IINDSAY CHEMICAL COMPANY

INDUSTRIAL HYGIENE SIJRVEY

PART I

OCCUPATIONAL EXPOSJRE TO THORIUM DUST AND THORON

by
Paul B. Klevin
Industrial Hygiene Branch
and
James Fresco
Analytical Branch
Health and Safety Division

Issued: January 21, 1953

Distribution:

1-Fil (Health and Safety, NYOO)
2 - Lin
3 - Lindeay Chemical Company
4:- Engineering and Construction (Catalytic)
5 - Biology and Medicine, Washington
6 - File (W. B. Harris, Health and Safety)

INTRODUCTION

The information contained herein comprises the first part of a report in two parts covering a complete industrial hygiene and medical surverypf the Lindsay Chemical Company plant in West Chicago, Illinois.
Thesurvey was conducted in order that matual benefit might accrue both to Eindsay Chemseal Company and to the Atomic Energy Commission. To the Indsay Chenical Company, in order that they might have an accurate deflinition of the extent of occupational exposures within the plant and also some knowledge of medical history of their present and past employees. To the AEC so that any future plant construction could be madewith the maximum toxicological information.

In order to deflne potential hazards within the operating areas, values have been assigned to airborne concentrations of the primary redioactive components of the materials being processed, thorium and thoron. The values have been chosen as carefully as possible on the basis of information available prior to the writing of the report. The value for thorium has been based on the accepted value for uranium. This concentration, of $70 \mathrm{~d} / \mathrm{m} / \mathrm{m}^{3}$, presumes that from the radioactivity standpoint both uranium and thorium are equally toxic. The concentration of thoron has been based on the accepted value for radon, of 10^{-11} curies/liter. Here again toxicity had been considered identical on a radioactivity basis.

Whereas by inference these maximun allowable concentration values have considerable validity, it cannot be emphasized too strongly that only through careful epidemiological studies is it possible to establish the maximum concentration to which a worker can be exposed with safety.

Radiation measurements were taken within the plant and outside of the plant but only the Inplant values have been assessed for potential danger. The values taken outside the plant area are presented without interpretation as any possible danger in these areas depends on the use to which these areas will be put.

On the basis of the maximum allowable concentrations which have been used, there are several plant areas in which overexposures were found to exist. Where this is true, an effort has been made to define the source of excessive concentrations and to suggest superficial means for remedying the situation. No effort has been made to provide specific detailed recommendations for the control of atmospheric hazards.
Scope 4
Purpose 4
Results of Survey 5
Method of Study 6
Analytical Method for Thoron 7
Job Analysis Sheets 9
Process Description 9
Discussion 10
Conclusion 15
LIST OF TAELES
I - Sumnary of Daily Weighted Thorium Exposure 5
II - Summary of Estimated Dajly Weighted Thoron Exposure 5
III - Daily Weighted Average Exposure 10-a
IV - Tabulation of Average Breathing Zone Sarmles 11-a
V - Tabulation of Average General Air Samples 14-2
VI - Smear Sample Results $14-b$
意: VII - Direct Radiation Measurements - Inplant 14-d
VIII - Direct Fadiation Measurements - Outplant 15-
IX - List of Personnel 15-c

```
Table of Contents - continued
```

APPEMDIX A
Flowsheet - Thorium Salts
Figure 1

APPEMDIX B
Daily Weighted Average Exposure
Figure 2

APPEMDIX C
 PROCESS ARD BUILDINE LAYOUTS

Layout of Sump Area with Radiation Measurements
Figure 3
Layout of Mud Storage Area with Radiation Measuremente
Figure 4
Ball Mill
Figure 5
Building \#3 - Main Floor
Figure 6
Building \#3- Balcony Figure 7

Building fill - Main Floor Flgure 8

Building \#4 - Balcony
Figure 9

APPENDIX D
Decay Scheme - Thoron Figure 10

APPENDIX E
Job Anslysis Sheete

SCOPE

This is a report of a survey performed during the perici September 16 through 18, 1952 at the Lindsay Cherical Company, West C'nicago, I Merois. The survey was made in antjecipation of the construction of a refinery to suply thorium ritrate or other thorium intermediates to the Fernald Arda, and covered the health ard safety problems existing in the refining of thorium and the concurrent separation of rare earth materials.

PURPCSE
This survey was made with the following objectives in mind:

1. To gather data from which to calculate the daily weighted average exposures of plant employees.
2. To make an irtensive study of present and past health experience of all Lindsay workers toward an estimation of the toxicity of thorium and thoron.
3. To suggest to Lindsay, physical and procecural changes which would be needed in the present plant to correct exposures which exceed the interim benchrarks now being used.
L. To provide information on which new thorium facilities can be designed.

