1L.03-1

Formerly Utilized MED/AEC Sites Remedial Action Program

Radiological Survey of the Museum of Science and Industry, 57th Street and Lake Shore Drive, Chicago, Illinois

February 1979

Final Report

Prepared for

U.S. Department of Energy Assistant Secretary for Environment Division of Environmental Control Technology

Formerly Utilized MED/AEC Sites Remedial Action Program

Radiological Survey of the Museum of Science and Industry, 57th Street and Lake Shore Drive, Chicago, Illinois

February 1979

Final Report

Prepared for

U.S. Department of Energy Assistant Secretary for Environment Division of Environmental Control Technology Washington, D.C. 20545

> Under Contract No. W-31-109-ENG-38 By the Argonne National Laboratory Argonne, Illinois 60439

Available from:

National Technical Information Service (NTIS) U.S. Department of Commerce 5285 Port Royal Road Springfield, Virginia 22161 1

Price:	Printed Copy:	\$ 5.75
	Microfiche:	\$ 3.00

PREFACE

This is one of a series of reports resulting from a program initiated in 1974 by the Atomic Energy Commission (AEC) for determination of the condition of sites formerly utilized by the Manhattan Engineer District (MED) and the AEC for work involving the handling of radioactive materials. Since the early 1940's, the control of over 100 sites that were no longer required for nuclear programs has been returned to private industry or the public for unrestricted use. A search of MED and AEC records indicated that for some of these sites, documentation was insufficient to determine whether or not the decontamination work done at the time nuclear activities ceased is adequate by current guidelines.

This report contains the results of surveys of the current radiological condition of the Museum of Science and Industry, 57th Street and Lake Shore Drive, Chicago, Illinois. Findings of this survey indicate there is no identifiable residual radioactivity remaining at this facility from operations conducted by the MED and AEC during the period 1946 thru 1953.

This survey was performed by the following Health Physics personnel of the Occupational Health and Safety Division, Argonne National Laboratory, Argonne, Illinois: R. A. Wynveen, W. H. Smith, C. J. Mayes, P. C. Gray, D. W. Reilly.

CONTENTS

Introdu	ction	Ļ
Survey	General . </td <td>$2^{2} - 3$ $3^{2} - 4$ $4^{4} - 6^{4}$</td>	$2^{2} - 3$ $3^{2} - 4$ $4^{4} - 6^{4}$
Analys:	s of Survey Results	5
	Instrument Surveys	5 7 7 7 - 8 8
Finding	s_{s}	8
Table	1 - Data Sheets Showing Room Survey Results	9 - 12
Figure	<pre>1A - East Pavilion-Ground Floor</pre>	13 - 18 13 14 15 16 17 18
Table	2 - Instrumentation Used in Survey	19
Table	3 - Instrument Background Readings	20
Figure	2 - Gamma Spectrum Analysis of Floor Tile	21
Table	4 - Radon Concentration Determinations	22
Figure	3 - Soil Sampling Procedure and Processing Diagram	23
Table	5 - Soil Sample Weights	24
Table Table	 6 - LFE Soil Analysis Procedure for Total Uranium and Gamma-Emitting Nuclides	25
Table		26
Table	8 - Background Soil Sample Data	27

antina atao - an a con managin

.

CONTENTS (cont'd.)

Appendix	1 - Conversion Factors	28 - 32
Appendix	2 - Air Sample Data Sheets	33 - 42
Appendix	3 - Normal Uranium Calculations	43 - 44

.

RADIOLOGICAL SURVEY OF THE MUSEUM OF SCIENCE AND INDUSTRY,

47TH STREET AND LAKE GHORE DRIVE, CHICAGO, ILLINOIS

INTRODUCTION

During the Manhattan Engineer District/Atomic Energy Commission (MED/AEC) Era, Argonne National Laboratory (ANL) occupied space at the Museum of Science and Industry, Chicago, Illinois. From August 15, 1946 until July 1, 1949, ANL occupied 36,000 square feet on the ground, first, and balacony floors of the East Pavilion. From August 15, 1946 until July 15, 1953, ANL also occupied 16,000 square feet in the 2nd Balcony of the West Court. The actual use of the facili_y is unknown. Although most of the area was believed to be occupied as office space, some handling of radioactive materials was known to have taken place. The type and activity of these materials is unknown.

Personnel involved with the facility during ANL's occupation recalled at least one spill of radioactive material near the service elevator on the ground floor of the East Pavilion and its subsquent decontamination.

Due to the uncertainty of the use of the facility, a radiation survey of the above area was undertaken from January 11, 1977 until April 13, 1977. This survey was performed on an intermittent basis to minimize the disturbance of the Musuem's daily operations. The purpose of this survey was to determine if any detectable contamination remains as a result of the MED/AEC operation.

Part of the ground and main floors of the East Pavilion are presently occupied by the University of Chicago for storage and office space or are used for support of the Museum's operations. The 2nd Balcony of the West Court is now occupied as office space by the Museum of Science and Industry and the Academy of Interscience Methodology.

SURVEY TECHNIQUES

It is accessible original walls were surveyed to a height of seven feet and it is is static floor areas were surveyed. In many areas, the floors and walls is not retiled or painted. Even though these were not the original surfaces, is areas were surveyed since the capability of detection was adequate to see is in the original structures underneath. A representative selective is of orerheads such as pipes, vents and light fixtures was performed in areas is the original structures were available. The roof of the East Pavilion was is surveyed. See Table 1 and Figure 1 for locations of accessible areas surveyed.

These types of survey instruments were used (Table 2). An Eberline FM-4G article a detection area of 325 square centimeters (cm²), utilizing the Eberline Fel--F-1 electronics, was used to survey the floors. A PAC-4G-3 with a hand-held arterist, flcm² in area, was used to survey the walls and other accessible areas. Intel electronics mylar $\left[-0.85 \text{ milligrams per square centimeter (mg/cm²)} \right]$ Finites were used in both detectors. This allows for low energy detection and prester instrument sensitivity. Both of these instruments were initially used in the beta mode. In this mode, the detector responds to a wide energy range if electromagnetic and particulate radiations. When areas were found which indiuated a higher count rate than the average instrument background, the instrument was then switched to the alpha mode and a reading of the alpha activity was intrained.

An End Window Geiger-Müeller (G-M) Detector, Eberline Model E-500B with a mental 7 8 inch diameter window held three feet above the floor, was used to determine general background radiation levels throughout the surveyed area. If an area was formi that had an elevated count rate, a contact reading was obtained.

- 2 -

The End Window G-M Detector was calibrated using the gamma emissions from a Radium-226 (226 Ra) calibration source. The PAC-4G-3 instruments were calibrated in the alpha mode using a flat plate infinitely thin Plutonium-239 (239 Pu) standard and in the beta mode with a flat plate infinitely thin Strontium-90-Yttrium-90 (90 Sr- 90 Y) standard. The instruments were calibrated to an apparent 50% geometry.

It must be realized that the numerous isotopes that could be encountered will exhibit emission energies differing from that of 239 Pu and 90 Sr- 90 Y utilized in the calibration. When detecting known isotopes that emit alpha and beta energies differing from that of the standards, a conversion factor is developed to determine the appropriate yield.

Smear Surveys

Smears were taken throughout the East Pavilion and West Balcony areas of the Museum. Only original structures and components such as walls, floors, pipes and vents were smeared. All smears were taken with No. 1 Whatman filter paper, 4.25 centimeters (cm) in diameter. Smears of one square foot were normally taken. If an area was found which had a higher than normal background, a smear of 100cm^2 was taken. A smear of 100cm^2 was also taken if an area indicated excessive dirt loading. The smears were counted in groups of ten using the 10-Wire Flat Plate Gas Proportional Detector, developed at ANL, utilizing an Eberline Mini Scaler Model MS-2. One smear of each group was removed and counted in a Nuclear Measurement Corporation Proportional Counter - 3A (PC-3A) 2π Internal Gas Flow Counter using a mylar spun top. This procedure was used as an additional means of checking the smear samples. In addition, any smears indicating elevated amounts in the 10-Wire Assembly, were also counted in the more sensitive PC-3A counter. Smears were counted in both detectors for alpha and beta activity. Appendix 1 includes the instrumentation and smear count conversion factors used.

- 3 -

Table 1 includes the room survey readings while the maps in Figure 1 indicate the location of the smears. A number, n, indicates the location of that smear in the room. A number, (n), indicates a smear of an overhead structure. A number [n], indicates an elevated direct reading.

Air Samples

Air samples were collected using a Filter Queen air sampling device. The air samples were taken at a flow rate of 15 cubic meters per hour (M^3/hr) on a $200cm^2$ sheet of Hollingsworth-Vose (HV-70-9 mil) filter media which collected the particulates present in the air. A 10% portion, 5cm in diameter, was removed from the filter media and counted in the NMC PC-3A 2π Internal Gas Flow Counter, utilizing a mylar spun top for both alpha and beta activity. Sampling results were used to determine radon concentrations and the presence of any long-lived activity. Air sample data is presented in Appendix 2.

