/2025 RFS01-02.2501066-005 1330-20-7 Total Xylenes N 0.25 ug/L U F 0.25 G STD GS05 SL 1/8/2025 RFS01-02.2501066-005 156-60-5 trans-1,2-Dichloroethene N 0.25 ug/L U F 0.25 G STD GS05 SL 1/8/2025 RFS01-02.2501066-005 79-01-6 Trichloroethene N 0.25 ug/L U F 0.25 G STD GS05 SL 1/8/2025 RFS01-02.2501066-005 75-01-4 Vinyl chloride N 0.25 ug/L U F 0.25 G						Naphthalene	N	1	ug/L	U	F	1			G	
GS05 SL 1/8/2025 RFS01-02.2501066-005 108-88-3 Toluene N 0.25 ug/L U F 0.25 G STD GS05 SL 1/8/2025 RFS01-02.2501066-005 1330-20-7 Total Xylenes N 0.25 ug/L U F 0.25 G STD GS05 SL 1/8/2025 RFS01-02.2501066-005 156-60-5 trans-1,2-Dichloroethene N 0.25 ug/L U F 0.25 G STD GS05 SL 1/8/2025 RFS01-02.2501066-005 79-01-6 Trichloroethene N 0.25 ug/L U F 0.25 G STD GS05 SL 1/8/2025 RFS01-02.2501066-005 75-01-4 Vinyl chloride N 0.25 ug/L U F 0.25 G STD				RFS01-02.2501066-005		Styrene	N	0.25	ug/L	U	F				_	
GS05 SL 1/8/2025 RFS01-02.2501066-005 1330-20-7 Total Xylenes N 0.25 ug/L U F 0.25 G STD GS05 SL 1/8/2025 RFS01-02.2501066-005 156-60-5 trans-1,2-Dichloroethene N 0.25 ug/L U F 0.25 G STD GS05 SL 1/8/2025 RFS01-02.2501066-005 79-01-6 Trichloroethene N 0.25 ug/L U F 0.25 G STD GS05 SL 1/8/2025 RFS01-02.2501066-005 75-01-4 Vinyl chloride N 0.25 ug/L U F 0.25 G STD	GS05	SL	1/8/2025	RFS01-02.2501066-005	127-18-4	Tetrachloroethene	N	0.25	ug/L	U	F				G	STD
GS05 SL 1/8/2025 RFS01-02.2501066-005 156-60-5 trans-1,2-Dichloroethene N 0.25 ug/L U F 0.25 G STD GS05 SL 1/8/2025 RFS01-02.2501066-005 79-01-6 Trichloroethene N 0.25 ug/L U F 0.25 G STD GS05 SL 1/8/2025 RFS01-02.2501066-005 75-01-4 Vinyl chloride N 0.25 ug/L U F 0.25 G STD	GS05	SL	1/8/2025	RFS01-02.2501066-005	108-88-3	Toluene	N	0.25	ug/L	U	F	0.25			G	STD
GS05 SL 1/8/2025 RFS01-02.2501066-005 79-01-6 Trichloroethene N 0.25 ug/L U F 0.25 G STD GS05 SL 1/8/2025 RFS01-02.2501066-005 75-01-4 Vinyl chloride N 0.25 ug/L U F 0.25 G STD	GS05	SL	1/8/2025	RFS01-02.2501066-005	1330-20-7	Total Xylenes	N	0.25	ug/L	U	F	0.25			G	STD
GS05 SL 1/8/2025 RFS01-02.2501066-005 79-01-6 Trichloroethene N 0.25 ug/L U F 0.25 G STD GS05 SL 1/8/2025 RFS01-02.2501066-005 75-01-4 Vinyl chloride N 0.25 ug/L U F 0.25 G STD	GS05	SL	1/8/2025	RFS01-02.2501066-005	156-60-5	trans-1,2-Dichloroethene	N	0.25	ug/L	U	F	0.25			G	STD
GS05 SL 1/8/2025 RFS01-02.2501066-005 75-01-4 Vinyl chloride N 0.25 ug/L U F 0.25 G STD		SL			79-01-6	Trichloroethene	N	0.25	·	U	F	0.25			G	STD
		SL				Vinyl chloride	N	0.25	ug/L	U	F	0.25			G	STD
$\phi = \phi = \phi$, where $\phi = \phi $	GS10	SL	1/6/2025	RFS01-13.2502127-007	14596-10-2	Americium-241	N	0.0144		U	F		0.0164		С	GEN

