

This page intentionally left blank

Abbı	eviatio	ons		iii	
1.0	1.0 Introduction				
	1.1	Purpose		1	
	1.2	Project	Description	1	
		1.2.1	Phase I	3	
		1.2.2	Parcels 6, 7, and 8	3	
	1.3	Geology	y and Hydrology	3	
2.0	Moni	toring Pro	ograms	5	
	2.1	Phase I			
		2.1.1	Monitored Natural Attenuation of TCE	5	
		2.1.2	Triggers	7	
	2.2	Parcels	6, 7, and 8		
		2.2.1	Monitored Natural Attenuation of TCE and Tritium	8	
		2.2.2	Triggers	10	
	2.3		ring Network		
	2.4	Deviatio	ons from the Sitewide Operations and Maintenance Plan	10	
	2.5		Analysis Methodology		
3.0	Phase	e I MNA I	Remedy	13	
	3.1	Monitor	ring Results	13	
	3.2	Trend A	Analysis	17	
	3.3	Ground	water Elevations	18	
	3.4	Recomm	nendations	18	
4.0	Parce	els 6, 7, ar	nd 8 MNA Remedy	21	
	4.1	Monitor	ring Results—VOCs	21	
		4.1.1	Seeps	21	
		4.1.2	Groundwater	23	
		4.1.3	Distribution of TCE		
	4.2	Monitor	ring Results—Tritium	26	
	4.3	Trend A	Analysis	29	
		4.3.1	VOCs		
		4.3.2	Tritium		
	4.4	Ground	water Elevations	35	
	4.5	Recommendations			
5.0	Inspe	spection of the Monitoring System			
6.0	Data Validation				
7.0	Refe	ences		41	

Contents

Figures

Figure 1. Locations of Phase I and Parcels 6, 7, and 8	2
Figure 2. Generalized Cross Section Showing Flow from Bedrock to the BVA	
Figure 3. Phase I MNA Remedy Monitoring Locations	
Figure 4. Parcels 6, 7, and 8 Remedy Monitoring Locations	
Figure 5. TCE Concentrations in Phase I, 1999–2018	
Figure 6. cis-1,2-DCE Concentrations in Phase I, 1999–2018	

Figure 7. 2018 Annual Averages for TCE and DCE in Phase I	. 16
Figure 8. 2018 Average Groundwater Elevations in Phase I (in ft MSL)	. 19
Figure 9. TCE Concentrations in Parcels 6, 7, and 8 Main Hill Seeps	. 22
Figure 10. PCE Concentrations in Parcels 6, 7, and 8 Seep 0601	. 23
Figure 11. TCE Concentrations in Parcels 6, 7, and 8 Groundwater	. 25
Figure 12. 2018 Annual Averages for TCE in Parcels 6, 7, and 8 Seeps and Groundwater	. 27
Figure 13. Tritium Activity in Parcels 6, 7, and 8 Main Hill Seeps	. 28
Figure 14. Tritium Activity in Parcels 6, 7, and 8 Wells 0138, 0346, 0347, and 0379	. 29
Figure 15. 2018 Annual Averages for Tritium in Parcels 6, 7, and 8 Seeps and Groundwater	. 30
Figure 16. 2018 Averages for Groundwater Elevations in Parcels 6, 7, and 8	. 36

Tables

Table 1. Remedy (MNA) Monitoring for Phase I	5
Table 2. Trigger Levels for Phase I MNA Remedy	7
Table 3. Monitoring for Parcels 6, 7, and 8 Area	8
Table 4. Trigger Levels for Parcels 6, 7, and 8 Monitoring Locations	10
Table 5. Summary of VOC Monitoring Results in Phase I for 2018	13
Table 6. Trend Analysis Results for TCE and DCE in Phase I	17
Table 7. Summary of Trend Analysis Results for Phase I	18
Table 8. Summary of VOC Results in the Main Hill Seeps for 2018	21
Table 9. Summary of VOC Results in Parcels 6, 7, and 8 Groundwater for 2018	24
Table 10. Summary of Tritium Results in the Main Hill Area for 2018	26
Table 11. Trend Analysis Results for VOCs in Parcels 6, 7, and 8 (2005–2018)	31
Table 12. Trend Analysis Results for TCE in Parcels 6, 7, and 8 (2012–2018)	32
Table 13. Summary of Trend Analysis Results for VOCs in Parcels 6, 7, and 8	33
Table 14. Summary of Trend Analysis Results for Tritium in the Main Hill Seeps and	
Downgradient Wells	34
Table 15. Summary of Trend Analysis Results for Tritium in Parcels 6, 7, and 8	34
Table 16. RINs for Mound Site Calendar Year 2018 Sampling	39

Appendixes

Appendix A	Well Construction	Summary
------------	-------------------	---------

- Appendix B Mann-Kendall Trending Summaries
- Appendix C 2018 Groundwater Elevations
- Appendix D 2018 Groundwater and Seep Data Tables
- Appendix E Data Assessment Reports

Abbreviations

BVA	Buried Valley Aquifer
DCE	dichloroethene
DOE	U.S. Department of Energy
EPA	U.S. Environmental Protection Agency
ft	feet
ft MSL	feet above mean sea level
MCL	maximum contaminant level
MK	Mann-Kendall
µg/L	micrograms per liter
MNA	monitored natural attenuation
nCi/L	nanocuries per liter
Ohio EPA	Ohio Environmental Protection Agency
PCE	tetrachloroethene (perchloroethene)
RAO	remedial action objective
RIN	report identification number
TCE	trichloroethene
VC	vinyl chloride
VOC	volatile organic compound
VSP	Visual Sample Plan

This page intentionally left blank

1.0 Introduction

1.1 Purpose

This report was prepared in support of the selected remedies for Phase I and Parcels 6, 7, and 8 of the Mound, Ohio, Site as outlined in the *Operations and Maintenance Plan for the U.S. Department of Energy Mound, Ohio, Site* (Sitewide Operations and Maintenance Plan) (DOE 2015). It summarizes the data collected in 2018 and documents the progress of the monitored natural attenuation (MNA) remedies for both areas of the Mound site. All sampling and data analyses were performed in accordance with the Sitewide Operations and Maintenance Plan, unless noted otherwise.

This report includes data collected during the groundwater sampling performed in 2018. Data are presented in both time-series and map-view plots. Trend analysis was performed on selected wells using the nonparametric Mann-Kendall (MK) test. This type of long-term trend analysis can be used to confirm trends in contaminant concentrations over time. The time-series plots will also be used to evaluate changes in data over time and interpret the effectiveness of the MNA remedy.

This report also documents operational changes that occurred during the reporting period and identifies maintenance activities associated with the monitoring wells being sampled.

1.2 Project Description

The Mound site¹ is in Miamisburg, Ohio, approximately 10 miles southwest of Dayton. In 1995, the U.S. Department of Energy (DOE) Mound Plant, named after the Miamisburg Indian Mound adjacent to the site, comprised 120 buildings on 306 acres. The Great Miami River, west of the site, flows from northeast to southwest through Miamisburg and dominates the geography of the region surrounding the site. Figure 1 shows the locations of Phase I (in green) and Parcels 6, 7, and 8 (in purple).

DOE remediated the Mound site to an "industrial/commercial use" standard consistent with the exposure assumptions provided in the *Mound 2000 Residual Risk Evaluation Methodology, Mound Plant* (DOE 1997) and endorsed by the U.S. Environmental Protection Agency (EPA) and Ohio Environmental Protection Agency (Ohio EPA). The remedies for groundwater at the site combine groundwater monitoring and institutional controls in the form of deed restrictions on future land and groundwater use. These combined remedies will prevent current and future exposure of workers, the public, and the environment to contaminated groundwater from the Mound site.

¹ The Mound site has also been called the Mound Laboratory, Mound Laboratories, the Mound Plant (EPA ID OH6890008984), the USDOE Mound Plant, the Mound Facility, the USDOE Mound Facility, the Miamisburg Environmental Management Project (MEMP), and the Miamisburg Closure Project (MCP). Currently, LM uses Mound, Ohio, Site as the formal name of the site.

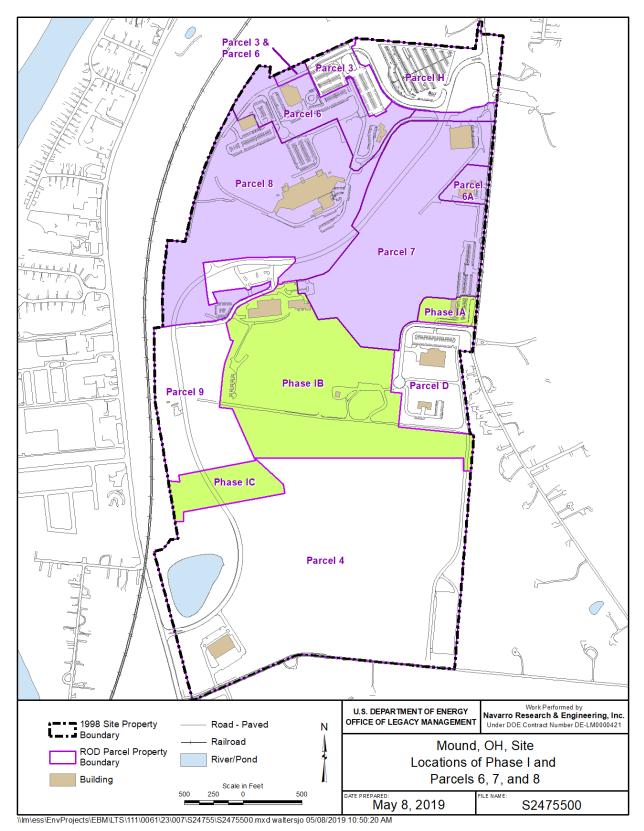


Figure 1. Locations of Phase I and Parcels 6, 7, and 8

The long-term remedial action objective (RAO) for groundwater is to meet Safe Drinking Water Act maximum contaminant levels (MCLs) through MNA in the Phase I and Parcels 6, 7, and 8 areas. Until these goals are achieved, the near-term RAO is to prohibit the extraction and use of groundwater underlying the premises unless prior written approval is obtained from EPA, Ohio EPA, and the Ohio Department of Health.

1.2.1 Phase I

Phase I is an approximately 52-acre area made up of three distinct sections. It lies on the southern border of the former production area of the Mound site. This area contains monitoring wells that are screened in both the Buried Valley Aquifer (BVA) and the upgradient bedrock aquifer system. MNA is being used as the remedy for a small, discrete section of the bedrock groundwater system contaminated with trichloroethene (TCE) to ensure that concentrations of TCE within the bedrock groundwater are decreasing to levels below the Safe Drinking Water Act MCL and do not impact the downgradient BVA.

1.2.2 Parcels 6, 7, and 8

Parcels 6, 7, and 8 occupy approximately 101 acres of the northern portion of the Mound Plant site. The main production facilities were located within Parcels 6 and 8, an area called the Main Hill. A tributary valley runs between these two parcels and Parcel 7; it contains a narrow tongue of glacial deposits that is hydraulically connected with the BVA. Groundwater within the fractured bedrock beneath the Main Hill area, and in topographic highs within Parcel 7, flows along horizontal bedding planes and fractures and ultimately discharges to naturally occurring seeps or to the downgradient BVA.

Two monitoring wells on the western the edge of the BVA indicate volatile organic compound (VOC) impact, primarily TCE, which exceeds MCLs of the Safe Drinking Water Act. MNA is the remedy for the VOCs in groundwater associated with the Main Hill. Sampling is being performed to assess the contaminant concentrations and verify that the BVA offsite and downgradient of these wells is not being adversely impacted.

Five seeps are also associated with this area and are located along the Main Hill of the plant property. Two seeps are within the plant property boundary, and the remaining three are offsite to the north. Several seeps have elevated levels of tritium and VOCs. These seeps, as well as several downgradient wells, are being monitored to verify that source removal (buildings and soil) on the Main Hill will result in decreasing concentrations over time.

1.3 Geology and Hydrology

The aquifer system at the Mound site consists of two distinct hydrogeologic environments: groundwater flow through the Ordovician shale and limestone bedrock beneath the hills, and groundwater flow within the unconsolidated glacial deposits and alluvium associated with the BVA in the Great Miami River valley. A thin tributary valley, which is located along the southern edge of the Main Hill, divides the two main portions of the Mound site and contains a narrow tongue of glacial deposits that is hydraulically connected with the BVA.

The bedrock flow system is dominated by fracture flow and is not considered a highly productive aquifer. Groundwater flow in the bedrock typically mimics the topography, with groundwater discharging to the BVA or at seeps from the upper bedrock. The BVA is dominated by porous flow, with interbedded gravel deposits providing the major pathway for water movement. The unconsolidated deposits are Quaternary-age sediments that consist of both glacial and fluvial deposits. The BVA is a highly productive aquifer capable of yielding a significant quantity of water. It is designated a sole-source aquifer. Groundwater flow in the BVA flows south, following the downstream course of the Great Miami River. The general structure and flow characteristics for these two interconnected systems are depicted in Figure 2.

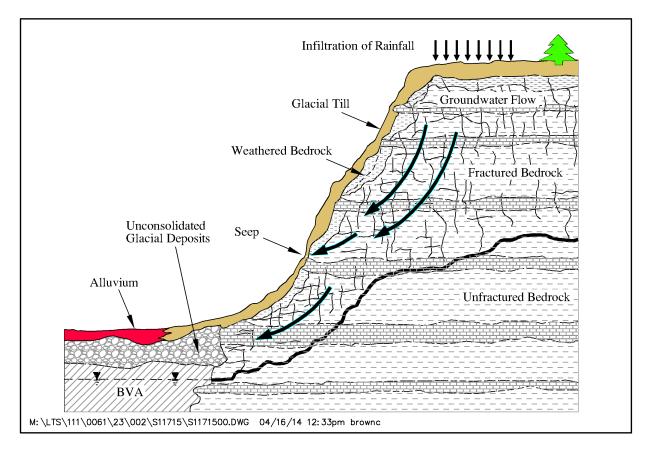


Figure 2. Generalized Cross Section Showing Flow from Bedrock to the BVA

For detailed descriptions of the geology, lithology, and groundwater flow regimes at the Mound site and specific hydrogeologic information for each area, refer to hydrogeologic investigation reports and work plans prepared for the site (DOE 1992, DOE 1994a, DOE 1994b, DOE 1995, and DOE 1999).

2.0 Monitoring Programs

2.1 Phase I

The Phase I groundwater monitoring program was established to verify that the BVA is not negatively affected by TCE-contaminated groundwater within the bedrock aquifer system. Groundwater in Phase I is monitored for TCE and its degradation products to verify that concentrations of TCE are decreasing by natural attenuation. The objective of this monitoring is to protect the BVA by verifying that the concentration of TCE near well 0411, well 0443, and seep 0617 is decreasing and confirm that TCE is not adversely affecting the BVA.

Well P064 was added to the Phase I MNA remedy monitoring program starting in 2018 to monitor groundwater discharge from the bedrock to the BVA and sampling at wells 0400, 0402, and P033 was discontinued. These changes to the monitoring program were approved by EPA and Ohio EPA during the August 17, 2017, Core Team meeting.

2.1.1 Monitored Natural Attenuation of TCE

Under the Phase I MNA monitoring program, samples are collected semiannually from selected wells and one seep (Figure 3) and analyzed as outlined in Table 1. Sampling was performed in the first and third quarters of 2018.

Monitoring Location	Area	Parameters		
Well 0411				
Well 0443	Well 0411 area			
Well 0353		TCE		
Well 0444		DCE		
Well 0445	Bedrock monitoring	VC		
Seep 0617				
Well P064	BVA monitoring			

Table 1. Remedy (MNA) Monitoring for Phase I

Note:

All locations are sampled semiannually.

Abbreviations:

DCE = dichloroethane VC = vinyl chloride

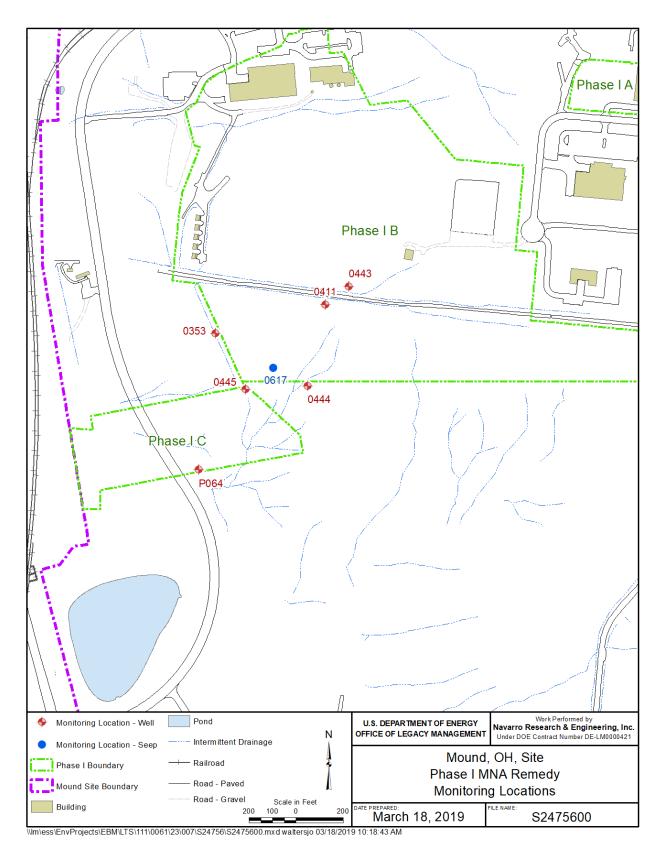


Figure 3. Phase I MNA Remedy Monitoring Locations

2.1.2 Triggers

The contaminant data are evaluated against previous data collected at each location to determine if MNA is adequately addressing groundwater impact and to monitor the geochemical conditions in the aquifer. Trigger levels and response actions have been established for each contaminant as presented in the Sitewide Operations and Maintenance Plan (DOE 2015). The triggers and MCLs for each contaminant are summarized in Table 2.

Location	TCE (μg/L)	DCE (µg/L)	Vinyl Chloride (μg/L)
Well 0353	5	70	2
Well 0411	30	70	2
Well 0443	18	70	2
Well 0444	5	70	2
Well 0445	5	70	2
WellP064	5	70	2
Seep 0617	16	70	2
MCL	5	70	2

Table 2. Trigger Levels for Phase I MNA Remedy

Abbreviations:

DCE = dichloroethene

μg/L = micrograms per liter

EPA and Ohio EPA must be notified if trigger levels are exceeded. After notification, the Core Team (EPA, Ohio EPA, and DOE) will determine an appropriate course of action.

2.2 Parcels 6, 7, and 8

Groundwater in the Parcels 6, 7, and 8 area is monitored for TCE and its degradation products to verify that the downgradient BVA is not affected and that concentrations are decreasing. In addition, groundwater discharging from seeps is monitored for tritium and TCE and its degradation products to verify that source removal has resulted in decreasing concentrations over time.

The sampling program focuses on the following areas:

- Well 0315/0347 Area: Wells at the edge of the BVA on the southwestern corner of Parcel 8 that have elevated concentrations of VOCs. The program consists of wells that have TCE concentrations greater than the MCL and downgradient wells to the west. Wells 0315 and 0347 (source wells) and other selected downgradient BVA wells are monitored for VOCs—namely, tetrachloroethene (also known as perchloroethene or PCE), dichloroethene (DCE) isomers, TCE, and vinyl chloride (VC).
- Main Hill Seeps: Seeps on the northern and southern sides of the Main Hill that have elevated concentrations of VOCs and tritium. The program consists of seeps and downgradient wells to the west. Water from seeps 0601, 0602, 0605, 0606, and 0607 is collected and analyzed for VOCs and tritium. Select wells within the BVA that are

downgradient of the bedrock groundwater discharge area of the Main Hill are also sampled to monitor VOCs and tritium.

2.2.1 Monitored Natural Attenuation of TCE and Tritium

Under the Parcels 6, 7, and 8 MNA monitoring program, samples are collected quarterly for VOCs and semiannually for tritium in selected wells and seeps (Figure 4). Table 3 provides a summary of the monitoring locations as specified in the Sitewide Operations and Maintenance Plan.

Monitoring Location	Area	VOC	Tritium
Well 0315		Х	
Well 0347	Source wells	Х	
Well 0118		Х	Х
Well 0124		Х	
Well 0126		Х	
Well 0138		Х	Х
Well 0346		Х	Х
Well 0379	Downgradient BVA monitoring	Х	Х
Well 0386		Х	
Well 0387		Х	
Well 0389		Х	
Well 0392		Х	
Seep 0601		Х	X
Seep 0602		Х	Х
Seep 0605 Seep 0606	Main Hill seeps	Х	Х
		Х	Х
Seep 0607		Х	Х

Table 3. Monitoring for Parcels 6, 7, and 8 Area

Note:

VOCs monitored are PCE, TCE, *cis*-1,2-DCE, *trans*-1,2-DCE, and VC.

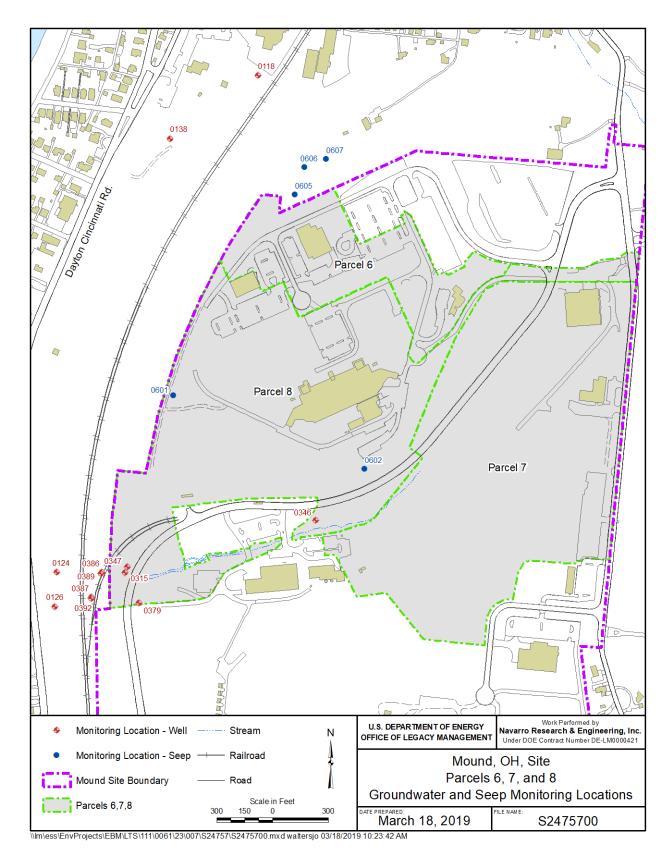


Figure 4. Parcels 6, 7, and 8 Remedy Monitoring Locations

2.2.2 Triggers

The contaminant data are evaluated against previous data collected at each location to determine if downward trends are occurring. Trigger levels and response actions have been established for each contaminant as presented in the Sitewide Operations and Maintenance Plan (DOE 2015). The triggers and MCLs for each contaminant are summarized in Table 4.