RESULTS OF STULY

Tentative maximum permissible concentrations of $70 \mathrm{~d} / \mathrm{m} / \mathrm{m}^{3}$ for thorium, and $10-11 \mathrm{c} / 1$ of thoron rave been used as benchmarks in this analysis. Of the eighty-two employees studied, forty-nine (59.8\%) were exposed to thorium.concentrations exceeding the tentative maximum pemissible level; ten of these had exposures of 210 to 2100 alpha disintegrations per minute per cubic meter of air $\left(\mathrm{d} / \mathrm{m} / \mathrm{m}^{3}\right)$. The exposures of all. plant people exceeded the level of thoron now considered as safe.
I. Thorium

A complete breakdown of the daily weighted exposure to thorium of plant personnel follows:

TABLE I

Surmary of Daily Weighted Thorium Exposure

2. Thoron

The following table summarizes the celculated welghted thoron exposures as estimated from daughter measurements. (See Method of Study.)

TABLE II
Summaxy of Estimated Daily Weighted Thoron Exposure

Number of Personnel Studied	84
Average weighted exposure ($\mathrm{c} / 1)^{\text {* }}$	$52 \times 10-11$
Maximum weighted exposure ($\mathrm{c} / 1$)	202×10^{-11}

No. Employees

Less than $10-11 \mathrm{c} / 1$	0
1 to $5 \times 10^{-11} \mathrm{c} / 1$	0
5 to $10 \times 10^{-11} \mathrm{c} / 1$	15 (17.0\%)
10 to $20 \times 10-11 \mathrm{c} / 1$	7 (8.3\%)
20 to $40 \times 10^{-11} \mathrm{c} / 1$	8 (9.5\%)
40 to $80 \times 10^{-11} \mathrm{c} / 1$	45 (53.5\%)
80 to $160 \times 10^{-311} \mathrm{c} / 1$	6 (7.2\%)
over $160 \times 10^{-11} \mathrm{c} / 1$	3 (3. 6%)

* $c / \downarrow=$ curies per liter

The maximum allowable concentration (MAC) for the thoron is presently accepted as 10-11 c/1.
3. Radiation Measurements
a) Smear Samples taken throughout the Lindsay plant area showed removable alpha surface contemination of from 14 to 15000 * alpha $\mathrm{d} / \mathrm{m} / \mathrm{sample}$. The highest contamination (15000 alpha $\mathrm{d} / \mathrm{m} / \mathrm{sample}$) was found in Buildirg 4 Balcony at the thorium nitrate kettle.
-b) Extermal Radiation Measurement - Inplant: Excossive direct radiation was found in the "black mud" and "first gray mud" storage arees located on the Building 3 Balcony. Activity measurements exceeding the highest range of the 2610 A BetaGanma Survey meter (20 milliroentgens per hour - mr/hr) were found (using a closed window).
c) External Radiation Measurement - Outplant; New plant location, sump, and storage areas: The highest radioactivity measured was in the "black mud" storage area. The reading made in cirect contact over the "black mud" pile (approximately 10^{6} pounds) was 40 mreps beta, $330 \mathrm{mr} / \mathrm{hr}$ gamma and $2 . \times 106$ $\mathrm{d} / \mathrm{m} / 100 \mathrm{~cm}^{2}$ alpha. (Juno readings.)

METHOD OF STUDY

A. Thorium

Dust samples were collected on $11 / 8^{\prime \prime}$ Whatman \#Ll filter paper, employing a Universal air ipump at 0.5 cfm as the sampler. The collection period varied from 0.5 minutes to 100 minutes, depending on conditions of operation and dust loading.

The dust sanples collected are divided into:
(1) General Air Samples - a sample obtained of a general working area or room atmosphere.
(2) Breathing Zone Samples - a sample obtained in the breathing zone of an operator during the performance of a particular task or operation.
B. Thoron

Boneuse of the decay characteristics of the thorium chain, we have no difect method for measuring thoron gas concentrations with portable fiold equipment. It is possible, however, to collect thoron daughter
products together with an airborne dust sample. The activity of the dust sample may then be used as an indirect means for calculating initial thorium daughter concentration after subtracting the corigtration of long-lived alpha emitters. By using the radioactive detcay curve of Pn 220 (thoron) and its daughter products, the thoron concentiation may be estimated with reasonable accuracy. The method of analysis of thoron is described in detail under Analytical Method for Thoron. The dust collection medium and the apparatus is the same as described above.
C. Radiation Measurements

Area monitoring for radiation intensity at various plant and outplant locations was done with:

1. Beta-Gamma Survey Meter 2610n-A geiger tube instrument with a shielded window to permit screening out beta particles. This is count rate meter reading intensity in milliroentgens per hour ($\mathrm{mr} / \mathrm{hr}$). The instrument has three ranges ($0.2,2.0,20 \mathrm{mr} / \mathrm{hr}$, full scale).
2. Juno - An ionization chamber instrument for detecting alpha, beta and gama emitting radioactive materials. The Juno measures radiation intensities in three ranges, 50,500 and $5000 \mathrm{mr} / \mathrm{hr}$, full scale, and has selective shields to permit distinguishing the three types of radiation.
3. Smears - The renorable alpha surface contamination was determined by wiping approximately 150 sq . cm area of a surface with a Whatman \#4l filter paper. The alpha contamination adhering to the filter paper was counted on an alpha scintillation counter.

ANALYTICAL METHOD FOR THORON

Rationsle

The properties of thoron make it difficult to analyze directly. (See Decay Scheme, Figure 10.) Thoron is, however, the parent of a chain of solid radioactive decay products which car be separated from air by filtration. Neglecting ThA, (0.16 sec half-life) the thoron daughter products will decay with a half-life which is long enough to permit a measurement of their radioactivity within a day or two after collection.