		1		1		RFLMA Data				•	·		ī		T
LOCATION CODE	LOCATION TYPE	DATE SAMPLED	SAMPLE CODE	CAS	ANALYTE	FILTRATION STATUS	RESULT	UNITS	LAB QUALIFIERS	SAMPLE TYPE	DETECTION LIMIT	UNCER- TAINTY	DATA VALIDATION QUALIFIERS	COLLECTION METHOD	LAB CODE
GS10	SL	1/6/2025	RFS01-13.2502127-007	7440-41-7	Beryllium	N	1	ug/L	U	F	1			С	GEN
GS10	SL	1/6/2025	RFS01-13.2502127-007	7440-43-9	Cadmium	Υ	0.3	ug/L	U	F	0.3			С	GEN
GS10	SL	1/6/2025	RFS01-13.2502127-007	7440-47-3	Chromium	N	1	ug/L	U	F	1			С	GEN
GS10	SL	1/6/2025	RFS01-13.2502127-007	PU-239,240	Plutonium-239, 240	N	0.00338	pCi/L	U	F		0.00812		С	GEN
GS10	SL	1/6/2025	RFS01-13.2502127-007	7440-22-4	Silver	Υ	0.3	ug/L	U	F	0.3			С	GEN
GS10	SL	1/6/2025	RFS01-13.2502127-007	7440-61-1	Uranium	N	17.5	ug/L		F	0.067			С	GEN
GS10	SL	2/4/2025	RFS01-13.2503129-007	14596-10-2	Americium-241	N	0.0115	pCi/L	U	F		0.00981		С	GEN
GS10	SL	2/4/2025	RFS01-13.2503129-007	7440-41-7	Beryllium	N	1	ug/L	U	F	1			С	GEN
GS10	SL	2/4/2025	RFS01-13.2503129-007	7440-43-9	Cadmium	Υ	0.3	ug/L	U	F	0.3			С	GEN
GS10	SL	2/4/2025	RFS01-13.2503129-007	7440-47-3	Chromium	N	1	ug/L	U	F	1			С	GEN
GS10	SL	2/4/2025	RFS01-13.2503129-007	PU-239,240	Plutonium-239, 240	N	0.00328	pCi/L	U	F		0.00774		С	GEN
GS10	SL	2/4/2025	RFS01-13.2503129-007	7440-22-4	Silver	Υ	0.3	ug/L	U	F	0.3			С	GEN
GS10	SL	2/4/2025	RFS01-13.2503129-007	7440-61-1	Uranium	N	21.7	ug/L		F	0.067			С	GEN
GS10	SL	3/13/2025	RFS01-13.2504131-007	14596-10-2	Americium-241	N	0.0151	pCi/L	U	F		0.0158		С	GEN
GS10	SL	3/13/2025	RFS01-13.2504131-007	7440-41-7	Beryllium	N	1	ug/L	U	F	1			С	GEN
GS10	SL	3/13/2025	RFS01-13.2504131-007	7440-43-9	Cadmium	Υ	0.3	ug/L	U	F	0.3			С	GEN
GS10	SL	3/13/2025	RFS01-13.2504131-007	7440-47-3	Chromium	N	1	ug/L	U	F	1			С	GEN
GS10	SL	3/13/2025	RFS01-13.2504131-007	PU-239,240	Plutonium-239, 240	N	0.0124	pCi/L	U	F		0.00918		С	GEN
GS10	SL	3/13/2025	RFS01-13.2504131-007	7440-22-4	Silver	Y	0.3	ug/L	U	F	0.3			С	GEN
GS10	SL	3/13/2025	RFS01-13.2504131-007	7440-61-1	Uranium	N	19.6	ug/L		F	0.067			С	GEN
GS13	SL	1/6/2025	RFS01-04.2504152-017	NO3+NO2 AS N	Nitrate + Nitrite as Nitrogen	N	6.7	mg/L	Н	F	0.6			С	STD
GS13	SL	1/6/2025	RFS01-04.2504152-017	7440-61-1	Uranium	N	24	ug/L	В	F	0.25			С	STD
GS13	SL	1/16/2025	RFS01-04.2501147-013	NO3+NO2 AS N	Nitrate + Nitrite as Nitrogen	N	25	mg/L		F	1.2			G	STD
GS13	SL	1/30/2025	RFS01-04.2501148-013	NO3+NO2 AS N	Nitrate + Nitrite as Nitrogen	N	23	mg/L		F	3		J	G	STD
GS13	SL	2/20/2025	RFS01-04.2502149-013	NO3+NO2 AS N	Nitrate + Nitrite as Nitrogen	N	27	mg/L		F	1.2			G	STD
GS13	SL	3/3/2025	RFS01-04.2503150-013	NO3+NO2 AS N	Nitrate + Nitrite as Nitrogen	N	19	mg/L		F	3			G	STD
GS13	SL	3/18/2025	RFS01-04.2503151-013	NO3+NO2 AS N	Nitrate + Nitrite as Nitrogen	N	12	mg/L		F	3			G	STD