Location	TCE (μg/L)	PCE (μg/L)	Tritium (nCi/L)
Well 0315	30		
Well 0347	30		
Well 0124	5		
Well 0126	5		
Well 0386	5		
Well 0387	5		
Well 0389	5		
Well 0392	5		
Seep 0601		75	1500
Seep 0605	150		
MCL	5	70	2

Table 4. Trigger Levels for Parcels 6, 7, and 8 Monitoring Locations

Abbreviations:

µg/L = micrograms per liter

nCi/L = nanocuries per liter

EPA and Ohio EPA must be notified if these trigger levels are exceeded. After notification, the Mound Core Team (EPA, Ohio EPA, and DOE) will determine an appropriate course of action.

2.3 Monitoring Network

The monitoring well and seep locations sampled under these programs were selected to provide data of sufficient quality to meet the objectives of the groundwater remedies for either Phase I or Parcels 6, 7, and 8. These wells were initially installed to support various site characterization activities and were designed and constructed to provide high-quality groundwater data. Appendix A contains construction information for each well used to support these remedies.

2.4 Deviations from the Sitewide Operations and Maintenance Plan

Sampling was performed as outlined in the Sitewide Operations and Maintenance Plan (DOE 2015), which compiles the sampling requirements outlined in previous plans for each area. Modifications to these monitoring programs (e.g., reduction in sampling frequency or discontinuation of monitoring locations) are also incorporated into the Sitewide Operations and Maintenance Plan.

Sampling was performed as follows:

- All required locations in Phase I were sampled in 2018.
- All required locations in Parcels 6, 7, and 8 were sampled in 2018 with the exception of seep 0602, which was dry (no visible flow) during the third-quarter sampling event.
- Site-specific sampling methods for the Mound site were followed during these sampling events. These methods were approved by the Mound Core Team and are integrated into the Sitewide Operations and Maintenance Plan.

2.5 Trend Analysis Methodology

Groundwater data from select locations are evaluated for trends in contaminant concentrations over time. The computer program ProUCL (ProUCL, Version 5.1.002), developed by Lockheed Martin and EPA, was used to perform trend analysis; the method used was the Mann-Kendall test.

The Mann-Kendall test is a nonparametric statistical procedure that is appropriate for analyzing trends in data over time. There is no requirement that the data be normally distributed or that the trend, if present, be linear. The Mann-Kendall test can be used if there are missing values and values below the detection limit. The assumption of independence requires that the time between samples be sufficiently large so that there is no correlation between measurements collected at different times. All locations were previously evaluated for seasonality as part of the annual review in 2014 (DOE 2015). Those results indicated there are no seasonal trends in contaminant data collected from any of the monitoring locations.

The Mann-Kendall procedure tests whether to reject the null hypothesis (H_0) and accept the alternative hypothesis (H_α), where:

- The null hypothesis (H_0) is that there is no monotonic trend in the series.
- The alternate hypothesis (H_{α}) is that a monotonic trend exists.

The initial assumption of the Mann-Kendall test is that the null H_0 hypothesis is true and that the data must be convincing beyond a reasonable doubt before H_0 is rejected and H_{α} is accepted. One of three alternative hypotheses is chosen:

- 1. A monotonic downward trend exists.
- 2. Either a monotonic upward or monotonic downward trend exists.
- 3. A monotonic upward trend exists.

Results of the trend analyses for each monitoring program are presented in Section 3.0. A summary of the Mann-Kendall statistical approach used for this report, as well as the specified error rates and data assumptions, is presented in Appendix B. Data analysis reports for each well and parameter are also included in Appendix B.

This page intentionally left blank

3.0 Phase I MNA Remedy

3.1 Monitoring Results

Monitoring results for 2018 (Table 5) continue to show low-level detections of TCE and *cis*-1,2-DCE, a TCE degradation product, in source area wells 0411 and 0443 and seep 0617. All VOC concentrations were below the applicable trigger levels (Table 2). Concentrations of TCE at these locations continue to exceed the MCL of 5 micrograms per liter (μ g/L). No detectable concentrations of *trans*-1,2-DCE or VC were reported at the two source wells and the seep monitoring locations. Downgradient BVA monitoring well P064 had detectable concentrations of TCE and *cis*-1,2-DCE that were below the MCL but indicated slight impact attributable to VOCs originating from the Phase I area. No detectable concentrations of *trans*-1,2-DCE or VC were reported in the BVA or bedrock wells.

Well ID	Location	Parameter	First Semiannual Event	Second Semiannual Event			
Source Area Wells and Seep							
0411	0411 Area	TCE (µg/L)	10.1	9.0			
0411	0411 Alea	<i>cis</i> -1,2-DCE (µg/L)	0.84 (J)	2.1			
0443	0411 Area	TCE (µg/L)	8.9	6.4			
0443	0411 Area	<i>cis</i> -1,2-DCE (µg/L)	0.39 (J)	0.36 (J)			
0617	Seep/	TCE (µg/L)	5.4	6.0			
0617	Bedrock	<i>cis</i> -1,2-DCE (µg/L)	1.4	1.4			
Bedrock/B	VA Monitoring	Wells					
0252	Bedrock	TCE (µg/L)	ND (<1)	ND (<1)			
0353		<i>cis</i> -1,2-DCE (µg/L)	ND (<1)	ND (<1)			
0444	Bedrock	TCE (µg/L)	ND (<1)	ND (<1)			
0444		<i>cis</i> -1,2-DCE (µg/L)	ND (<1)	ND (<1)			
0445	Bedrock	TCE (µg/L)	ND (<1)	ND (<1)			
0445		<i>cis</i> -1,2-DCE (µg/L)	ND (<1)	ND (<1)			
D004		TCE (µg/L)	1.1	1.1			
P064	BVA	<i>cis</i> -1,2-DCE (µg/L)	ND (<1)	0.36 (J)			

Table E Summer	V of VOCA	lonitoring	Decultain	Dhaaa	for 2010
Table 5. Summar	y 01 V 0 C N	normormy	resuits in	Fliase I	101 2010

Note:

Values in **bold** exceed the MCL of 5 μ g/L for TCE.

Abbreviations:

J = estimated value less than the reporting limit

ND = not detected above reporting limit

TCE concentrations in well 0411 (Figure 5) have decreased since monitoring began in 1999; however, since 2002, the concentrations of TCE in this well have ranged between 9 and 15 μ g/L. Concentrations of TCE in well 0443 and seep 0617 have varied since monitoring of these locations started in 2002. Concentrations of TCE in well 0443 have been consistently greater than the MCL since 2010. The time–concentration plots for well 0443 and seep 0617 indicate that concentrations vary and are lower than those in well 0411.

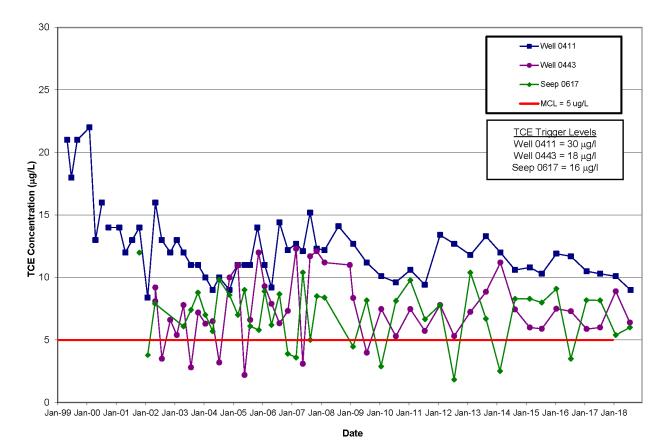


Figure 5. TCE Concentrations in Phase I, 1999–2018

The concentrations of *cis*-1,2-DCE in groundwater (Figure 6) continue to be varied. Concentrations greater than the reporting limit of 1 μ g/L have consistently been reported in well 0411 and seep 0617. Historically, concentrations of *cis*-1,2-DCE in well 0411 were generally greater than those measured in seep 0617; however, over the past few years, the concentrations have been similar. Estimated detections lower than 1 μ g/L have been reported in well 0443 since 2009. None of the locations had concentrations of *cis*-1,2-DCE that exceeded the MCL of 70 μ g/L.

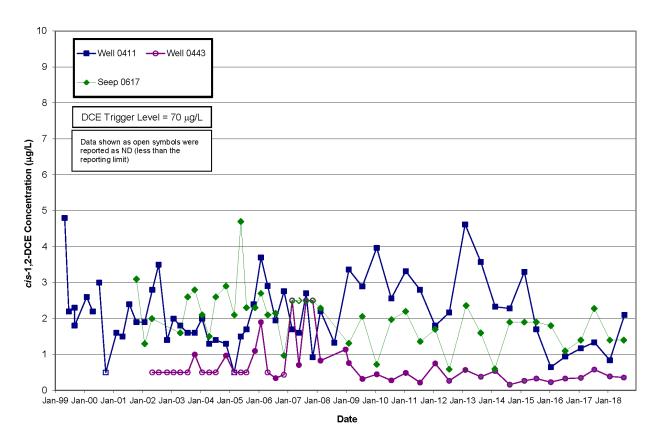


Figure 6. cis-1,2-DCE Concentrations in Phase I, 1999–2018

The average concentrations of TCE and *cis*-1,2-DCE in groundwater (Figure 7) indicate that impact is localized in the bedrock groundwater near wells 0411 and 0443 and seep 0617. Data from downgradient BVA monitoring well P064 indicate the concentrations of VOCs are low at the point where bedrock groundwater enters the BVA.

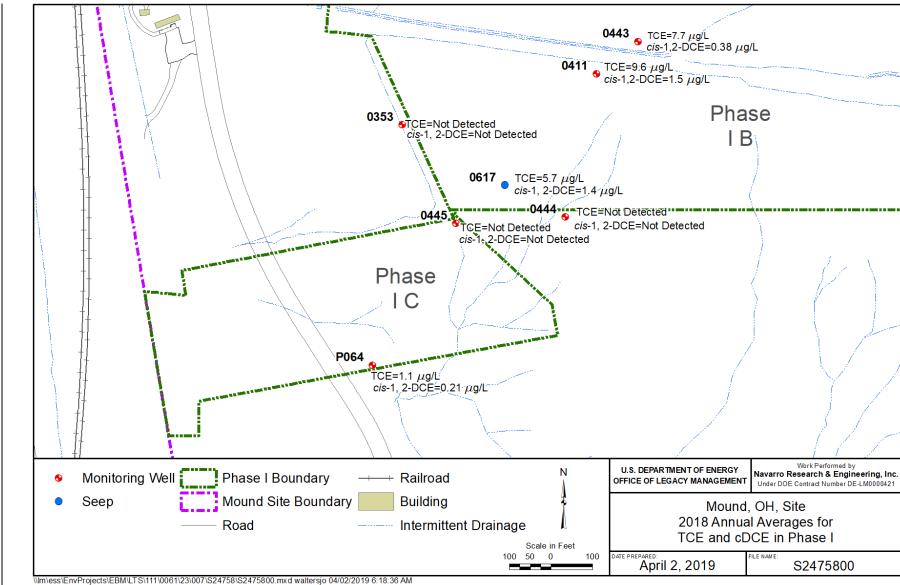


Figure 7. 2018 Annual Averages for TCE and DCE in Phase I

U.S. Department of Energy June 2019

3.2 Trend Analysis

Mann-Kendall trend analysis was performed using data collected since 1999 and indicates downward trends for TCE in well 0411 and for *cis*-1,2-DCE in well 0443 and seep 0617 (Table 6). Trend analysis was not performed for the remainder of the wells because results consistently showed nondetects or sporadic detections. There is not a sufficient number of data points from well P064 for trend analysis. Summary reports providing details for each statistical evaluation for each monitoring location are contained in Appendix B.

Location	Analyte	Trend
Well 0411		Down
Well 0443	TCE	None
Seep 0617		None
Well 0411		None
Well 0443	cis-1,2-DCE	Down
Seep 0617		Down

Table 6. Trend Analysis Results for TCE and DCE in Phase I

Evaluation of the downward trend in TCE concentrations in well 0411 may indicate the time frame when concentrations may approach the MCL of 5 μ g/L. The nonparametric slope calculated from the data suggests that the MCL may be reached by 2044, which is similar to the estimated time frame from previous annual reports. The remainder of the locations were less than the MCL or no trend was present; therefore, no timeframes are estimated.

Table 7 summarizes the results from each annual trend analyses performed since 2007 in Phase I for source area monitoring wells 0411 and 0443 and seep 0617. Results show continued downward trends in TCE concentrations in well 0411 since the monitoring program was started. No trends in the data are observed in TCE concentrations in well 0443 and 0617. No trends in the *cis*-1,2-DCE data have been observed at well 0411 since 2016. Downward trends in *cis*-1,2-DCE have been observed at both well 0443 and seep 0617 since 2014 and 2012, respectively.

		Year							-				
Location	Analyte	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
Well 0411		D	D	D	D	D	D	D	D	D	D	D	D
Well 0443	TCE	Ν	U	N	N	N	N	N	N	N	Ν	N	Ν
Seep 0617		Ν	Ν	Ν	N	Ν	Ν	N	N	Ν	N	N	Ν
Well 0411			Ν	Ν	N	Ν	Ν	N	U	U	N	N	Ν
Well 0443	cDCE		U	Ν	N	Ν	Ν	N	D	D	D	D	D
Seep 0617			Ν	Ν	N	Ν	D	D	D	D	D	D	D

Table 7. Summary of Trend Analysis Results for Phase I

Abbreviations:

D = downward trend

N = no trend (either upward or downward)

U = upward trend

3.3 Groundwater Elevations

A map of the average groundwater elevations measured in the Phase I area during 2018 (Figure 8) represents the two flow regimes present at the Mound site: bedrock and the unconsolidated materials of the BVA. The approximate location of contact of the BVA with the bedrock is indicated in this figure. Groundwater originating from the well 0411/0443 area flows southwest within the bedrock, following the bedrock topography. This groundwater enters the BVA along this contact. Flow within the BVA is generally to the south-southeast (parallel to the bedrock contact). Appendix C presents a summary of the groundwater elevations measured during 2018.

3.4 Recommendations

No samples in 2018 were above trigger levels, the concentrations of TCE and *cis*-1,2-DCE in BVA monitoring wells continue to remain below MCL's indicating no impacts to the BVA, and no upward trends demonstrate that analyte concentrations are not statistically increasing. No changes to the Phase I MNA monitoring program are recommended at this time and the monitoring frequency remain semiannual for 2019.

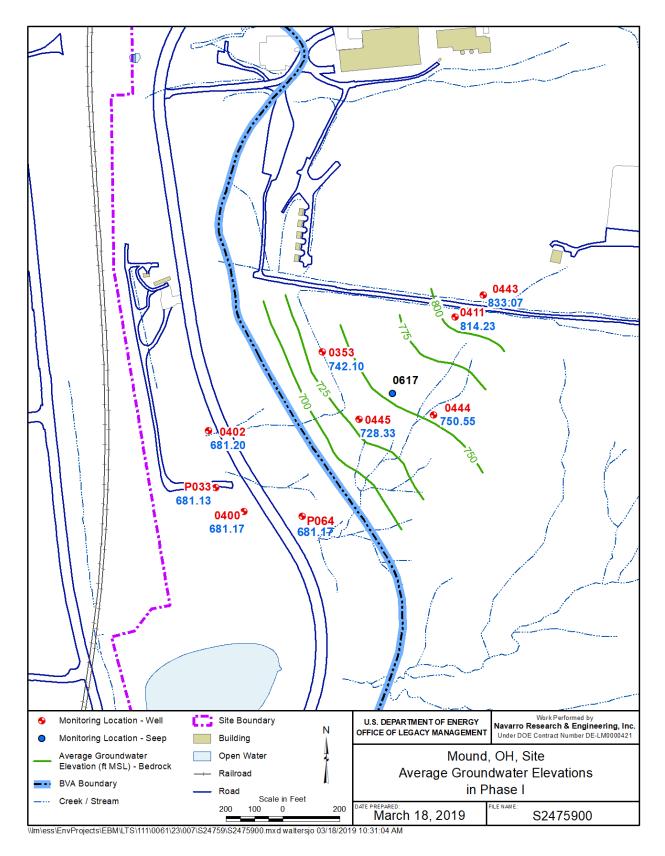


Figure 8. 2018 Average Groundwater Elevations in Phase I (in ft MSL)

This page intentionally left blank

4.0 Parcels 6, 7, and 8 MNA Remedy

4.1 Monitoring Results—VOCs

4.1.1 Seeps

Concentrations of TCE were reported in all of the Main Hill seeps; however, only seep 0602 exceeded the MCL of 5 μ g/L (Table 8) in 2018 during the Q1-2018 sampling event. The trigger level of 150 μ g/L for TCE in seep 0605 (Table 4) was not exceeded in 2018. Concentrations of PCE were above the MCL in seep 0601 for all sampling events. All PCE concentrations for seep 0601 were well below the trigger level of 75 ug/L in 2018. A low concentration of PCE (less than 1 μ g/L) was reported as an estimated value below the detection limit in seep 0605. *cis*-1,2-DCE was reported in all of the seeps; seep 0602 had the highest concentrations. Estimated detections of *trans*-1,2-DCE (less than 1 μ g/L) were reported in seep 0602. No VC was detected in the seeps.

Location	Area	VOC Concentrations							
Location		VOC	Q1	Q2	Q3	Q4			
0601		PCE (µg/L)	10.5	12.9	9.7	6.2			
		TCE (µg/L)	3.8	2.9	1.2	0.72 (J)			
	Onsite	<i>cis</i> -1,2-DCE (µg/L)	0.65 (J)	0.48(J)	044 (J)	ND (<1)			
		trans-1,2-DCE (μg/L)	ND (<1)	ND (<1)	ND (<1)	ND (<1)			
		PCE (µg/L)	ND (<1)	ND (<1)		ND (<1)			
0602	Onsite	TCE (µg/L)	8.6	4.1	DRY	0.46 (J)			
0002		<i>cis</i> -1,2-DCE (µg/L)	6.2	4.5	DRT	2.0			
		trans-1,2-DCE (µg/L)	0.31 (J)	0.31 (J)		ND (<1)			
0005	Offsite	PCE (µg/L)	ND (<1)	0.34 (J)	ND (< 1)	ND (<1)			
		TCE (µg/L)	0.30 (J)	3.1	1.1	1.3			
0605		<i>cis</i> -1,2-DCE (µg/L)	ND (<1)	1.1	0.96 (J)	3.1			
		trans-1,2-DCE (μg/L)	ND (<1)	ND (<1)	ND (<1)	ND (<1)			
	Offsite	PCE (µg/L)	ND (<1)	ND (<1)	ND (<1)	ND (<1)			
0606		TCE (µg/L)	3.9	ND (<1)	ND (<1)	ND (<1)			
0000		<i>cis</i> -1,2-DCE (µg/L)	1.3	ND (<1)	ND (<1)	ND (<1)			
		trans-1,2-DCE (µg/L)	ND (<1)	ND (<1)	ND (<1)	ND (<1)			
0607	Offsite	PCE (µg/L)	ND (<1)	ND (<1)	ND (<1)	ND (<1)			
		TCE (µg/L)	0.85 (J)	1.3	1.1	0.51 (J)			
		<i>cis</i> -1,2-DCE (µg/L)	ND (<1)	0.51 (J)	0.62 (J)	0.42 (J)			
		trans-1,2-DCE (µg/L)	ND (<1)	ND (<1)	ND (<1)	ND (<1)			

Table 8. Summary of VOC Results in the Main Hill Seeps for 2018

Notes:

PCE trigger level at seep $0601 = 75 \ \mu g/L$.

TCE trigger level at the seeps = 150 μ g/L.

Values in **bold** exceed the MCL.

Abbreviations:

J = estimated value that is less than the reporting limit ND = not detected Q = quarter A graph of TCE concentrations measured in the seeps since the remediation of contaminated buildings and soil on the Main Hill (completed in mid-2006) (Figure 9) shows that the highest concentrations of TCE were measured in seeps 0602 and 0605. After the completion of site improvements and the closure of the tritium capture pits on the Main Hill in 2011, VOC concentrations have been less variable and decreasing. Data from the past few years show that elevated concentrations of TCE only occur in seep 0602, periodically.

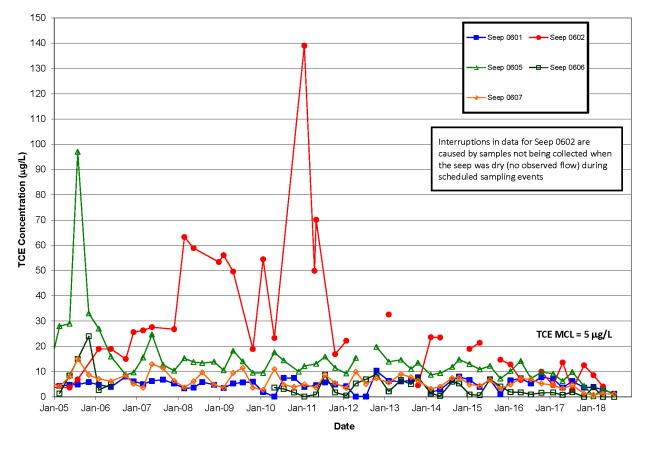


Figure 9. TCE Concentrations in Parcels 6, 7, and 8 Main Hill Seeps

Seep 0601 is the only location where PCE was routinely reported, although an estimated value less than 1 μ g/L was reported in seep 0605 during 2018. PCE concentrations in this seep (Figure 10) are similar to those measured before remediation on the Main Hill.