Soil Samples

In addition to the survey inside the building, soil corings were taken at selected locations outside the East Pavilion of the Museum to determine the deposition, if any, of isotopes that could have been spilled or released from the East Pavilion. Radiochemical (fluorometric) and gamma spectrum analysis were conducted on these soil samples.

The corings were effected using a four (4) inch in diameter by six (6) inch in length right circular cylinder; commonly called a hole cutter. This device is normally used for cutting holes for the cups in golf courses.

Each core was 1 foot in length and divided into four (4) segments. Starting from the surface, three (3) separate two (2) inch segments are cut, bagged, and marked A, B and C respectively; the final segment a six (6) inch section was marked D.

- 4 -

The reason for the segmented coring is to determine what, if any, contaminant migration has occurred, to reduce the dilution of lower level soil with the upper level segments in respect to the surface deposition of the contaminants or vice versa, and to reveal any overburden or back fill that may have occurred over the years.

Three soil samples were taken from the grounds adjacent to the East Pavilion of the Museum. Figure IF indicates the soil sample locations.

Background data for the soil sample analysis (Table 8) were obtained from a number of soil samples taken from the Chicago area. This information was obtained from the Environmental Monitoring Section of the Occupational Health and Safety (OHS) Division of ANL.

All soil samples were processed at ANL (Figure 3) and shipped to a commercial laboratory (LFE Environmental Analysis Laboratories) for radiochemical (fluorometric) and gamma spectrum analysis. Their soil analysis procedure is described in Table 6.

Sample preparation consisted of weighing the samples in their entirety and then drying for approximately 24 hours at 80° Centigrade. All samples were then reweighed, put into mill jars (2.3 gallon) and milled until a sufficient amount of the soil sample would pass a No. 30 standard sieve. At no point were the rocks and heavy material ground or pulverized since this material would act as a diluent and hence lower the concentration per unit volume of deposited material.

After sufficient milling, the material was sieved using a No. 30, 600 micron (μ) standard stainless sieve. The rocks and dross vs. sieved material (< 600 μ) was segregated, bagged, and weighed separately. Soil sample weights are given in Table 5.

- 5 -

Aliquots of the sieved material were then loaded into screw top plastic containers. The amount varied according to the type of analysis to be performed; 100 grams for gamma and radiochemical (fluorometric) analysis and 10 grams for radiochemical (fluorometric) only. Every effort was made throughout the sample preparation operations to reduce or eliminate cross contamination. Soil samples which were suspected of containing elevated amounts of radioactivity were processed in equipment separate from the soil samples considered to contain background levels. All items of equipment were scrubbed and air dried prior to the introduction of the next sample.

ANALYSIS OF SURVEY RESULTS

General

All data, including diagrams of survey locations, are attached to this report. This section discusses the results of the survey and the findings therein. Instrument readings and smear results were normalized to units of disintegrations per minute per one hundred square centimeters (dpm/100cm²). (See Appendix 1 for the conversion factors used.) All data is reported in net counts, i.e., the background counts have been subtracted from the gross counts prior to converting from counts per minute per one hundred square centimeters (cpm/100cm²) to dpm/100cm². The beta mode readings are compensated for any alpha contribution. The room background levels varied somewhat due to the construction materials in them. Table 3 provides an average background reading for all modes of the different instruments used.

The areas accessible for survey varied from room to room. Areas accessible for survey are presented in Table 1. The average percent of the total accessible areas was 50% for the floors and 40% for the walls.

- 6 -

Instrument Surveys

All indicated areas were surveyed and no radioactivity above background levels could be detected except in the following four rooms.

<u>Room C-340</u> - This room is a small instrument shop where a marked Cobalt-60 (60 Co) source was found in the cabinet. A direct reading with an End Window G-M Detector was 80 milliRoentgens per hour (mR/hr) at contact. When the detector was held three feet away from the source in its shielded container, no radiation above background levels, < 0.03 mR/hr, could be detected.

<u>Room E-201 and Restrooms on 2nd Balcony</u> - These washrooms contained a white tile on the floors. This tile was also noted in other restrooms of the Museum. These tiles indicated $8.1 \times 10^3 \text{ dpm/100cm}^2$ Potassium-40 (40 K) with the PAC-4G-3 in the beta mode. No alpha activity was detected. No radiation above background levels could be found from the tile using the End Window G-M Detector. No activity was detected from floor tile smears. It was determined from a gamma spectral analysis that the tile contained elevated amounts of (40 K) which would cause an elevated reading. (See Figure 2 for gamma emission spectra.) All general background readings taken at three feet above the floor level were less than 0.03 mR/hr.

Smear Surveys

No contamination above background levels was detected on any smears.

Air Samples

The air sampling results are presented in Table 4. The variation of the data results do not appear to be a result of any MED/AEC operation, but rather the variation reflects the differences in the construction materials used throughout the facility. Other factors such as the ventilation of the room can cause the radon concentrations to vary. All radon concentrations determined are below the maximum permisible concentrations (MPC) for an uncontrolled area as listed in the "Standards for Protection Against Radiation," Code of Federal Regulations, Title 10, Part 20,

- 7 -

Appendix B (April 30, 1975), (10CFR20). These concentrations are found to be within the normal expected levels of radon.

Scil Samples

Results submitted by LFE Environmental Analysis Laboratories, as listed in Table 7, are reported in picocuries per gram (pCi/g) for the Germanium (Lithium) $\left[\operatorname{Ge}(Li)\right]$ spectral analysis and in micrograms per gram (µg/g) for the uranium fluorometric analysis. The latter concentrations were converted to pCi/g by means of the example calculation as shown in Appendix 3.

The background data is presented in Table 8. The background samples indicate normal uranium concentrations ranging from 0.03 to 2.0 pCi/g. Results of soil samples taken at the Museum of Science and Industry indicate a gerneral normal uranium background concentration in the soil.

FINDINGS

The survey results show that no radioactive contamination above background was detected throughout the areas used for MED/AEC activities. However, a small 60 Co source which was used as a static eliminator was found in Room C-340. The floor tiles which were used in the restrooms, showed elevated levels of naturally occurring 40 K. Neither of these are a result of any MED/AEC operations. The results of the soil sample analysis shows no elevated readings above the natural background levels present in the soil from this region.

- 8 -

·																
Room or	Percent Accessib Survey		Air Sample	Beta M	lode ⁽¹⁾ I (dpm/10	irect Read	lings	Alpha i		rect Readin 100cm ²)	gs	End Wi (mR	ndow (hr)	Smear Results		
Area No.	Floor	Wall	(pCi/l)	Floors	Walls	Overhead	Other	Floors	Walls	Overhead	Other	Contact	3 feet	(dpm/100cm ²)	Comments	·
E-1	70	20	_{NS} (2)	BKGD(3)	BKGD	_osu ⁽⁴⁾	BKGD	NA ⁽⁶⁾	NA	NA	NA	NN ⁽⁷⁾	BKGD	BKGD		
E-2	80	25	1.25	BKGD	BKGD	osu	NE ⁽⁵⁾	NA	NA	NA	NA	NN	BKGD	BKGD		
E-3	70	20	NS	BKGD	BKGD	osu	BKGD	ŃA	NA	NA	NA	NN	BKGD	BKGD		
E-4	60	25	NS	BKGD	BKGD	OSU	BKGD	NA	NA	NA	NA	NN	EKGD	BKGD		
E-4A	40	25	NS	BKGD	BKGD	osu	NE	NA	NA	NA	NA	NN	BKGD	BKGD		
E-4AA	40	30	NS	BKGD	BKGD	OSU	BKGD	NA	NA	NA	NA	NN	BKGD	BKGD		
E-7	95	30	NS	BKGD	BKGD	BKGD	NE	NA	NA	NA	NA	NN	BKGD	BKGD		
E-8	40	40	NS	BKGD	BKGD	BKGD	NE	NA	NA	NA	NA	NN	BKGD	BKGD		
E-9	50	50	NS	BKGD	BKGD	BKGD	NE	NA	NA	NA	NA	NN	BKGD	BKGD		1 20
E-11	50	50	NS	BKGD	BKGD	KBGD	NE	NA	NA	NA	NA	NN	BKGD	BKGD		·
E-12	40	40	NS	BKGD	BKGD	osu	NE	NA	NA	NA	NA	NN	BKGD	BKGD		
E-14	60	50	0.48	BKGD	BKGD	BKGD	NE	NA	NA	NA	NA	NN	BKGD	BKGD		
E-15	20	10	0.48	BKGD	BKGD	BKGD	NE	NA	NA	NA	NA	NN	BKGD	BKGD		
E-16	20	20	NS	BKGD	BKGD	BKGD	NE	NA	NA	NA	NA	NN	BKGD	BKGD		
E-17	50	50	NS	BKGD	BKGD	BKGD	BKGD	NA	NA	NA	NA	NN	BKGD	BKGD		
E-18	30	20	1.5	BKGD	BKGD	BKGD	NE	NA	NA	NA	NA	NN	BKGD	BKGD		
E-19	20	20	NS	BKGD	BKGD	BKGD	NE	NA	NA	NA	NA	NN	BKGD	BKGD		
				•	•	•	•	•				•		•		

TABLE I PATA SHOWING ROOM SURVEY RESULTS

(1) Beta Mode detects both electromagnetic and particulate radiation.