GS13	SL	3/31/2025	RFS01-13.2503130-004	NO3+NO2 AS N	Nitrate + Nitrite as Nitrogen	N	7.5	mg/L		F	0.6			G	STD
GS13	SL	3/31/2025	RFS01-13.2503130-011	NO3+NO2 AS N	Nitrate + Nitrite as Nitrogen	N	7.8	mg/L		D	0.6			G	STD
GS59	SL	1/6/2025	RFS01-02.2504070-007	7440-38-2	Arsenic	N	0.8	ug/L	J	F	0.5			С	STD
GS59	SL	1/6/2025	RFS01-02.2504070-007	7440-41-7	Beryllium	N	0.25	ug/L	U	F	0.25			С	STD
GS59	SL	1/6/2025	RFS01-02.2504070-007	7440-42-8	Boron	N	15	ug/L	U	F	15			С	STD
GS59	SL	1/6/2025	RFS01-02.2504070-007	7440-43-9	Cadmium	Υ	0.32	ug/L	J	F	0.25		U	С	STD
GS59	SL	1/6/2025	RFS01-02.2504070-007	7440-47-3	Chromium	N	1	ug/L	U	F	1			С	STD
GS59	SL	1/6/2025	RFS01-02.2504070-007	7440-50-8	Copper	Υ	1	ug/L	U	F	1			С	STD
GS59	SL	1/6/2025	RFS01-02.2504070-007	7439-92-1	Lead	Υ	0.5	ug/L	U	F	0.5			С	STD
GS59	SL	1/6/2025	RFS01-02.2504070-007	7440-02-0	Nickel	Υ	1	ug/L	U	F	1			С	STD
GS59	SL	1/6/2025	RFS01-02.2504070-007	7782-49-2	Selenium	N	0.5	ug/L	U	F	0.5			С	STD
GS59	SL	1/6/2025	RFS01-02.2504070-007	7440-22-4	Silver	Y	0.25	ug/L	U	F	0.25			С	STD
GS59	SL	1/6/2025	RFS01-02.2504070-007	7440-61-1	Uranium	N	1.5	ug/L		F	0.25			С	STD
GS59	SL	1/6/2025	RFS01-02.2504070-007	7440-66-6	Zinc	Υ	5	ug/L	J	F	5			С	STD
GS59	SL	1/8/2025	RFS01-02.2501066-008	71-55-6	1,1,1-Trichloroethane	N	0.25	ug/L	U	F	0.25			G	STD
GS59	SL	1/8/2025	RFS01-02.2501066-008	79-34-5	1,1,2,2-Tetrachloroethane	N	0.25	ug/L	U	F	0.25			G	STD
GS59	SL	1/8/2025	RFS01-02.2501066-008	79-00-5	1,1,2-Trichloroethane	N	0.25	ug/L	U	F	0.25			G	STD
GS59	SL	1/8/2025	RFS01-02.2501066-008	75-35-4	1,1-Dichloroethene	N	0.25	ug/L	U	F	0.25			G	STD
GS59	SL	1/8/2025	RFS01-02.2501066-008	120-82-1	1,2,4-Trichlorobenzene	N	0.5	ug/L	U	F	0.5			G	STD
GS59	SL	1/8/2025	RFS01-02.2501066-008	95-50-1	1,2-Dichlorobenzene	N	0.25		U	F	0.25			G	STD
GS59	SL	1/8/2025	RFS01-02.2501066-008	107-06-2	1,2-Dichloroethane	N	0.25	ug/L	U	F	0.25			G	STD
GS59	SL	1/8/2025	RFS01-02.2501066-008	78-87-5	1,2-Dichloropropane	N	0.25	ug/L	U	F	0.25			G	STD
GS59	SL	1/8/2025	RFS01-02.2501066-008	541-73-1	1,3-Dichlorobenzene	N	0.25	ug/L	U	F	0.25			G	STD
GS59	SL	1/8/2025	RFS01-02.2501066-008	106-46-7	1,4-Dichlorobenzene	N	0.25		U	F	0.25			G	STD
GS59	SL	1/8/2025	RFS01-02.2501066-008	71-43-2	Benzene	N	0.25	ug/L	U	F	0.25			G	STD
GS59	SL	1/8/2025	RFS01-02.2501066-008	75-25-2	Bromoform	N	0.5		U	F	0.5			G	STD
GS59	SL	1/8/2025	RFS01-02.2501066-008	56-23-5	Carbon tetrachloride	N	0.25		U	F	0.25			G	STD
GS59	SL	1/8/2025	RFS01-02.2501066-008	108-90-7	Chlorobenzene	N	0.25	ug/L	U	F	0.25			G	STD
GS59	SL	1/8/2025	RFS01-02.2501066-008	67-66-3	Chloroform	N	0.25	ug/L	U	F	0.25			G	STD
GS59	SL	1/8/2025	RFS01-02.2501066-008	74-87-3	Chloromethane	N	0.5	J.	U	F	0.5			G	STD
GS59	SL	1/8/2025	RFS01-02.2501066-008	156-59-2	cis-1,2-Dichloroethene	N	0.25	ug/L	U	F	0.25			G	STD