Diting sampling at a constant rate, decay products will build up on a chlector and approach a constant activity. At equilibrium the rate oI deposition will equal the rate of decay. However, for the thoron
daughter chain this equilibrium will be reached only after 100 hours of sampling. It is therefore neither desirable nor practicel to sample to equilibrium. For sampling times less than 100 hours, tut more thini i minutes, it is possible to calculate the percentage of equilibriuge activity which will be present on the collector. (For sampling times low than 8 minutes this is not possible, since the decay constants intolved are not knom to sufficient accuracy.)
The alpha activity of thoron decay products may be converted to thoron concentration by the equation:

$$
c / 1=\frac{(2)\left(4.5 \times 10^{-16}\right)(\mathrm{a} / \mathrm{m})}{(\mathrm{F}) 1 / \mathrm{m}}
$$

where

$$
\begin{aligned}
c / 1= & \text { curies/liter of thoron } \\
2= & \text { empirical correction factor for absorption } \\
& \text { and incomplete particle retention } \\
d / m= & d / m \text { at end sampling period } \\
F= & \text { build-up factor } \\
1 / m= & \text { sampling rate }
\end{aligned}
$$

It is possible that thoron and its daughters may not be in radioactive equilibrium in the sampled air. In this case the above calculation would more correctly represent the concertration of only one of the daughters. From the relative half-ljves of the thoron series, however, it is apparent that this can not be a serious discrepancy.

Procedure

The total activity of the samples was measured by a Samson alpha survey meter 7 to 12 hours after collection and the decay of those samples of higher activity was followed. All the filter papers were subsequently re-counted for long-lived activity. After subtracting the second count, the net first count extrapolated to the end of the collection period represents the activity of the daughters. This was then computed by the above equation to equivalent thoron activity.

The lower limit of detection of the Samson meter as used is approximifely $250 \mathrm{~d} / \mathrm{m}$. This represents $2.0 \times 10-11 \mathrm{c} / 1$ of thoron in an 8 matinute sample measured after 10 hours.

6. Upon dissolving the "white mud" in hydrochloric acid and precipitating with sulfuric acid thorium sulfate crystals ars obtained. Trie crystels are dissolved in water, precipitated again with caustic yiedding thoriun hydroxide. This is leached with nitric acid to prodice a thorium nitrate solution. The thorium nitrate solution is crystallized, centrifuged and recrystallized to produce the purified thorium nitrate tetrahydrate.
7. Thorium nitrate precipitated with oxalic acid yields thorium oxalate, which upon calcining is decomposed to thorium oxide.

A flow sheet of the above operation is included (Figure 1).

DISCUSSION

In order that the data of this report may be interpreted, it is necessary to have some criteria of toxicity. The following maximum allowable concentrations are suggested:

1. Thorium: 70 disintegrations per minute per cubic meter of air.

Although there is no generally accepted MAC for thorium, the New York Office has tentatively accepted the level which has been in use for some time for insoluble uranium compounds. There is no apparent reason why the radioactive toxicity of these two materials should differ significantly when expressed on an activity basis.
2. Thoron: 10-11 curies per liter of air.

As in the case of thorium, there is as yet no generally accepted MAC but the "American Conference of Govermmental Industria]. Hygienists" has tentatively proposed the value used in this report. Again this is taken from the accepted value for radon with the same rationale as expressed above.

In this study it was found that forty-nine of the eighty-four plant employees are exposed to thorium concentration exceeding the MAC. The ball mill, rotary drier, pot diggers, thorium oxide preparation, and dissolver operators had exposures ranging from 3 to 12 times the :SAC while the rare earth fluoride rotary drier, and pot operators had exposures of 18 to 30 times MAC, respectively. Table III contains the individual daily weighted thorium exposures for all occupations. c
he thoron exposures of all Lindsay employees were all found to exceed the tentative MAC of 10^{-11} curies per iiter. The range of these exposures was from 8 MAC found for the office personnel to 202 MAC for the

DAILY WEIGHTED AVERAGE EXPOSURE

JOB	No. of Employees	$\begin{aligned} & \text { Daily wel } \\ & \text { Thorium } \\ & \left(\mathrm{d} / \mathrm{m} / \mathrm{m}^{3}\right) \end{aligned}$	Thoram $\left(x 10^{2011} \mathrm{c} / 1\right)$
Building 3			
Ball MII	1	560	64
Rotary Drier	1	870	64
Pot Operator	2	2000.	75
Pot Diggers	2	330	75
Pot Baker (small room)	1	54	44
Pot Digger (small room)	1	48	60
HF Operator	1	77	68
Maintenance \& Repair - Bldg 3	1	77	48
Press Operators	4	110	52
Working Foreman (Press)	1	90	30
Thorium Oxide Preparation	1	510	59
Thorium Nitrate Crystallization	1	40	28
Building 4			
Rare Earth Fluoride Rotary Drier	1	1300.	104
Hydroxide Drier	1	280	105
Thorium Sulphate	1	110	97
Thorium Extraction	1	180	200
Dissolving Operator	1	220	202
Cascade Operator	1	11.	160
Thorium NH trate Mold Crusher	1	18	152
Chemical Operator Foreman	1	150	14.2
Maintenance \& Repair - Bldg 4	1	130	100
Maintenance \& Repair - Bldg 2,3,4	4	73	56
Other Personnel (not handling Th)) 5	33	39
Builcing 2			
Plant Superintendent	1	23	20
Production Superinterdant	1	69	48
Assistant Superintendant	1	75	47
Maintenance \& Repair Supervisor	1	6	13
Receiving and Shipping	1	12	12
Control Laboratory	5	12	19
Labor Crew	20	92	61
Offlice Persomnel	15	6	8
	-	-	-
Tof Parsonnel	84		
Average Daily Weighted Concentratio		151	52