(2) NS - (Not Selected) Air sample locations were chosen on a selected basis throughout the areas surveyed.

(3) BKGD (Background) Instrument Background Readings

Floor Monitor	<u>Beta Mode</u> 1500-2000 cpm/325cm ²	<u>Alpha Mode</u> 0-50 cpm/325cm ²
PAC-4G-3	150-200 cpm/61cm ²	0-50 cpm/61cm ²
PC-3A 10 Wire	50 срт 500 срт	0.4 срт 10 срт

G-M End Window Detector read <0.03 mR/hr at 3 feet above floor.

(4) OSU (Overhead Stucture Unavailable) Floor and wall survey indicate no necessity to demolish existing structures to reach original overhead surfaces.

(5) NE (Non-Existant) This location did not contain structural items calssified as "other" such as the following: ducts, louvers, pipes and vents.

(6) NA (Not Applicable) No activity detected above background in the beta mode; therefore, no alph mode survey was necessary.

(7) NN (Not Necessary) No activity was detected; therefore, no contact G-M End Window Survey was necessary.

	DATA SHEETS SHOWING ROOM SORVET RESULTS															
Room or Area No.	Percent Accessib Survey Floor		Air Sample (pCi/l)	Beta M Floors	fode ⁽¹⁾ D (dpm/10 Walls	lirect Read Ocm ²) Overhead		Alpha Floors	(dpm/	rect Readin 100cm ²) Overhead	gs Other		ndow (hr) 3 feet	Smear Results (dpm/100cm ²)	Comments	
E-20	80	50	NS ⁽²⁾	BKGD ⁽³⁾	BKGD	osu ⁽⁴⁾	BKGD	NA ⁽⁶⁾	NA	NA	NA	_{NN} (7)	BKGD	BKGD .		
E-215	1	5	NS	BKGD	BKGD	BKGD	NE ⁽⁵⁾	NA	NA	NA	NA	NN	BKGD	BKGD		
E-21N	20	20	NS	BKGD	BKGD	BKGD	BKGD	NA	NA	NA	NA	NN	BKGD	BKGD		
Stairwell off E-14	90	40	NS	BKGD	BKGD	osu	NE	NA	NA	NA	NA	NN	BKGD	BKGD		
E-100	40	10	NS	BKGD	BKGD	osu	NE	NA	NA	NA	NA	NN	BKGD	BKGD	r.	
E+101	30	30	NS	BKGD	BKGD	osu	NE	NA	NA	NA	NA	NN	BKGD	BKGD		
E-102	70	30	NS	BKGD	BKCD	osu	NE	NA	NA	NA	NA	NN	BKGD	BKGD		
E-103	50	30	NS	BKGD	BKGD	osu	BKGD	NA	NA	NA	NA	NN	BKGD	BKGD		I
E-104	40	20	NS	BKGD	BKGD	osu	NE	NA	NA	NA	NA	NN	BKGD	BKGD		10
E-105	30	30	NS	BKGD	BKGD	osu	NE	NA	NA	NA	NA	NN	BKGD	BKGD		I
E-105B	30	20	NS	BKGD	BKGD	osu	NE	NA	NA	NA	NA	NN	BKGD	BKGD		
E-106	40	30	NS	BKGD	BKGD	osu	NE	NA	NA	NA	NA	NN	BKGD	BKGD		
E-108	50	75	NS	BKGD	BKGD	BKGD	BKGD	NA	NA	NA	NA	NN	BKGD	BKGD		
E-109	30	50	NS	BKGD	BKGD	osu	NE	NA	NA	NA	NA	NN	BKGD	BKGD		
E-110 112	40	40	NS	BKGD	BKGD	osu	NE	NA	NA	NA	NA	NN	BKGD	BKGD		
E-114 117N	75	50	0.49	BKGD	BKGD	OSU	NE	NA	NA	NA	NA	NN	BKGD	BKGD		

TABLE 1 DATA SHEETS SHOWING ROOM SURVEY RESULTS

(1) Beta Mode detects both electromagnetic and particulate radiation

(2) NS-(Not Selected) Air sample locations were chosen on a selected basis throughout the area surveyed.

(3) BKGD (Background)	Instrument Background Re Beta Mode	adings. <u>Alpha Mode</u> 0-50 cpm/325cm ²
Floor Monitor	1500-2000 cpm/325cm ²	
PAC-4G-3	150-200 cpm/61cm ²	0-50 cpm/61cm ²
PC-3A	50 cpm	0.4 cpm
10 Wire	500 cpm	10 cpm

G-M End Window Detector read <0.03 mR/hr at 3 feet above floor.

(4) OSU (Overhead Structure Unavailable) Floor and wall survey indicate no necessity to demolish existing structures to reach original overhead surfaces.

(5) NE (Non-Existant) This location did not contain structural items classified as "other" such as the following: ducts, louvers, pipes and vents.

⁽⁶⁾NA (Not Applicable) No activity detected above background in the beta mode; therefore, no alpha mode survey was necessary.

(7) NN (Not Necessary) No activity was detected; therefore, no contact G-M End Window Survey was necessary.

	1		·			<u>I</u>	DATA SHEE	TS SHOWIN	G ROOM	SURVEY RESI	JLTS				
Room or Area No.		of Area ble for Wall	Air Sample (pCi/l)	Beta : Floors	(dpm/10	Direct Rea DOcm ²)	dings	Alpha	Mode Di (dpm/	irect Readi (100cm ²)	ngs		(hr)	Smear Results	
	11001	Wall	(pc1/x)	Floors	Walls	Overhead	Other	Floors	Walls	Overhead	Other	Contact	3 feet	$(dpm/100cm^2)$	Comments
E-117S	20	10	0.71	BKGD ⁽³⁾	BKGD	osu ⁽⁴⁾	_{NE} (5)	_{NA} (6)	NA	NA	NA	_{NN} (7)	BKGD	BKGD	
E-115	80	60	BLGD	BKGD	BKGD	BKGD	BKGD	NA	NA	NA	NA	NN	BKGD	BKGD	
E-116	50	10	NS ⁽²⁾	BKGD	BKGD	BKGD	BKGD	NA/	NA	NA	NA	NN	BKGD	BKGD	
Auditorium of Circus	ⁿ 50	50	NS	BKGD	BKGD	BKGD	BKGD	NA	NA	NA	NA	NN	BKGD	BKGD	
E-201	80	50	1.04	8.3x10 ³	BKGD	osu	NE	BKGD	NA	NA	NA	BKGD	BKGD	BKGD	Floor tile in washroom
E-202	50	30	0.67	BKGD	BKGD	BKGD	NE	NA	NA	NA	NA	NN	BKGD	BKGD	
E-203	50	30	NS	BKGD	BKGD	osu	NE	NA	NA	NA	NA	NN	BKCD	BKCD	
2nd Floor Balcony West Hall C-330	100	50	NS	BKGD	BKGD	BKGD	NE	NA	NA	NA	NA	NN	BKGD	BKGD	- 11
2nd Floor Balcony South Hall	100	60	0.31	BKGD	BKGD	osu	NE	NA	NA	NA	NA	NN	BKGD	BKGD	I
C-304 Restroom	100	60	NS	8.3x10 ³	BKGD	BKGD	NE	BKGD	NA	NA	NA	BKGD	BKGD	BKGD	Floor Tile
C-332 Restroom	60	50	NS	8.3x10 ³	BKCD	BKGD	NE	BKCD	NA	NA	NA	BKGD	BKGD	BKGD	Floor Tile
C-340	80	10	NS	BKGD	BKGD	osu	9.6x10 ²	NA	NA	NA	BKGD	80	BKGD	_{NST} (8)	⁶⁰ Co Source Reading Taken
C-341	80	20	NS	BKGD	BKGD	osu	BKGS	NA	NA	NA	NA	NN	BKGD	BKGD	with source in container
C-342 ⁽¹⁾ Beta M	60 Mode dete	40 cts both	NS	BKGD	BKGD		BKGD	NA	NA (4)	NA	NA	NN I	BKGD	BKGD	

TABLE I DATA SHEETS SHOUTNG BOOM

Beta Mode detects both electromagnetic and particulate radiation.

(2)_{NS} - (Not Selected) Air sample locations were chosen on a selected basis throughout the areas surveyed.