	1	<u> </u>			1	RFLMA Data	1		ı	<u> </u>	I I		1		
LOCATION CODE	LOCATION TYPE	DATE SAMPLED	SAMPLE CODE	CAS	ANALYTE	FILTRATION STATUS	RESULT	UNITS	LAB QUALIFIERS	SAMPLE TYPE	DETECTION LIMIT	UNCER- TAINTY	DATA VALIDATION QUALIFIERS	COLLECTION METHOD	LAB CODE
GS59	SL	1/8/2025	RFS01-02.2501066-008	100-41-4	Ethylbenzene	N	0.25	ug/L	U	F	0.25			G	STD
GS59	SL	1/8/2025	RFS01-02.2501066-008	87-68-3	Hexachlorobutadiene	N	0.5	ug/L	U	F	0.5			G	STD
GS59	SL	1/8/2025	RFS01-02.2501066-008	7439-97-6	Mercury	N	0.06	ug/L	U	F	0.06			G	STD
GS59	SL	1/8/2025	RFS01-02.2501066-008	75-09-2	Methylene chloride	N	1	ug/L	U	F	1			G	STD
GS59	SL	1/8/2025	RFS01-02.2501066-008	91-20-3	Naphthalene	N	1	ug/L	U	F	1			G	STD
GS59	SL	1/8/2025	RFS01-02.2501066-008	100-42-5	Styrene	N	0.25	ug/L	U	F	0.25			G	STD
GS59	SL	1/8/2025	RFS01-02.2501066-008	127-18-4	Tetrachloroethene	N	0.25	ug/L	U	F	0.25			G	STD
GS59	SL	1/8/2025	RFS01-02.2501066-008	108-88-3	Toluene	N	0.25	ug/L	U	F	0.25			G	STD
GS59	SL	1/8/2025	RFS01-02.2501066-008	1330-20-7	Total Xylenes	N	0.25	ug/L	U	F	0.25			G	STD
GS59	SL	1/8/2025	RFS01-02.2501066-008	156-60-5	trans-1,2-Dichloroethene	N	0.25	ug/L	U	F	0.25			G	STD
GS59	SL	1/8/2025	RFS01-02.2501066-008	79-01-6	Trichloroethene	N	0.25	ug/L	U	F	0.25			G	STD
GS59	SL	1/8/2025	RFS01-02.2501066-008	75-01-4	Vinyl chloride	N	0.25	ug/L	U	F	0.25			G	STD
PLFSEEPINF	TS	1/8/2025	RFS01-02.2501066-010	71-55-6	1,1,1-Trichloroethane	N	0.25	ug/L	U	F	0.25			G	STD
PLFSEEPINF	TS	1/8/2025	RFS01-02.2501066-010	79-34-5	1,1,2,2-Tetrachloroethane	N	0.25	ug/L	U	F	0.25			G	STD
PLFSEEPINF	TS	1/8/2025	RFS01-02.2501066-010	79-00-5	1,1,2-Trichloroethane	N	0.25	ug/L	U	F	0.25			G	STD
PLFSEEPINF	TS	1/8/2025	RFS01-02.2501066-010	75-35-4	1,1-Dichloroethene	N	0.25	ug/L	U	F	0.25			G	STD
PLFSEEPINF	TS	1/8/2025	RFS01-02.2501066-010	120-82-1	1,2,4-Trichlorobenzene	N	0.5	ug/L	U	F	0.5			G	STD
PLFSEEPINF	TS	1/8/2025	RFS01-02.2501066-010	95-50-1	1,2-Dichlorobenzene	N	0.3	ug/L	J	F	0.25			G	STD
PLFSEEPINF	TS	1/8/2025	RFS01-02.2501066-010	107-06-2	1,2-Dichloroethane	N	0.25	ug/L	U	F	0.25			G	STD
PLFSEEPINF	TS	1/8/2025	RFS01-02.2501066-010	78-87-5	1,2-Dichloropropane	N	0.25	ug/L	U	F	0.25			G	STD
PLFSEEPINF	TS	1/8/2025	RFS01-02.2501066-010	541-73-1	1,3-Dichlorobenzene	N	0.25	ug/L	U	F	0.25			G	STD
PLFSEEPINF	TS	1/8/2025	RFS01-02.2501066-010	106-46-7	1,4-Dichlorobenzene	N	0.41	ug/L	J	F	0.25		U	G	STD
PLFSEEPINF	TS	1/8/2025	RFS01-02.2501066-011	7440-38-2	Arsenic	N	5.7	ug/L		F	0.5			G	STD
PLFSEEPINF	TS	1/8/2025	RFS01-02.2501066-010	71-43-2	Benzene	N	2.4	ug/L		F	0.25			G	STD
PLFSEEPINF	TS	1/8/2025	RFS01-02.2501066-011	7440-41-7	Beryllium	N	0.25	ug/L	U	F	0.25			G	STD
PLFSEEPINF	TS	1/8/2025	RFS01-02.2501066-011	7440-42-8	Boron	N	1400	ug/L		F	15			G	STD
PLFSEEPINF	TS	1/8/2025	RFS01-02.2501066-010	75-25-2	Bromoform	N	0.5	ug/L	U	F	0.5			G	STD
PLFSEEPINF	TS	1/8/2025	RFS01-02.2501066-010	7440-43-9	Cadmium	Y	0.25	ug/L	U	F -	0.25			G	STD
PLFSEEPINF	TS	1/8/2025	RFS01-02.2501066-010	56-23-5	Carbon tetrachloride	N	0.25	ug/L	U	F -	0.25			G	STD
PLFSEEPINF	TS	1/8/2025	RFS01-02.2501066-010	108-90-7	Chlorobenzene	N	0.8	ug/L	J	F	0.25			G	STD
PLFSEEPINF	TS	1/8/2025	RFS01-02.2501066-010	67-66-3	Chloroform	N	0.25	ug/L	U	F -	0.25			G	STD
PLFSEEPINF	TS	1/8/2025	RFS01-02.2501066-010	74-87-3	Chloromethane	N	0.5	ug/L	U	F	0.5			G	STD
PLFSEEPINF	TS	1/8/2025	RFS01-02.2501066-011	7440-47-3	Chromium	N	1	ug/L	U	F	1			G	STD
PLFSEEPINF	TS	1/8/2025	RFS01-02.2501066-010	156-59-2	cis-1,2-Dichloroethene	N	0.25	ug/L	U	F	0.25			G	STD
PLFSEEPINF	TS	1/8/2025	RFS01-02.2501066-010	7440-50-8	Copper	Y	1	ug/L	U	<u> </u>	1			G	STD
PLFSEEPINF	TS	1/8/2025	RFS01-02.2501066-010	100-41-4	Ethylbenzene	N	0.25	ug/L	U	<u> </u>	0.25			<u> </u>	STD
PLFSEEPINF	TS	1/8/2025	RFS01-02.2501066-010	87-68-3	Hexachlorobutadiene	N	0.5	ug/L	U	<u> </u>	0.5			G	STD
PLFSEEPINF	TS	1/8/2025	RFS01-02.2501066-010	7439-92-1	Lead	'	0.5	ug/L	U	F -	0.5			G	STD
PLFSEEPINF	TS	1/8/2025	RFS01-02.2501066-011	7439-97-6	Mercury	N	0.06	ug/L	U	F -	0.06			<u> </u>	STD
PLFSEEPINF	TS	1/8/2025	RFS01-02.2501066-010	75-09-2	Methylene chloride	N	1	ug/L	U	<u> </u>	1			G	STD
PLFSEEPINF	TS	1/8/2025	RFS01-02.2501066-010	91-20-3	Naphthalene	N	25	ug/L		<u> </u>	1			G	STD
PLFSEEPINF	TS	1/8/2025	RFS01-02.2501066-010	7440-02-0	Nickel	Y	5	ug/L	11	<u> </u>	1			G	STD
PLFSEEPINF	TS	1/8/2025	RFS01-02.2501066-011	7782-49-2	Selenium	N	0.5	ug/L	U	<u> </u>	0.5			G	STD
PLFSEEPINF	TS	1/8/2025	RFS01-02.2501066-010	7440-22-4	Silver	! ' '	0.25	ug/L	U		0.25			G	STD
PLESEEPINE	TS	1/8/2025	RFS01-02.2501066-010	100-42-5	Styrene	N	0.25	ug/L	U		0.25			G	STD
PLFSEEPINF	TS	1/8/2025	RFS01-02.2501066-010	127-18-4	Tetrachloroethene	N	0.25	ug/L	U		0.25			G	STD
PLFSEEPINF	TS	1/8/2025	RFS01-02.2501066-010	108-88-3	Toluene Total Vulence	N	0.25	ug/L	U	F	0.25			G	STD STD
PLFSEEPINF	TS	1/8/2025	RFS01-02.2501066-010	1330-20-7	Total Xylenes	N	1.3	ug/L	11		0.25			G	
PLFSEEPINF	TS	1/8/2025	RFS01-02.2501066-010	156-60-5	trans-1,2-Dichloroethene	N	0.25	ug/L	U	F	0.25			G	STD
PLFSEEPINF	TS	1/8/2025	RFS01-02.2501066-010	79-01-6	Trichloroethene	N	0.25	ug/L	U		0.25			G	STD
PLFSEEPINF	TS	1/8/2025	RFS01-02.2501066-011	7440-61-1	Uranium Vinyl oblarida	N	0.25	ug/L	U	<u> </u>	0.25			G	STD
PLFSEEPINF	TS	1/8/2025	RFS01-02.2501066-010	75-01-4	Vinyl chloride	N	0.25	ug/L	U	<u> </u>	0.25			G	STD
PLFSEEPINF	TS	1/8/2025	RFS01-02.2501066-010	7440-66-6	Zinc	Y	86	ug/L		F	5			G	STD