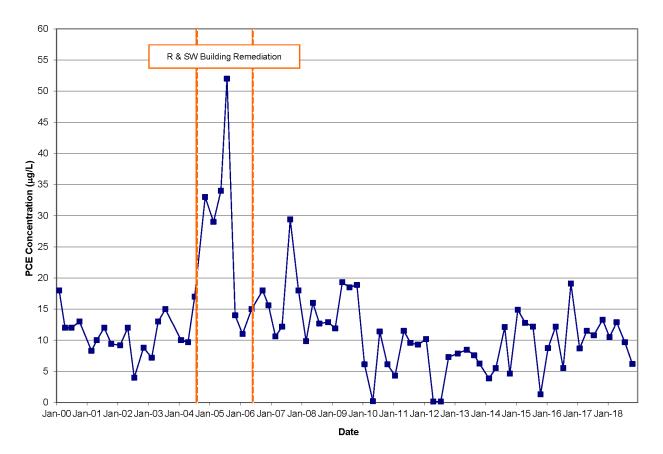


Figure 10. PCE Concentrations in Parcels 6, 7, and 8 Seep 0601

4.1.2 Groundwater

Monitoring results for 2018 (Table 9) continue to show TCE in wells 0315, 0347, 0379, and 0386; the highest concentrations are detected in well 0347 (source area well), where concentrations exceeded the MCL. The MCL for TCE was exceeded only during the first quarter of 2018 in well 0315 (source area well). The concentrations of TCE reported in wells 0315 and 0347 were below the trigger level of 30 μ g/L established for these source area wells (Table 4). Wells 0379 and 0386 are within the tributary valley, where wells 0315 and 0347 are also located (Figure 4). An estimated detection of TCE was reported in well 0389, and no detectable concentrations of TCE were measured in the other wells.

Estimated detections of PCE less than 1 μ g/L were reported in wells 0126 and 0379. These wells are located where the tributary valley enters the BVA. No trigger levels for PCE have been set for these locations. No detectable concentrations of *cis*-1,2-DCE, *trans*-1,2-DCE, or VC were reported in any of the wells monitored as part of this program.

Leastier	Area	VOC Concentrations							
Location		VOC	Q1	Q2	Q3	Q4			
Onsite Wells	S								
0315		PCE (µg/L)	ND (<1)	ND (<1)	ND (<1)	ND (<1)			
	• •	TCE (µg/L)	5.2	3.5	4.1	4.4			
	Source Area	PCE (µg/L)	ND (<1)	ND (<1)	ND (<1)	ND (<1)			
0347		TCE (µg/L)	20.7	11.7	21.8	16.1			
0040		PCE (µg/L)	ND (<1)	ND (<1)	ND (<1)	ND (<1)			
0346	Qualita	TCE (µg/L)	ND (<1)	ND (<1)	ND (<1)	ND (<1)			
0070	Onsite	PCE (µg/L)	0.44 (J)	ND (<1)	0.40 (J)	0.43 (J)			
0379		TCE (µg/L)	1.4	1.2	1.6	1.3			
Downgradie	nt Wells—Near	(offsite)							
		PCE (µg/L)	ND (<1)	ND (<1)	ND (<1)	ND (<1)			
0386		TCE (µg/L)	2.5	2.9	3.0	2.0			
0007	BVA	PCE (µg/L)	ND (<1)	ND (<1)	ND (<1)	ND (<1)			
0387		TCE (µg/L)	ND (<1)	ND (<1)	ND (<1)	ND (<1)			
0200		PCE (µg/L)	ND (<1)	ND (<1)	ND (<1)	ND (<1)			
0389		TCE (µg/L)	ND (<1)	ND (<1)	0.54 (J)	ND (<1)			
0000		PCE (µg/L)	ND (<1)	ND (<1)	ND (<1)	ND (<1)			
0392		TCE (µg/L)	ND (<1)	ND (<1)	ND (<1)	ND (<1)			
Downgradie	nt Wells—Far (offsite)							
0110	BVA	PCE (µg/L)	ND (<1)	ND (<1)	ND (<1)	ND (<1)			
0118		TCE (µg/L)	ND (<1)	ND (<1)	ND (<1)	ND (<1)			
0404		PCE (µg/L)	ND (<1)	ND (<1)	ND (<1)	ND (<1)			
0124		TCE (µg/L)	ND (<1)	ND (<1)	ND (<1)	ND (<1)			
0400		PCE (µg/L)	0.79 (J)	0.85 (J)	0.78 (J)	0.87 (J)			
0126		TCE (µg/L)	ND (<1)	ND (<1)	ND (<1)	ND (<1)			
0400		PCE (µg/L)	ND (<1)	ND (<1)	ND (<1)	ND (<1)			
0138		TCE (µg/L)	ND (<1)	ND (<1)	ND (<1)	ND (<1)			

Table 9. Summary of VOC Results in Parcels 6, 7, and 8 Groundwater for 2018

Notes:

TCE trigger level for wells 0315 and 0347 = 30 μ g/L. TCE trigger level for other wells = 5 μ g/L.

Values in **bold** exceed the MCL.

Abbreviations:

J = estimated value that is less than the reporting limit

ND = not detected

Q = quarter

A graph of TCE concentrations measured in select wells shows that concentrations in wells 0315 and 0347 have consistently been greater than the MCL of 5 μ g/L (Figure 11), although TCE concentrations in well 0315 have periodically been lower than the MCL in the last 3 years. The concentrations of TCE in the downgradient wells have been below the MCL since 2000. The pattern in TCE concentrations in wells 0315 and 0347 has been similar since 2012. The concentrations in well 0347 are always higher and have greater changes (increases and

decreases) compared to those in well 0315. An overall decrease in TCE concentrations can be observed beginning at the same time. It is likely that surface water influences noted in previous reports (DOE 2014a; DOE 2014b) have been reduced or eliminated and more-recent data reflect concentrations of TCE in groundwater that are not influenced by infiltration of surface water through the exposed tritium capture pits.

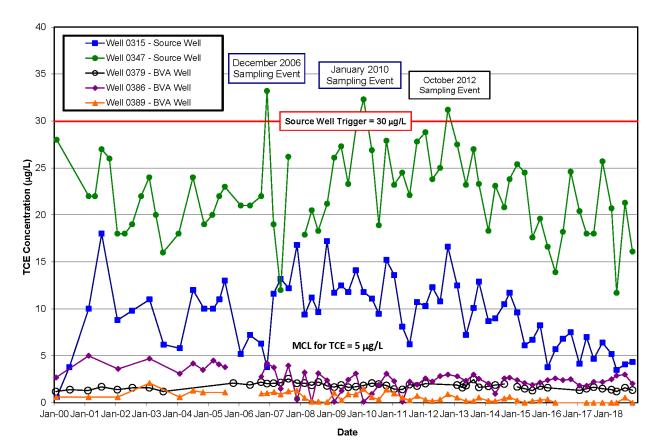


Figure 11. TCE Concentrations in Parcels 6, 7, and 8 Groundwater

Data collected over the past several years indicate variable concentrations of VOCs, primarily TCE, in the groundwater in Parcels 6, 7, and 8 as exhibited from the data from seep 0602 (Figure 9) and wells 0315 and 0347 (Figure 11). Seep 0602 and the downgradient wells 0315 and 0347 are in the tributary valley, which is along the southern edge of the Main Hill. As discussed in Section 1.3, the tributary valley is a narrow tongue of glacial deposits connected to the BVA that overlies the fractured bedrock at the site. Water infiltrating on the Main Hill moves through the fractured bedrock and ultimately discharges into the unconsolidated materials. TCE-impacted groundwater that originated on the Main Hill discharges to seeps or the tributary valley (DOE 2017). Annual average TCE concentrations from wells within the tributary valley show that the deep wells that are screened directly above the bedrock (wells 0347, 0386, and 0387) have the highest TCE concentrations and monitor the TCE-impacted groundwater discharging from the bedrock.

4.1.3 Distribution of TCE

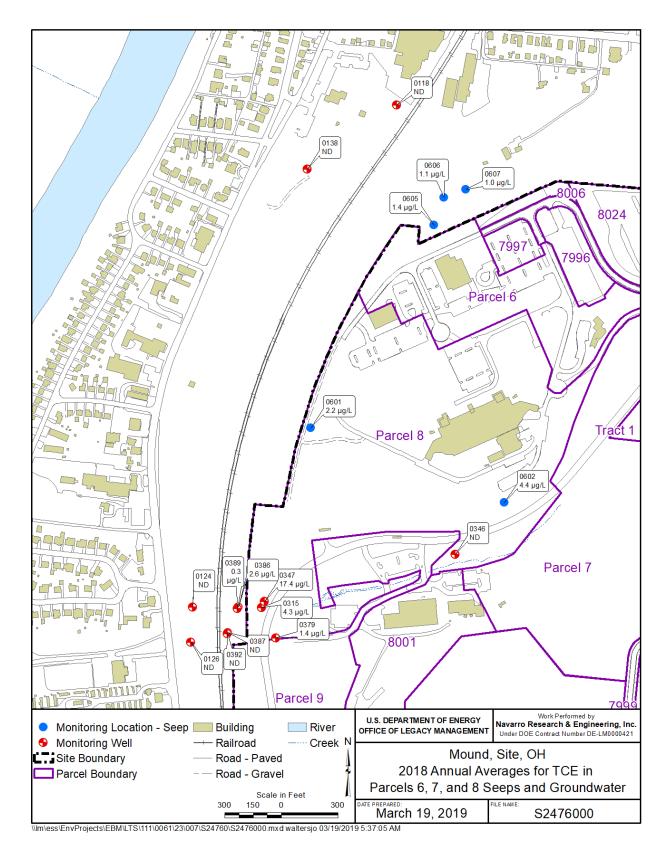
The average concentrations of TCE (Figure 12) in the Main Hill area indicates that the highest concentrations are were measured in groundwater in well 0347. Seeps 0601 and 0602 on the Main Hill had the highest TCE concentrations measured in the seeps. Historically, concentrations of TCE were higher in the seeps than in the groundwater monitoring wells. This year it was observed that the concentrations of TCE in wells 0315 and 0347 were higher than those measured in the upgradient seeps. TCE concentrations that were below the MCL were reported in near downgradient well pair 0386 and 0389 that are screened in the BVA.

4.2 Monitoring Results—Tritium

Tritium levels in the Main Hill seeps continued to be higher than those in the downgradient groundwater wells (Table 10). The highest tritium activity continued to be measured in seep 0601, which is onsite. No location exceeded the MCL of 20 nanocuries per liter (nCi/L) or the trigger level of 1500 nCi/L in 2018 (Table 4). The wells had tritium levels similar to background (0.77 nCi/L [DOE 1996]).

Location	Tritium Activity (nCi/L)						
	Semiannual Period 1	Semiannual Period 2					
Seeps							
0601	7.3	19.0					
0602	1.5	DRY					
0605	2.7	4.6					
0606	1.4	2.9					
0607	2.3	2.4					
Downgradient Wells							
0118	ND (<0.35)	ND (<0.31)					
0138	ND (<0.35)	0.35 (J)					
0346	0.38 (J)	ND (<0.4)					
0347	1.1	1.2					
0379	0.71 (J)	0.49 (J)					

Table 10	Summary of	Tritium Resu	ults in the N	Main Hill A	Area for 2018
Tuble To.	Summary or	111111111111111111111111111111111111111		viai i i i i i i i i i i i i i i i i i i	


Note:

Tritium trigger level at the seeps = 1500 nCi/L.

Abbreviations:

J = estimated value that is less than the reporting limit ND = not detected

Tritium levels in the seeps were highest during remediation activities on the Main Hill (2004–2006). Tritium data collected after building demolition and soil removal indicate decreasing levels in all of the seeps (Figure 13). The decrease in tritium levels in post-remediation data supports that the majority of the source was removed from the Main Hill area and that, with continued flushing, levels will continue to decline. Starting in 2009, the tritium levels in all seeps except seep 0601 were lower than the MCL of 20 nCi/L. The levels of tritium in seep 0601 have been below the MCL since 2017.

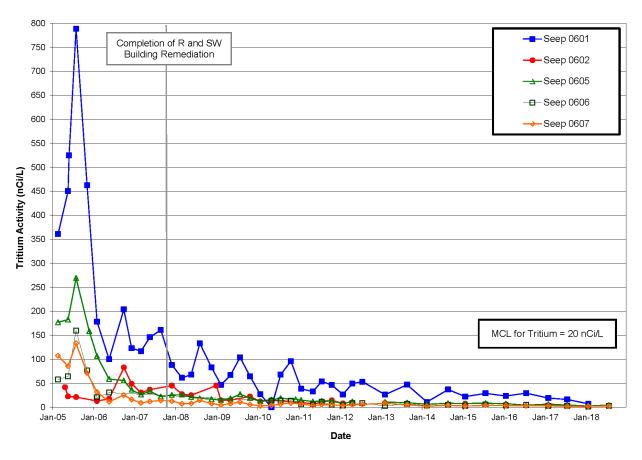


Figure 13. Tritium Activity in Parcels 6, 7, and 8 Main Hill Seeps

A graph of tritium levels in downgradient wells (Figure 14) illustrates that groundwater impact in the wells lagged behind impact expressed in the seeps. Groundwater impact increased near the end of remediation activities on the Main Hill, and impact in the seeps occurred as remediation activities were being performed and began to decrease as activities were completed. The tritium levels in the wells also responded quickly to remediation activities. Well 0347 has the highest levels of tritium, and tritium levels in wells 0138, 0346, and 0379 have leveled off and continue to be similar to background. All tritium levels in the monitoring wells were below the MCL of 20 nCi/L.



Figure 14. Tritium Activity in Parcels 6, 7, and 8 Wells 0138, 0346, 0347, and 0379

The distribution of tritium in groundwater (Figure 15) in the Main Hill area indicates that the greatest impact is still associated with the seeps, particularly seep 0601. Downgradient wells showed some levels of tritium similar to background. Figure 15 depicts the 2018 annual averages of tritium in the monitoring network.

4.3 Trend Analysis

Trend analysis was performed on VOCs and tritium data using the nonparametric MK test. Trend analysis is reported for data collected since 2005. This period was selected to represent data collected since the completion of remediation activities on the Main Hill.

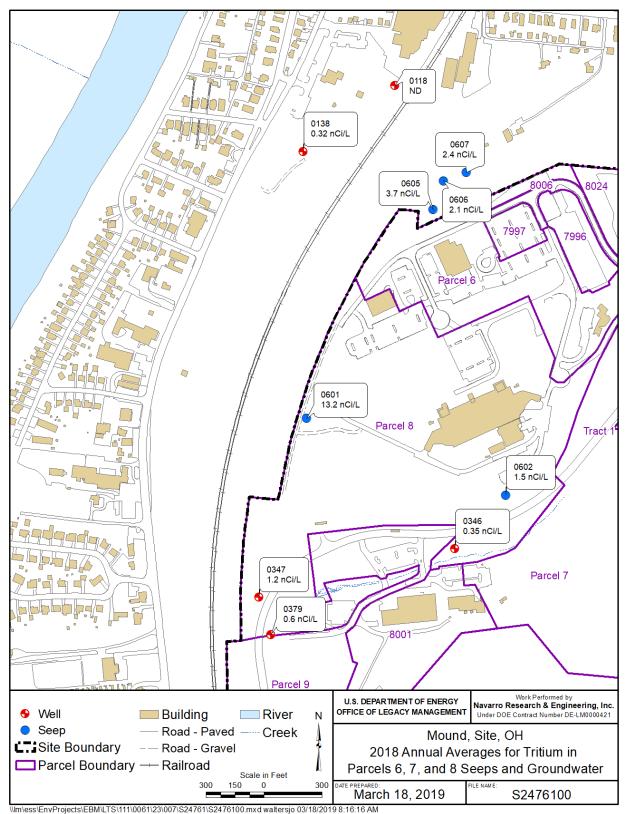


Figure 15. 2018 Annual Averages for Tritium in Parcels 6, 7, and 8 Seeps and Groundwater

4.3.1 VOCs

Trend analysis of TCE data collected since 2005 indicates downward trends for seeps 0602, 0605, 0606, and 0607 and wells 0315, 0347, and 0389 (Table 11). Trend analysis was not performed on data from the remainder of the wells because results consistently showed nondetects or sporadic estimated detections. Summary reports providing details for each statistical evaluation for each monitoring location are in Appendix B.

Location	Trend
ТСЕ	
Seep 0601	None
Seep 0602	Down
Seep 0605	Down
Seep 0606	Down
Seep 0607	Down
Well 0315	Down
Well 0347	Down
Well 0386	None
Well 0389	Down
PCE	
Seep 0601	Down
cis-1,2-DCE	
Seep 0602	Down
Seep 0605	Down

Table 11	Trand Analysis	Results for VOCs i	n Parcels 6	7 and 8	(2005 2018)
	TIETIU Analysis	Results for VOCs in	ii Faiceis U,	7, anu o	(2005–2010)

Concentrations of PCE in seep 0601 were evaluated for a trend in PCE concentrations (Table 11), and a downward trend was indicated. Data from seeps 0602 and 0605 were evaluated for trends in *cis*-1,2-DCE concentrations (Table 11), and downward trends were calculated for both seeps.

A separate trend analysis of TCE data collected since 2012 was performed (Table 12) to better evaluate more recent trends. As previously noted, the influences of surface water entering the subsurface appear to have been reduced or eliminated. Starting in 2012, similar patterns in concentration changes were observed in wells 0315 and 0347. Downward trends were calculated for seeps 0602, 0605, 0606, and 0607 and wells 0315 and 0347. The slope calculated for the well 0347 data suggests that the MCL may be reached by 2027.

Location	Trend
Seep 0601	None
Seep 0602	Down
Seep 0605	Down
Seep 0606	Down
Seep 0607	Down
Well 0315	Down
Well 0347	Down
Well 0386	None
Well 0389	None

Table 12. Trend Analysis Results for TCE in Parcels 6, 7, and 8 (2012–2018)

Table 13 summarizes the results from annual trend analyses of VOC data in Parcels 6, 7, and 8 since 2007. Results show that upward trends in TCE concentrations observed in the seeps (from 2007 to 2012) have reverted to either no trends or downward trends, starting in 2013. In 2017 and 2018, four out of five seeps showed downward trends in TCE concentrations. Source wells 0315 and 0347 showed upward trends between 2009 and 2014. Downward trends have been observed in both of these source wells starting this year (2018). TCE concentrations in seep 0601 and well 0386 vary enough to exhibit no trend in 2018. Downward trends in PCE and *cis*-1,2-DCE in seeps 0601 and 0605 started in 2011, and a downward trend in *cis*-1,2-DCE in seep 0602 started in 2016. These downward trends are attributable to source removal and efforts in 2011 to reduce the impact of surface water entering the subsurface on the Main Hill (DOE 2014a; DOE 2014b).

			Year											
Location	Analyte	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	
Seep 0601		U	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	
Seep 0602		U	U	U	U	U	U	Ν	Ν	Ν	Ν	D	D	
Seep 0605		D	D	D	D	D	D	D	D	D	D	D	D	
Seep 0606					N	Ν	Ν	Ν	Ν	Ν	Ν	D	D	
Seep 0607	TCE	Ν	Ν	Ν	N	Ν	Ν	Ν	Ν	Ν	Ν	D	D	
Well 0315		Ν	Ν	U	Ν	Ν	Ν	Ν	Ν	Ν	Ν	D	D	
Well 0347		Ν	Ν	Ν	Ν	Ν	U	U	U	Ν	Ν	Ν	D	
Well 0386		Ν	D	D	D	D	D	Ν	D	D	D	D	Ν	
Well 0389		Ν	N	Ν	Ν	Ν	Ν	D	D	D	D	D	D	
Seep 0601	PCE			Ν	Ν	D	D	D	D	D	D	D	D	
Seep 0602	DOF					Ν	Ν	Ν	Ν	Ν	D	D	D	
Seep 0605	cDCE					D	D	D	D	D	D	D	D	

Abbreviations:

D = downward trend

N = no trend (either upward or downward)

U = upward trend

4.3.2 Tritium

Trend analysis for tritium data collected since 2005 was performed for all seeps and wells where detectable levels have been consistently measured. The trend analysis showed that downward trends in activity were observed in all seeps and wells (Table 14). Summary reports providing details for each statistical evaluation for each monitoring location are in Appendix B.

Location	Trend									
Seeps										
Seep 0601	Down									
Seep 0602	Down									
Seep 0605	Down									
Seep 0606	Down									
Seep 0607	Down									
N N	/ells									
Well 0138	Down									
Well 0346	Down									
Well 0347	Down									
Well 0379	Down									

Table 14. Summary of Trend Analysis Results for Tritium in the Main Hill Seeps and
Downgradient Wells

Table 15 summarizes the results from annual trend analysis of tritium data in Parcels 6, 7, and 8 since 2007. Results of the trend analysis of tritium data indicate downward trends for all of the seeps and wells starting in 2011, with the exception of well 0347, where no trends were observed from 2011 through 2013 and downward trends have been observed since 2014. The downward trends determined from post-remediation data support that the majority of the source of contamination was removed from the Main Hill area during remediation, and that flushing and radioactive decay have continued to lower the levels.

Table 15. Summary of Trend Analysis Results for	r Tritium in Parcels 6, 7, and 8
---	----------------------------------

		Year											
Location	Analyte	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
Seep 0601		D	D	D	D	D	D	D	D	D	D	D	D
Seep 0602		Ν	Ν	Ν	Ν	D	D	D	D	D	D	D	D
Seep 0605					D	D	D	D	D	D	D	D	D
Seep 0606		D	D	D	D	D	D	D	D	D	D	D	D
Seep 0607	Tritium	D	D	D	D	D	D	D	D	D	D	D	D
Well 0138		D	D	D	D	D	D	D	D	D	D	D	D
Well 0346		Ν	Ν	Ν	D	D	D	D	D	D	D	D	D
Well 0347		Ν	Ν	Ν	D	Ν	Ν	Ν	D	D	D	D	D
Well 0379		Ν	Ν	D	D	D	D	D	D	D	D	D	D

Abbreviations:

D = downward trend

N = no trend (either upward or downward)

4.4 Groundwater Elevations

A map of the average groundwater elevations measured in the Parcels 6, 7, and 8 area during 2018 (Figure 16) represents the two flow regimes present at the Mound site: bedrock and the unconsolidated materials of the BVA. The approximate location of contact of the BVA with the bedrock is indicated on this figure. Groundwater originating from the well Main Hill area flows within the bedrock, following the bedrock topography. This groundwater enters the BVA along this contact, and flow within the BVA is parallel to the bedrock contact. Appendix C presents a summary of the groundwater elevations measured during 2018.

4.5 Recommendations

TCE concentrations greater than the MCL continued to be measured in seeps and in downgradient monitoring wells. The concentrations of VOCs continue to be variable at a few locations, although recent data (since 2012) indicate decreasing VOC concentrations at most locations. Quarterly sampling will continue at the seep and monitoring well locations in 2019 to determine if the system has stabilized since efforts were taken to reduce surface water infiltration into the subsurface (DOE 2014a; DOE 2014b) and VOCs continue to attenuate naturally. The evaluation of the 2018 data indicates that no changes to the VOC monitoring program should be made at this time.