⁽³⁾BKGD (Background) Instrument Background Readings

	Beta Mode	<u>Alpha Mode</u>
Floor Monitor	1500-2000 cpm/325cm ²	0-50 cpm/325cm ²
PAC-4G-3	150-200 cpm/61cm ²	0-50 cpm/61cm ²
PC-3A	50 cpm	0.4 срт
10 Wire	500 cpm	10 cpm

G-M End Window Detector read <0.03 mR/hr at 3 feet above floor.

(4) OSU (Overhead Structure Unavailable) Floor and wall survey indicate no necessity to demolish existing structures to reach original overhead surfaces.

(5) Ne (Non-Existant) This location did not contain structural items classified as "other" such as the following: ducts, louvers, pipes and vents.

(6) NA (Not Applicable) No activity detected above background in the beta mode; therefore, no alpha mode survey was necessary.

(7) NN (Not Necessary) No activity was detected; therefore, no contact G-M End Window Survey was necessary.

(8)_{NST} (No Smear Taken)

	DATA SHEETS SHOWING ROOM SURVEY RESULTS														
Room or	Percent Accessib Survey Floor		Air Sample (pC1/l)	Beta M Floors	lode ⁽¹⁾ D (dpm/10 Walls	irect Read Ocm ²) Overhead			(dpm/	rect Readin 100cm ²) Overhead	gs Other	End Win (mR Contact		Smear Results (dpm/100cm ²)	Comments
C-343 C-244A C-345	15	15	NS ⁽²⁾	BKGD ⁽³⁾	BKGD	osu ⁽⁴⁾	BKGD	NA ⁽⁶⁾	NA	NA	NA	_{NN} (7)	BKGD	BKGD	λ_{ij} :
C346, 347 348, 349, 354,355, 356, 357 358	30	20	'NS	BKGD	BKGD	BKGD	BKGD	NA	NA	NA	NA	NN	BKGD	BKGD	
2nd Floor Balcony West Hall	100	50	NS	BKGD	BKGD	osu	BKGD	NA	NA	NA	NA	NN	BKGD	BKGD	
2nd Floor Balcony North Hall	100	50	0.31	BKGD	BKGD	osu	NE ⁽⁵⁾	NA	NA	NA	NA	NN	BKGD	BKGD	- 12
C-359	15	20	NS	BKGD	BKGD	BKGÐ	NE	NA	NA	NA	NA	NN	BKGD	BKGD	I
C-360	30	40	NS	BKGD	BKGD	osu	BKGD	NA	NA	NA	NA	NN	BKGD	BKGD	
C-361	30	40	NS	BKGD	BKGD	osu	BKGD	NA	NA	NA	NA	NN	BKGD	BKGD	
C-362	30	40	NS	BKGD	BKGD	osu	BKGD	NA	NA	NA	NA	NN	BKGD	BKGD	
C-363	30	40	NS	BKGD	BKGD	osu	BKGD	NA	NA	NA	NA	NN	BKGD	BKGD	
C-364	30	40	NS	BKGD	BKGD	osu	BKGD	NA	NA	NA	NA	NN	BKGD	BKGD	
C-365	30	40	NS	BKGD	BKGD	osu	BKGD	NA	NA	NA	NA	NN	BKGD	BKGD	
C-366 C-367	30	40	NS	BKGD	BKGD	osu	BKGD	NA	NA	NA	NA	NN	BKGD	BKGD	
Roof	100	100	NS	BKGD	BKGD	osu	BKGD	NA	NA	NA	NA	NN	BKCD	BKGD	

TABLE I DATA SHEETS SHOWING ROOM SURVEY RESULTS

(1)_{Beta Mode detects both electromagnetic and particulate radiation.}

(2)_{NS} - (Not Selected) Air sample locations were chosen on a selected basis throughout the areas surveyed.

(3) BKGD (Background) Instrument Background Readings

	Beta Mode	Alpha Mode
Floor Monitor	1500-2000 cpm/325cm ²	0-50 cpm/325cm ²
PAC-4G-3	150-200 cpm/61cm ²	0-50 cpm/61cm ²
PC-3A	50 срт	0.4 dpm
10 Wire	500 cpm	10 cpm
G-M End Window	Detector read <0.03 mR/hr a	t 3 feet above floor.

(4) OSU (Overhead Structure Unavailable) Floor and wall survey indicate no necessity to demolish existing structures to reach original overhead surfaces.

- (5) Ne (Non-Existant) This location did not contain structural items classified as "other" such as the following: ducts, louvers, pipes and vents.
- (6) NA (Not Applicable) No activity detected above background in the beta mode; therefore, no alpha mode survey was necessary.
- (7) NN (Not Necessary) No activity was detected; therefore, no contact G-M End Window Survey was necessary.

ယ်

I

FIGURE 1C

FIGURE 1D

1 16 T

FIGURE 1E

- 17 -

FIGURE 1F

- 18 -

.

TABLE 2

INSTRUMENTATION USED IN SURVEY

Туре	Inventory Number	Probe Area	Window
Eberline Floor Monitor FM-4G utilizing a PAC-4G-3	181501	325cm ²	0.85mg/cm ²
Eberline Floor Monitor FM-4G utilizing a PAC-4G-3	181581	325cm ²	11
PAC-4G-3	165251	61cm^2	11
11	165252	11	"
"	165255	**	11
"	165256	11	
11	183413	"	"
H .	183414	11	"
Eberline HP-90 Beta-Gamma End Window	159006	-	1.4 - 2mg/cm ²
Nuclear Measurement Corporation PC-3A-2π Internal Gas Flow Counter	114969	-	0.85mg/cm ²
Argonne National Laboratory Filter Queen Air Sampler using HV-70 filter media	-	-	-
Argonne National Laboratory 10 Wire Flat Plate Gas Proportioal Detector with Eberline Mini Scaler MS-2	184343	-	0.85mg/cm ²

.....

ane di kecanan

1

TABLE 3

INSTRUMENT BACKGROUND READINGS

e e e e e e e e e e e e e e e e e e e	Reading	;s *	3 feet above floor
Instrument	Alpha Mode (cpm)	Beta Mode (cpm)	mR/hr
Eberline Floor Monitor FM-4G using PAC-4G-3			
#181501 #181581	0 - 50 0 - 50	1500 - 2000 1500 - 2000	
PAC-4G-3			·
<pre>#165251 #165252 #165255 #165256 #183413 #183414 Eberline HP-90 Beta-Gamma End Window</pre>	0 – 50 "" "" "	150 – 200 "' "' "	< 0.03
Nuclear Measurement Corporation PC-3A-2π Internal Gas Flow Counter	0.4	50	
Argonne National Laboratory 10 Wire Flat Plate Gas Proportional Detector with Eberline Mini Scaler MS-2	10	500	

*Background readings were initially taken in the mobile laboratory and rechecked throughout the various areas inside the Museum of Science and Industry while surveying.

FIGURE 2 GAMMA SPECTRUM ANALYSIS OF FLOOR TILE

21 -

TABLE 4

RADON CONCENTRATION DETERMINATIONS

Location	dpm/M ³	pCi/1	% of MPC*
E-2	2744	1.25	42
E-14	1057	0.48	16
E-15	1057	0.48	16
E-18	3372	1.5	51
E-114	1075	0.49	16
E-117	1567	0.71	24
E-201	2277	1.04	35
E-202	1476	0.67	22
South Hall (2nd Balcony West Court)	683	0.31	10
North Hall (2nd Balcony West Court)	671	0.31	10

*The 10CFR20 MPC for Radon-222 (222 Rn) in an uncontrolled area is 3 x 10⁻⁹ µCi/cc which equals 3 pCi/1.

Example Calculation Room E-15

1057 dpm/M³ x $\frac{1 \text{ pCi}}{2.22 \text{ dpm}} \text{ x} \frac{\text{M}^3}{10^3 1} = 0.48 \text{ pCi/1}$

•- .

ANL-HP-DWG. 78-2

- 23 -

TABLE 5

SOIL SAMPLE WEIGHTS

Sample No.	Net Weight (grams)	Dry Weight (grams)	Sieved Weight (grams)	Rocks and Dross Weight (grams)
EP-1A	887.8	688.9	666.0	145.0
EP-1B	749.0	582.0	551.6	3.5
EP-1C	740.8	579.6	557.2	13.5
EP-1D	1642.2	1281.8	1161.8	94.3
EP-2A	616.1	435.2	376.0	55.3
EP-2B	764.8	593.5	541.1	44.7
EP-2C	1050.0	833.0	766.4	60.0
EP-2D	2375.3	1944.5	1750.0	189.7
EP-3A	677.8	495.9	417.1	72.2
EP-3B	907.2	717.2	649.3	65.3
EP-3C	962.3	785.5	750.4	26.9
EP-3D	2142.2	1800.5	1563.3	222.9

- The contract of a second second second second second second

TABLE 6

- 25 -

LFE SOIL ANALYSIS PROCEDURE FOR TOTAL URANIUM AND GAMMA-EMITTING NUCLIDES

Summary of Methods

A 60 milliliter (ml) volume of the received soil was counted in a petri dish for 500 minutes on a Ge(Li) detector over the energy range 0 - 1.5 MeV. This corresponded to between 60 to 100g of soil, depending upon bulk soil density. Positive photopeaks above instrument background were converted to dpm using a line efficiency curve based upon a National Bureau of Standards Multi Gamma standard. The natural Thorium-232 (232 Th) and 226 Ra decay chains were calculated using the 0.910 MeV Actinium-228 (228 Ac) and 0.609 MeV Bismuth-214 (214 Bi) photopeaks respectively. Cesium-137 is reported for each sample as a representative gamma emitter. Potassium-40 (40 K) was observed on all soil samples, as expected, but was not calculated or reported.