LOCATION CODE	LOCATION TYPE	DATE SAMPLED	SAMPLE CODE	CAS	ANALYTE	FILTRATION STATUS	RESULT	UNITS	LAB QUALIFIERS	SAMPLE TYPE	DETECTION LIMIT	UNCER- TAINTY	DATA VALIDATION QUALIFIERS	COLLECTION METHOD	LAB CODE
PLFSYSEFF	TS	1/8/2025	RFS01-02.2501066-012	71-55-6	1,1,1-Trichloroethane	N	0.25	ug/L	U	F	0.25			G	STD
PLFSYSEFF	TS	1/8/2025	RFS01-02.2501066-012	79-34-5	1,1,2,2-Tetrachloroethane	N	0.25	ug/L	U	F	0.25			G	STD
PLFSYSEFF	TS	1/8/2025	RFS01-02.2501066-012	79-00-5	1,1,2-Trichloroethane	N	0.25	ug/L	U	F	0.25			G	STD
PLFSYSEFF	TS	1/8/2025	RFS01-02.2501066-012	75-35-4	1,1-Dichloroethene	N	0.25	ug/L	U	F	0.25			G	STD
PLFSYSEFF	TS	1/8/2025	RFS01-02.2501066-012	120-82-1	1,2,4-Trichlorobenzene	N	0.5	ug/L	U	F	0.5			G	STD
PLFSYSEFF	TS	1/8/2025	RFS01-02.2501066-012	95-50-1	1,2-Dichlorobenzene	N	0.25	ug/L	U	F	0.25			G	STD
PLFSYSEFF	TS	1/8/2025	RFS01-02.2501066-012	107-06-2	1,2-Dichloroethane	N	0.25	ug/L	U	F	0.25			G	STD
PLFSYSEFF	TS	1/8/2025	RFS01-02.2501066-012	78-87-5	1,2-Dichloropropane	N	0.25	ug/L	U	F	0.25			G	STD
PLFSYSEFF	TS	1/8/2025	RFS01-02.2501066-012	541-73-1	1,3-Dichlorobenzene	N	0.25	ug/L	U	F	0.25			G	STD
PLFSYSEFF	TS	1/8/2025	RFS01-02.2501066-012	106-46-7	1,4-Dichlorobenzene	N	0.25	ug/L	U	F	0.25			G	STD
PLFSYSEFF	TS	1/8/2025	RFS01-02.2501066-013	7440-38-2	Arsenic	N	10	ug/L		F	0.5			G	STD
PLFSYSEFF	TS	1/8/2025	RFS01-02.2501066-012	71-43-2	Benzene	N	0.61	ug/L	J	F	0.25			G	STD
PLFSYSEFF	TS	1/8/2025	RFS01-02.2501066-013	7440-41-7	Beryllium	N	0.25	ug/L	U	F	0.25			G	STD
PLFSYSEFF	TS	1/8/2025	RFS01-02.2501066-013	7440-42-8	Boron	N	1100	ug/L		F	15			G	STD
PLFSYSEFF	TS	1/8/2025	RFS01-02.2501066-012	75-25-2	Bromoform	N	0.5	ug/L	U	F	0.5			G	STD
PLFSYSEFF	TS	1/8/2025	RFS01-02.2501066-012	7440-43-9	Cadmium	Y	0.25	ug/L	U	F	0.25			G	STD
PLFSYSEFF	TS	1/8/2025	RFS01-02.2501066-012	56-23-5	Carbon tetrachloride	N	0.25	ug/L	U	F	0.25			G	STD
PLFSYSEFF	TS	1/8/2025	RFS01-02.2501066-012	108-90-7	Chlorobenzene	N	0.25	ug/L	U	F	0.25			G	STD
PLFSYSEFF	TS	1/8/2025	RFS01-02.2501066-012	67-66-3	Chloroform	N	0.25	ug/L	U	F	0.25			G	STD
PLFSYSEFF	TS	1/8/2025	RFS01-02.2501066-012	74-87-3	Chloromethane	N	0.5	ug/L	U	F	0.5			G	STD
PLFSYSEFF	TS	1/8/2025	RFS01-02.2501066-013	7440-47-3	Chromium	N	1	ug/L	U	F	1			G	STD
PLFSYSEFF	TS	1/8/2025	RFS01-02.2501066-012	156-59-2	cis-1,2-Dichloroethene	N	0.25	ug/L	U	F	0.25			G	STD
PLFSYSEFF	TS	1/8/2025	RFS01-02.2501066-012	7440-50-8	Copper	Y	1	ug/L	U	F	1			G	STD
PLFSYSEFF	TS	1/8/2025	RFS01-02.2501066-012	100-41-4	Ethylbenzene	N	0.25	ug/L	U	F	0.25			G	STD
PLFSYSEFF	TS	1/8/2025	RFS01-02.2501066-012	87-68-3	Hexachlorobutadiene	N	0.5	ug/L	U	F	0.5			G	STD
PLFSYSEFF	TS	1/8/2025	RFS01-02.2501066-012	7439-92-1	Lead	Y	0.5	ug/L	U	F	0.5			G	STD
PLFSYSEFF	TS	1/8/2025	RFS01-02.2501066-013	7439-97-6	Mercury	N	0.06	ug/L	U	F	0.06			G	STD
PLFSYSEFF	TS	1/8/2025	RFS01-02.2501066-012	75-09-2	Methylene chloride	N	1	ug/L	U	F	1			G	STD
PLFSYSEFF	TS	1/8/2025	RFS01-02.2501066-012	7440-02-0	Nickel	Y	4.5	ug/L		F	1			G	STD
PLFSYSEFF	TS	1/8/2025	RFS01-02.2501066-013	7782-49-2	Selenium	N	0.5	ug/L	U	F	0.5			G	STD
PLFSYSEFF	TS	1/8/2025	RFS01-02.2501066-012	7440-22-4	Silver	Y	0.25	ug/L	U	F	0.25			G	STD
PLFSYSEFF	TS	1/8/2025	RFS01-02.2501066-012	100-42-5	Styrene	N	0.25	ug/L	U	F	0.25			G	STD
PLFSYSEFF	TS	1/8/2025	RFS01-02.2501066-012	127-18-4	Tetrachloroethene	N	0.25	ug/L	U	F	0.25			G	STD
PLFSYSEFF	TS	1/8/2025	RFS01-02.2501066-012	108-88-3	Toluene	N	0.25	ug/L	U	F	0.25			G	STD
PLFSYSEFF	TS	1/8/2025	RFS01-02.2501066-012	1330-20-7	Total Xylenes	N	0.25	ug/L	U	F	0.25			G	STD
PLFSYSEFF	TS	1/8/2025	RFS01-02.2501066-012	156-60-5	trans-1,2-Dichloroethene	N	0.25	ug/L	U	F	0.25			G	STD
PLFSYSEFF	TS	1/8/2025	RFS01-02.2501066-012	79-01-6	Trichloroethene	N	0.25	ug/L	U	F	0.25			G	STD
PLFSYSEFF	TS	1/8/2025	RFS01-02.2501066-013	7440-61-1	Uranium	N	0.49		J	F	0.25			G	STD
PLFSYSEFF	TS	1/8/2025	RFS01-02.2501066-012	75-01-4	Vinyl chloride	N	0.25		U	F	0.25			G	STD
PLFSYSEFF	TS	1/8/2025	RFS01-02.2501066-012	7440-66-6	Zinc	Υ	36	ug/L		F	5			G	STD
PLFSYSEFF	TS	1/23/2025	RFS01-02.2501068-012	91-58-7	2-Chloronaphthalene	N	1	ug/L	U	F	1			G	STD
PLFSYSEFF	TS	1/23/2025	RFS01-02.2501068-013	83-32-9	Acenaphthene	N	1.9	ug/L		F	0.4			G	STD
PLFSYSEFF	TS	1/23/2025	RFS01-02.2501068-013	120-12-7	Anthracene	N	0.53	ug/L	J	F	0.4			G	STD
PLFSYSEFF	TS	1/23/2025	RFS01-02.2501068-013	50-32-8	Benzo(a)pyrene	N	0.4	ug/L	U	F	0.4			G	STD
PLFSYSEFF	TS	1/23/2025	RFS01-02.2501068-013	191-24-2	Benzo(g,h,i)Perylene	N	0.4	ug/L	U	F	0.4			G	STD
PLFSYSEFF	TS	1/23/2025	RFS01-02.2501068-012	108-60-1	Bis(2-chloroisopropyl) ether	N	4	ug/L	U	F	4			G	STD
PLFSYSEFF	TS	1/23/2025	RFS01-02.2501068-012	117-81-7	Bis(2-ethylhexyl) phthalate	N	5	ug/L	U	F	5			G	STD
PLFSYSEFF	TS	1/23/2025	RFS01-02.2501068-013	218-01-9	Chrysene	N	0.4	ug/L	U	F	0.4			G	STD

