

STANDARD OIL DEVELOPMENT COMPANY

LINDER, NEW JERSEY

RESEARCH AND DEVELOPMENT DEPARTMENT

NI.18-3

26 BROADWAY, NEW YORK

December 23, 1942

2173

V. MURPHREE

VICE PRESIDENT

Dr. Norman Hilberry Metallurgical Laboratory University of Chicago Chicago, Illinois

Dear Dr. Hilberry:

In accordance with the arrangments made with Dr. Compton, I am attaching hereto Copy No. 13 of Dr. Kraus' Progress Report dated December 15, 1942.

This report contains additional information on the preparation of metallic uranium by the reduction of UCl3 with sodium.

Very truly yours,

RAPHAEL ROSEN

RR:GT Attachment

Holmitt,

This document consists of <u>9</u> pages <u>0</u> figures., copies 1 to 19, inc., Series A.

Progress Report By Charles A. Kraus December 15, 1942

Contract No. OEMsr-290, Supplement 2 Contract No. OEMsr-688.

A. Preparation of UCl5 from UU3 and CCl4.

OR LISCLOSURE DE ITS CONTANT

というからのためたいたいないないのである

UNAUTHORIZED PERSON IS PROPUBLIED.

CONFIRMED TO BE UNCLASSIFIED

OF DECLASSIFICATION

DATE:

The study of the various factors which may influence the rate of reaction between UO_8 and COL_4 has been continued and is still in progress. The procedure for carrying out the reaction, to cite a specific example, has been to allow 200 grams of UO_3 to react with a large excess of CCl_4 in a stainless steel autoclave, heated in an oil bath. When the internal temperature reaches approximately 100°C, reaction sets in and is characterized by a rapid temperature rise of 30 to 40 degrees. At the end of 10 to 15 minutes, the temperature begins to fall, indicating that the rate of conversion has slowed up considerably. The bath temperature is now elevated and the mixture continues to react until conversion is substantially complete. The end of the reaction is signalized by a leveling off of the pressure to a constant value (at constant temperature), since there is no further production of COCl₂. After most of the $COCl_{\Sigma}$ has been allowed to exhaust. the remaining $COCl_{\Sigma}$ and CCl₄ are listillod, and, finally, the residual volatile materials are removed under vacuum. When the products of the reaction are examined, they are frequently found to consist of two fractions; a top lay-r of dark red, coarsely

crystalline material which has obviously been deposited from

DOES NOT CONTAIN UNCLASSIFIED CONTROLLED NUCLEAR INFORMATION

solution in the excess CCl_4 , and a bottom layer which is a hard, brown cake. The two layers often differ widely in composition; the crystalline material is usually nearly pure UCl_5 , while the caked bottom layer frequently contains $UOCl_2$ in addition to UCl_4 and UCl_5 . Both fractions are ordinarily completely soluble in water.

In order to determine the extent of conversion to UCl₄ and UCl₅, samples of the products have been distilled in a stream of purified N₂ at 5 mm. pressure, with the temperature reaching a final value of approximately 700°C. This process requires about 30 minutes from the time the heating furnace is turned on. If the product contains residual oxide or oxychlorides, a dark brown residue of UO₂ remains in the boat. When conversion has been substantially complete, the residue is less than 0.1%.

1. Influence of Excess CCl₄ on the Rate of Conversion. As has been pointed out in earlier progress reports, when the reaction is first initiated, it proceeds very rapidly. There is a possibility that it would continue to progress rapidly if the reactants remained continuously in contact with each other, but as the products accumulate and the CCl₄ layer becomes saturated with UCl₅, the remaining oxide becomes coated with products of reaction and as a result, further reaction is very seriously inhibited. This view is supported by the improvement obtained in the conversion when the amount of excess CCl₄ is increased to large values, as summarized in Table I. The results of four experiments are given in which the amount

of excess CCl₄ varied from 100% to 300%. This does not change the temperature at which reaction sets in nor the time, t_1 , for the completion of the initial rapid phase but use of larger amounts of CCl₄ shortens the time, t_2 , required for completion of the conversion and reduces the maximum temperature which is reached in the initial phase. The amount of crystalline product is likewise increased and the quality of the material found in the bottom layer is improved. The maximum pressure reached is also reduced, due to the solubility of COCl₂ in CCl₄. It may be concluded that the preparation of UCl₅ (and UCl₄) is facilitated by the use of CCl₄ in large excess.