the dissolving operator. The highest single general air concentration 920×10^{-11} was found at a dissolving kettle \#16 on the Building 4 Balcony. It i.s safe to assume that since the majority of the ray. breathing zone thoron concentrations reported in the sample recose sucus were about 10-9 curies per liter, the estimated individual daily thoron Foncentrations show in Table IV are probably on the low side. E
From the sample data in Table IV the need for process improvement and control is obvious if the tentative levels are accented.

Following is a summary of the main points from which a high dust dispersion was noted:
I. Ball Mill
a) During the operation of loading monozite sand into the mill, Visible dust was dispersed throughout the area. An average BZ concentration $780 \mathrm{~d} / \mathrm{m} / \mathrm{M}^{3}$ was found. This concentration was primarily from:

1. Lack of ventilation at the bag dump hopper.
2. Frequent jamming of sand conveyor.
3. Lack of ventilation between weigh hopper and syntron feeder, and syntron feeder and ball mill.
4. Spread of contamination from
(a) frequently open or leaky monozite sand bags
(b) dust escaping from leaky ball mill
(c) lack of central vacuum cleanup system.
b) Loading a buggy with sand from the discharge of the mill is even dustier. An avcrage breathing zone concentration of $3400 \mathrm{~d} / \mathrm{m} / \mathrm{m}^{3}$ was found. Lack of ventilation at the hopper and mill discharge are primarily responsible for the high dust concentrations.

II. Rotary Drier

Tabulation of this operator's daily tasks are shown in Table IY. The highest average breathing zone concentration ($3400 \mathrm{~d} / \mathrm{m} / \mathrm{m}^{3}$) was found during the unloading of the sand from the mill discharge onto buggies. c his is the same operation as periomed by the mill operator.

Table IV - continued

opration	Concentiation ($\mathrm{d} / \mathrm{m} / \mathrm{M}^{3}$)			No. of Samples
	Average	High	$\underline{L 015}$	
6. Loading second gray mud into barrel	150	-	-	ㄹ.
7. Cleaning red mud press	85	93	78	3
8. Láading red mud into barrels	85	-	-	1
Rare Earth Fluoride Rotary Drier				
1. Shoveling R.E. Fuoride from drum into rotary drier	65	76	52	2
2. Charging grinder hopper with dried R.E. Fluoride	505	680	430	2
3. Discharging R.E. Fluoride from grinder into drum	19000	-	-	1
Hydroxide Drier				
1. Unloads 13 pans R.E. Hydroxide into drum	810	1400	380	3
2. Loads wet R.E. Hydrate into 13 pans	200	300	120	3
3. Loads 13 pans into drier	197	220	160	3
4. Clean up area with sweep	830	-	-	1
Thoriun Extraction - Bldg 4				
1. Cleaning second grade thorium mud	185	190	180	2
2. Loads second grade thorium mud into drum	2250	2300	2200	2
Thorium Nitrate Mold Crusher				
Thorium Oxide Preparation Room				
1. Loads trays with thorium oxalate and inserts into furnace after unloading thorium oxide trays from furnace	5000	8200	1800	3
2. Unloads trays Th_{2} from furnace into bottle	52000	160000	107000	3
Thorium Nitrate Crystallization				
1. Scoops thorium nitrate from	<1	82	41	2
Flbre Pak carton into mixing kettle				

Three other operational samples obtained during loading of the drier, loading monozite sand into trucks and unloading the drier averaged 100 , 132 and $663 \mathrm{~d} / \mathrm{m} / \mathrm{m} 3$, respectively. Direct contributors to the exfessive concentrations are:

1. Dumping of unreacted sand on floor in center of area.
2. Crushing large pieces of material with shovel, in open.
3. Frequent handling of material.
4. Lack of ventilation.