		1				RELMA Data				1					
LOCATION CODE	LOCATION TYPE	DATE SAMPLED	SAMPLE CODE	CAS	ANALYTE	FILTRATION STATUS	RESULT	UNITS	LAB QUALIFIERS	SAMPLE TYPE	DETECTION LIMIT	UNCER- TAINTY	DATA VALIDATION QUALIFIERS	COLLECTION METHOD	LAB CODE
PLFSYSEFF	TS	1/23/2025	RFS01-02.2501068-013	53-70-3	Dibenz(a,h)anthracene	N	0.4	ug/L	U	F	0.4			G	STD
PLFSYSEFF	TS	1/23/2025	RFS01-02.2501068-012	84-66-2	Diethyl phthalate	N	2	ug/L	U	F	2			G	STD
PLFSYSEFF	TS	1/23/2025	RFS01-02.2501068-012	131-11-3	Dimethyl phthalate	N	1	ug/L	U	F	1			G	STD
PLFSYSEFF	TS	1/23/2025	RFS01-02.2501068-012	84-74-2	Di-n-butyl phthalate	N	4	ug/L	U	F	4			G	STD
PLFSYSEFF	TS	1/23/2025	RFS01-02.2501068-013	206-44-0	Fluoranthene	N	0.65	ug/L	J	F	0.4			G	STD
PLFSYSEFF	TS	1/23/2025	RFS01-02.2501068-013	86-73-7	Fluorene	N	1.7	ug/L		F	0.4			G	STD
PLFSYSEFF	TS	1/23/2025	RFS01-02.2501068-012	67-72-1	Hexachloroethane	N	4	ug/L	U	F	4			G	STD
PLFSYSEFF	TS	1/23/2025	RFS01-02.2501068-012	78-59-1	Isophorone	N	4	ug/L	U	F	4			G	STD
PLFSYSEFF	TS	1/23/2025	RFS01-02.2501068-013	91-20-3	Naphthalene	N	3.7	ug/L		F	0.5			G	STD
PLFSYSEFF	TS	1/23/2025	RFS01-02.2501068-013	129-00-0	Pyrene	N	0.44	,	J	F	0.4			G	STD
SPIN	TS	1/16/2025	RFS01-04.2501147-014	NO3+NO2 AS N	Nitrate + Nitrite as Nitrogen	N	520	mg/L		F	12			G	STD
SPIN	TS	1/30/2025	RFS01-04.2501148-014	NO3+NO2 AS N	Nitrate + Nitrite as Nitrogen	N	510	mg/L		F	12			G	STD
SPIN	TS	1/30/2025	RFS01-04.2501148-014	7440-61-1	Uranium	N	63	ug/L		F	0.25			G	STD
SPIN	TS	2/20/2025	RFS01-04.2502149-014	NO3+NO2 AS N	Nitrate + Nitrite as Nitrogen	N	490	mg/L		F	12			G	STD
SPIN	TS	3/18/2025	RFS01-04.2503151-014	NO3+NO2 AS N	Nitrate + Nitrite as Nitrogen	N	480	J		F	30			G	STD
SPIN	TS	3/31/2025	RFS01-13.2503130-001	NO3+NO2 AS N	Nitrate + Nitrite as Nitrogen	N	510	J		F	30		J	G	STD
SPIN	TS	3/31/2025	RFS01-13.2503130-012	NO3+NO2 AS N	Nitrate + Nitrite as Nitrogen	N	790	mg/L		D	12		J	G	STD
SPIN	TS	3/31/2025	RFS01-13.2503130-001	7440-61-1	Uranium	N	47	ug/L		F	0.25		J	G	STD
SPIN	TS	3/31/2025	RFS01-13.2503130-012	7440-61-1	Uranium	N	66	3, -		D	0.25		J	G	STD
SPOUT	TS	1/16/2025	RFS01-04.2501147-015	NO3+NO2 AS N	Nitrate + Nitrite as Nitrogen	N	0.3	J.		F	0.06			G	STD
SPOUT	TS	1/30/2025	RFS01-04.2501148-015	NO3+NO2 AS N	Nitrate + Nitrite as Nitrogen	N	0.06	mg/L	U	F	0.06			G	STD
SPOUT	TS	1/30/2025	RFS01-04.2501148-015	7440-61-1	Uranium	N	56	<i>∝.g,</i> _		F	0.25			G	STD
SPOUT	TS	3/3/2025	RFS01-04.2503150-015	NO3+NO2 AS N	Nitrate + Nitrite as Nitrogen	N	0.19)	J	F	0.06			G	STD
SPOUT	TS	3/3/2025	RFS01-04.2503150-015	7440-61-1	Uranium	N	50	ug/ L		F	0.25			G	STD
SPOUT	TS	3/18/2025	RFS01-04.2503151-015	NO3+NO2 AS N	Nitrate + Nitrite as Nitrogen	N	0.06		U	F	0.06			G	STD
SPOUT	TS	3/31/2025	RFS01-13.2503130-002	NO3+NO2 AS N	Nitrate + Nitrite as Nitrogen	N	0.06		U	F	0.06			G	STD
SPOUT	TS	3/31/2025	RFS01-13.2503130-002	7440-61-1	Uranium	N	47	ug/L		F	0.25			G	STD
SW093	SL	1/6/2025	RFS01-13.2504132-015	14596-10-2	Americium-241	N	0.00235		U	F		0.00565		С	GEN
SW093	SL	1/6/2025	RFS01-13.2504132-015	7440-41-7	Beryllium	N	1	ug/L	U	F	1			С	GEN
SW093	SL	1/6/2025	RFS01-13.2504132-015	7440-43-9	Cadmium	Y	0.3	0	U	F	0.3			С	GEN
SW093	SL	1/6/2025	RFS01-13.2504132-015	7440-47-3	Chromium	N	2.33	J	В	F	1			C	GEN
SW093	SL	1/6/2025	RFS01-13.2504132-015	PU-239,240	Plutonium-239, 240	N	0.00486		U	F		0.00572		С	GEN
SW093	SL	1/6/2025	RFS01-13.2504132-015	7440-22-4	Silver	Y	0.3	ug/L	U	F -	0.3			С	GEN
SW093	SL	1/6/2025	RFS01-13.2504132-015	7440-61-1	Uranium	N	3.85	J		F	0.067			C	GEN
WALPOC	SL	1/23/2025	RFS01-13.2505134-002	14596-10-2	Americium-241	N	0.00896		U	D		0.0104		С	GEN
WALPOC	SL	1/23/2025	RFS01-13.2505134-016	14596-10-2	Americium-241	N	0.0084	pCi/L	U	F		0.00851		C	GEN
WALPOC	SL		RFS01-13.2505134-002	PU-239,240	Plutonium-239, 240	N	-0.00139		U	D		0.00979	1	С	GEN
WALPOC	SL	1/23/2025	RFS01-13.2505134-016	PU-239,240	Plutonium-239, 240	N	0.00447		U	F	2 2 2 -	0.00679		С	GEN
WALPOC	SL	1/23/2025	RFS01-13.2505134-002	7440-61-1	Uranium	N	9.57	U		D	0.067			С	GEN
WALPOC	SL	1/23/2025	RFS01-13.2505134-016	7440-61-1	Uranium	N	8.91	ug/L		F	0.067			С	GEN
WALPOC	SL	3/31/2025	RFS01-13.2503130-007	NO3+NO2 AS N	Nitrate + Nitrite as Nitrogen	N	0.085	Ŭ	J	F	0.06			G	STD
WALPOC	SL	3/31/2025	RFS01-13.2503130-013	NO3+NO2 AS N	Nitrate + Nitrite as Nitrogen	N	0.089	•	J	D	0.06			G	STD
WOMPOC	SL	1/6/2025	RFS01-13.2503128-018	14596-10-2	Americium-241	N	0.00277		U	F		0.00769		С	GEN
WOMPOC	SL	1/6/2025	RFS01-13.2503128-018	PU-239,240	Plutonium-239, 240	N	0.0119		U	F		0.011		С	GEN
WOMPOC	SL	1/6/2025	RFS01-13.2503128-018	7440-61-1	Uranium	N	2.43	ug/L		F	0.067			С	GEN