All seeps and downgradient wells were below the MCL for tritium in 2018 and downward trends have been observed for all seeps and wells since 2011 and 2014, respectively. Historically, only seep 0601 has routinely shown levels of tritium that exceeded the MCL since MNA remedy monitoring was initiated in 2009. Tritium levels at this location have been below the MCL for two consecutive years of semiannual sampling and a downtrend has been in place since 2007. In accordance with the O&M plan, two consecutive years of tritium levels below the MCL qualify for a recommendation to the Core Team to discontinue sampling. Based on the downward trend for tritium in the seeps and groundwater monitoring wells and two consecutive years of tritium data below the MCL in seep 0601, it is recommended that the tritium monitoring program for Parcels 6, 7, and 8 be discontinued.

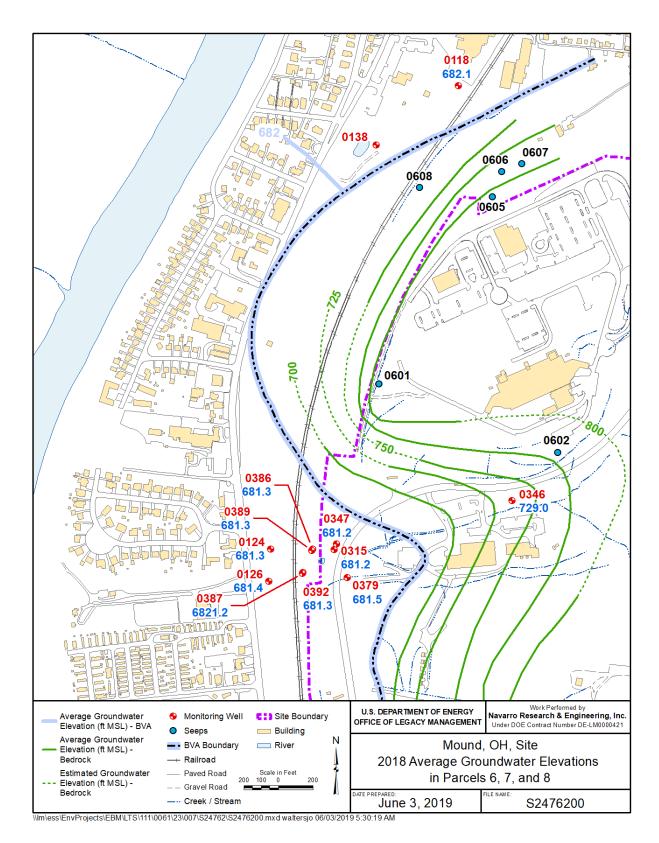


Figure 16. 2018 Averages for Groundwater Elevations in Parcels 6, 7, and 8

5.0 Inspection of the Monitoring System

A routine maintenance program has been established for the long-term groundwater monitoring locations at the Mound site. This program includes periodic inspections that focus on the integrity of each well and the condition of the protective casing and surface pad, the surrounding area, and the route of access. These inspections are usually performed during each sampling event.

Overall, the wells were in good condition. Two incidents involving wells in the monitoring program were noted:

- 1. Vandalism of well 0411 (Phase I).
- 2. Dedicated sampling pump missing from well 0138 (Parcels 6, 7, and 8).

It was discovered during the July 2018 (third quarter 2018) sampling event that well 0411 had been vandalized. When sampling personnel arrived at the location, they found the lid to the protective casing open and the lock missing. As part of their inspection, the samplers attempted to pull the pump, but it became lodged inside the well casing. Using a downhole camera, it was determined that a joint in the well casing had some corrosion and was preventing the well pump from passing through the casing. It was decided to pull the sample tubing from the pump and push the pump to the bottom of the well so that a new pump could be placed on top of the old pump. A temporary bladder pump was used to sample the well for the July 2018 sampling event and a new pump was installed.

During the October 2018 (fourth quarter 2018) sampling event, it was discovered that although well 0138 was locked when the samplers arrived at the location, the dedicated sampling pump had been removed. A downhole camera was used to determine that nothing had been dropped down into the well case and that the well was in good condition. A temporary bladder pump was used to sample the well for the October 2018 sampling event.

6.0 Data Validation

All data collected were validated in accordance with procedures specified in the Sitewide Operations and Maintenance Plan (DOE 2015). This procedure also fulfills the requirements of applicable procedures in the *Mound Methods Compendium* (MD 80045). Data validation was documented in reports prepared for each data package. All 2018 data, including data validation qualifiers, are summarized in Appendix D.

Laboratory performance is assessed by a review and evaluation of the following quality indicators:

- Sample shipping and receiving practices
- Chain of custody
- Laboratory blanks
- Preparation blanks
- Laboratory replicates
- Serial dilutions
- Detection limits
- Peak integrations
- Matrix spikes and matrix spike duplicates

- Holding times
- Instrument calibrations
- Interference check samples
- Radiochemical uncertainty
- Laboratory control samples
- Sample dilutions
- Surrogate recoveries
- Confirmation analyses
- Electronic data

A total of eight report identification numbers (RINs) were established for the 2018 environmental sampling efforts at the Mound site. A RIN is a set of samples that is relinquished to the laboratory using a Chain of Custody form. Data Assessment Reports are prepared for each RIN and are presented in Appendix E.

The laboratory prepares an analytical package for each RIN that includes a summary of results, a complete set of supporting analytical data for every analysis reported, and an electronic data deliverable that is used to upload analytical data into databases for validation and qualification before the data are released. Every RIN received from the laboratory is thoroughly reviewed and evaluated before the data package is finalized and released to the public. Table 16 lists the RINs associated with this report.

RIN	Area	Sampling Date(s)
MND01-01.1801001		January 29–February 1, 2018
MND01-01.1802002		February 5–8, 2018
MND01-01.1804003	Parcels 6, 7, and 8	April 23–25, 2018
MND01-01.1807004		July 30–August 2, 2018
MND01-01.1810005		October 29–30, 2018
MND01-02.1801001		January 29–30, 2018
MND01-02.1807002	Phase I	July 30–31, 2018
MND01-02.1808003		August 9, 2018

Table 16. RINs for Mound Site Calendar Year 2018 Sampling

The Data Assessment Reports also summarize and assess the sampling quality control for each sampling event. The following items are included:

• Sampling protocol

• Equipment blanks

- Trip blanks
- Outliers

٠

• Field duplicates

7.0 References

DOE (U.S. Department of Energy), 1992. *Remedial Investigation/Feasibility Study, Operable Unit 9, Site-Wide Work Plan, Mound Plant, Miamisburg, Ohio*, April.

DOE (U.S. Department of Energy), 1994a. *Operable Unit 9 Hydrogeologic Investigation: Bedrock Report, Mound Plant, Miamisburg, Ohio*, Technical Memorandum, January.

DOE (U.S. Department of Energy), 1994b. *Operable Unit 9 Hydrogeologic Investigation: Buried Valley Aquifer Report, Mound Plant, Miamisburg, Ohio*, Technical Memorandum (Revision 1), September.

DOE (U.S. Department of Energy), 1995. Operable Unit 1 Record of Decision, Mound Plant, Miamisburg, Ohio, June.

DOE (U.S. Department of Energy), 1996. *Operable Unit 9 Hydrogeologic Investigation: Groundwater Sweeps Report*, January.

DOE (U.S. Department of Energy), 1997. Mound 2000 Residual Risk Evaluation Methodology, Mound Plant, January 6.

DOE (U.S. Department of Energy), 1999. Work Plan for Environmental Restoration of the DOE Mound Site, The Mound 2000 Approach, February.

DOE (U.S. Department of Energy), 2014a. *Sitewide Groundwater Monitoring Report, Calendar Year 2012, Mound, Ohio*, LMS/MND/S10184, Office of Legacy Management, February.

DOE (U.S. Department of Energy), 2014b. *Sitewide Groundwater Monitoring Report, Mound, Ohio, Site, Calendar Year 2013*, LMS/MND/S11737, Office of Legacy Management, May.

DOE (U.S. Department of Energy), 2015. *Operations and Maintenance Plan for the* U.S. Department of Energy, Mound, Ohio, Site, LMS/MND/S08406, Office of Legacy Management, January.

DOE (U.S. Department of Energy), 2017. *Sitewide Groundwater Monitoring Report, Mound, Ohio, Site, Calendar Year 2016*, LMS/MND/S15892, Office of Legacy Management, June.

Mound Methods Compendium, Issue 2, MD-80045, prepared by BWXT of Ohio Inc.

Appendix A

Well Construction Summary

Location ID	Program	Northing	Easting	Ground Elevation (ft MSL)	TOC Elevation (ft MSL)	Well Depth (ft)	Top of Screen Elevation (ft MSL)	Bottom of Screen Elevation (ft MSL)	Screen Length (ft)	Well Material	Screened Formation
0118	Parcels 6, 7, 8	600464.95	1464737.80	705.36	704.86	40.1	674.73	664.73	10	4-inch SS	BVA
0124	Parcels 6, 7, 8	597789.14	1463654.10	704.18	705.12	55.9	659.18	649.18	10	4-inch SS	BVA
0126	Parcels 6, 7, 8	597603.58	1463643.30	704.61	705.54	54.8	660.78	650.78	10	4-inch SS	BVA
0138	Parcels 6, 7, 8	600124.02	1464263.30	698.59	697.76	40.2	667.59	657.59	10	4-inch SS	BVA
0315	Phase I	597786.28	1464020.40	722.57	723.99	54.8	679.17	669.17	10	4-inch SS	BVA
0346	Parcels 6, 7, 8	598070.11	1465048.90	743.50	742.97	45.5	702.50	697.50	5	4-inch SS	BVA
0347	Parcels 6, 7, 8	597819.31	1464034.10	723.76	725.20	68.4	666.76	656.76	10	4-inch SS	BVA
0353	Phase I	596686.11	1464609.40	744.04	745.33	19.3	731.04	726.04	5	4-inch SS	Bedrock
0379	Parcels 6, 7, 8	597624.41	1464095.90	715.24	716.11	40.9	685.24	675.24	10	4-inch SS	BVA
0386	Parcels 6, 7, 8	597789.23	1463896.00	725.16	724.79	86.6	648.16	638.16	10	4-inch SS	BVA
0387	Parcels 6, 7, 8	597654.63	1463839.50	721.26	720.89	81.6	644.26	639.26	5	4-inch SS	BVA
0389	Parcels 6, 7, 8	597781.29	1463891.90	724.96	724.65	51.7	682.96	672.96	10	4-inch SS	BVA
0392	Parcels 6, 7, 8	597648.77	1463838.30	721.18	720.84	44.7	681.18	676.18	5	4-inch SS	BVA
0411	Phase I	596808.81	1465077.10	834.83	836.57	39.7	806.89	796.89	10	2-inch SS	Bedrock
0443	Phase I	596886.22	1465177.11	856.89	858.78	39.6	829.20	819.20	10	2-inch PVC	Bedrock
0444	Phase I	596463.35	1465001.58	770.71	773.00	32.8	750.20	740.20	10	2-inch PVC	Bedrock
0445	Phase I	596448.12	1464738.54	741.29	743.43	42.5	710.93	700.93	10	2-inch PVC	Bedrock
P064	Phase I	596106.72	1464537.47	726.82	729.98	56.9	680.08	670.08	10	2-inch PVC	BVA
0601	Parcels 6, 7, 8	598743.22	1464280.80	817.52						Seep	Bedrock
0602	Parcels 6, 7, 8	598346.65	1465311.40	779.61						Seep	Bedrock
0605	Parcels 6, 7, 8	599824.63	1464935.40	817.70						Seep	Bedrock
0606	Parcels 6, 7, 8	599971.45	1464989.00	789.23						Seep	Bedrock
0607	Parcels 6, 7, 8	600015.30	1465105.70	797.00						Seep	Bedrock
0617	Phase I	596539.80	1464855.80	766.07						Seep	Bedrock

Table A-1. Well Construction Summary

Abbreviations:

ft MSL = feet above mean sea level; PVC = polyvinyl chloride; SS = stainless steel; TOC = top of casing

Appendix **B**

Mann-Kendall Trending Summaries

Mann-Kendall Test for Monotonic Trend (from Battelle Memorial Institute, 2018)

The purpose of the Mann-Kendall (MK) test (Mann 1945, Kendall 1975, Gilbert 1987) is to statistically assess if there is a monotonic upward or downward trend of the variable of interest over time. A monotonic upward (downward) trend means that the variable consistently increases (decreases) through time, but the trend may or may not be linear.

Selected Statistical Testing Approach

The MK test can be used in place of a parametric linear regression analysis that is used to test if the slope of the estimated linear regression line is different from zero. The regression analysis requires that the residuals from the fitted regression line be normally distributed, an assumption not required by the MK test. Hence, the MK test is a nonparametric (distribution-free) test.

Calculations to Determine Whether a Trend Exists

The MK test is used to decide whether to reject the null hypothesis (H_0) that no monotonic trend exists in favor of the alternative hypothesis (H_a) that a monotonic trend exists.

One of three alternative hypotheses is chosen:

- 1. A monotonic downward trend exists.
- 2. Either a monotonic upward or monotonic downward trend exists.
- 3. A monotonic upward trend exists.

The data obtained over time must be convincing beyond a reasonable doubt before the MK test will reject the H_0 and accept the H_a hypothesis.

The MK test is conducted as follows (from Gilbert 1987, pp. 209–213):

- 1. List the data in the order in which they were collected over time, x_1, x_2, x_n , which denote the measurements obtained at times 1, 2, ..., *n*, respectively. The data are not necessarily (and need not be) collected at equally spaced time intervals, although equally spaced sampling over time is often preferred.
- 2. Determine the sign of all n(n-1)/2 possible differences $x_j x_k$, where j > k. These differences are

 $x_2 - x_1, x_3 - x_1, x_n - x_1, x_3 - x_2, x_4 - x_2, x_n - x_{n-2}, x_n - x_{n-1}$

3. Let $sgn(x_j - x_k)$ be an indicator function that takes on the values 1, 0, or -1 according to the sign of $x_j - x_k$, that is:

$$\operatorname{sgn}(x_j - x_k) = 1 \qquad \text{if } x_j - x_k > 0$$

 $sgn(x_j - x_k) = 0 \quad \text{if } x_j - x_k = 0,$ or if the sign of $x_j - x_k$ cannot be determined due to nondetects

 $\operatorname{sgn}(x_j-x_k) = -1 \quad \text{if } x_j-x_k < 0$

For example, if $x_j - x_k > 0$, then the observation at time *j*, denoted by x_j , is greater than the observation at time *k*, denoted by x_k .

4. Compute

$$S = \sum_{k=1}^{n-1} \sum_{j=k+1}^{n} \operatorname{sgn}(x_j - x_k)$$

which is the number of positive differences minus the number of negative differences. If *S* is a positive number, observations obtained later in time tend to be *larger* than observations made earlier. If *S* is a negative number, then observations made later in time tend to be *smaller* than observations made earlier.

5. If $n \le 10$, follow the procedure described in Gilbert (1987, page 209, Section 16.4.1) by looking up *S* in a table of probabilities (Gilbert 1987, Table A18, page 272). If this probability is less than α (the probability of concluding a trend exists when there is none), then reject the null hypothesis and conclude the trend exists. If *n* cannot be found in the table of probabilities (which can happen if there are tied data values), the next value farther from zero in the table is used. For example, if S = 12 and there is no value for S = 12 in the table, it is handled the same as S = 13.

If n > 10, continue with steps 6 through 8 to determine whether a trend exists. This follows the procedure described in Gilbert (1987, page 211, Section 16.4.2).

6. Compute the variance of *S* as follows:

$$VAR(S) = \frac{1}{18} \left[n(n-1)(2n+5) - \sum_{p=1}^{g} t_{p}(t_{p}-1)(2t_{p}+5) \right]$$

where *g* is the number of tied groups and t_p is the number of observations in the *p*th group. For example, in the sequence of measurements in time (23, 24, 29, 6, 29, 24, 24, 29, 23) we have g = 3 tied groups, for which $t_1 = 2$ for the tied value 23, $t_2 = 3$ for the tied value 24, and $t_3 = 3$ for the tied value 29.

7. Compute the MK test statistic, *Z*_{MK}, as follows:

$$Z_{MK} = \sqrt{VAR(S)}$$
 if $S > 0$

$$Z_{MK} = 0$$
 if $S = 0$

$$Z_{MK} = \sqrt{VAR(S)}$$
 if $S < 0$

A positive value of Z_{MK} indicates that the data tend to increase with time; a negative value of Z_{MK} indicates that the data tend to decrease with time.

- 8. Finally, the hypothesis is tested. H_0 is rejected and H_a is accepted if $Z_{MK} \leq -Z_{1-\alpha}$ where:
 - *H*^o (null hypothesis): no monotonic trend exists
 - *H*_a (alternative hypothesis): a downward monotonic trend exists

Alpha (α) is the Type I error rate, which is the user-specified small probability that can be tolerated that the MK test will falsely reject the null hypothesis (i.e., will conclude a trend exists when there is none)

 $Z_{1-\alpha}$ is the $100(1-\alpha)^{\text{th}}$ percentile of the standard normal distribution. For example, if $\alpha = 0.05$, then $Z_{1-\alpha} = 1.64485$. Values of $Z_{1-\alpha}$ are provided in many statistics books (for example, Gilbert 1987, Table A1, page 254) and statistical software packages.

The following parameters were used:

alpha (α)	0.05 (5%)
beta (β)	0.1 (10%)
standard deviation of residuals from trend line	3%

Assumptions

The following assumptions underlie the MK test:

- 1. When no trend is present, the measurements (observations or data) obtained over time are independent and identically distributed. The assumption of independence means that the observations are not serially correlated over time.
- 2. The observations obtained over time are representative of the true conditions at sampling times.
- 3. The sample collection, handling, and measurement methods provide unbiased and representative observations of the underlying populations over time.

The MK test does not require that the measurements or the residuals about a trend line be normally distributed or that the trend, if present, be linear.

The MK test can be computed if there are missing values (no measurements for some sampling times), but the performance of the test will be adversely affected. The assumption of independence requires that the time between samples be sufficiently long so that there is no correlation between measurements collected at different times.

References

Battelle Memorial Institute, 2018. Visual Sampling Plan Users Guide.

Cleveland, W.S., 1979. "Robust Locally Weighted Regression and Smoothing Scatterplots," *Journal of the American Statistical Association* 74(368):829–836.

Gilbert, R.O., 1987. *Statistical Methods for Environmental Pollution Monitoring*, Wiley & Sons, New York.

Hirsch, R.M., J.R. Slack, and R.A. Smith, 1982. "Techniques of trend analysis for monthly water quality data," *Water Resources Research* 18(1):107–121.

Kendall, M.G., 1975. Rank Correlation Methods, 4th ed., Charles Griffin, London.

Mann, H.B., 1945. "Non-parametric tests against trend," *Econometrica* 13:163–171.

	A	В	С	D	Е		F	G	Н		J	K	L
1					ann-Kendall Trend Test Analysis								
2	Use	User Selected Options Well 0138 Tritium											
3	Date/Ti	ime of Con			12/1/2019 9):02:20	0 AM						
4		F	From File	WorkShee	t.xls								
5			Precision	OFF									
6	Cor	nfidence C	oefficient	0.95									
7	L	evel of Sig	nificance	0.05									
8													
9			C1										
10													
11			eneral Sta										
12	Number or Reported Events Not Used 0												
13	Number of Generated Events 45												
14	Number Values Reported (n) 45												
15				Minimum	250								
16		Maximum 14630											
17				Mean	3639								
18			Geom	netric Mean	1838								
19				Median	1570								
20				d Deviation	4289								
21		C	Coefficient of	of Variation	1.179								
22													
23		Ma	ann-Kenda										
24				st Value (S)	-746								
25				'alue (0.05)	-1.645								
26				viation of S	102.2								
27		Sta		Value of S	-7.289								
28			Approxim	ate p-value	1.567E-13								
29													
30				ce of a decr	-								
31	trend at th	ne specifie	d level of s	significance	•								

	A	В	С	D	E	F	G	Н	I	J	K	L
1				Mann-Ker	ndall Trend	Test Anal	ysis					
2	Use	er Selected	l Options			since 200						
3	Date/Ti	me of Corr	nputation	ProUCL 5.	11/31/201	9 5:30:13 F	PM					
4		F	rom File	WorkShee	et.xls							
5		Full F	Precision	OFF								
6	Cor	nfidence Co	oefficient	0.95								
7	Le	evel of Sigi	nificance	0.05								
8												
9			C1									
10												
11			neral Statis									
12	Numbe			s Not Used	0							
13				ted Events	55							
14		Number	r Values Re	eported (n)	55							
15				Minimum	3.5							
16				Maximum	17.2							
17				Mean	9.459							
18			Geom	etric Mean	8.736							
19			-	Median	9.65							
20		-		d Deviation	3.563							
21		С	oefficient c	of Variation	0.377							
22												
23		Man	n-Kendall									
24				t Value (S)	-546							
25				alue (0.05)	-1.645							
26				viation of S	137.7							
27				Value of S	-3.957							
28	28 Approximate p-value 3.7986E-5											
29	<u>.</u>											
50				e of a decr								
31	trend at th	e specifie	d level of s	ignificance).							

	A	В	С	D	E	F	G	Н	I	J	К	L
1				Mann-Ker	ndall Trend	Test Anal	ysis					
2	Use	er Selected	l Options		15 TCE (s		·					
3	Date/Ti	me of Com	nputation	ProUCL 5.	12/1/2019	8:36:09 AN	N					
4		F	rom File	WorkShee	et.xls							
5		Full F	Precision	OFF								
6		fidence Co		0.95								
7	Le	evel of Sig	nificance	0.05								
8												
9			C1									
10												
11			neral Statis									
12	Numbe	•		s Not Used	0							
13				ted Events	28							
14		Number	r Values Re	• • • •	28 3.5							
15				Minimum								
16				Maximum Mean	16.6 8.079							
17			Coom	etric Mean	7.437							
18			Geom	Median	7.437							
19			Standard	d Deviation	3.307							
20		C		of Variation	0.409							
21		0			0.403							
22		Man	n-Kendall	Test								
23				t Value (S)	-234							
24				alue (0.05)	-1.645							
25		Sta		viation of S	50.62							
26				Value of S	-4.603							
27				ate p-value								
28 29				•								
	Statistical	ly significa	nt evidenc	e of a decr	easing							
50				ignificance								
31				-								

	A B	С	D	E	F	G	Н	I	J	К	L
1			Mann-Ker	dall Trend	Test Anal	ysis					
2	User Selected	d Options	Well 034	46 Tritiur	n						
3	Date/Time of Con	nputation	ProUCL 5.	12/1/2019	9:04:37 AN	Λ					
4	F	From File	WorkShee	et.xls							
5	Full I	Precision	OFF								
6	Confidence C	oefficient	0.95								
7	Level of Sig	nificance	0.05								
8											
9		C1									
10											
11		neral Statis									
12	Number or Repo			0							
13		of Generat		45							
14	Numbe	r Values Re	eported (n)	45							
15			Minimum	18.6							
16			Maximum	14900							
17			Mean	2098							
18		Geom	etric Mean	1221							
19			Median	1730							
20			I Deviation	2484							
21	C	Coefficient o	f Variation	1.184							
22											
23	Mar	nn-Kendall									
24			t Value (S)								
25			alue (0.05)	-1.645							
26		andard Dev		102.2							
27	Sta	andardized		-7.749							
28		Approxima	ate p-value	4.633E-15							
29				-							
50	Statistically significa										
31	trend at the specifie	d level of s	ignificance).							