One gram of the soil sample was ashed and dissolved in HF-HNO₃ for the total uranium analysis. A $100-\lambda$ aliquot of the dissolved sample was fused with 98% NaF-2% LiF and the fluorescence determined using a Jarrell-Ash fluorometer. A quenching factor was determined for each sample by using an internal spike.

<u>ع</u>اد

Sample No.	Ge(Li) Spectra	a pCi/g received w	$t \pm \sigma(1)$		
	¹³⁷ Cs	²³² Th Decay	²²⁶ Ra Decay	Uranium	
		Chain	Chain	$\mu g/g \pm \sigma^{(2)}$	pCi/g±σ ⁽³
EP-1A	1.43 ± 0.07	0.8 ± 0.2	0.75 ± 0.08	3.5±0.4	2.4±0.3
EP-1B				2.6±0.4	1.8±0.3
EP-1C				1.3±0.4	0.9±0.3
EP-1D				3.1±0.4	2.2±0.3
EP-2A	0.98 ± 0.05	0.9 ± 0.1	0.83 ± 0.07	2.2±0.4	1.5±0.3
EP-2B				2.2±0.5	1.5±0.3
EP-2C				1.9±0.6	1.3±0.4
EP-2D				1.9±0.4	1.3±0.3
EP-3A	1.05 ± 0.06	0.6 ± 0.2	0.93 ± 0.09	2.6±0.4	1.8±0.3
EP-3B				3.5±0.5	2.4±0.3
EP-3C				4.1±0.5	2.9±0.3
EP-3D				2.4±0.4	1.7±0.3
LFE Blank	0 ± 0.06	0 ± 0.1	0 ± 0.06	0±0.2	0±0.1

Ge(Li) SPECTRUM AND URANIUM FLUOROMETRIC ANALYSES RESULTS

(1) One standard deviation due to counting statistics.

(2) Data Results from LFE.

(3) ANL Conversion from Appendix 3.

TABLE 7

TABLE 8

BACKGROUND SOIL SAMPLE DATA*

Cesium-137, Thorium, and Uranium in Soil 1976

concentrations in pCi/g

Date Collected	Location	Cesium-137	Thorium-232	Uranium
July 22	Argonne Area	0.3 ± 0.1	0.21 ± 0.04	1.3 ± 0.1
July 22	Argonne Area	0.1 ± 0.1	0.49 ± 0.04	2.0 ± 0.1
July 22	Argonne Area	0.3 ± 0.1	0.48 ± 0.04	1.5 ± 0.1
October 18	Argonne Area	0.1 ± 0.1	0.65 ± 0.07	1.5 ± 0.1
October 18	Argonne Area	0.3 ± 0.1	0.43 ± 0.04	1.4 ± 0.1
October 18	Argonne Area	0.4 ± 0.1	0.39 ± 0.04	1.3 ± 0.1
~	Average	0.2 ± 0.1	0.44 ± 0.14	1.5 ± 0.3
	Off-Site			
June 22	McKinley Woods State Park, IL	0.4 ± 0.1	0.16 ± 0.02	0.9 ± 0.1
June 23	McCormick Woods Brookfield, IL	0.3 ± 0.1	0.22 ± 0.02	1.2 ± 0.1
June 23	Bemis Woods Hinsdale, IL	0.4 ± 0.1	0.18 ± 0.01	1.6 ± 0.1
October 12	St. Joseph, MI	0.4 ± 0.1	0.20 ± 0.02	0.3 ± 0.1
October 13	Willow Springs,	IL 0.5 ± 0.2		1.0 ± 0.1
October 14	Dresden Lock & Dam, IL	0.4 ± 0.1	0.45 ± 0.03	1.6 ± 0.1
	Average	0.4 ± 0.1	0.24 ± 0.14	1.1 ± 0.5

*These results are transcribed from "Environmental Monitoring at Argonne National Laboratory Annual Report for 1976" (ANL-77-13) by N. W. Golchert, T. L. Duffy and J. Sedlet. These measurements are presented in Table 13, on page 47 of the report.

APPENDIX I

CONVERSION FACTORS

INSTRUMENTATION

Below are the conversion factors used to obtain the readings in units of disintegrations per minute per 100cm^2 (dpm/100cm²).

I Conversion Factors

4	Floor Monitor (FM-4G)	PAC-4G-3
To 100cm ²	0.31	1.6
cpm to dpm (alpha)	2	2
cpm to dpm (beta)	2	2
cpm to dpm (K ⁴⁰)	_	16.5

II Derivation of Conversion Factors

Floor Monitor (FM-4G)

Window Area: ~325cm²

Conversion to 100cm^2 = .31 times floor monitoring reading

PAC-4G-3

Window Area: ~61cm²

Conversion to 100cm^2 = 1.6 times PAC reading

 2π Internal Gas Flow Counter, PC-3A

Geometry: Mylar Spun Top - 0.43

Mylar Spun Top Counting (window double aluminized mylar ~0.85 mg/cm^2) utilizes the well of the PC-3A and is a method developed and used by the Argonne National Laboratory Health Physics Section for negating the dielectric effect in counting samples on non-conducting media.

APPENDIX I (cont'd.)

SMEAR COUNT

The conversion factors for $cpm/100cm^2$ to $dpm/100cm^2$ are given below.

I CONVERSION EQUATION (ALPHA)

$\frac{\text{cpm-Bkgd}}{\text{g x bf x sa x waf}} = \text{dpm Alpha}$

A geometry (g) of 0.43 is standard for all flat plate counting.

A backscatter factor (bf) of 1.0 is used when determining alpha activity on a filter media.

The self-absorption (sa) was assumed to be 1 unless otherwise determined.

If the energies of the isotope were known, the appropriate window air factor (waf) was used; if the energies of the isotopes were unknown the waf of 239 Pu, which is .713, was used.

II CONVERSION EQUATION (BETA)

 $\frac{\text{cpm} - (\text{Beta Bkgd} + \text{Alpha cpm})}{\text{g x bf x sa x waf}} = \text{dpm Beta}$

A geometry (g) of 0.43 is standard for all flat plate counting.

A backscatter factor (bf) of 1.1 is used when determining beta activity on a filter media.

The self-absorption (sa) was assumed to be 1 unless otherwise determined.

If the energies of the isotopes were known, the appropriate window air factor (waf) was used; if the energies of the isotopes were unknown, the waf of ${}^{90}\text{Sr}-{}^{90}\text{Y}$, which is 0.85 was used.

APPENDIX I (cont'd.)

RADON DETERMINATION

This attachment summarizes the air sampling calculations for samples collected using Argonne National Laboratory designed air sampler with HV-70 filter media. The attachment includes the basic assumptions and calculations used to derive the air concentrations.

I. Radon Concentrations Based on RaC' Results

The following postulates are assumed in deriving the Radon-222 (222 Rn) concentrations as based on the RaC' alpha count results.

- 1. RaA, RaB, RaC, RaC', are in equilibrium.
- 2. RaA is evident only in the first count and not the 100 minute decay count.
- 3. That one-half of the Radon progeny is not adhered to airborne particulate, and therefore, not evident on the filter media.
- 4. The geometry factor (g) is 0.43 for both the alpha and beta activity.
- 5. The backscatter factor (bf) of 1.0 is used for the alpha activity which is determined from RaC'.
- 6. The sample absorption factor (sa) for RaC' is 0.77.
- 7. The window air factor (waf) for RaC' is 0.8.
- 8. RaB and RaC being beta emitters, are not counted in the alpha mode.
- 9. The half-life of the Radon progeny is approximately 36 minutes, based on the combined RaB and RaC half-lives.
- 10. No long-lived alpha emitters present as evidenced by the final recount.
- 11. For all practical purposes, RaC' decays at the rate of the composite of RaB and RaC which is approximately 36 minutes.

APPENDIX I (cont'd.)

RADON DETERMINATION (cont'd.)