LOCATION CODE	LOCATION TYPE	DATE SAMPLED	SAMPLE CODE	CAS	ANALYTE	FILTRATION STATUS	RESULT	UNITS	LAB QUALIFIERS	SAMPLE TYPE	DETECTION LIMIT	UNCER- TAINTY	DATA VALIDATION QUALIFIERS	COLLECTION METHOD	LAB CODE
WOMPOC	SL	2/24/2025	RFS01-13.2503129-018	14596-10-2	Americium-241	N	-0.00493	pCi/L	U	F		0.00966		С	GEN
WOMPOC	SL	2/24/2025	RFS01-13.2503129-018	PU-239,240	Plutonium-239, 240	N	0.00471	pCi/L	U	F		0.00925		С	GEN
WOMPOC	SL	2/24/2025	RFS01-13.2503129-018	7440-61-1	Uranium	N	2.39	ug/L		F	0.067			С	GEN
WOMPOC	SL	3/13/2025	RFS01-13.2504131-018	14596-10-2	Americium-241	N	0.00581	pCi/L	U	F		0.0121		С	GEN
WOMPOC	SL	3/13/2025	RFS01-13.2504131-018	PU-239,240	Plutonium-239, 240	N	0.00718	pCi/L	U	F		0.00726		С	GEN
WOMPOC	SL	3/13/2025	RFS01-13.2504131-018	7440-61-1	Uranium	N	2.29	ug/L		F	0.067			С	GEN
WOMPOC	SL	3/31/2025	RFS01-13.2504132-018	14596-10-2	Americium-241	N	0.00645	pCi/L	U	F		0.0076		С	GEN
WOMPOC	SL	3/31/2025	RFS01-13.2504132-018	PU-239,240	Plutonium-239, 240	N	0.00103	pCi/L	U	F		0.00879		C	GEN
WOMPOC	SL	3/31/2025	RFS01-13.2504132-018	7440-61-1	Uranium	N	2.57	ug/L		F	0.067			C	GEN