	A	В	С	D	E	F	G	Н	I	J	К	L
1				Mann-Ken			-					
2	Use	er Selected	l Options	Well 034			· ·					
3	Date/Ti	me of Com	nputation	ProUCL 5.	11/31/2019	9 5:37:43 F	PM					
4			rom File	WorkShee	t.xls							
5		Full F	Precision	OFF								
6		nfidence Co		0.95								
7	L	evel of Sig	nificance	0.05								
8										1		
9			C1									
10												
11			neral Statis									
12	Numbe			s Not Used	0							
13				ted Events	52							
14		Number	r Values Re	eported (n)	52 0.431							
15				Minimum	33.2							
16				Maximum Mean	22.11							
17			Coom	etric Mean	20.39							
18			Geom	Median	20.39							
19			Standard	d Deviation	5.673							
20		C		of Variation	0.257							
21				vanation	0.207							
22		Man	n-Kendall	Test								
23 24				t Value (S)	-238							
24 25				alue (0.05)	-1.645							
25 26		Sta		viation of S	126.7							
20		Sta	Indardized	Value of S	-1.871							
28												
29						<u> </u>						
	Statistical	ly significa	int evidenc	e of a decr	easing							
	trend at th	e specifie	d level of s	ignificance	•							
							1	1	1	1	1	1

	A	В	С	D	E	F	G	Н		J	K	L
1				Mann-Ker	ndall Trend	Test Anal	ysis					
2	Use	er Selected	Options		47 TCE (· · · · · · · · · · · · · · · · · · ·					
3	Date/Ti	me of Com	nputation	ProUCL 5.	12/1/2019	8:40:03 AM	N					
4		F	rom File	WorkShee	et.xls							
5		Full F	Precision	OFF								
6		nfidence Co		0.95								
7	Le	evel of Sig	nificance	0.05								
8												
9			C1									
10												
11			neral Statis									
12	Numbe			s Not Used	0							
13				ted Events	30							
14		Number	Values Re	eported (n) Minimum	30 11.7							
15					31.2							
16				Maximum Mean	21.65							
17			Coom	etric Mean	21.05							
18			Geom	Median	21.18							
19			Standard	Deviation	4.445							
20		C		of Variation	0.205							
21		0		vanadori	0.200							
22		Man	n-Kendall	Test								
23				t Value (S)	-177							
24 25				alue (0.05)	-1.645							
25 26		Sta		viation of S	56.03							
20		Sta	ndardized	Value of S	-3.141							
27			Approxima	ate p-value	8.4180E-4							
29												
30	Statistical	ly significa	nt evidenc	e of a decr	easing							
31	trend at th	e specifie	d level of s	ignificance).							
51						1			1	1		

	A B	С	D	E	F	G	Н	I	J	К	L
1	-		Mann-Ker	dall Trend	Test Anal	ysis					
2	User Selected	l Options	Well 034	47 Tritiur	n						
3	Date/Time of Con	nputation	ProUCL 5.	12/1/2019	9:05:53 AN	Λ					
4	F		WorkShee	et.xls							
5	Full F	Precision	OFF								
6	Confidence Co	oefficient	0.95								
7	Level of Sig	nificance	0.05								
8											
9		C1									
10											
11		neral Statis									
12	Number or Repo			0							
13		of Generat		44							
14	Number	r Values Re		44							
15			Minimum	157							
16			Maximum	16800							
17			Mean	5182							
18		Geome	etric Mean	3600							
19			Median	4125							
20			Deviation	4273							
21	C	oefficient o	f Variation	0.825							
22											
23	Mar	nn-Kendall									
24			Value (S)								
25			alue (0.05)	-1.645							
26		andard Dev		98.87							
27		andardized '		-5.27							
28		Approxima	ite p-value	6.8387E-8							
29				-							
50	Statistically significa										
31	trend at the specifie	d level of s	ignificance).							

	A	В	С	D	E	F	G	Н	I	J	К	L
1				Mann-Ker	dall Trend	Test Anal	ysis					
2	Use	er Selected	Options	Well 037	79 Tritiur	n						
3	Date/Ti	me of Com	nputation	ProUCL 5.	12/1/2019	9:07:18 AM	Л					
4		F	rom File	WorkShee	et.xls							
5		Full F	Precision	OFF								
6	Cor	nfidence Co	pefficient	0.95								
7	Le	evel of Sigr	nificance	0.05								
8												
9			C1									
10												
11			neral Statis									
12	Numbe	er or Repor			0							
13			of Generat		38							
14		Number	Values Re		38							
15				Minimum	479							
16				Maximum	3890							
17				Mean	1442							
18			Geom	etric Mean	1324							
19				Median	1515							
20		-		Deviation	605.2							
21		С	oefficient o	of Variation	0.42							
22												
23		Man	n-Kendall									
24				t Value (S)	-420							
25				alue (0.05)	-1.645							
26				viation of S	79.51							
27			indardized		-5.27							
28			Approxima	ate p-value	6.8319E-8							
29												
50				e of a decr								
31	trend at th	e specified	d level of s	ignificance).							

	A	В	С	D	E	F	G	Н	I	J	К	L
1				Mann-Ken	dall Trend	Test Anal	ysis					
2	Use	er Selected	l Options	Well 038			· ·					
3	Date/Ti	me of Corr	nputation	ProUCL 5.	11/31/201	9 5:35:08 F	PM					
4		F	rom File	WorkShee	t.xls							
5		Full F	Precision	OFF								
6	Cor	nfidence Co	oefficient	0.95								
7	Le	evel of Sigi	nificance	0.05								
8												
9			C1									
10												
11			neral Statis									
12	Numbe			s Not Used	0							
13				ted Events	47							
14		Number	r Values Re	eported (n)	47							
15				Minimum	0.11							
16				Maximum	3.96							
17				Mean	2.15							
18			Geom	etric Mean	1.727							
19				Median	2.35							
20				d Deviation	0.893							
21		С	oefficient c	of Variation	0.415							
22												
23		Man	nn-Kendall									
24				t Value (S)	46							
25				alue (0.05)	1.645							
26				viation of S	109							
27				Value of S	0.413							
28			Approxima	ate p-value	0.34							
29												
30				y a significa								
31	trend at t	he specifie	ed level of a	significance).							

	A	В	С	D	E	F	G	Н	I	J	K	L
1				Mann-Ken	dall Trend	Test Anal	ysis					
2	Use	er Selected	l Options	Well 038			1 A A A A A A A A A A A A A A A A A A A					
3	Date/Ti	me of Com	nputation	ProUCL 5.	12/1/2019	8:41:59 AN	N					
4			rom File	WorkShee	t.xls							
5		Full F	Precision	OFF								
6		nfidence Co		0.95								
7	L	evel of Sig	nificance	0.05								
8									1	1		
9			C1									
10												
11			neral Statis									
12	Numbe			s Not Used	0							
13				ted Events	28							
14		Number	r Values Re	eported (n) Minimum	28 0.97							
15					3.04							
16				Maximum Mean	2.383							
17			Caam	etric Mean	2.383							
18			Geom	Median	2.332							
19			Standard	d Deviation	0.448							
20		C		of Variation	0.448							
21		0		variation	0.100							
22		Man	n-Kendall	Test								
23				t Value (S)	-65							
24				alue (0.05)	-1.645							
25 26		Sta		viation of S	50.54							
26		Sta	Indardized	Value of S	-1.266							
27			Approxima	ate p-value	0.103							
29												
30	Insufficier	nt evidence	to identify	/ a significa	nt							
31	trend at t	he specifie	d level of	significance).							
51									1	L		

	A	В	С	D	Е	F	G	Н	J	К	L
1				Mann-Ker	dall Trend	Test Ana	ysis				
2	Use	er Selected	Options			since 200	· · · · · · · · · · · · · · · · · · ·				
3	Date/Ti	me of Con	nputation	ProUCL 5.	11/31/201	9 5:40:13 F	PM				
4		F	From File	WorkShee	t.xls						
5		Full F	Precision	OFF							
6		nfidence Co		0.95							
7	Le	evel of Sig	nificance	0.05							
8											
9			C1								
10											
11			neral Statis								
12	Numbe			s Not Used	0						
13				ted Events	47						
14		Number	r Values Re	eported (n)	47						
15				Minimum	0.16						
16				Maximum	1.48						
17				Mean	0.53						
18			Geom	etric Mean	0.406						
19				Median	0.408						
20				d Deviation	0.383						
21		C	oemicient c	of Variation	0.722						
22		Mar		T 4							
23		Mar	nn-Kendall		-433						
24				t Value (S) alue (0.05)	-433						
25		C+/		viation of S	-1.645						
26				Value of S	-3.998						
27				ate p-value							
28			Abbroxime	ate p-value	5.19556-5	1					
29	Statiatical	ly olanifica	nt ovidene	e of a decr	occina						
50				ignificance							
31	trend at th	e specifie	a level of s	significance							

	А	В	С	D	E	F	G	Н	I	J	К	L
1				Mann-Ken	dall Trend	Test Anal	ysis					
2	Use	er Selected	l Options	Well 038			· · · · · · · · · · · · · · · · · · ·					
3	Date/Ti	me of Corr	nputation	ProUCL 5.	12/1/2019	8:44:27 AM	Л					
4		F	rom File	WorkShee	t.xls							
5		Full F	Precision	OFF								
6		nfidence Co		0.95								
7	Le	evel of Sig	nificance	0.05								
8												
9			C1									
10												
11			neral Statis									
12	Numbe			Not Used	0							
13				ted Events	28							
14		Number	r Values Re	eported (n) Minimum	28 0.16							
15					0.16							
16				Maximum Mean	0.9							
17			Coom	etric Mean	0.344							
18			Geom	Median	0.201							
19			Standard	Deviation	0.21							
20		C		of Variation	0.235							
21		0		variation	0.000							
22		Man	n-Kendall	Test								
23				t Value (S)	-38							
24 25				alue (0.05)	-1.645							
25 26		Sta		/iation of S	48.47							
20 27		Sta	Indardized	Value of S	-0.763							
27												
29												
	Insufficien	t evidence	to identify	/ a significa	nt							
31	trend at t	he specifie	d level of	significance).							
51						1		1	1	1	1	1

	A	В	С	D	E	F	G	Н	1	J	К	L
1				Mann-Ken	dall Trend	Test Ana	lysis					
2	Use	er Selected	Options	Well 041	11 cis-1,2	2-DCE						
3	Date/Ti	me of Con	nputation	ProUCL 5.	11/30/201	9 3:56:35 F	PM					
4		F	From File	WorkShee	t.xls							
5		Full F	Precision	OFF								
6	Cor	nfidence Co	oefficient	0.95								
7	L	evel of Sig	nificance	0.05								
8												
9			C1									
10												
11			neral Statis									
12	Numbe			s Not Used	0							
13				ted Events	58							
14		Number	r Values Re	eported (n)	58							
15				Minimum	0.65							
16				Maximum	4.8							
17			-	Mean	2.206							
18			Geom	etric Mean	2.025							
19			-	Median	2.055							
20				d Deviation	0.915							
21		С	oefficient o	of Variation	0.415							
22												
23		Mar	nn-Kendall									
24				t Value (S)	-35							
25				alue (0.05)	-1.645							
26				viation of S	149							
27				Value of S	-0.228							
28			Approxima	ate p-value	0.41							
29			to identif	, a alantif								
30			-	y a significa								
31	trend at t	ne specifie	ea level of :	significance	Э.							

	A	В	С	D	E	F	G	Н	1	J	К	L
1				Mann-Ker	n-Kendall Trend Test Analysis							
2				Well 0411 TCE								
3	Date/Time of Computation			ProUCL 5.11/30/2019 3:45:52 PM								
4				WorkSheet.xls								
5				OFF								
6				0.95								
7	Level of Significance 0.			0.05								
8												
9	C1											
10												
11			neral Statis									
12	Numbe			Not Used	0							
13	Number of Generated Ev				55							
14	Number Values Reported				55							
15	Minimun				8.4							
16	Maximun				22							
17				Mean	12.16							
18	Geometric Me				11.93							
19	Median				12							
20	Standard Deviatio				2.557							
21	Coefficient of Variation				0.21							
22												
23	Mann-Kendall Test											
24				t Value (S)	-432							
25		Critical Value (C			-1.645							
26	Standard Deviation of				137.5							
27	Standardized Value of S			-3.134								
28	Approximate p-value			8.6152E-4								
29				-	-							
50				e of a decr	-							
31	31 trend at the specified level of significance.											

	A B	C D	E	F	G	Н	1	J	К	L
1		Mann-	Kendall Tren	d Test Anal	ysis				-	
2	User Selected Op	ptions 0443	cis-1,2-DC	E						
3	Date/Time of Compu	Itation ProUC	5.11/30/201	9 3:53:20 F	PM					
4	Fror		neet.xls							
5	Full Pre									
6	Confidence Coeff	ficient 0.95								
7	Level of Signific	cance 0.05								
8		·								
9		C1								
10										
11		ral Statistics								
12	Number or Reported									
13		Generated Eve								
14	Number Va	alues Reported	. ,							
15		Minim	_							
16		Maxim								
17		Me								
18		Geometric Me								
19		Med								
20	-	Standard Deviat								
21	Coef	fficient of Variat	on 0.933							
22										
23		Kendall Test								
24		M-K Test Value								
25		critical Value (0.0	·							
26		lard Deviation o								
27		ardized Value o		-						
28	Ар	proximate p-va	ue 1.2318E-	6						
29										
50	Statistically significant of									
31	trend at the specified le	evel of significa	nce.							

	A	В	С	D	E	F	G	Н	1	J	К	L
1				Mann-Ken	dall Trend	Test Ana	ysis		•	•		
2	Use	er Selected	Options	Well 044	43 TCE							
3	Date/Ti	me of Corr	nputation	ProUCL 5.	11/30/201	9 3:50:01 F	PM					
4		F	rom File	WorkShee	t.xls							
5		Full F	Precision	OFF								
6	Cor	nfidence Co	pefficient	0.95								
7	Le	evel of Sigr	nificance	0.05								
8												
9			C1									
10												
11			neral Statis									
12	Numbe			s Not Used	0							
13				ted Events	44							
14		Number	Values Re	eported (n)	44							
15				Minimum	2.2							
16				Maximum	14							
17				Mean	7.492							
18			Geom	etric Mean	6.928							
19				Median	7.26							
20				Deviation	2.816							
21		C	oefficient o	of Variation	0.376							
22				T								
23		Man	n-Kendall		<u> </u>							
24				t Value (S) alue (0.05)	68 1.645							
25		C+-		viation of S	98.85							
26				Value of S	0.678							
27				ate p-value	0.078							
28				are h-vaine	0.249							
29	Insufficien	t evidence	to identifi	/ a significa	ant							
30			-	significance								
31		ne sherille		Significance						1	1	

	A	В	С	D	E	F	G	Н	1	J	К	L
1			-	Mann-Ken	dall Trend	Test Anal	ysis					
2	Use	er Selected	Options	Seep 060	D1 PCE							
3	Date/Ti	me of Com	nputation	ProUCL 5.	11/31/2019	9 6:03:42 F	M					
4		F	rom File	WorkShee	t.xls							
5		Full F	Precision	OFF								
6	Con	fidence Co	pefficient	0.95								
7	Le	evel of Sigr	nificance	0.05								
8				•								
9			C1									
10												
11			neral Statis									
12	Numbe			s Not Used	0							
13				ted Events	57							
14		Number	Values Re	eported (n)	57							
15				Minimum	0.1							
16				Maximum	52							
17				Mean	11.97							
18			Geom	etric Mean	8.078							
19				Median	11							
20				Deviation	8.657							
21		C	oefficient c	of Variation	0.723							
22												
23		Man	n-Kendall									
24				t Value (S)	-389							
25				alue (0.05)	-1.645							
26				iation of S	145.2							
27				Value of S	-2.671							
28			Approxima	ate p-value	0.00378							
29					-							
50				e of a decr								
31	trend at th	e specified	d level of s	ignificance	•							

	A	В	С	D	E	F	G	Н	I	J	К	L
1				Mann-Ken	dall Trend	Test Anal	ysis					
2	Use	er Selected	l Options	Seep 06	01 TCE (since 200)5)					
3	Date/Ti	ime of Con	nputation	ProUCL 5.	11/31/201	9 5:14:28 F	PM					
4		F	rom File	WorkShee	t.xls							
5		Full F	Precision	OFF								
6	Cor	nfidence Co	oefficient	0.95								
7	Le	evel of Sig	nificance	0.05								
8												
9			C1									
10												
11			neral Statis									
12	Numbe			s Not Used	0							
13				ted Events	56							
14		Number	r Values Re	eported (n)	56							
15				Minimum	0.11							
16				Maximum	10.3							
17				Mean	4.931							
18			Geom	etric Mean	3.893							
19			0.	Median	5.165							
20				d Deviation	2.23							
21		C	oemicient c	of Variation	0.452							
22		Mor	n-Kendall	Teet								
23		Mar		t Value (S)	-15							
24				alue (0.05)	-15							
25		C+/		viation of S	-1.045							
26				Value of S	-0.099							
27				ate p-value	0.461							
28			Approxime	ate p-value	0.401							
29	Insufficien	t evidence	a to identifi	y a significa	ant							
30				significance								
31		ne specifie		Significance								

	A	В	С	D	E	F	G	Н	I	J	К	L
1			-	Mann-Ken	dall Trend	Test Ana	ysis		-			
2	Use	er Selected	Options	Seep 060	01 TCE (since 201	2)					
3	Date/Ti	me of Corr	nputation	ProUCL 5.		8:26:10 A	N					
4		F	rom File	WorkShee	t.xls							
5		Full F	Precision	OFF								
6	Cor	nfidence Co	pefficient	0.95								
7	L	evel of Sigi	nificance	0.05								
8												
9			C1									
10												
11			neral Statis									
12	Numbe	•		s Not Used	0							
13				ted Events	28							
14		Number	Values Re	eported (n)	28							
15				Minimum	0.16							
16				Maximum	10.3							
17				Mean	4.843							
18			Geom	etric Mean	3.469							
19				Median	5.69							
20				d Deviation	2.715							
21		С	oefficient c	of Variation	0.561							
22				T								
23		Man	n-Kendall		- 10							
24				t Value (S)	-40							
25				alue (0.05)	-1.645							
26	-			viation of S	50.6							
27				Value of S	-0.771							
28			Approxima	ate p-value	0.22							
29			to identif	, a alantifi								
30			-	/ a significa								
31	rrend at t	ne specifie	a level of a	significance	Э.							

	A B	С	D	E	F	G	Н	I	J	К	L
1			Mann-Ker	ndall Trend	Test Anal	ysis					
2	User Selected		-	01 Tritiur							
3	Date/Time of Com	putation	ProUCL 5.	12/1/2019	8:55:05 AN	Л					
4	F		WorkShee	et.xls							
5	Full F	Precision	OFF								
6	Confidence Co	pefficient	0.95								
7	Level of Sigr	nificance	0.05								
8											
9		C1									
10											
11		neral Statis									
12	Number or Repor			0							
13		of Generate		44							
14	Number	Values Re		44							
15			Minimum	89.3							
16			Maximum								
17											
18		Geome	etric Mean	56359							
19			Median								
20											
21	C	oefficient of	Variation	1.383							
22											
23	Man	n-Kendall 7									
24		M-K Test	• • •	-689							
25		Critical Va	. ,	-1.645							
26		andard Devi		98.87							
27		ndardized \		-6.959							
28		Approximat	te p-value	1./14E-12							
29											
50	Statistically significant										
31	trend at the specified	d level of si	gnificance).							