III. Pot Area

The pot area is affected by the dust generated durint the unloading of milled sand from the sand hopper into the pot barrel, dunping buggy of sand into hopper at center of pot area, and unloading barrel of sand into pot of fuming sulfuric acid. Average treathing zone samples of $23,200,9500$ and $3150 \mathrm{~d} / \mathrm{m} / \mathrm{m}^{3}$, respectively, were found for the above operations. Since the average general air concentration in this area is $76 \mathrm{~d} / \mathrm{m} / \mathrm{m}^{3}$, it is quite evident that local dust and fume control at the source is desirable. Several practices observed in this area which directly affected the exposure of the individuals were:

1. Frequent spillage of monozite sand and pot cake onto floor.
2. Eating of food ard smoking, in operating area.
3. Digging out pots with hand scoop exposing operator to dust and fumes.
IV. Rare Earth Fluoride Rotary Drier

Dust creation in this area by far exceeded thet created in other operating areas. Fortunately, the rare earth fluoride contains only 0.25 thorium oxile thus the radionctivity content oi the collected air samples were not as high as found in other areas. However, a single breatring z one sample taken curirg the discharging of rare earth fluoride from the grinder into a drum revealed a thorium concentration of 19,000 alpha $\mathrm{d} / \mathrm{m} / \mathrm{id}$. The following violations of gocd practice were noted:
armity

1. Lack of ventilation at discharge end of Rotary orier.
2. Open system from drier to grinder.
3. Grinder cherging hood inadequately ventilated.
L. Entire grinder unit leaks cust.
4. Inacequate ring type exhaust at discharge of grincer.
5. Outlet of Draccu collector recircuietes inside the operating area spreading dust throughout the area.

V. Rare Earth Hydroxide Erier

Initially the rare earth hydroxide is dumped onto the floor between the rare earth fluoride rotary drier and the hydrate drier. This furing pile of hydrate is then transferred to trays and thence to the drier. The entire area between the bydrate drier anc pile was covered with a heavy yellow dust. Averag: breathing zone samples of the four operations performed by this operator ranged from 200 to $830 \mathrm{~d} / \mathrm{m} / \mathrm{m}^{3}$.

The surveyors noted the following violations of good industrial hygiene procedures:

1. Storage of rare earth hydroxide (often funing) in an open area between the rare earth fluodide and crici.
2. Loading of hycroxice into pans in open area.
3. Conveying of cust laden pans in oper.
4. Contamination of entire floor area with dried hydrate and tracking of material to adjacent areas.
5. Unloading of hydrate fron pans into drums was perfornied in open, creating a dusty atmosphore.
6. Drums filled with dried hydrate were leit unlidded.

VI. Press Areas

Cleaning and loading of the various press cakes exposed the operators to average $B Z$ concentrations ranging from 70 to $380 \mathrm{~d} / \mathrm{m} / \mathrm{M} 3$. The highest concentrations found were at the "secord gray mud" presses.

Such operations as hand cleaning of the preeses nith scrapers, shovciing the cake into barrels or into tanks and cleanup of area ater press bumping contributed to the average general air concentration of 125
alpha $\mathrm{d} / \mathrm{m} / \mathrm{r}^{3}$ found on the Building 3 Balcony. In adiation, a direct rediation exposure to beta and gamma or both exists during the cleaning of the presses. A lack of gloves on many of the press oparaters ins noted.
VII. Thorium Oxide Preparation Roon

During the operation of loading trays with thorim oxalate ard inserting into calcincr, the operator was exposed to an average Breathing Zone concentration of $5000 \mathrm{~d} / \mathrm{m} / \mathrm{N}^{3}$. While unloading the trays of thorfur oxide from calciner intc a bottle in the operi, an average breathing zone concentration of $52,000 \mathrm{~d} / \mathrm{m} / \mathrm{m}^{3}$ was found.

The lack of adequate hooding facilities for loading and unloading of thorium oxalate and thorium cxide, and the generel spread of contamination were primarily responsible for the excessive dust concentration.

Table V which contains a tabulation of the average general air samples shows the major concentration of both thorium and thoron in Building 4 . The average thorium concentration was found to $b \in 24,5 d / m / \mathrm{m}^{3}$ and the average thoron concentration 263×10^{-11} curies per liter.
VIII. Radiation
A. Inplarit

1. Table VI contains the results of a complete radiation survey of thorium production, office and laboratory, areas at the Lindsay Chenical Company. The highest readings obtained were found on the Building 4 Balcony the location of high thorium and thoron corcentrations. Three foot level (waist high) measurements near the thorium nitrate kettles, hydroxide filter, cascade and thorium nitrate crushing hood averaged 2 mreps beta and $4.5 \mathrm{mr} / \mathrm{hr}$ gama. Readings exceeding the capracity of the 2610 A for both beta and gamma were found in direct contact with top and sides of thorium nitrate tub.
2. Smears - The highest removable contamination (a 15,000 alpha $\mathrm{d} / \mathrm{m} /$ sample, smear taken over an area of $150 \mathrm{~cm}^{2}$) was found at the thoriun nitrate kettle located on the balcony of Plant 4 . The site also of the highest thoron and thorium dust concentration.
B. Outplant
3. Table VII and Figures 2 and 3 contain the results of direct radiation measurements made in outdoor storage ereas and of the waste liquors from the process. The