TABLE I

Influence of Excess CCl4 on the Rate of Chlorination of UO3

Exp. No.	Mate UO ₃ g.	UCL5	Used CCl4 % excess	Initial Reaction Temp.	tl* Min.	Temp. of Maximum	te** hrs.	Final Temp.•C
89	200	30	100	103	10	159	2.5	154
90	200	30	200	105	17	145	1.3	164
91	330	30	200	104	16	143	2.0	165
92	250	20	300	104	13	128	1.0	160

Analysis of Products

Exp.			Ratio Cl/U		Non-volatile residue, %			
No.	Top	Bottom	Top	Bottom	Top	Bottom	۰.	
89	50	50	4.78	4.86	0.3	26.1		
90	52	48	4.91.	4.78	0.1	12.3		
91	48	52	4,95	4.51	0.1	1,5		
92	61	39	4.96	4.93	0.1	0.6	•	

2. Effect of the State of Subdivision of UO3. It was observed in earlier experiments that when U30g was not ground to a fine powder, but was used in the lumpy condition in which it was produced by decomposition of UO_4 , the rate of conversion to UCl5 and the extent of the reaction were unsatisfactory. Onthe other hand, with finely ground U_3O_8 , a satisfactory rate of the conversion to UCl_5 was obtained. UO_3 is more reactive than U_3O_8 , and it was of interest to test the effect of its state of subdivision upon the rate of reaction and, particularly, to learn whether the rapid initial phase of the reaction could be eliminated by use of coarser UO3. In one experiment, the UO3 was sifted to remove the fines; the oxide used passed a 20 mesh but was retained by a 60 mesh sieve. In Table II, the results are compared with those obtained with ground and unground UOs. It will be noted that there were no significant differences.

TABLE II

		Eff	lect of	the State	of Sub	divisi	on of	U03		Non- vola-
Exp. No.	UO3	ials u UCl ₅ g.	CCl. % excess	Initial Temp. 	t _l * <u>Min.</u>	Max. Temp. °C:	t2* <u>Min.</u>	Final Temp. °C	Cl/U <u>Ratio</u>	tile oxide
80 Not é	200 Sround	15	75	96	37	137	100 .	128	4.91	
79 Grour	200 1d	15	75	102	25	147	120	118	3.91	
 88 Fines	200 remov	30 ved	75	101	10	164	120	148	4.71	0.32

*The symbols t_1 and t_2 have the same significance as in Table I.

3. Effect of Addition of CCl, in Small Increments. In an attempt to control the initial rapid reaction between UOs and CCl4, the CCl4 was injected by means of a pump in increments of approximately 25 cc. After the oxide and UCl_5 (catalyst) had been placed in the autoclave, the lid was clamped on and 40 cc. of CCl4 were introduced, and the temperature of the external oil. bath was raised slowly. Reaction set in at approximately the same temperature as usual, but the tomperature rise was vory much greater. In one experiment, the internal temperature reached 305°C in 10 minutes. When the mixture had cooled somewhat, additional CCl₄ was introduced, but the rate of the subsequent reaction was slow. Reaction was not complete; analysis of the product showed that it contained unconverted oxides or oxychlorides. The injection method of controlling the reaction fails because there is no excess CCl4 for removing the heat generated in the reaction as it proceeds.

4. Effect of Prolonged Preheating of the U_{0_8} -CCl₄ Mirgure its Boiling Point. The rapid initial phase of the reaction is moderated by prolonged refluxing of the UO_8 -CCl₄ mixture at atmospheric pressure. In Table III, the results of two experiments, No. 96 and No. 97, are summarized. Experiment No. 83 has also been included for comparison but, in this case, the mixture was heated for five hours in a sealed autoclave, where it presumably did not boil. In Experiments Nos. 96 and 97, the reactor was provided with a reflux condenser and the carbonyl chloride was allowed to escape at atmospheric pressure. Boiling for 6 hours with 100% excess CCl₄ (No.96) had little effect of

6.

the course of the reaction, although the amount of caking was unusually small, and the product was chiefly UCl₄. Boiling for 12 hours with 150% excess CCl₄ (No.97), had the effect of practically eliminating the rapid phase of the reaction; no sharp increase in temperature was observed. The product was nearly pure UCl₅. When a sample was distilled, less than 0.2% non-volatile oxide remained in the container.