	A	В	С	D	E	F	G	Н	I	J	К	L
1				Mann-Ker	ndall Trend	Test Anal	ysis					
2	Use	er Selected	Options	-	02 cis-1,2							
3	Date/Ti	me of Com	nputation	ProUCL 5.	11/31/2019	9 6:01:47 F	PM					
4			rom File	WorkShee	et.xls							
5		Full F	Precision	OFF								
6		nfidence Co		0.95								
7	L	evel of Sig	nificance	0.05								
8									1	1		
9			C1									
10												
11			neral Statis									
12	Numbe			s Not Used	0							
13				ted Events	39							
14		Number	Values Re	eported (n)	39 1.95							
15				Minimum								
16				Maximum Mean	42.3 15.87							
17			Coom	etric Mean	12.74							
18			Geom	Median	12.74							
19			Standard	d Deviation	9.903							
20		C		of Variation	0.624							
21		0		vanadori	0.024							
22		Man	n-Kendall	Test								
23				t Value (S)	-286							
24				alue (0.05)	-1.645							
25 26		Sta		viation of S	82.63							
26 27		Sta	ndardized	Value of S	-3.449							
27			Approxima	ate p-value	2.8129E-4							
20												
	Statistical	ly significa	nt evidenc	e of a decr	easing							
	trend at th	e specifie	d level of s	ignificance).							
51								1	1	1	1	

	A	В	С	D	E	F	G	Н	I	J	К	L
1				Mann-Ker	ndall Trend	Test Anal	ysis					
2	Use	er Selected	l Options		02 TCE (
3	Date/Ti	me of Com	nputation	ProUCL 5.	11/31/201	9 5:18:17 F	PM					
4			rom File	WorkShee	et.xls							
5		Full F	Precision	OFF								
6		nfidence Co		0.95								
7	L	evel of Sig	nificance	0.05								
8										1		
9			C1									
10												
11			neral Statis									
12	Numbe			s Not Used	0							
13				ted Events	35							
14		Number	r Values Re	eported (n)	35 0.46							
15				Minimum	139							
16				Maximum Mean	28.94							
17			Coom	etric Mean	18.59							
18			Geom	Median	22.2							
19			Standard	d Deviation	27.14							
20		C		of Variation	0.938							
21		0		vanadori	0.000							
22		Man	n-Kendall	Test								
23				t Value (S)	-324							
24 25				alue (0.05)	-1.645							
25 26		Sta		viation of S	70.41							
20 27		Sta	Indardized	Value of S	-4.588							
27			Approxima	ate p-value	2.2427E-6							
20												
	Statistical	ly significa	nt evidenc	e of a decr	easing							
	trend at th	e specifie	d level of s	ignificance).							
51						1	1		1	1	1	1

	A	В	С	D	Е	F	G	Н	I	J	К	L
1				Mann-Ken	dall Trend	Test Anal	ysis					
2	Use	er Selected	l Options	Seep 060								
3	Date/Ti	me of Con	nputation	ProUCL 5.	12/1/2019	8:27:44 AN	Л					
4		F	rom File	WorkShee	t.xls							
5		Full F	Precision	OFF								
6		fidence Co		0.95								
7	Le	evel of Sig	nificance	0.05								
8												
9			C1									
10												
11			neral Statis		-							
12	Numbe		rted Events		0							
13			of Generat		18							
14		Number	r Values Re	,	18							
15				Minimum	0.46							
16				Maximum	32.6							
17			0	Mean	13.2							
18			Geom	etric Mean	9.393							
19			Oterraleur	Median Deviation	12.65 8.922							
20			Standard oefficient o		0.676							
21		C	oemcient d	or variation	0.676							
22		Mor	n-Kendall	Teet								
23		war		t Value (S)	-96							
24				ed p-value	-90							
25		St:	andard Dev	-	26.38							
26			Indardized		-3.601							
27				ate p-value								
28			,		1.00021-4							
29	Statistical	v significa	nt evidenc	e of a decr	easing							
50				ignificance								
31	u enu at ll	e sherijje		ignincance	•							

	A B	С	D	E	F	G	Н	I	J	К	L
1			Mann-Ker	dall Trend	Test Anal	ysis					
2	User Selecte	ed Options	-	02 Tritiur							
3	Date/Time of Co	omputation			8:56:26 AN	Λ					
4		From File	WorkShee	et.xls							
5	Ful	I Precision	OFF								
6	Confidence	Coefficient	0.95								
7	Level of S	ignificance	0.05								
8			*								
9		C1									
10											
11	-	eneral Stati									
12	Number or Rep			0							
13		er of Genera		27							
14	Numb	er Values R	• • • •	27							
15			Minimum	1490							
16			Maximum	82700							
17			Mean	19133							
18		Geom	etric Mean	13350							
19			Median								
20			d Deviation	17673							
21		Coefficient of	of Variation	0.924							
22											
23	Ma	ann-Kendall									
24			t Value (S)								
25			alue (0.05)	-1.645							
26		Standard De		47.97							
27	S	tandardized		-5.253							
28		Approxima	ate p-value	7.4650E-8							
29				-							
50	Statistically signific										
31	trend at the specifi	ied level of s	significance).							

	A	В	С	D	E	F	G	Н	I	J	К	L
1				Mann-Ker	ndall Trend	Test Anal	ysis					
2	Use	er Selected	l Options	-	05 cis-1,2							
3	Date/Ti	me of Com	nputation	ProUCL 5.	11/31/2019	9 6:05:27 F	PM					
4			rom File	WorkShee	et.xls							
5		Full F	Precision	OFF								
6		nfidence Co		0.95								
7	L	evel of Sig	nificance	0.05								
8										1		
9			C1									
10												
11			neral Statis									
12	Numbe			s Not Used	0							
13				ted Events	49							
14		Number	r Values Re	eported (n)	49 0.16							
15				Minimum	32.2							
16				Maximum Mean	32.2 5.26							
17			Coom	etric Mean	3.194							
18			Geom	Median	2.9							
19			Standard	d Deviation	6.694							
20		C		of Variation	1.273							
21		0			1.275							
22		Man	n-Kendall	Test								
23				t Value (S)	-631							
24 25				alue (0.05)	-1.645							
25 26		Sta		viation of S	116							
20 27		Sta	Indardized	Value of S	-5.431							
27			Approxima	ate p-value	2.8067E-8							
20												
	Statistical	ly significa	nt evidenc	e of a decr	easing							
	trend at th	e specifie	d level of s	ignificance).							
51							1	1	1	1	1	1

	A	В	С	D	Е		F	G	Н		J	К	L
1				Mann-Ker	dall Trend	Test A	nalys	is					
2	Use	er Selecteo	d Options		05 TCE (si								
3	Date/Ti	me of Con		ProUCL 5	11/31/2019	5:20:	11 PN						
4		F	From File	WorkShee	et.xls								
5		Full F	Precision	OFF									
6	Cor	fidence C	oefficient	0.95									
7	Le	evel of Sig	nificance	0.05									
8													
9			C1										
10													
11			eneral Stat										
12	Numbe			s Not Used									
13				ted Events	53								
14		Number	r Values Re	eported (n)	53								
15				Minimum	0.3								
16				Maximum	97								
17				Mean	13.78								
18			Geom	etric Mean	10.59								
19				Median	12.2								
20				d Deviation	13.01								
21		C	coefficient o	of Variation	0.944								
22			nn-Kendal	II Teet									
23		ма			647								
24				t Value (S)									
25		<u></u>		alue (0.05)	-1.645 130.4								
26				Value of S	-4.955								
27		Sta		ate p-value									
28			Approxima	ate p-value	3.000/E-/								
29	Statistics	h olanifica	nt ovidor a		occina								
30				ce of a decr significance									
31	u enu at tr	e specifie	u level of s	synncance									

	A	В	С	D	E	F	G	Н	I	J	К	L
1				Mann-Ken	dall Trend	Test Anal	ysis					
2	Use	er Selected	Options	-		since 201						
3	Date/Ti	me of Com	nputation	ProUCL 5.	12/1/2019	8:29:12 AM	N					
4			rom File	WorkShee	t.xls							
5		Full F	Precision	OFF								
6		nfidence Co		0.95								
7	Le	evel of Sig	nificance	0.05								
8									1	1		
9			C1									
10												
11			neral Statis									
12	Numbe			s Not Used	0							
13				ted Events	27							
14		Number	Values Re	eported (n)	27 0.3							
15				Minimum								
16				Maximum Mean	19.8 9.723							
17			Coom	etric Mean	7.55							
18			Geom	Median	9.88							
19			Standard	d Deviation	4.783							
20		C		of Variation	0.492							
21		0		or variation	0.432							
22		Man	n-Kendall	Test								
23				t Value (S)	-201							
24				alue (0.05)	-1.645							
25 26		Sta		viation of S	47.97							
26 27		Sta	ndardized	Value of S	-4.169							
27			Approxima	ate p-value	1.5271E-5							
20												
	trend at th	e specifie	d level of s	ignificance								
51		d at the specified level of significance.										

	A	В	С	D	Е	F	G	Н	I	J	К	L
1				Mann-Ker	ndall Trend	Test Anal	ysis					
2	Use	er Selected	l Options	-	05 Tritiui							
3	Date/Ti	me of Corr	nputation	ProUCL 5.	12/1/2019	8:57:45 AN	Л					
4		F	rom File	WorkShee	et.xls							
5		Full F	Precision	OFF								
6		fidence Co		0.95								
7	Le	evel of Sig	nificance	0.05								
8								1	1	1		
9			C1									
10												
11			neral Statis									
12	Numbe	•		s Not Used	0							
13				ted Events	42							
14		Number	r Values Re	• • • •	42 2690							
15				Minimum Maximum								
16				Maximum	32502							
17			Coom	etric Mean	17239							
18			Geom	Median	15450							
19			Standard	d Deviation	52936							
20		C	oefficient c		1.629							
21		0		or variation	1.020							
22		Man	n-Kendall	Test								
23				t Value (S)	-695							
24 25				alue (0.05)	-1.645							
25 26		Sta		viation of S	92.27							
20		Sta	Indardized	Value of S	-7.521							
27			Approxima	ate p-value	2.715E-14							
29												
	Statistically significant evidence of a decreasing											
	trend at th	e specifie	d level of s	ignificance).							
51		at the specified level of significance.										

	A	В	С	D	Е	F	G	Н	J	К	L
1				Mann-Ken	dall Trend	Test Anal	ysis				
2	Use	er Selected	Options	Seep 060							
3	Date/Ti	me of Com	nputation	ProUCL 5.	11/31/201	9 5:22:09 F	PM				
4		F	rom File	WorkShee	t.xls						
5		Full F	Precision	OFF							
6		nfidence Co		0.95							
7	L	evel of Sigr	nificance	0.05							
8											
9			C1								
10											
11			neral Statis								
12	Numbe		rted Events		0						
13			of Generat		37						
14		Number	Values Re		37						
15				Minimum	0.15						
16				Maximum	9.01						
17				Mean	3.039						
18			Geom	etric Mean	1.731						
19				Median	1.88						
20		-		Deviation	2.669						
21		U	oefficient o	r variation	0.878						
22		Man	n-Kendall	Teet							
23		Man		Value (S)	-179						
24					-1.645						
25		Critical Value (0.05) -1.64 Standard Deviation of S 76.4									
26	Standard Deviation of S 76.4 Standardized Value of S -2.33										
27		Approximate p-value 0.0099									
28											
29	Statistically significant evidence of a decreasing										
50				ignificance							
31		ie sheriner		grincarice	•						

	A	В	С	D	Е	F	G	Н	I	J	К	L
1				Mann-Ker	idall Trenc	Test Ana	ysis					
2	Use	er Selected	Options			since 201						
3	Date/Ti	me of Corr	nputation	ProUCL 5.	12/1/2019	8:30:54 A	N					
4			rom File	WorkShee	et.xls							
5		Full F	Precision	OFF								
6		nfidence Co		0.95								
7	L	evel of Sig	nificance	0.05								
8									1	1		
9			C1									
10												
11			neral Statis									
12	Numbe			s Not Used	0							
13				ted Events	28							
14		Number	Values Re	eported (n)	28 0.16							
15				Minimum	9.01							
16				Maximum Mean	9.01 3.017							
17			Caam	etric Mean	1.641							
18			Geom	Median	1.845							
19			Standard	d Deviation	2.749							
20		C		of Variation	0.911							
21		0		vanadori	0.011							
22		Man	n-Kendall	Test								
23				t Value (S)	-160							
24				alue (0.05)	-1.645							
25 26		Sta		viation of S	50.53							
26 27		Sta	ndardized	Value of S	-3.147							
27			Approxima	ate p-value	8.2587E-4							
20												
	30 Statistically significant evidence of a decreasing											
	trend at th	e specifie	d level of s	ignificance).							
51		d at the specified level of significance.										

	A B	С	D	E	F	G	Н	I	J	К	L
1			Mann-Ker	dall Trend	Test Anal	ysis					
2	User Selected		-	06 Tritiur							
3	Date/Time of Corr	nputation	ProUCL 5.	12/1/2019	8:59:03 AN	Λ					
4	F		WorkShee	et.xls							
5	Full F	Precision	OFF								
6	Confidence Co	oefficient	0.95								
7	Level of Sig	nificance	0.05								
8											
9		C1									
10											
11		neral Statis									
12	Number or Repor			0							
13		of Generat		26							
14	Number	r Values Re	ported (n)	26							
15			Minimum	1360							
16											
17			Mean	16253							
18		Geome	etric Mean	7307							
19			Median	5670							
20			Deviation	32914							
21	С	oefficient of	f Variation	2.025							
22											
23	Man	n-Kendall									
24			Value (S)								
25		Critical Va	. ,	-1.645							
26		andard Dev		45.36							
27		Indardized V		-5.269							
28		Approxima	te p-value	6.8506E-8							
29											
50	Statistically significa										
31	trend at the specified	d level of si	ignificance).							

	A B	C D		E	F	G	Н	I	J	К	L
1		Manr	n-Ken	dall Trend	Test Anal	ysis					
2	User Selected O	options See	p 060)7 TCE (since 200)5)					
3	Date/Time of Compu	utation ProU	CL 5.	11/31/2019	9 5:24:00 F	M					
4	Fro		Sheet	t.xls							
5	Full Pre										
6	Confidence Coef	fficient 0.95									
7	Level of Signifi	icance 0.05									
8											
9		C1									
10											
11		ral Statistics									
12	Number or Reporte			0							
13		Generated Ev		52							
14	Number V	alues Reporte	• •	52							
15		Minir	-	0.51							
16		Maxir		13							
17			<i>l</i> lean	5.727							
18		Geometric M		4.851							
19		-	edian	5.085							
20		Standard Devia		2.879							
21	Сое	efficient of Varia	ation	0.503							
22											
23		Kendall Test	(2)								
24		M-K Test Value	. ,	-401							
25		Critical Value (0		-1.645							
26		dard Deviation	126.7								
27		ardized Value	-3.157								
28	Aŗ	7.9830E-4									
29											
50	Statistically significant			-							
31	trend at the specified le	evel of signific	ance	•							

	A	В	С	D	E	F	G	Н		J	K	L
1				Mann-Ker	ndall Trend	Test Anal	ysis					
2	Use	er Selected	Options	-		since 201						
3	Date/Ti	me of Corr	nputation	ProUCL 5.	12/1/2019	8:32:44 AM	N					
4		F	rom File	WorkShee	et.xls							
5		Full F	Precision	OFF								
6		nfidence Co		0.95								
7	L	evel of Sig	nificance	0.05								
8												
9			C1									
10												
11			neral Statis									
12	Numbe		rted Events		0							
13			of Genera		28							
14		Number	Values Re		28							
15				Minimum	0.51							
16				Maximum	9.95							
17				Mean	4.948							
18			Geom	etric Mean	4.033							
19				Median	4.865							
20				Deviation	2.546							
21		U	oefficient o	or variation	0.515							
22		Mon	n-Kendall	Toot								
23		Mai		t Value (S)	-178							
24				• • •	-1/8							
25		Critical Value (0.05) -1.64 Standard Deviation of S 50.6										
26	Standard Deviation of S 50.02 Standardized Value of S -3.497											
27		Approximate p-value 2.3535E-										
28												
29	Statistically significant evidence of a decreasing											
50				ignificance								
31	a ona at ti	o sheeiiigi		Sumeance								

	A B	С	D	E	F	G	Н	I	J	К	L
1		Ν	Mann-Ker	dall Trend	Test Anal	ysis					
2	User Selected		-	07 Tritiur							
3	Date/Time of Com	putation F	ProUCL 5.	12/1/2019	9:00:26 AN	Λ					
4	F		NorkShee	et.xls							
5	Full P	Precision (OFF								
6	Confidence Co	pefficient C).95								
7	Level of Sign	nificance (0.05								
8											
9		C1									
10											
11		neral Statist									
12	Number or Report			0							
13		of Generate		41							
14	Number	Values Rep		41							
15			Minimum	2080							
16		Ν	Maximum								
17			Mean	12240							
18		Geomet	tric Mean	6872							
19		-	Median	5750							
20	-	Standard I		22595							
21	Co	oefficient of	Variation	1.846							
22											
23	Man	n-Kendall T									
24		M-K Test	• •								
25		Critical Val	. ,	-1.645							
26		indard Devia		89.03							
27		ndardized V		-6.717							
28		Approximate	9.267E-12								
29	A										
50	Statistically significant										
31	trend at the specified	d level of sig	gnificance).							

	А	В	С	D	E	F	G	Н	J	K	L
1				Mann-Ken	dall Trend	Test Anal	ysis				
2	Use	er Selected	l Options	Seep 061							
3	Date/Ti	me of Corr	nputation	ProUCL 5.	11/30/2019	9 4:07:03 F	PM				
4		F	rom File	WorkShee	t.xls						
5		Full F	Precision	OFF							
6	Cor	nfidence Co	oefficient	0.95							
7	Le	evel of Sigi	nificance	0.05							
8											
9			C1								
10											
11			neral Statis								
12	Numbe		rted Events		0						
13			of Genera		43						
14		Number	r Values Re		43						
15				Minimum	0.59						
16				Maximum	4.7						
17				Mean	1.97						
18			Geom	etric Mean	1.82						
19				Median	2						
20				I Deviation	0.755						
21		С	oefficient c	of Variation	0.383						
22											
23		Man	n-Kendall								
24				t Value (S)	-246						
25		Critical Value (0.05) -1.64									
26	Standard Deviation of S 95.52 Standardized Value of S -2.56										
27					-2.565						
28	Approximate p-value 0.00516										
29	Statistically significant evidence of a decreasing										
50					-						
31	trend at th	e specifie	d level of s	ignificance	•						

	A	В	С	D	E	F	G	Н	I	J	К	L
1			-	Mann-Ken	dall Trend	Test Anal	ysis	-	-	-	-	
2	Use	er Selected	Options	Seep 061	7 TCE							
3	Date/Ti	me of Corr	nputation	ProUCL 5.	11/30/201	9 4:02:49 F	M					
4		F	rom File	WorkShee	t.xls							
5		Full F	Precision	OFF								
6	Cor	nfidence Co	pefficient	0.95								
7	Le	evel of Sigr	nificance	0.05								
8												
9			C1									
10												
11			neral Statis									
12	Numbe	er or Repor			0							
13			of Genera		41							
14		Number	Values Re		41							
15				Minimum	1.84							
16				Maximum	10.4							
17				Mean	7							
18			Geom	etric Mean	6.56							
19				Median	7.76							
20				Deviation	2.189							
21		С	oefficient c	f Variation	0.313							
22				- .								
23		Man	n-Kendall									
24				t Value (S)	-74							
25		<u> </u>		alue (0.05)	-1.645							
26			andard Dev		89.01							
27			indardized		-0.82							
28			Approxima	ate p-value	0.206							
29												
30		nsufficient evidence to identify a significant trend at the specified level of significance.										
31	trend at t	he specifie	d level of s	significance) .							

Appendix C

2018 Groundwater Elevations

This page intentionally left blank

Well ID	Date/Time	Elevation of Top of Casing (ft AMSL)	Depth from Top of Casing (ft)	Groundwater Elevation (ft AMSL)
0353	2018-01-29 09:33:00	- 745.33	1.58	743.75
0355	2018-07-30 09:34:00	745.55	4.88	740.45
	2018-01-10 00:00:00		25.55	679.56
	2018-02-13 00:00:00		23.98	681.13
	2018-03-15 00:00:00		21.86	683.25
	2018-04-11 00:00:00		19.44	685.67
	2018-05-29 00:00:00		24.50	680.61
0400	2018-06-13 00:00:00	705.11	24.76	680.35
	2018-07-10 00:00:00		24.77	680.34
	2018-08-02 00:00:00		25.59	679.52
	2018-09-13 00:00:00		23.78	681.33
	2018-09-19 00:00:00		24.00	681.11
	2018-10-16 00:00:00		25.06	680.05
	2018-01-10 00:00:00		24.34	679.68
	2018-02-06 12:15:00		24.55	679.47
	2018-02-13 00:00:00		22.81	681.21
	2018-03-15 00:00:00		20.76	683.26
	2018-04-11 00:00:00		18.43	685.59
	2018-05-01 10:20:00		21.62	682.40
	2018-05-29 00:00:00		23.32	680.70
0402	2018-06-13 00:00:00	704.02	23.53	680.49
	2018-07-10 00:00:00		23.60	680.42
	2018-08-02 00:00:00		24.39	679.63
	2018-08-08 13:10:00		24.75	679.27
	2018-09-13 00:00:00		22.56	681.46
	2018-09-19 00:00:00		22.83	681.19
	2018-10-16 00:00:00		23.87	680.15
F	2018-11-07 10:00:00		20.90	683.12
0444	2018-01-30 11:00:00	000 57	15.58	820.99
0411	2018-08-09 12:15:00	836.57	29.11	807.46
0440	2018-01-30 10:30:00	050 70	25.71	833.07
0443	2018-07-30 10:35:00	858.78	water level was below	w the top of the pump
0444	2018-01-30 09:05:00	770.00	20.10	752.90
0444	2018-07-30 12:40:00	773.00	24.80	748.20
0445	2018-01-29 13:00:00	740.40	14.50	728.93
0445	2018-07-30 13:31:00	743.43	15.70	727.73

Abbreviation:

ft AMSL = feet above mean sea level

Well ID	Date/Time	Elevation of Top of Casing (ft AMSL)	Depth from Top of Casing (ft)	Groundwater Elevation (ft AMSL)
	2018-01-31 12:09:00		22.02	682.84
0440	2018-04-23 09:52:00		20.88	683.98
0118	2018-07-31 13:00:00	704.86	24.12	680.74
	2018-10-29 13:47:00		24.12	680.74
	2018-01-30 13:46:00		23.33	681.79
	2018-04-23 11:56:00		21.56	683.56
0124	2018-07-30 12:55:00	705.12	25.14	679.98
	2018-10-30 10:18:00		25.28	679.84
	2018-01-10 00:00:00		25.56	679.98
	2018-01-31 13:06:00		23.71	681.83
	2018-02-13 00:00:00		24.11	681.43
	2018-03-15 00:00:00		22.31	683.23
	2018-04-11 00:00:00		20.13	685.41
	2018-04-23 11:28:00		21.98	683.56
	2018-05-29 00:00:00	-	24.59	680.95
0126	2018-06-13 00:00:00	705.54	24.81	680.73
	2018-07-10 00:00:00	-	24.86	680.68
	2018-07-30 12:25:00	-	25.61	679.93
	2018-08-02 00:00:00	-	25.62	679.92
	2018-09-13 00:00:00	-	23.76	681.78
	2018-09-19 00:00:00	-	24.11	681.43
	2018-10-16 00:00:00		25.11	680.43
	2018-10-30 09:50:00	-	25.71	679.83
	2018-01-31 12:35:00		25.27	
	2018-04-23 09:15:00	 No top of casing elevation; 	24.15	No groundwater
0138	2018-07-30 13:31:00	temporary	27.20	elevations calculated
	2018-10-30 13:53:00	completion	27.28	-
	2018-02-01 10:19:00		42.22	681.77
	2018-04-24 12:40:00		40.55	683.44
0315	2018-08-02 09:00:00	723.99	44.10	679.89
	2018-10-29 11:25:00		44.15	679.84
	2018-01-30 13:20:00		13.80	729.17
	2018-02-08 09:05:00	1 1	13.89	729.08
0346	2018-04-25 10:20:00	742.97	12.20	730.77
	2018-08-01 13:03:00		14.66	728.31
	2018-10-29 09:58:00		15.18	727.79
	2018-02-01 09:40:00		43.43	681.77
00.47	2018-04-24 13:11:00	705.00	41.75	683.45
0347	2018-08-02 09:53:00	- 725.20 -	45.35	679.85
	2018-10-29 12:31:00		45.37	679.83