II. Equations Used to Derive Air Concentrations

$$N_{o} = \frac{N}{-\lambda t}$$
e

Where: N_0 = Activity present at the end of the sampling period N = Activity at some time interval, after end of sampling t = Time interval N₀ to N

$$\lambda = \frac{.693}{t_{\frac{1}{2}}}$$

 $t_{\frac{1}{2}}$ = Half-life of isotope

$$C = \frac{A \lambda}{f} \frac{1}{(1-e^{-\lambda t})}$$

Where: C = Concentration per unit volume

- A = Activity of filter media at end of sampling period (N_0 from previous equation)
- f = Sampling rate $(M^3/minute)$
- t = Time sampling was taken

$$\lambda = \frac{.693}{t_{\frac{1}{2}}}$$

 $t_{\frac{1}{2}}$ = Half life of isotope or controlling parent

APPENDIX I (cont'd.)

RADON DETERMINATION (cont'd.)

•

III. Example Calculations - Room E-15

-

$$N_{o} = \frac{498 \text{ dpm}}{e^{-\frac{.693 \text{ x} 104}{36}}} = 3687 \text{ dpm}$$

$$C = \frac{3687 \times \frac{.693}{36}}{15/60} \frac{1}{1 - e^{-\frac{.693 \times 40}{36}}} = 529 \text{ dpm/M}^3 \times 2 = 1057 \text{ dpm/M}^3$$

		-			APPENDIX	X 2A							
					AIR SAMPL	E DATA	L						
LOCATION: M	JSEUM OF SC	CIENCE	AND IND	USTRY E-	-2				SAME	LE COLLEC	TION DATE	Z: 4	/15/77
									TIME	E OF COLLE	CTION: 1	242	
SUSPECTED ISOTOPE: Unidentified													
LENGTH OF RUN: TIME STOPPED 1322 MINUS TIME STARTED 1242 TOTAL TIME 40 MINUTES													
VOLUME: COLL	ECTION RAT	'Е 60	15 M ³ ,	/hr x TOT	AL TIME	40	MIN	UTES _	VOLUME	10	м ³		
COUNT IME OF COUNTS BKGD NET C													
4/15 1324	118	2	59	0.03	59	.43	1	.77	.8	2226	223	α	2 min.
4/15 1502	74	2	37	0.03	37	.43	1	.77	.8	1396	140	α	100 min.
4/21 1300	0	2	0	0.5	BKGD.	.43	1	.77	.8	BKGD.	BKGD.	α	б days
4/15 1326	2114	2	1057	47.3 + 59	590.7	.43	1.1	1	.95	21,174	2117	β	4 min.
4/15 1504	634	2	317	47.3 + 37	232.7	.43	1.1	1	.95	5182.6	518	β	102 min.
4/21 1300	80	2	40	53.3	BKGD.	.43	1.1	1	.95	BKGD.	BKGD.	β	6 days
ALPHA:BETA:Pure Beta emittersCOMPOSITE:Beta determination $cpm - Bkdgg x bf x sa x waf= dpm Alphacpm - Bkgdg x bf x sa x waf= dpm Betacpm - Beta Bkgd + Alpha cpm = dpm BetaREMARKS:*10% of sample counted using PC-3A and mylar spun top (0.85 mg/cm²)com - Beta Bkgd + Alpha cpm = dpm Beta$													

APPENDIX 2B

					AIR SAMPL	E DATA							
LOCATION: MU	SEUM OF SC	IENCE	AND INDU	STRY E-	-14				SAMP	LE COLLEC	TION DATE	S: 2,	/1/77
									TIME	OF COLLE	CTION: 1	046	
		·							SUSP	ECTED ISO	TOPE: U	nider	ntified
LENGTH OF RU	N: TIME S	TOPPED		MINUS ?	TIME STAR	TED 1	046	_ TOTA	L TIME	40	MINUTES	;	
VOLUME: <u>COL</u>	LECTION RAT	TE 60	15 м ³ ,	/hr x TOTA	AL TIME	40	MTN	ures -	VOLUME	40	11		n oʻningingin — aliyoti on aygin n v vyadyan vang
DATE AND TIM COUNT	E OF	Colin	7.1	COUNTS	BKGD	NE NE	T AND THE T	Sam Frank	WIMD 4850RPTIO	DISINTECRAC	et himite +		DECAY TINE
2/1 1135	176	2	88	0.3	87.7	.43	1	.77	.8	3311	331	α	9 min
2/1 1315	27	2	13.5	0.3	13.2	•43	1	.77	.8	498	50	α	109 min
4/21 1300	0	2	0	0.5	BKGD	.43	1	.77	.8	BKGD	BKGD	α	79 days
2/1 1133	909	2	455	91.6 + 88.	275.4	.43	1.1	1	.95	6133	613	β	7 min
2/1 1313	384	2	192	91.6 + 13.5	85.9	.43	1.1	1	.95	1935	4	β	107 min
4/21 1300	68	2	34	53.5	BKGD	.43	1.1	1	.95	BKGD	BKGD	β	79 days
	x sa x waf	= dpm		cpm - : g x bf :	x sa x wa	= d		a	cpm -	E: Beta Beta Bkgd x sax wa		tion cpm	= dpm Beta

APPENDIX 2C

APPENDIX 2D

AIR SAMPLE DATA										
AIR SAULE DAIA										
LOCATION: MUSEUM OF SCIENCE AND INDUSTRY E-18 SAMPLE COLLECTION DATE: 2/16/77										
TIME OF COLLECTION: 1100										
SUSPECTED ISOTOPE: Unidentified										
LENGTH OF RUN: TIME STOPPED 1140 MINUS TIME STARTED 1100 TOTAL TIME 40 MINUTES										
VOLUME: <u>COLLECTION RATE 15 M^3/hr x</u> TOTAL TIME 40 MINUTES = VOLUME 10 M^3 60										
CROSS COUNTS BKGD NET OUTS BKG										
2/16 1150 292 2 146 0.5 145.5 .43 1 .77 .8 5490 549 α 10 min										
2/16 1330 76 2 38 0.5 37.5 .43 1 .77 .8 1415 145 a 110 min										
$4/21$ 1300 0 2 0 0.5 BKGD .43 1 .77 .8 BKGD BKGD α 64 days										
2/16 1152 1599 2 799 + 146 566 .43 1.1 1 .95 12605 1261 β 12 min										
2/16 1332 466 2 233 + 38 108 .43 1.1 1 .95 2405 241 ß 112 min										
4/21 1300 99 2 43.5 53.5 BKGD .43 1.1 1 .95 BKGD BKGD β 64days										
ALPHA:BETA:Pure Beta emittersCOMPOSITE:Beta determination $cpm - Bkdg= dpm Alphacpm - Bkgd= dpm Betacpm - Beta Bkgd + Alpha cpm= dpm Betag x bf x sa x wafg x bf x sa x waf$										
REMARKS: *10% of sample counted using PC-3A and mylar spun top (0.85 mg/cm ²)										

LOC.	ATION: MU	SEUM OF S	CIENCE	AND INDU	STRY 1	14				SAMP	LE COLLEC	CTION DATE	Z: 3/	2/77
					<u></u>					TIME	OF COLLE	ECTION:	1030	
		<u></u>								SUSP	ECTED ISC	TOPE:		
LEN	GTH OF RUI	N: TIME S	TOPPED	1110	MINUS	TIME STAR	TED	1030	_ TOTA	L TIME	40	MINUTES	3	
VOL	UME: COLI	LECTION RA	ГЕ	15 M ³ /	<u>hr</u> x TOT	AL TIME	40	MIN	UTES _	VOLUME	10	м ³		
	E AND TIME COUNT 1119 1259	E OF	SLANDO, 1000	¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹	0.3 0.3	111 111 57 77.2 12.2	.43 .43	AULANO, 1	14 14 14 15 15 15 17 17 17	.8 .8	460	* #1/11/1 5 * #1/11/1 10 291 46	αα	ALITATUS ACTIVITY ACTIVITA ACTIVITA ACTIVITA ACTIVITA ACTIVITA ACTIVITA ACTIVITA ACT
		0	2	0	0.5	BKGD	.43	1	.77	.8	BKGD	BKGD	α	50 days
3/2	1300				83 + 77.5	266	.43	1.1	1	.95	5924	592	β	7 min
3/2 4/21	1300	853	2	426.5	F // J									
3/2 3/2 4/21 3/2 3/2		853 284	2	426.5	83 + 12.5	46.5	.43	1.1	1	.95	1035	4	β	107 min
3/2 4/21 3/2	1117		1		83			<u> </u>	1	.95 .95	1035 BKGD	4 BKGD	ß ß	107 min 50 days