TABLE VI
SMEAR SAIPLE RESULTS
LOCATION
Building 3-Mill Drier AreaFloor, Ball Mill Changing End330
Sample, Monozite Sand 1200
Floor, Unreacted Wet Sand 860
Floor, Charging End Drier 650
Sample, Unreacted Wet Sand 1500
Sample, Dry Unreacted Sand
Sample, Top of Monozite Sand Burlap Bags 1hiou 14
Floor, Discharge End Drier 460
Building 3- Pot Area \#2
Side Sand Hopper 540
Pot Cake 250
Crud on Top of Pot 440
Platform - Pot Cake Discharge Tank 450
Floor, Front of Sand Hopper 510
Glove of E. Kramp 670
Builcing 2 - Small Pot Room
Side Sand Hopper 150
Crud Top Pot 50
Pot Cake 2nd Baking 240
Floor Front Pot 120
Floor in Front Sand Hopper 140
Building 2 - Men's Locker Room
Top of Locker 230
Floor 180
Building 4-Rare Earth Fluoride Area
Floor, R. E. Fluoride Drier 520
Dust on R. E. Fluoride Hopper 350
Floor, Discharge of R. E. Fluoride Hopper 750
Top R. E. Fluoride Drier, Feed End 1600
Building 4 - Rare Earth Fluoride Area
Floor, Feed End R. E. Fluoride Irier 670
Floor, R. E. Hydrate Bin 150
Floor, R. E. Hydrate Drier 170
Building 4 - Process Area
Floor, Front Cerox Sifter 680
\pm Platform Cerox Hyd. Filter 2000
Floor, 15 ft . South Elevator 700
Top Thorium Hydride Filter Press 960
Floor Under Thorium Hydride Filter Press 3300
Floor Elevator 1200

LOCATION β	READINSS		
	β mreps/hr	$\gamma \mathrm{mr} / \mathrm{hr}$	$\alpha \mathrm{d} / \mathrm{m} / 100 \mathrm{~cm}^{2}$
Building 2			
Passageway, N.E. Corner - Floor Level	- 0.23	0.12	25000
Passageway, N.E. Corner - 3^{1} Level	0.2	0.05	
BBL. Rare Earth Fluoride, Stored N. End - Top	0.05	2.5	8000
BEL. R.E. Fluoride, Stored N. End - Side, Contac	act 0.05	2.5	
BBL. R.E. Fluoride, Stored N. End - " , 6" $"$	0	0.08	
Drum Cerox Oxalate, Top Contact	0.05	0.5	2000
Drum Cerox Oxalate - Side Contact	0.15	0.25	
Drum Cerox Oxalate - Side 6n Contact	0.1	0.2	
Drum R.E. Hydrate - Top Contact	0.05	1.1	3000
Drum R.E. Hydrate - Side Contact	0.05	1.1	
Drum R.E. Hydrate - Side 6" Contact	0	0.7	
Drum Cerox - Side 6'	0	2.5	
Opposite Shipping Door - Contact - Floor Level	-0.5	2.5	14000
Drums, ThNO3 (24 Drums, 190 lbs. each)			
Top of Drum - Contact	3	20	5000
Side of Drum - Contact	8	40	
Side of Drum - 1/2'	6	31	
Side of Drum - 1'	5	22	
Drum, Th02 - Top Contact	1	7	
Drum, ThO2 - Side Contact	0.5	16	
Drum, Th02 - Side 1/2'	0.5	7.5	
Drum, ThO2 - Side 1^{\prime}	0.5	5.5	
Near Shipping Door - Floor Level	0	2	10000
Old Mantle Plant			
Bastnasite Storage	0.25	0.2	
Old Webbing, N. End - Contact	3	1.5	
01d Webbing, N. End - 3'	0.9	0.3	
Middle Room - 3' Level	-0.1	0.2	
Work Tables - Contact	0.12	0	5000
Asbestos String Box - Contact	0.25	0.75	17000
Mantle Shelf, N.W. Corner			3000
Storage Bin, N.W. Corner	- 3	1.5	40000
N. End Center - Contact - Floor Level	0.25	0.5	16000
Center - Contact - Floor Level	0.1	0	8000
South End - Contact - Floor Level	0.5	0.1	8000
Machine Shop			
Electric Shop Area - Work Bench	0.03	0.02	2000
Aisleway	0.05	0.1	10000
Stociroom - Counter	0.06	-	Neg.
Front of Stockrjom - Floor Level	0.06	0.08	9000
Machine Area - Bench	- 0.05	0.1	5000
Machine frea - Floor Level	0.04	0.06	7000
Center Machine Shop - 3' Level	0.025	; 0.05	