Table C-2. Parcels 6, 7, and 8 Groundwater Elevations

Well ID	Date/Time	Elevation of Top of Casing (ft AMSL)	Depth from Top of Casing (ft)	Groundwater Elevation (ft AMSL)
	2018-01-10 00:00:00		36.16	679.95
	2018-01-30 12:50:00		34.36	681.75
-	2018-02-08 09:50:00		34.62	681.49
	2018-02-13 00:00:00		34.75	681.36
	2018-03-15 00:00:00		32.85	683.26
-	2018-04-11 00:00:00		30.62	685.49
	2018-04-25 11:50:00		32.80	683.31
-	2018-05-02 13:34:00		33.70	682.41
-	2018-05-29 00:00:00		35.16	680.95
0379	2018-06-13 00:00:00	716.11	35.38	680.73
	2018-07-10 00:00:00		35.42	680.69
-	2018-07-31 13:28:00		36.25	679.86
	2018-08-02 00:00:00		36.20	679.91
-	2018-08-07 13:13:00		36.37	679.74
-	2018-09-13 00:00:00		34.33	681.78
-	2018-09-19 00:00:00		34.64	681.47
	2018-10-16 00:00:00		35.69	680.42
-	2018-10-29 14:20:00		36.27	679.84
-	2018-11-07 09:28:00		32.56	683.55
	2018-01-31 10:05:00		42.87	681.92
0000	2018-04-24 10:48:00	704 70	41.28	683.51
0386	2018-08-01 10:32:00	724.79	44.90	679.89
-	2018-10-30 12:11:00		44.98	679.81
	2018-01-31 09:13:00		39.16	681.73
0207	2018-04-24 09:53:00	700.00	37.50	683.39
0387	2018-08-01 09:45:00	720.89	41.10	679.79
ľ	2018-10-30 12:53:00		41.12	679.77
	2018-01-31 09:44:00		42.88	681.77
0000	2018-04-24 10:23:00	704.05	41.20	683.45
0389	2018-08-01 10:05:00	724.65	44.75	679.90
ľ	2018-10-30 12:30:00		44.65	680.00
	2018-01-31 08:55:00		38.97	681.87
0000	2018-04-24 09:21:00	700.04	37.30	683.54
0392	2018-08-01 09:25:00	720.84	40.85	679.99
ľ	2018-10-30 13:22:00] [40.93	679.91

Table C-2. Parcels 6, 7, and 8 Groundwater Elevations (continued)

Abbreviation:

ft AMSL = feet above mean sea level

This page intentionally left blank

Appendix D

2018 Groundwater and Seep Data Tables

This page intentionally left blank

Location	Analyte	Sample Date	Value	Detection Limit	Laboratory Qualifiers	Validation Qualifiers	Units	Sample Type
0353	ais 1.2 Dichlereathana	1/29/2018	0.16	0.16	U		µg/L	F
0355	cis-1,2-Dichloroethene	7/30/2018	0.16	0.16	U		µg/L	F
0353	Disselved everyon	1/29/2018	4.5				mg/L	F
0355	Dissolved oxygen	7/30/2018	0.59				mg/L	F
0353	Oxidation-reduction potential	1/29/2018	139.8				mV	F
0355		7/30/2018	38.7				mV	F
0353	pH	1/29/2018	7.28				s.u.	F
0353	рн	7/30/2018	7.08				s.u.	F
0252	Specific conductorses	1/29/2018	1330				µmho/cm	F
0353	Specific conductance	7/30/2018	1230				µmho/cm	F
0353	T	1/29/2018	9				°C	F
0353	Temperature	7/30/2018	16.6				°C	F
0353	Tetrachloroethene	1/29/2018	0.16	0.16	U		µg/L	F
0355		7/30/2018	0.16	0.16	U		µg/L	F
0353		1/29/2018	0.16	0.16	U		µg/L	F
0353	trans-1,2-Dichloroethene	7/30/2018	0.16	0.16	U		µg/L	F
0353	Trichloroethene	1/29/2018	0.16	0.16	U		µg/L	F
0355	Inchioroethene	7/30/2018	0.16	0.16	U		µg/L	F
0353	Turbidity	1/29/2018	19.3				NTU	F
0355	Turblaty	7/30/2018	8.71				NTU	F
0353	Vinyl chloride	1/29/2018	0.16	0.16	U		µg/L	F
0355		7/30/2018	0.16	0.16	U		µg/L	F
		1/30/2018	0.84	0.16	J		µg/L	F
0411	cis-1,2-Dichloroethene	8/9/2018	2.11	0.16			µg/L	D
		8/9/2018	2.08	0.16			µg/L	F
0411	Dissolved oxygen	1/30/2018	1.62				mg/L	F
0411		8/9/2018	1.44				mg/L	F

Table D-1. Phase I Groundwater Data

Location	Analyte	Sample Date	Value	Detection Limit	Laboratory Qualifiers	Validation Qualifiers	Units	Sample Type
0411	Oxidation–reduction potential	1/30/2018	106.7				mV	F
0411	Oxidation-reduction potential	8/9/2018	150.6				mV	F
0411	pH	1/30/2018	7.08				s.u.	F
0411	рн	8/9/2018	7.08				s.u.	F
0411	Specific conductores	1/30/2018	1310				µmho/cm	F
0411	Specific conductance	8/9/2018	6950				µmho/cm	F
0411	Tomporaturo	1/30/2018	10.7				°C	F
0411	Temperature	8/9/2018	14.8				°C	F
		1/30/2018	0.16	0.16	U		µg/L	F
0411	Tetrachloroethene	8/9/2018	0.16	0.16	U		µg/L	D
		8/9/2018	0.16	0.16	U		µg/L	F
	<i>trans</i> -1,2-Dichloroethene	1/30/2018	0.16	0.16	U		µg/L	F
0411		8/9/2018	0.16	0.16	U		µg/L	D
		8/9/2018	0.16	0.16	U		µg/L	F
		1/30/2018	10.1	0.16			µg/L	F
0411	Trichloroethene	8/9/2018	8.87	0.16			µg/L	D
		8/9/2018	9.01	0.16	16 U μg/L 16 U μg/L 16 μg/L NTU NTU	F		
0411	Turbidity	1/30/2018	25.4				NTU	F
0411	Turblaty	8/9/2018	7.51				NTU	F
		1/30/2018	0.16	0.16	U		µg/L	F
0411	Vinyl chloride	8/9/2018	0.16	0.16	U		µg/L	D
		8/9/2018	0.16	0.16	U		µg/L	F
0443	<i>cis</i> -1,2-Dichloroethene	1/30/2018	0.39	0.16	J		µg/L	F
0443	CIS-1,2-Dichloroethene	7/30/2018	0.36	0.16	J		µg/L	F
0440	Disselved everyon	1/30/2018	3.18				mg/L	F
0443	Dissolved oxygen	7/30/2018	6.61				μg/L μg/L μg/L mg/L mg/L	F
0442	Ovidation reduction actuation	1/30/2018	78.7				mV	F
0443	Oxidation–reduction potential	7/30/2018	37.4				mV	F
0442		1/30/2018	7.07				s.u.	F
0443	рН	7/30/2018	7.07				s.u.	F

Location	Analyte	Sample Date	Value	Detection Limit	Laboratory Qualifiers	Validation Qualifiers	Units	Sample Type
0442	Specific conductorses	1/30/2018	1230				µmho/cm	F
0443	Specific conductance	7/30/2018	1370				µmho/cm	F
0442	Tamananahuna	1/30/2018	11.5				°C	F
0443	Temperature	7/30/2018	15.4				°C	F
0442		1/30/2018	0.16	0.16	U		µg/L	F
0443	Tetrachloroethene	7/30/2018	0.16	0.16	U		µg/L	F
0443	trans-1,2-Dichloroethene	1/30/2018	0.16	0.16	U		µg/L	F
0443	trans-1,2-Dichloroethene	7/30/2018	0.16	0.16	U		µg/L	F
0440	Trickland the set	1/30/2018	8.93	0.16			µg/L	F
0443	Trichloroethene	7/30/2018	6.38	0.16			µg/L	F
0440	To and it differs	1/30/2018	3.13				NTU	F
0443	Turbidity	7/30/2018	49.9				NTU	F
0443	Vinyl chloride	1/30/2018	0.16	0.16	U		µg/L	F
		7/30/2018	0.16	0.16	U		µg/L	F
0444		1/30/2018	0.16	0.16	U		µg/L	F
0444	cis-1,2-Dichloroethene	7/30/2018	0.16	0.16	U		µg/L	F
		1/30/2018	2.13				mg/L	F
0444	Dissolved oxygen	7/30/2018	4.69				mg/L	F
0444		1/30/2018	182.7				mV	F
0444	Oxidation-reduction potential	7/30/2018	31				mV	F
0444		1/30/2018	7.05				s.u.	F
0444	рН	7/30/2018	7.1				s.u.	F
0444		1/30/2018	1250				µmho/cm	F
0444	Specific conductance	7/30/2018	1230				µmho/cm	F
		1/30/2018	10.9				°C	F
0444	Temperature	7/30/2018	15.4				°C	F
	-	1/30/2018	0.16	0.16	U		µg/L	F
0444	Tetrachloroethene	7/30/2018	0.16	0.16	U		µg/L	F
0444		1/30/2018	0.16	0.16	U		µg/L	F
0444	trans-1,2-Dichloroethene	7/30/2018	0.16	0.16	U		µg/L	F

Location	Analyte	Sample Date	Value	Detection Limit	Laboratory Qualifiers	Validation Qualifiers	Units	Sample Type
0444	Trichloroethene	1/30/2018	0.16	0.16	U		µg/L	F
0444	Inchioroethene	7/30/2018	0.16	0.16	U		µg/L	F
0444	T. ukidit.	1/30/2018	32.6				NTU	F
0444	Turbidity	7/30/2018	4.57				NTU	F
0444	Vinul chlorido	1/30/2018	0.16	0.16	U		µg/L	F
0444	Vinyl chloride	7/30/2018	0.16	0.16	U		µg/L	F
0445	<i>cis</i> -1,2-Dichloroethene	1/29/2018	0.16	0.16	U		µg/L	F
0445	Cis-1,2-Dichloroetherie	7/30/2018	0.16	0.16	U		µg/L	F
0445	Disashad sugar	1/29/2018	1.67				mg/L	F
0445	Dissolved oxygen	7/30/2018	0.21				mg/L	F
0445	Oxidation-reduction potential	1/29/2018	-26.4				mV	F
0445		7/30/2018	-116.3				mV	F
0445	рН	1/29/2018	7.19				s.u.	F
0445		7/30/2018	7.17				s.u.	F
0445		1/29/2018	1511				µmho/cm	F
0445	Specific conductance	7/30/2018	18140				µmho/cm	F
0445	- ,	1/29/2018	10.5				°C	F
0445	Temperature	7/30/2018	16.2				°C	F
0445	Tetrachloroethene	1/29/2018	0.16	0.16	U		µg/L	F
0445	retrachioroethene	7/30/2018	0.16	0.16	U		µg/L	F
0445	trans-1,2-Dichloroethene	1/29/2018	0.16	0.16	U		µg/L	F
0445	trans-1,2-Dictioroethene	7/30/2018	0.16	0.16	U		µg/L	F
0445	Trichloroethene	1/29/2018	0.16	0.16	U		µg/L	F
0445	Inchioroethene	7/30/2018	0.16	0.16	U		µg/L	F
0445	Turbidity	1/29/2018	5				NTU	F
0440		7/30/2018	9.93				NTU	F
0445	Vipul chlorido	1/29/2018	0.16	0.16	U		µg/L	F
0440	Vinyl chloride	7/30/2018	0.16	0.16	U		µg/L	F

Location	Analyte	Sample Date	Value	Detection Limit	Laboratory Qualifiers	Validation Qualifiers	Units	Sample Type
		1/30/2018	0.16	0.16	U		µg/L	F
P064	ais 1.2 Dichleresthere	1/30/2018	0.16	0.16	U		μg/L	D
P004	cis-1,2-Dichloroethene	7/31/2018	0.36	0.16	J		µg/L	F
		7/31/2018	0.36	0.16	J		µg/L	D
P064	Disselved evygen	1/30/2018	2.85				mg/L	F
P004	Dissolved oxygen	7/31/2018	2.43				mg/L	F
P064	Ovidation reduction potential	1/30/2018	184.7				mV	F
P004	Oxidation–reduction potential	7/31/2018	71				mV	F
P064	рН	1/30/2018	6.96				mg/L mV mV s.u. s.u. µmho/cm µmho/cm °C °C µg/L µg/L	F
P004	рн	7/31/2018	6.79				s.u.	F
P064	Specific conductance	1/30/2018	1400				µmho/cm	F
		7/31/2018	1240				µmho/cm	F
P064	Temperature	1/30/2018	11.7				°C	F
P064		7/31/2018	14.2				°C	F
	-	1/30/2018	0.73	0.16	J		µg/L	D
P064		1/30/2018	0.72	0.16	J		µg/L	F
P004	Tetrachloroethene	7/31/2018	0.8	0.16	J		µg/L	F
		7/31/2018	0.67	0.16	J		µg/L	D
		1/30/2018	0.16	0.16	U		µg/L	D
P064	trans 1.2 Disblara athana	1/30/2018	0.16	0.16	U		µg/L	F
P004	trans-1,2-Dichloroethene	7/31/2018	0.16	0.16	U		µg/L	F
		7/31/2018	0.16	0.16	U		µg/L	D
		1/30/2018	1.12	0.16			µg/L	D
D064	Trichloroethene	1/30/2018	1.14	0.16			µg/L	F
P064		7/31/2018	1.12	0.16			µg/L	F
		7/31/2018	1.1	0.16			µg/L	D
DOG4	Turbidity	1/30/2018	17.8				NTU	F
P064	Turbidity	7/31/2018	2.29				NTU	F

Table D-1. Phase I Groundwater Data (continued)

Location	Analyte	Sample Date	Value	Detection Limit	Laboratory Qualifiers	Validation Qualifiers	Units	Sample Type
	P064 Vinyl chloride	1/30/2018	0.16	0.16	U		µg/L	D
5004		1/30/2018	0.16	0.16	U		µg/L	F
P004		7/31/2018	0.16	0.16	U		µg/L	F
		7/31/2018	0.16	0.16	U		µg/L	D

Abbreviations:

D = analyte determined in diluted sample F = low flow sampling method used

J = estimated value

 μ g/L = micrograms per liter μ mho/cm = micromhos per centimeter

mg/L = milligrams per liter

mV = millivolts

pCi/L = picocuries per liter Q = quantitative result due to sampling technique

s.u. = standard unit

U = analytical result below detection limit

Location	Analyte	Sample Date	Value	Detection Limit	Laboratory Qualifiers	Validation Qualifiers	Units	Sample Type
		1/31/2018	0.16	0.16	U		µg/L	F
0118	<i>cis</i> -1,2-Dichloroethene	4/23/2018	0.16	0.16	U		µg/L	F
0110	C/S-1,2-Dichloroethene	7/31/2018	0.16	0.16	U		µg/L	F
		10/29/2018	0.16	0.16	U		µg/L	F
		1/31/2018	5.8				mg/L	F
0118	Dissolved oxygen	4/23/2018	7.41				mg/L	F
0110	Dissolved oxygen	7/31/2018	6.61				mg/L	F
		10/29/2018	6.69				mg/L	F
		1/31/2018	255.5				mV	F
0118	Oxidation-reduction potential	4/23/2018	59.9				mV	F
0110	Oxidation-reduction potential	7/31/2018	63.3				mV	F
		10/29/2018	157.7				mV	F
		1/31/2018	7.22				s.u.	F
0110		4/23/2018	7.17				s.u.	F
0118	рН	7/31/2018	7.01				s.u.	F
		10/29/2018	7.26				s.u.	F
		1/31/2018	1100				µmho/cm	F
0118		4/23/2018	1120				µmho/cm	F
0110	Specific conductance	7/31/2018	1090				µmho/cm	F
		10/29/2018	1120				µmho/cm	F
		1/31/2018	13.8				°C	F
0118	Tomporatura	4/23/2018	13.8				°C	F
0118	Temperature	7/31/2018	14.5				°C	F
		10/29/2018	14.3				°C	F
		1/31/2018	0.16	0.16	U		µg/L	F
0118	Tatraphlaracthana	4/23/2018	0.16	0.16	U		µg/L	F
UIIð	Tetrachloroethene	7/31/2018	0.16	0.16	U		µg/L	F
		10/29/2018	0.16	0.16	U		µg/L	F

Table D-2. Parcels 6, 7, and 8 Groundwater Data

Location	Analyte	Sample Date	Value	Detection Limit	Laboratory Qualifiers	Validation Qualifiers	Units	Sample Type
		1/31/2018	0.16	0.16	U		µg/L	F
0118	trans-1,2-Dichloroethene	4/23/2018	0.16	0.16	U		µg/L	F
0110		7/31/2018	0.16	0.16	U		µg/L	F
		10/29/2018	0.16	0.16	U		µg/L	F
		1/31/2018	0.16	0.16	U		µg/L	F
0118	Trichloroethene	4/23/2018	0.16	0.16	U		µg/L	F
0110	Inchioroethene	7/31/2018	0.16	0.16	U		µg/L	F
		10/29/2018	0.16	0.16	U		µg/L	F
0118	Triticura	1/31/2018	92.6	278	U		pCi/L	F
0118	Tritium	7/31/2018	-43.9	325	U		pCi/L	F
		1/31/2018	5.43				NTU	F
0110	To sub-indite a	4/23/2018	3.98				NTU	F
0118	Turbidity	7/31/2018	11.8				NTU	F
		10/29/2018	37.9				NTU	F
		1/31/2018	0.16	0.16	U		µg/L	F
0440	Vieval oblazida	4/23/2018	0.16	0.16	U		µg/L	F
0118	Vinyl chloride	7/31/2018	0.16	0.16	U		µg/L	F
		10/29/2018	0.16	0.16	U		µg/L	F
		1/30/2018	0.16	0.16	U		µg/L	F
0404		4/23/2018	0.16	0.16	U		µg/L	F
0124	cis-1,2-Dichloroethene	7/30/2018	0.16	0.16	U		µg/L	F
		10/30/2018	0.16	0.16	U		µg/L	F
		1/30/2018	2.51				mg/L	F
0404	Disashashashasa	4/23/2018	3.19				mg/L	F
0124	Dissolved oxygen	7/30/2018	2.84				mg/L	F
		10/30/2018	5.76				mg/L	F
		1/30/2018	163.6				mV	F
0104	Ovidation raduation notartial	4/23/2018	64.1				mV	F
0124	Oxidation–reduction potential	7/30/2018	109.7				mV	F
		10/30/2018	166.2				mV	F

Location	Analyte	Sample Date	Value	Detection Limit	Laboratory Qualifiers	Validation Qualifiers	Units	Sample Type
		1/30/2018	6.96				s.u.	F
0124	pН	4/23/2018	6.88				s.u.	F
0124	pΠ	7/30/2018	6.95				s.u.	F
		10/30/2018	6.94				s.u.	F
		1/30/2018	1160				µmho/cm	F
0124	Chapifia conductores	4/23/2018	1190				µmho/cm	F
0124	Specific conductance	7/30/2018	1250				µmho/cm	F
		10/30/2018	1250				µmho/cm	F
		1/30/2018	13.2				°C	F
0404	T	4/23/2018	13.6				°C	F
0124	Temperature	7/30/2018	14.4				°C	F
		10/30/2018	13.8				°C	F
		1/30/2018	0.16	0.16	U		µg/L	F
0404	T - 4	4/23/2018	0.16	0.16	U		µg/L	F
0124	Tetrachloroethene	7/30/2018	0.16	0.16	U		µg/L	F
		10/30/2018	0.16	0.16	U		µg/L	F
		1/30/2018	0.16	0.16	U		µg/L	F
0404		4/23/2018	0.16	0.16	U		µg/L	F
0124	trans-1,2-Dichloroethene	7/30/2018	0.16	0.16	U		µg/L	F
		10/30/2018	0.16	0.16	U		µg/L	F
		1/30/2018	0.16	0.16	U		µg/L	F
0404	T · · · · ·	4/23/2018	0.16	0.16	U		µg/L	F
0124	Trichloroethene	7/30/2018	0.16	0.16	U		µg/L	F
		10/30/2018	0.16	0.16	U		µg/L	F
		1/30/2018	6.86				NTU	F
0404	To sub-Salita a	4/23/2018	1.44				NTU	F
0124	Turbidity	7/30/2018	1.49				NTU	F
		10/30/2018	1.89				NTU	F

Location	Analyte	Sample Date	Value	Detection Limit	Laboratory Qualifiers	Validation Qualifiers	Units	Sample Type
		1/30/2018	0.16	0.16	U		µg/L	F
0124	Vinyl chloride	4/23/2018	0.16	0.16	U		µg/L	F
0124	Vinyi chionde	7/30/2018	0.16	0.16	U		µg/L	F
		10/30/2018	0.16	0.16	U		µg/L	F
		1/31/2018	0.16	0.16	U		µg/L	F
0126	<i>cis</i> -1,2-Dichloroethene	4/23/2018	0.16	0.16	U		µg/L	F
0120	cis-1,2-Dichloroethene	7/30/2018	0.16	0.16	U		µg/L	F
		10/30/2018	0.16	0.16	U		µg/L	F
		1/31/2018	2.39				mg/L	F
0400	Disashund any man	4/23/2018	0.39				mg/L	F
0126	Dissolved oxygen	7/30/2018	2.74				mg/L	F
		10/30/2018	2.67				mg/L	F
		1/31/2018	247.1				mV	F
0400		4/23/2018	54.9				mV	F
0126	Oxidation-reduction potential	7/30/2018	115.7				mV	F
		10/30/2018	198				mV	F
		1/31/2018	6.99				s.u.	F
0126	-11	4/23/2018	6.99				s.u.	F
0126	рН	7/30/2018	7.04				s.u.	F
		10/30/2018	6.91				s.u.	F
		1/31/2018	1210				µmho/cm	F
0400	Creatific conductors	4/23/2018	1250				µmho/cm	F
0126	Specific conductance	7/30/2018	1300				µmho/cm	F
		10/30/2018	1310				µmho/cm	F
		1/31/2018	13.5				°C	F
0126	Tomporatura	4/23/2018	13.7				°C	F
0120	Temperature	7/30/2018	14.8				°C	F
		10/30/2018	13.6				°C	F