æ.,

AIR SAMPLE DATA LOCATION: MUSEUM OF SCIENCE AND INDUSTRY E-117 South	1										
LOCATION: MUSEUM OF SCIENCE AND INDUSTRY E-117 South	1										
	LOCATION: MUSEUM OF SCIENCE AND INDUSTRY E-117 South SAMPLE COLLECTION DATE: 3/1/77										
		TIME OF COLLE	ECTION: 1	026							
		SUSPECTED ISC	DTOPE: Un	iden	tified						
LENGTH OF RUN: TIME STOPPED 1106 MINUS TIME STARTED 1026	TOTAL	TIME 40	MINUTES	5							
VOLUME: COLLECTION RATE 15 M ³ /hr X TOTAL TIME 40 MINUTE	$\frac{1}{1} = \frac{1}{1}$		M ³								
60											
GROSS COUNTS BKGD NET COUNT IN A COUNTS BKGD NET GROSS COUNTS BKGD NET COUNT IN A COUNTS BKGD NET COUNTS STANDARD											
		.8 2792	279	α	5 min						
/1 1251 59 2 19.7 0.5 19.2 .43 1 .	.77	.8 724	72	α	105 min						
/21 1300 0 2 0 0.5 BKGD .43 1 .	.77	.8 BKGD	BKGD	α	51 days						
/1 1113 835 2 417.5 ⁷⁹ +74.5 264 .43 1.1 1	1	.95 5879	588	β	7 min						
/1 1253 426 2 142 ⁷⁹ +19.7 43.3 .43 1.1 1	1	.95 964	96	β	107 min						
/21 1300 42 2 21 53.5 BKGD .43 1.1 1	1	.95 BKGD	BKGD	β	51 days						
ALPHA:BETA:Pure Beta emittersCOMPOSITE:Beta determination $cpm - Bkdgg x bf x sa x waf= dpm Alphacpm - Bkgdg x bf x sa x waf= dpm Betacpm - Beta Bkgd + Alpha cpm = dpm BetaREMARKS:*10% of smaple counted using PC-3A and mylar spun top (0.85 mg/cm²)$											

Υ,

APPENDIX 2G

						AIR SAMPL	E DATA							
LOCA	TION: MU	SEUM OF S	CIENCE	AND INDU	STRY E-	201				SAMP	LE COLLEC	CTION DAT	E: 3	3/15/77
<u></u>	<u></u>					<u></u>				TIME	OF COLLE	ECTION:	1100)
										SUSP	ECTED ISC	DTOPE:	Unide	entified
LENG	TH OF RUN	: TIME ST	TOPPED	1142	_ MINUS	TIME STAR	TED	1100	TOTA	L TIME	42	MINUTE	S	
VOLU	ME: <u>COLL</u>	ECTION RAT	<u>re 1</u> 60	5 M ³ /	hr x TOT	AL TIME	42	MIN	UTES =	VOLUME	10.5	M ³		
	: AND TIME COUNT	OF OF	Connector	County Min.	Column MIN.	Coluris Inth.	WIN CE	24.C	Sale Califier E.	WINN ABSORPTION	DISINTEGE	d'ans a long		DECAN TIME
3/15	1149	312	2	156	0.2	155.8	.43	1	. 77	.8	5879	560	α	7 min
3/15	1338	47	2	23.5	0.2	23.3	.43	1	.77	.8	879	84	α	116 min
4/21	1300	0	2	0	0.5	BKGD	.43	1	.77	.8	BKGD	BKGD	α	36 days
3/15	1151	1526	2	762	57.8 + 156	549.2	.43	1.1	1	.95	12231	1165	β	9 min
3/15	1340	337	2	168.5	57.8 + 23.5	87.2	.43	1.1	1	.95	1942	185	β	118 min
4/21	1300	42	2	21	53.5	BKGD	.43	1.1	1	.95	BKGD	BKGD	β	36 days
ALPH	<u>cpm - Bk</u>	dg sa x waf	-	EAlpha	<u></u>					cpm -	POSITE: Beta determination pm - Beta Bkgd + Alpha cpm = dpm Beta x bf x sax waf			

انتحد.

		<u></u>				APPENDI	х 2н							
						AIR SAMPI	LE DATA	A						
LOC	CATION:	MUSEUM OF	SCIEN	CE AND IN	DUSTRY	E-202				SAM	PLE COLLE	CTION DAT	Е: З	/15/77
										TIM	E OF COLLI	ECTION: 1	.0/10)
										SUSI	PECTED ISC	DTOPE: Un	niden	tified
LEN	IGTH OF RUN	N: TIME ST	COPPED	1050	MINUS	TIME STAF	RTED	1010	TOTA	L TIM	E <u>40</u>	MINUTE	s	
VOL	UME: COLL	ECTION RAT	re 60	15 M ³	/hr x TOT	AL TIME	40	MIN	UTES _	VOLUM	210	_M ³	1	
CROSS COUNTS BKGD NET COUNTS B														
3/15	1100	157	2	78.5	0.2	78.3	.43	1	.77	.8	2954	295	α	10 min
3/15	1242	32	2	16	0.2	15.8	.43	1	.77	.8	596	60	α	112min
4/21	1300	0	2	0	0.5	BKGD	.43	1	.77	.8	BKGD	BKGD	α	36 days
3/15 1058 987 2 493.5 + 78.5 357.2 .43 1.1 1 .95 7955 796 ß 8 min														
3/15	1240	267	2	133,5	57.8 + 16	59.7	.43	1.1	1	.95	1329	133	β	110 min
4/21	4/21 1300 63 2 31.5 53.5 BKGD .43 1.1 1 .95 BKGD BKGD β 36 days													
ALPH	<u>cpm - Bko</u>		= dpm		<u>cpm - I</u>	3kgd	= dr		a <u>-</u>	cpm - 1	Beta Bkgd	+ Alpha	tion cpm	= dpm Beta
ALPH	$4/21$ 130063231.553.5BKGD.431.11.95BKGDBKGD β 36 daysALPHA: $\underline{cpm - Bkdg}$ $g x bf x sa x waf$ BETA: Pure Beta emitters $\underline{cpm - Bkgd}$ $g x bf x sa x waf$ COMPOSITE: Beta determination $\underline{cpm - Beta Bkgd + Alpha cpm}$ $g x bf x sa x waf$ $g x bf x sa x waf$ $cpm - Beta Bkgd + Alpha cpm}$ $g x bf x sa x waf$ $dpm Beta$ $g x bf x sa x waf$ REMARKS:*10% of sample counted using PC-3A and mylar spun top (0.85 mg/cm²) $(0.85 mg/cm²)$													