Table VII - continued

LOCATION	READIGS		
	β mreps/hr	$\mathrm{rmr}_{\mathrm{m} / \mathrm{hr}}$	$\mathrm{dd} / \mathrm{m} / 100 \mathrm{~cm}^{2}$
ThNO3 Druns, Near BJB Office - Top Contact	1	20	7000
ThNO3 Drums, Near BJ3 Office - Side Contact	3	30	
ThNO3 Drums, Near BJB Office - Side 1/2'	2.5	20	
Thio 3. Drums, Near BJB Office - Side l'	2	14	
La Treating foom			
Table Top - Contact	0.03	1.1	3000
Center of Room - 3! Level	0	1.4	
On Scale by Th02 Bottle, 1/5 Full	0	12	
Furnace Room			
Front of Furnace Door, ${ }^{\prime}$ '	2.5	0.8	350000
Center of Room - Floor Level	1	1.5	140000
Center of Room - 3' Level	- 0.3	0.7	
Table Top by Trays	0.9	0.75	120000
Asbestos Gloves	1.8	0.7	130000
R.E. Carbonate Drum - Top Contact	0	2	
R.E. Carbonate Drum - Side Contact	0	0.7	
Drum, Barnesite ($\mathrm{Re}_{2} \mathrm{O}_{3}$) - Side	0	0.5	
Center of Middle Room in Front of ThNO_{3} Kettle			
Floor Level	1.0	0.15	50000
Men's Locker Room, Center - 3' Level	- 0.04	0.1	
Men's Locker Room, Center - Floor Level	- 0.3	1.5	20000
Control Laboratory			
West Center - 3' Level	0.1	0.3	
Table Near Hood	0.1	0.3	
Polishing Room Center Table - Top	0.5	0.2	Neg.
West Center - 3' Level	0.1	0.2	
Building 3			
Passageway, N. End - 3' Level	0.1	0.25	
Passageway, N. End - Floor Level	1	3	11000
Passageway, Center - 3' Level	0	2.5	
2nd Gray PPT'N. Tank (Full) - Side Contact	0	10	
Red Mud, Cone Bottom Tank, Washing - Contact	0	4	28000
Red Mud Filter Press in Operation	0.5	1.5	
Red Mud Filter Press in Operation - Floor Level	15	3	120000
Passage Between Ball Mill \& Pots - 3' Level	0.3	1.2	
Passage Between Ball Mill \& Pots - Floor Level	1.8	2	22000
Pot Area			
Bucket Pot Cak - Top Contact	1	3	3000
Near Bucket - Floor Level	0.5	2.0	8000
Pot Cake Dissolving Tank - Side	0	2.5	
Sand Hopper - Side Contact	0	4.5	
Front of Sand Hopper - Floor Level	1	2.5	29000
- Front of Sand Hopper - 3' Level	0.1	1.6	

Table VII - continued
LOCATION

Table VII ~ continued

LOCATION

READINGS
$\beta_{\underline{m r e p s} / \mathrm{hr}} \quad \gamma \mathrm{mr} / \mathrm{hr} \quad \alpha \mathrm{d} / \mathrm{m} / 100 \mathrm{~cm}^{2}$

Just W. of Th Centrifugal - Floor Level	0.5	1	38000
BBL. ThNO_{3} - Top Contact	0	5.5	
BBL. ThNO 3 - Side 1/2'	0	3	
BBL. ThNO_{3} - Side $1{ }^{\prime}$	0	1.8	
West of Centrifugal - 3' Level	0.25	1	
BBL. R.E. Hydrate - Side Contact	0.05	1.75	
Front of Cerox Sifters - Floor Level	0.6	0.75	70000
Th Hydroxide Filter Press, $3^{\prime \prime}$	0.3	1.2	
Elevator - Floor Level	-1	2	150000
Front of Elevator on Balcony - Floor Level	0	2	
Front of Elevator on Balcony - 31 Level	0	1.8	
$\mathrm{ThNO}_{3} \mathrm{Kettle}$ - Side Contact	3	15	
ThNO3 Kettle - Side 1/21	1	12	
ThNO3 Kettle - Side ${ }^{\prime \prime}$	0	7.5	
Front of ThNO_{3} Kettles - Floor Level	6	5.5	
Front of ThNO_{3} Kettles - 3^{\prime} Level - 3^{\prime} Away	$y \quad 1$	4	
Th Hydroxide Filter, 3' South - 3' Level	0.5	4.5	
Front of Cascade - 3' Level	- 2.5	4.5	
Table at End of Cascade	$\cdots 4$	2.5	
Tub of ThNO_{3} - Top Contact	>20	>20	
Tub of ThNO_{3} - Side Contact	>20	>20	
Tub of ThNO_{3} - Side 6 "	1	11.5	
Pan of ThNO_{3} - Top Contact	off scale	17.5	
Pan of ThNO_{3} - Side Contact	3	15	
Pan of ThNO_{3} - Side 6"	1	5	
Front of Crusher - Floor Level	- 4	4	
Front of Hood - 21 Avay - 3' Level	2	3	
Th Extraction Filter Press - Top	3	2	
Th Extraction Filter Press - Floor Level	5.5	4	
Front of Elevator - Fhoor Level	5.5	3.5	
First Gray Mud Spilled on Floor	2.5	5	
Ble.ck Mud Storage	off scale	off scale	
Between Black \& lst Gray Mud Storage - 3' L	Level - 0.5	10.5	
2 1/2 Feet From Black Mud BBLS.	- off scale	20	
3 Feet From Black Mud BBLS.	- 3	17	
4 Feet From Black Mud EBLS.	- 4	11	