EXPLANATION

FIL	.TRA	TIC	NC	ST	JT1	IS

N = Sample was not filtered.

Y = Sample was filtered.

UNITS

mg/L; ppm = milligrams per liter pCi/L = picocuries per liter

ug/L = micrograms per liter C = degrees celsius

mS/cm = milliSiemens per centimeter

NTU = normal turbidity units

s.u. = standard pH units

uS/cm = microSiemens per centimeter umhos/cm = microSiemens per centimeter

SAMPLE TYPE

F = Field Sample
D = Duplicate

DATA_VALIDATION_QUALIFIERS

<null></null>	No qualifiers
F	Low flow sampling method used.
G	Possible grout contamination, pH > 9.
J	Estimated value.
L	Less than 3 bore volumes purged prior to sampling.
Q	Qualitative result due to sampling technique
R	Unusable result.
U	Parameter analyzed for but was not detected.
X	Location is undefined.
999	Validation not complete

LAB_QUALIFIERS

- * Replicate analysis not within control limits.
- + Correlation coefficient for MSA < 0.995.
- > Result above upper detection limit.
- A TIC is a suspected aldol-condensation product.
- B Inorganic: Result is between the IDL and CRDL. Organic & Radiochemistry: Analyte also found in method blank.
- C Pesticide result confirmed by GC-MS.
- D Analyte determined in diluted sample.
- E Inorganic: Estimate value because of interference, see case narrative. Organic: Analyte exceeded calibration range of the GC-MS.
- H Holding time expired, value suspect.
- I Increased detection limit due to required dilution.
- J Estimated
- M GFAA duplicate injection precision not met.
- N Inorganic or radiochemical: Spike sample recovery not within control limits. Organic: Tentatively identified compund (TIC).
- P > 25% difference in detected pesticide or Arochlor concentrations between 2 columns.
- S Result determined by method of standard addition (MSA).
- U Analytical result below detection limit.
- W Post-digestion spike outside control limits while sample absorbance < 50% of analytical spike absorbance.
- X Laboratory defined (USEPA CLP organic) qualifier, see case narrative.
- Y Laboratory defined (USEPA CLP organic) qualifier, see case narrative.
- Z Laboratory defined (USEPA CLP organic) qualifier, see case narrative.

LOCATION_TYPE

SL SURFACE LOCATION
TS TREATMENT SYSTEM

WL WELL

COLLECTION_METHOD

G Grab
C Composite

LAB CODE

GEN Gel Laboratories LLC STD Eurofins Test America

Appendix B Analytical Results for Water Samples - First Quarter 2025 Information for RFLMA Composite Samples with Unavailable Data

Location	Sample Dates*	Status
GS51	1/6/2025 14:40>	In progress
SW027	1/23/2025 11:52>	In progress

- Notes:
 * Analytical results are reported with the start date of the composite sampling period
- --> Composite sample end date to be determined

NSQ: non-sufficient quantity for analysis