TABLE III

Effect of Preheating the UO3-CCl4 Mixture

Exp. No.	Mate UO ₃ g.	UCls	Used CCl ₄ %excess	Time of Reflux _hrs	Initial Reaction Temp . °C.	Max. • Temp• •C•	Final Temp. °C.
83	200	30	75	5	109	120	135
96	200	30	100	6	101	170	158
97	200	30	150	12	94	96	158

Analysis of Products

Exp. No.	Cl/U Ratio	Non-volatile Residue %
83	4.917	
96	4.323	0.52
97 Nop layer	4.975	
Bottom layer	4.960	0.2

B. Reaction of UO3 and CCl4 at the Boiling Point.

To ascertain the nature of the products of the low temperature reaction between UO₃ and CCl₄, several 50-gram lots of UO₃ were refluxed in glass vessels with 75%,or greater, excess of CCl₄ at atmospheric pressure for periods varying from 6 to 72 hours. The results are tabulated in Table IV in the order of increasing time of reflux. In cases where the time of reflux was the same, the data are arranged

according to increasing amounts of UCl_5 added to the reaction mixtures. The ratios Cl_7 , which are given in column 5, have been corrected for the UCl_5 added originally. The percentage of material which did not volatilize when the products were heated in a stream of nitrogen at 5 mm. pressure, are given in column 7. They have also been corrected for the amount of UCl_5 added to the reaction mixture.

From the appearance of the product, its behavior in solution and its analysis after 6 hours of reflux, more than 50% of the UO₃ was converted to $UO_{g}Cl_{g}$. With longer boiling, the Cl/U ratio increased steadily and after 72 hours, nearly all the UO₃ had been converted to UCl_{5} . The content of nonvolatile material in this product was reduced to 1.64%.

TABLE IV.

Results of Refluxing 50 grams UO3 with Excess CCl4

Exp. No.	Hours of <u>Reflux</u>	% excess CCl4	Grams UCl ₅	Cl/ J Ratio	% In- soluble <u>Residue</u>	% Non- volatile Residue
4	6	75	7.5	1.26	5.4	
7	6	75	20.0	2.02	0.25	
3	12	75	7.•5	2.82	0.52	
2	18	75	Ż.5	3.0	0.17	
10	24	75	0.0	4.21	0.2	
l	24	75	7.5	3.94	0.12	32.0
8	24	100	3Õ.O	3.88	0.28	20.1
9	24	100	60.0	4.24	0.37	15.4
6	72	75	7.5	4.80	0.2	1.6

C. Solubility of UCl₅ in CCl₄.

The only mention of the solubility of UCl_5 in CCl_4 in Gmelin is the qualitative statement that it is "somewhat" soluble". Solubilities were determined at 25° and 70°C and

8.

estimated at 160°C from the weight of crystals precipitated from reactions carried out at 160°C. The results are as follows:

 Temperature
 25°C
 70°C
 160°C

 Solubility
 1.04
 5.3
 20

 g.UCl₅/100
 g. CCl₄
 5.3
 20

The value given for 160° is a very rough one, since the precise weight of CCl_4 liquid could not be determined and an unknown quantity of $COCl_2$ was dissolved in the CCl_4 .

D. Preparation of Metallic Uranium by Reduction of UCl₃

with Sodium.

Additional experiments have been carried out in the study of the reduction of UCl₃ by means of sodium. The reduction is accomplished without difficulty and if the temperature is maintained above 1100°C sufficiently long, the fused particles of the metal agglomerate into a regulus. At present, the chief problem is the development of suitable containers in which to carry out the reduction.

Crucibles of zirconium oxide are fairly satisfactory, but expensive. It is not possible to use them more than two or three times, since they are porous to fused sodium chloride and they begin to disintegrate on long use. A zircon crucible was found to be wholly unsatisfactory.

A steel tube, lined with partially sintered magnesium oxide, gave satisfactory results. Such containers are easy to construct and can be re-used. Reaction containers of this type are being studied further.

As may be seen from Table V, the yield in later error

varied between 60 and 80%. The reduction is quantitative but some of the metal is carried into the walls of the crucible, which is porcus and absorbs nearly all of the melted salt. In experiment 17, the crucible of experiment 16 was re-used and the yield was raised from 65.5 to 82.4%. The results obtained with the MgO-lined steel container are promising. The pellets of metalproved to be quite malleable when hammered on an anvil.

TABLE V

Preparation of Metallic Uranium

Exp. No.	.UQ1.	Na <u> </u>	U _ <u>8•</u>	Yield	Type of Crucible	Max. Temp. °C	Time at Nax. Temp. <u>Nin.</u>	Time above 1100°C. Min.
13	50	10.0	19.5	56.4	Zr0 _e	1140	5	40
14	4 6	11.0	8.4	32.6	11	1135	5	40
15	-58	11.6	17,1	42.7	11	1135	8	60
16	45	9.0	20.4	65.5	**	1135	8	80
17	45	9.2	25.6	82,4	, H	1140	10 -	85
18	60	11.8	30.3	73.0	, 11 .	1140	8	100
20	75	14.7	34.5	67.5	steel -	1125	70	80
21	75 🔅	14.7	35.9	70.5	lined with	1135	70	80
					MgO			