Ball Mill

Bags of Monozite Sand - Top	3.0	10
Near Bags of Sand - Floor Level	\ddots	2
Between Large Pile (6" Between)	-1.5	15
Pile of Bags - Side Contact	1.0	10
Pile of Bags - Side $1 / 2^{\prime}$	1.0	6.5
Pile of Bags - Side $1^{\prime \prime}$	1.0	5
Pile of Bags - Side 3'	0.5	4

liquid waste of approximately 180,000 fluid gallons per day from Plant 2, 3, and 4 contains approximately 0.4% solids by volume. The liquor discharges through an uncerground sewer to a sump area located a $1 / 1$ mile: south of the plant. The highest measurement obtained ($1.5 \mathrm{mreps} / \mathrm{hr}$ beta, $7.5 \mathrm{mr} / \mathrm{hr}$ gamsia and $110,000 \mathrm{~d} / \mathrm{m} / 100$ cri ${ }^{2}$ alpha) was on direct contact with a pile of material dredged from the sumps. Evidence of contamination was found at the site of the excavation for a new thorium plarit. $0.9 \mathrm{mr} / \mathrm{h}^{\prime}$ gamma and $8,000 \mathrm{~d} / \mathrm{m} / 100 \mathrm{~cm}^{2}$ alpha was found.
2. Solid Sludge which includes "black mud", thoriuin extraction residue, "first gray mud" and "second unreacted sand" are stored within a cyelone fenced enclosure located 200 yards south of the sump area. Waste materials are trucked from the plant to this storage area several times a day. The highest reading found in direct contact with the road at several locations between the sump area and the storage area was $0.6 \mathrm{mreps} / \mathrm{hr}$ beta, $1.3 \mathrm{mr} / \mathrm{hr}$ gemme and 160,000 alpha $\mathrm{d} / \mathrm{m} / 100 \mathrm{~cm}^{2}$. A 480 ton pile of "black mud" located at the extreme north east corner of the enclosure provided the highest radiation readings. 40 mreps beta, $330 \mathrm{mr} / \mathrm{hr}$ gamma and $2 \times 10^{6} \mathrm{~d} / \mathrm{m} / 100$ cm^{2} alpha was found using a Juno instrument.

CONCLUSION

Daily weighted thorium and thoron concentrations exceeding the presently accepted preferred levels have been found for a majority of the Lincsay plant employees.

If the departures from good industrial hygiene practices noted in the Discussion are corrected, it is our belief that the airborne dust exposures of all plant personnel can be substantially reduced.

LOCATION

pradings
β mreps/hr $\gamma \mathrm{mr} / \mathrm{hr} \alpha \mathrm{c} / \mathrm{m} / 100 \mathrm{~cm}^{2}$
I. Site of New Building 50° S. of Bldg 3 3' Level Contact Ground

0	0.5
	0.9
	0.16
	0.5

II. Sump Area 150 yds S . of Plent

Inside Gate (30') - 3^{1} Level
$0.05 \quad 0.15$

Inside Gate (301) - Contact Ground Unreacted Sand File
Ift. above liquor in North Sump Ground at S.E. Corner of N. Sump Pile of Sump Sludge - Contact
Hole East of South Sump - 1st
Hole East of South Sump - 2nd Material Dredged from Sump Road incide Sump Area - 3' Level

0.5	0.1 .5
1.5	4.0

2.0	0.5	100000
2.0	4.0	85000
2.0	2.0	45000
1.5	4.0	150000
1.5	7.5	110000
0.05	0.25	

III. Mud Storage Area $1 / 4$ mile S. of Flant

Road into area at corner ~ 3^{\prime} Level
Poad into area at corner - Contact
Road into area 50 yds W. corner

0	0.4	
0.7	0.55	40000
0.6	1.3	160000
0	0.2	10000

Pile of mud from Sump 50° away fron: fence 3' Level
$0 \quad 2.5$ Contact
Pile of Old India lst Gray Mud Contact Top of Pile - Contact Top of Pile - 1' away
2.0 5.0

47000

2nd Unreacted Sand - Contact
Background Eetween 2nd Unreacted Sand and Extraction Resicue
Idaho lst Gray Mud - Contact
Road - 3' Level
India lst Gray Mud - Contact
India 1st Gray Mud - 3' Level
India lst Gray Mud - Contact in hole where sifted
India lst Gray Mud - 3' Level

0.5	2.5	
off scale	17.5	
6.0	10.5	60000
2.0	6.0	
	5.0	
5.0	14.0	250000
1	5.5	200000
12	48	
	20	
20	120	800000

Table VIII - continued

LOCATION
III. (continued)

Roadway 7' From Pile
Scrapings - Contact
Between Unreacted Sand and Scrapings
Thorium Extraction Residue - Contact
Thorium Extraction Residue - $6^{\prime \prime}$
Black Mud Pile - With 2610 beta-gamma
12' From Pile at Fence
111 From Pile
101 From Pile
91 From Pile
Black Mud Pile - With Juno
12' Away
10^{\prime} Away
9' Away
81 Away
71. Away
4. Away

3' Away
1' Arway
Contact Over Pile
Over Pile

READINS
$\beta_{\underline{\mathrm{mrcps} / \mathrm{hr}}} \quad \gamma \mathrm{mr} / \mathrm{hr} \quad \alpha \mathrm{d} / \mathrm{m} / 100 \mathrm{~cm}^{2}$
210
$5 \quad 30$
$30 \quad 130000$
6.5
$19 \quad 110000$
off scale
2015
19.5

17
off scale 18.5
off scale 19.5
off scale off scale
22
$21 \quad 29$
40
40
40
10
70
$15 \quad 85$
15
85
25
40
210
$330 \quad 2000000$