APPENDIX 21

LOCATION: MUSEUM OF SCIENCE AND INDUSTRY - South Hall (2nd Balcony West) SAMPLE COLLECTION DATE: 4/15/77 TIME OF COLLECTION: 1052 SUSPECTED ISOTOPE: Unidentified LENGTH OF RUN: TIME STOPPED		CEIM OF SCII	ENCE AND IND		AIR SAMPLI South Hall		Balcor	ıy West		LE COLLEC	TION DATE	z. 4/	15/77
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	LOCATION: MUS		ENCE AND IND				-						
LENGTH OF RUN: TIME STOPPED 1133 MINUS TIME STARTED 1052TOTAL TIME 41 MINUTES VOLUME: COLLECTION RATE 15 M ³ /hr X TOTAL TIME 41 MINUTES 10.25 m ³ G GROSS COUNTS BKGD NET 0 <t< td=""><td><u></u></td><td></td><td></td><td></td><td><u></u></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>ified</td></t<>	<u></u>				<u></u>								ified
Indicate of the state of			1100		THE CTAD	P F D	10	52000					
4/15 1140 80 2 40 0.03 40 .43 1 .77 .8 1509 147 α 7 min 4/15 1315 18 2 9 0.03 9 .43 1 .77 .8 1509 147 α 7 min 4/15 1315 18 2 9 0.03 9 .43 1 .77 .8 339.6 33 α 102 min 4/21 1300 0 2 0 0.5 BKGD .43 1 .77 .8 BKGD BKGD α 6 days 4/15 1138 2263 2 1131.5 $\frac{47.3}{40}$ 1044.2 .43 1.1 1 .95 23256 2268 β 5 min 4/15 1313 613 2 306.5 $\frac{47.3}{9}$ 250.2 .43 1.1 1 .95 557.2 54 β 100 min 4/21 1300 78 2 39 53.5 BKGD .43 1.1		CTION RATE	15 M ³ /										······
4/15 1140 80 2 40 0.03 40 .43 1 .77 .8 1509 147 α 7 min 4/15 1315 18 2 9 0.03 9 .43 1 .77 .8 1509 147 α 7 min 4/15 1315 18 2 9 0.03 9 .43 1 .77 .8 339.6 33 α 102 min 4/21 1300 0 2 0 0.5 BKGD .43 1 .77 .8 BKGD BKGD α 6 days 4/15 1138 2263 2 1131.5 $\frac{47.3}{47.3}$ 1044.2 .43 1.1 1 .95 23256 2268 β 5 min 4/15 1313 613 2 306.5 $\frac{47.3}{9}$ 250.2 .43 1.1 1 .95 557.2 54 β 100 min 4/21 1300 78 2 39 53.5 BKGD .43 1.1		OF SLINIOS TRIOL	,	/	/ /		L ALLER C	Salar Star Pier Fra	WIM ABSORPTIC	DISINTERIA	211012 * 111112 *		DECAY TIME
4/15 1313 16 2 9 0.05 9 1.0 1 10 10 10 α 6 days 4/21 1300 0 2 0 0.5 BKGD .43 1 .77 .8 BKGD BKGD α 6 days 4/15 1138 2263 2 1131.5 $\frac{47.3}{40}$ 1044.2 .43 1.1 1 .95 23256 2268 β 5 min 4/15 1313 613 2 306.5 $\frac{47.3}{9}$ 250.2 .43 1.1 1 .95 557.2 54 β 100 min 4/21 1300 78 2 39 53.5 BKGD .43 1.1 1 .95 BKGD β 6 days ALPHA: cpm - Bkdg cpm - Bkgd cpm - Bkgd cpm - Bkgd 6 days cpm - Bkgd cpm - Bkgd comPOSITE: Beta determination	4/15 1140								ſ			α	7 min
$\frac{4721}{4721} + \frac{1300}{1300} + \frac{12}{100} + \frac{131.5}{400} + \frac{47.3}{400} + \frac{47.3}{1044.2} + \frac{43}{43} + \frac{11}{11} + \frac{1}{100} + \frac{1}{1$	4/15 1315	18	2 9	0.03	9	.43	1	.77	.8	339.6	33	α	102 min
$\frac{4}{15} 1313 613 2 306.5 + \frac{47.3}{9} 250.2 .43 1.1 1 .95 557.2 54 \beta 100 \text{ min}}{100 \text{ min}}$ $\frac{4}{21} 1300 78 2 39 53.5 BKGD .43 1.1 1 .95 BKGD BKGD \beta 6 \text{ days}}{1.1 1 .95 BKGD BKGD \beta 6 \text{ days}}$ $\frac{4}{21} 1300 78 2 39 53.5 BKGD .43 1.1 1 .95 BKGD BKGD \beta 6 \text{ days}}{100 \text{ min}}$ $\frac{6}{2} \frac{6}{2} \frac{6}{2}$	4/21 1300	0	2 0	0.5	BKGD	.43	1	.77	.8	BKGD	BKGD	α	6 days
$\frac{4}{21} 1300 78 2 39 53.5 BKGD .43 1.1 1 .95 BKGD BKGD \beta 6 \text{ days}$ $\frac{2}{ALPHA:} \qquad \qquad BETA: Pure Beta emitters COMPOSITE: Beta determination cpm - Bkdg equal beta cpm - Bkgd equal beta cpm - Beta Bkgd + Alpha cpm equal beta determination cpm - Beta Bkgd + Alpha cpm equal beta determination cpm - Beta Bkgd + Alpha cpm equal beta determination cpm - Beta Bkgd + Alpha cpm equal beta determination cpm - Beta Bkgd equal beta determination determination cpm - Beta Bkgd equal beta determination determin$	/15 1138	2263	2 1131.5	47.3 + 40	1044.2	.43	1.1	1	.95	23256	2268	β	5 min
$\frac{1300}{\text{ALPHA:}} = \text{dpm Alpha} = \text{dpm Alpha} = \text{dpm Beta} = \text{dpm Beta}$	/15 1313	613	2 306.5	47.3 + 9	250.2	.43	1.1	1	.95	557.2	54	β	100 min
<u>cpm - Bkdg</u> = dpm Alpha <u>cpm - Bkgd</u> = dpm Beta <u>cpm - Beta Bkgd + Alpha cpm</u> = dpm Beta	+/21 1300	78			BKGD	.43	1.1	1	.95	BKGD	BKCD	β	6 days
	<u>cpm - Bkdg</u> = dpm Alpha <u>cpm - Bkgd</u> = dpm Beta <u>cpm - Beta Bkgd + Alpha cpm</u> = dpm Beta												

4. <u>-</u>_____

--- e--- million

APPENDIX 2J														
						AIR SAMPL	E DATA	L						
LOCA	ATION: M	USEUM OF S	SCIENC	E INDUST	RY - (No1	th Hall -	- 2nd 1	Balcon	y W.)	SAME	LE COLLEC	TION DATE	E: 4	/15/77
TIME OF COLLECTION: 1023														
SUSPECTED ISOTOPE: Unidentified														
LENGTH OF RUN: TIME STOPPED 1106 MINUS TIME STARTED 1023 TOTAL TIME 43 MINUTES														
VOLU	UME: COLLI	ECTION RAT	<u>Е</u> 60	15 M ³ ,	/hr X TOT	ALTIME	43	MIN	UTES =	VOLUME	10.75	_M ³		
COUNT IME OF COUNTS BKGD NET C														
4/15	1127	43	2	21.5	0.03	21.5	.43	1	.77	.8	811	75	α	4 min
4/15	1246	19	2	9.5	0.03	9.5	.43	1	.77	.8	358	33	α	100 min
4/21	1300	0	2	0	0.5	BKGD	.43	1	.77	.8	BKGD	BKGD	α	6 days
4/15	1129	434	2	717	47.3 + 21.5	648.2	.43	1.1	1	.95	1342	1342	β	6 days
4/15	1248	352	2	176	9.5 + 47.3	119.2	.43	1.1	1	.95	247	247	β	102 min
4/21	1300	95	2	47.5	53.5	BKGD	.43	1.1	1	.95	BKGD	BKGD	β	6 days
ALPHA:BETA:Pure Beta emittersCOMPOSITE:Beta determination $cpm - Bkdg$ g x bf x sa x waf $cpm - Bkgd$ g x bf x sa x waf $= dpm Beta$ g x bf x sa x waf $cpm - Beta Bkgd + Alpha cpm$ g x bf x sa x waf $= dpm Beta$ g x bf x sa x waf														
REMARKS: *10% of sample counted using PC-3A and mylar spun top (0.85 mg/cm ²)														

۰.

APPENDIX 3

NORMAL URANIUM CALCULATIONS

Radioactive half lives of 234 U, 235 U and 238 U as well as the percent abundance for each isotope were obtained as current best values from the "Table of Isotopes - 6th Edition" by C. M. Lederer, J. M. Hollander and I. Perlman, 1967. The following values used are:

²³⁴ U half-life	2.47 x 10 ⁵ years
²³⁵ U half-life	7.1 x 10 ⁸ years
²³⁸ U half-life	4.51 x 10 ⁹ years
²³⁴ U percent abundance	0.0057
²³⁵ U percent abundance	0.7196
²³⁸ U percent abundance	99.2760

It should be noted that the abundance totals 100.0013%. Since it cannot be determined which isotope(s) are in error, the calculations are made with the .0013% error not accounted for.

Avagadro's Number Used - 6.025×10^{23}

 $SA = \lambda N$

SA ${}^{234}U = \frac{.693 \times 6.025 \times 10^{23}}{2.47 \times 10^5 \times 5.256 \times 10^5 \times 2.34 \times 10^2} = 1.374 \times 10^{10} \text{ dpm/gram}$

= $1.374 \times 10^4 \text{ dpm/}\mu\text{gram} \times 5.70 \times 10^{-5}$ = .783 dpm/ μgram of normal granium

SA ${}^{235}U = \frac{.693 \times 6.025 \times 10^{23}}{7.1 \times 10^8 \times 5.256 \times 10^5 \times 2.35 \times 10^2} = 4.76 \times 10^6 \text{ dpm/gram}$

= 4.76 dpm/ μ gram x 7.196 x 10⁻³ = .034 dpm/ μ gram of normal uranium

APPENDIX 3 (cont'd.)

NORMAL URANIUM CALCULATIONS

SA $^{238}U = \frac{.693 \times 6.025 \times 10^{23}}{4.51 \times 10^9 \times 5.256 \times 10^5 \times 2.38 \times 10^2} = 7.4 \times 10^5 \text{ dpm/gram}$

= .74 dpm/ μ gram x 9.9276 x 10⁻¹ = .735 dpm/ μ gram of normal uranium

therefore, 1 µgram of normal uranium contains

.783 dpm 234 U + .034 dpm 235 U + .735 dpm 238 U = 1.552 dpm/µgram

= $\frac{1.552 \text{ dpm/µgram}}{2.22 \text{ dpm/pCi}}$ = .6991 pCi/µgram normal uranium

Conversion of µg/gm to pCi/g Example Calculation - EP-1A

 $3.5 \pm 0.4 \frac{\mu \text{gram}}{\text{gram}} \times \frac{0.6991 \text{ pCi}}{\mu \text{gram}} = 2.4 \pm 0.3 \text{ pCi/gram}$

* U. S. GOVERNMENT PRINTING OFFICE : 1979 281-704/1020