Location	Analyte	Sample Date	Value	Detection Limit	Laboratory Qualifiers	Validation Qualifiers	Units	Sample Type
		1/31/2018	0.79	0.16	J		µg/L	F
0126	Tetrachloroethene	4/23/2018	0.85	0.16	J		µg/L	F
0120	retrachioroethene	7/30/2018	0.78	0.16	J		µg/L	F
		10/30/2018	0.87	0.16	J		µg/L	F
		1/31/2018	0.16	0.16	U		µg/L	F
0126	trans 1.2 Disblarasthans	4/23/2018	0.16	0.16	U		µg/L	F
0126	trans-1,2-Dichloroethene	7/30/2018	0.16	0.16	U		µg/L	F
		10/30/2018	0.16	0.16	U		µg/L	F
		1/31/2018	0.16	0.16	U		µg/L	F
0400	Tricklausethere	4/23/2018	0.16	0.16	U		µg/L	F
0126	Trichloroethene	7/30/2018	0.16	0.16	U		µg/L	F
		10/30/2018	0.16	0.16	U		µg/L	F
		1/31/2018	2.27				NTU	F
0400	To sub-Salita a	4/23/2018	0.43				NTU	F
0126	Turbidity	7/30/2018	0.32				NTU	F
		10/30/2018	0.43				NTU	F
		1/31/2018	0.16	0.16	U		µg/L	F
0400	Minud al-Larida	4/23/2018	0.16	0.16	U		µg/L	F
0126	Vinyl chloride	7/30/2018	0.16	0.16	U		µg/L	F
		10/30/2018	0.16	0.16	U		µg/L	F
		1/31/2018	0.16	0.16	U		µg/L	F
0400	ais 1.2 Disklamaathan a	4/23/2018	0.16	0.16	U		µg/L	F
0138	cis-1,2-Dichloroethene	7/30/2018	0.16	0.16	U		µg/L	F
		10/30/2018	0.16	0.16	U		µg/L	F
		1/31/2018	3.61				mg/L	F
0138	Disselved every	4/23/2018	7.97				mg/L	F
0138	Dissolved oxygen	7/30/2018	5.81				mg/L	F
		10/30/2018	2.95				mg/L	F

Location	Analyte	Sample Date	Value	Detection Limit	Laboratory Qualifiers	Validation Qualifiers	Units	Sample Type
		1/31/2018	247.6				mV	F
0138	Oxidation-reduction potential	4/23/2018	63.4				mV	F
0130		7/30/2018	125.9				mV	F
		10/30/2018	139.1				mV	F
		1/31/2018	7.1				s.u.	F
0138		4/23/2018	7.08				s.u.	F
0130	рН	7/30/2018	7.18				s.u.	F
		10/30/2018	7.21				s.u.	F
		1/31/2018	1160				µmho/cm	F
0400		4/23/2018	1200				µmho/cm	F
0138	Specific conductance	7/30/2018	1210				µmho/cm	F
		10/30/2018	1210				µmho/cm	F
		1/31/2018	12.6				°C	F
0400	Tamananatuma	4/23/2018	13.2				°C	F
0138	Temperature	7/30/2018	14.9				°C	F
		10/30/2018	16.1				°C	F
		1/31/2018	0.16	0.16	U		µg/L	F
0400		4/23/2018	0.16	0.16	U		µg/L	F
0138	Tetrachloroethene	7/30/2018	0.16	0.16	U		µg/L	F
		10/30/2018	0.16	0.16	U		µg/L	F
		1/31/2018	0.16	0.16	U		µg/L	F
0138	frame 4.2 Disklamethans	4/23/2018	0.16	0.16	U		µg/L	F
0138	<i>trans</i> -1,2-Dichloroethene	7/30/2018	0.16	0.16	U		µg/L	F
		10/30/2018	0.16	0.16	U		µg/L	F
		1/31/2018	0.16	0.16	U		µg/L	F
0400	Tricklassether	4/23/2018	0.16	0.16	U		µg/L	F
0138	Trichloroethene	7/30/2018	0.16	0.16	U		µg/L	F
		10/30/2018	0.16	0.16	U		µg/L	F
0120	Tritium	1/31/2018	250	280	U		pCi/L	F
0138	Tritium	7/30/2018	350	312		J	pCi/L	F

Location	Analyte	Sample Date	Value	Detection Limit	Laboratory Qualifiers	Validation Qualifiers	Units	Sample Type
		1/31/2018	4.24				NTU	F
0138	Turbidity	4/23/2018	1.66				NTU	F
0130	Tublaty	7/30/2018	10.2				NTU	F
		10/30/2018	3.8				NTU	F
		1/31/2018	0.16	0.16	U		µg/L	F
0138	Vinyl chloride	4/23/2018	0.16	0.16	U		µg/L	F
0130		7/30/2018	0.16	0.16	U		µg/L	F
		10/30/2018	0.16	0.16	U		μg/L	F
		2/1/2018	0.16	0.16	U		µg/L	F
0315	ais 1.2 Disblorgethene	4/24/2018	0.16	0.16	U		µg/L	F
0315	cis-1,2-Dichloroethene	8/2/2018	0.16	0.16	U		µg/L	F
		10/29/2018	0.16	0.16	U		µg/L	F
		2/1/2018	1.22				mg/L	F
0315	Disashuad auruman	4/24/2018	0.39				mg/L	F
0315	Dissolved oxygen	8/2/2018	2.04				mg/L	F
		10/29/2018	3.69				mg/L	F
		2/1/2018	4.7				mV	F
0315		4/24/2018	-53.2				mV	F
0315	Oxidation-reduction potential	8/2/2018	-43.8				mV	F
		10/29/2018	-60.6				mV	F
		2/1/2018	7.08				s.u.	F
0045		4/24/2018	7.12				s.u.	F
0315	рН	8/2/2018	7.15				s.u.	F
		10/29/2018	7.24				s.u.	F
		2/1/2018	1650				µmho/cm	F
0315	Specific conductorse	4/24/2018	1710				µmho/cm	F
0315	Specific conductance	8/2/2018	1760				µmho/cm	F
		10/29/2018	1750				µmho/cm	F

Location	Analyte	Sample Date	Value	Detection Limit	Laboratory Qualifiers	Validation Qualifiers	Units	Sample Type
		2/1/2018	13.5				С	F
0315	Temperature	4/24/2018	13.9				С	F
0315	remperature	8/2/2018	15.4				С	F
		10/29/2018	15				С	F
		2/1/2018	0.16	0.16	U		µg/L	F
0315	Tetrachloroethene	4/24/2018	0.16	0.16	U		µg/L	F
0315	retrachioroethene	8/2/2018	0.16	0.16	U		µg/L	F
		10/29/2018	0.16	0.16	U		µg/L	F
		2/1/2018	0.16	0.16	U		µg/L	F
0045	former d. O. Disklams athems	4/24/2018	0.16	0.16	U		µg/L	F
0315	trans-1,2-Dichloroethene	8/2/2018	0.16	0.16	U		µg/L	F
		10/29/2018	0.16	0.16	U		µg/L	F
		2/1/2018	5.21	0.16			µg/L	F
0045	Tricklens ath an a	4/24/2018	3.5	0.16			µg/L	F
0315	Trichloroethene	8/2/2018	4.12	0.16			µg/L	F
		10/29/2018	4.36	0.16			µg/L	F
		2/1/2018	101				NTU	F
0045	To use to the c	4/24/2018	611				NTU	F
0315	Turbidity	8/2/2018	42.5				NTU	F
		10/29/2018	132				NTU	F
		2/1/2018	0.16	0.16	U		µg/L	F
0045) (included a state	4/24/2018	0.16	0.16	U		µg/L	F
0315	Vinyl chloride	8/2/2018	0.16	0.16	U		µg/L	F
		10/29/2018	0.16	0.16	U		µg/L	F
		1/30/2018	0.16	0.16	U		µg/L	F
0240	aia 4 0 Diablara athan a	4/25/2018	0.16	0.16	U		µg/L	F
0346	cis-1,2-Dichloroethene	8/1/2018	0.16	0.16	U		µg/L	F
		10/29/2018	0.16	0.16	U		µg/L	F

Location	Analyte	Sample Date	Value	Detection Limit	Laboratory Qualifiers	Validation Qualifiers	Units	Sample Type
		1/30/2018	9.25				mg/L	F
		2/8/2018	2.2				mg/L	F
0346	Dissolved oxygen	4/25/2018	3.22				mg/L	F
		8/1/2018	3.67				mg/L	F
		10/29/2018	4.49				mg/L	F
		1/30/2018	141.2				mV	F
		2/8/2018	24.6				mV	F
0346	Oxidation-reduction potential	4/25/2018	40.2				mV	F
		8/1/2018	58.3				mV	F
		10/29/2018	227.8				mV	F
		1/30/2018	7.64				s.u.	F
		2/8/2018	7.25				s.u.	F
0346	рН	4/25/2018	7.22				s.u.	F
		8/1/2018	7.1				s.u.	F
		10/29/2018	7.08				s.u.	F
		1/30/2018	710				µmho/cm	F
		2/8/2018	1580				µmho/cm	F
0346	Specific conductance	4/25/2018	910				µmho/cm	F
		8/1/2018	400				µmho/cm	F
		10/29/2018	1110				µmho/cm	F
		1/30/2018	13.6				°C	F
		2/8/2018	13				°C	F
0346	Temperature	4/25/2018	13.1				°C	F
		8/1/2018	14.8				°C	F
		10/29/2018	14.4				°C	F
		1/30/2018	0.16	0.16	U		µg/L	F
0346	Tatraphlaraathana	4/25/2018	0.16	0.16	U		µg/L	F
0340	Tetrachloroethene	8/1/2018	0.16	0.16	U		µg/L	F
		10/29/2018	0.16	0.16	U		µg/L	F

Location	Analyte	Sample Date	Value	Detection Limit	Laboratory Qualifiers	Validation Qualifiers	Units	Sample Type
		1/30/2018	0.16	0.16	U		µg/L	F
0346	trans 1.2 Disblarasthans	4/25/2018	0.16	0.16	U		µg/L	F
0340	trans-1,2-Dichloroethene	8/1/2018	0.16	0.16	U		µg/L	F
		10/29/2018	0.16	0.16	U		µg/L	F
		1/30/2018	0.16	0.16	U		µg/L	F
0346	Trichloroethene	4/25/2018	0.16	0.16	U		µg/L	F
0340	Inchioroethene	8/1/2018	0.16	0.16	U		µg/L	F
		10/29/2018	0.16	0.16	U		µg/L	F
0346	Tritium	2/8/2018	377	255		J	pCi/L	F
0340	Tritium	8/1/2018	93.5	328	U		pCi/L	F
		1/30/2018	33				NTU	F
		2/8/2018	46.2				NTU	F
0346	Turbidity	4/25/2018	31.9				NTU	F
		8/1/2018	41.8				NTU	F
		10/29/2018	37.6				NTU	F F
		1/30/2018	0.16	0.16	U		µg/L	F
0240	Viend ablaviala	4/25/2018	0.16	0.16	U		µg/L	F
0346	Vinyl chloride	8/1/2018	0.16	0.16	U		µg/L	F
		10/29/2018	0.16	0.16	U		µg/L	F
		2/1/2018	0.16	0.16	U		µg/L	F
		2/1/2018	0.16	0.16	U		µg/L	D
00.47	sis 4.0 Disklass these	4/24/2018	0.16	0.16	U		µg/L	F
0347	<i>cis</i> -1,2-Dichloroethene	8/2/2018	0.16	0.16	U		µg/L	D
		8/2/2018	0.16	0.16	U		µg/L	F
		10/29/2018	0.16	0.16	U		µg/L	F
		2/1/2018	1.27				mg/L	F
0247	Discoluted output	4/24/2018	0.45				mg/L	F
0347	Dissolved oxygen	8/2/2018	1.77				mg/L	F
		10/29/2018	7.59				mg/L	F

Location	Analyte	Sample Date	Value	Detection Limit	Laboratory Qualifiers	Validation Qualifiers	Units	Sample Type
		2/1/2018	-21.6				mV	F
0347	Oxidation-reduction potential	4/24/2018	-42.1				mV	F
0347		8/2/2018	-31.8				mV	F
		10/29/2018	-38.1				mV	F
		2/1/2018	6.85				s.u.	F
0347	рН	4/24/2018	7.05				s.u.	F
0347	рп	8/2/2018	6.78				s.u.	F
		10/29/2018	6.85				s.u.	F
		2/1/2018	1610				µmho/cm	F
0347	Specific conductorse	4/24/2018	1730				µmho/cm	F
0347	Specific conductance	8/2/2018	1810				µmho/cm	F
		10/29/2018	1780				µmho/cm	F
		2/1/2018	13.5				°C	F
0347	Tomporatura	4/24/2018	13.7				°C	F
0347	remperature	8/2/2018	15				°C	F
		10/29/2018	14.6				°C	F
		2/1/2018	0.16	0.16	U		µg/L	F
		2/1/2018	0.16	0.16	U		µg/L	D
0347	Tatrachlaraathana	4/24/2018	0.16	0.16	U		µg/L	F
0347	retrachioroethene	8/2/2018	0.16	0.16	U		µg/L	D
		8/2/2018	0.16	0.16	U		µg/L	F
		10/29/2018	0.16	0.16	U		µg/L	F
		2/1/2018	0.16	0.16	U		µg/L	D
		2/1/2018	0.16	0.16	U		μg/L	F
0347	trans 1.2 Dichloroothopo	4/24/2018	0.16	0.16	U		μg/L	F
0347		8/2/2018	0.16	0.16	U		µg/L	D
		8/2/2018	0.16	0.16	U		µg/L	F
	Specific conductance Temperature Tetrachloroethene <i>trans</i> -1,2-Dichloroethene	10/29/2018	0.16	0.16	U		µg/L	F

Location	Analyte	Sample Date	Value	Detection Limit	Laboratory Qualifiers	Validation Qualifiers	Units	Sample Type
		2/1/2018	19.7	0.16			µg/L	D
		2/1/2018	20.7	0.16			µg/L	F
0347	Trichloroethene	4/24/2018	11.7	0.16			µg/L	F
0347	Theme	8/2/2018	21.8	0.16			µg/L	D
		8/2/2018	21.3	0.16			µg/L	F
		10/29/2018	16.1	0.16			µg/L	F
		2/1/2018	1140	262			pCi/L	D
0347	Tritium	2/1/2018	1070	259			pCi/L	F
0347	Indum	8/2/2018	1230	313			pCi/L	D
		8/2/2018	1080	314			pCi/L	F
		2/1/2018	25.3				NTU	F
0047	Tuk. i alita /	4/24/2018	30.3				NTU	F
0347	Turbidity	8/2/2018	17.2				NTU	F
		10/29/2018	26.2				NTU	F
		2/1/2018	0.16	0.16	U		µg/L	F
		2/1/2018	0.16	0.16	U		µg/L	D
0347	Vinud ablavida	4/24/2018	0.16	0.16	U		µg/L	F
0347	Vinyl chloride	8/2/2018	0.16	0.16	U		µg/L	D
		8/2/2018	0.16	0.16	U		µg/L	F
		10/29/2018	0.16	0.16	U		µg/L	F
		1/30/2018	0.16	0.16	U		µg/L	F
		2/8/2018	0.333	0.333	U		µg/L	F
		4/25/2018	0.16	0.16	U		µg/L	F
		5/2/2018	0.333	0.333	U		µg/L	F
0379	cis-1,2-Dichloroethene	7/31/2018	0.16	0.16	U		µg/L	F
		8/7/2018	0.333	0.333	U		µg/L	F
		10/29/2018	0.16	0.16	U		µg/L	F
		10/29/2018	0.16	0.16	U		µg/L	D
		11/7/2018	0.333	0.333	U		µg/L	F

Location	Analyte	Sample Date	Value	Detection Limit	Laboratory Qualifiers	Validation Qualifiers	Units	Sample Type
	cation Analyte 1379 Dissolved oxygen 1379 Oxidation-reduction potential 1379 pH	1/30/2018	3.35				mg/L	F
		2/8/2018	1.35			F	mg/L	F
		4/25/2018	3.21				mg/L	F
0270	Dissolved exvision	5/2/2018	2.79				mg/L	F
0379	Dissolved oxygen	7/31/2018	5.42				mg/L	F
		8/7/2018	2.87				mg/L	F
		10/29/2018	2.2				mg/L	F
		11/7/2018	2.7				mg/L	F
		1/30/2018	67.4				mV	F
		2/8/2018	53.4			F	mV	F
		4/25/2018	1211.1				mV	F
0270	Ovidation reduction potential	5/2/2018	-5				mV	F
0379		7/31/2018	17.7				mV	F
		8/7/2018	123.4				mV	F
		10/29/2018	107.4				mV	F
		11/7/2018	-36.1				mV	F
		1/30/2018	7.1				s.u.	F
		2/8/2018	7.19			F	s.u.	F
		4/25/2018	7.18				s.u.	F
0370		5/2/2018	7.21				s.u.	F
0379		7/31/2018	7.01				s.u.	F
		8/7/2018	7.14				s.u.	F
		10/29/2018	7.23				s.u.	F
		11/7/2018	6.99				s.u.	F

Location	Analyte	Sample Date	Value	Detection Limit	Laboratory Qualifiers	Validation Qualifiers	Units	Sample Type
		1/30/2018	1640				µmho/cm	F
		2/8/2018	1710			F	µmho/cm	F
		4/25/2018	1500				µmho/cm	F
0379	Specific conductance	5/2/2018	1490				µmho/cm	F
0379	Specific conductance	7/31/2018	1580				µmho/cm	F
		8/7/2018	1700				µmho/cm	F
		10/29/2018	1660				µmho/cm	F
		11/7/2018	1870				µmho/cm °C	F
		1/30/2018	13.8				°C	F
		2/8/2018	12.1			F	°C	F
		4/25/2018	14.1				°C	F
0379	Tamananatuna	5/2/2018	16.2				°C	F
0379	Temperature	7/31/2018	15.8				°C	F
		8/7/2018	16.9				°C	F
		10/29/2018	15				°C	F
		11/7/2018	13.9				°C	F
		1/30/2018	0.44	0.16	J		µg/L	F
		2/8/2018	0.44	0.333	J		µg/L	F
		4/25/2018	0.16	0.16	U		µg/L	F
		5/2/2018	0.333	0.333	U		µg/L	F
0379	Tetrachloroethene	7/31/2018	0.4	0.16	J		µg/L	F
		8/7/2018	0.57	0.333	J		µg/L	F
		10/29/2018	0.4	0.16	J		µg/L	F
		10/29/2018	0.43	0.16	J		µg/L	D
		11/7/2018	0.45	0.333	J	J	µg/L	F

Location	Analyte	Sample Date	Value	Detection Limit	Laboratory Qualifiers	Validation Qualifiers	Units	Sample Type
		1/30/2018	0.16	0.16	U		µg/L	F
		2/8/2018	0.333	0.333	U		µg/L	F
		4/25/2018	0.16	0.16	U		µg/L	F
		5/2/2018	0.333	0.333	U		µg/L	F
0379	trans-1,2-Dichloroethene	7/31/2018	0.16	0.16	U		µg/L	F
		8/7/2018	0.333	0.333	U		µg/L	F
		10/29/2018	0.16	0.16	U		µg/L	F
		10/29/2018	0.16	0.16	U		µg/L	D
		11/7/2018	0.333	0.333	U		µg/L	F
		1/30/2018	1.45	0.16			µg/L	F
		2/8/2018	1.53	0.333			µg/L	F
		4/25/2018	1.21	0.16			µg/L	F
		5/2/2018	1.38	0.333			µg/L	F
0379	Trichloroethene	7/31/2018	1.57	0.16			µg/L	F
		8/7/2018	1.47	0.333			μg/L μg/L μg/L μg/L	F
		10/29/2018	1.3	0.16			µg/L	D
		10/29/2018	1.34	0.16			µg/L	F
		11/7/2018	1.55	0.333			µg/L	F
0379	Tritium	1/30/2018	707	263		J	pCi/L	F
0379	Inddin	7/31/2018	488	326		J	pCi/L	F
		1/30/2018	18.1				NTU	F
		2/8/2018	28			F	NTU	F
		4/25/2018	11.8				NTU	F
0379	Turbidity	5/2/2018	8.23				NTU	F
0319		7/31/2018	143				NTU	F
		8/7/2018	6.78				NTU	F
		10/29/2018	2.74				NTU	F
		11/7/2018	8.76				NTU	F

U.S. Department of Energy June 2019

Location	Analyte	Sample Date	Value	Detection Limit	Laboratory Qualifiers	Validation Qualifiers	Units	Sample Type
		1/30/2018	0.16	0.16	U		µg/L	F
		2/8/2018	0.333	0.333	U		µg/L	F
		4/25/2018	0.16	0.16	U		µg/L	F
		5/2/2018	0.333	0.333	U		µg/L	F
0379	Vinyl chloride	7/31/2018	0.16	0.16	U		µg/L	F
		8/7/2018	0.333	0.333	U		µg/L	F
		10/29/2018	0.16	0.16	U		µg/L	F
		10/29/2018	0.16	0.16	U		µg/L	D
		11/7/2018	0.333	0.333	U			F
		1/31/2018	0.16	0.16	U		µg/L	F
0000		4/24/2018	0.16	0.16	U		µg/L	F
0386	cis-1,2-Dichloroethene	8/1/2018	0.16	0.16	U		μg/L μg/L	F
		10/30/2018	0.16	0.16	U			F
		1/31/2018	2.29				mg/L	F
0000	Disastructure and a second	4/24/2018	3.48				mg/L	F
0386	Dissolved oxygen	8/1/2018	2.09				mg/L	F
		10/30/2018	2.86				μg/L mg/L mV mV s.u. s.u. s.u.	F
		1/31/2018	273.1				μg/L mg/L mg/L	F
0000		4/24/2018	84.3				mV	F
0386	Oxidation-reduction potential	8/1/2018	69.7				mV	F
		10/30/2018	173.7				mV	F
		1/31/2018	6.86				s.u.	F
0000		4/24/2018	6.95				s.u.	F
0386	рН	8/1/2018	6.69				s.u.	F
		10/30/2018	6.93				s.u.	F
		1/31/2018	1370				µmho/cm	F
0000	Specific conductorses	4/24/2018	1390				µmho/cm	F
0386	Specific conductance	8/1/2018	1430				µmho/cm	F
		10/30/2018	1420				µmho/cm	F

Location	Analyte	Sample Date	Value	Detection Limit	Laboratory Qualifiers	Validation Qualifiers	Units	Sample Type
		1/31/2018	12				°C	F
0386	Tomporatura	4/24/2018	13.7				°C	F
0300	Temperature	8/1/2018	13.8				°C	F
		10/30/2018	13.4				°C	F
		1/31/2018	0.16	0.16	U		µg/L	F
0386	Tetrachloroethene	4/24/2018	0.16	0.16	U		µg/L	F
0380	retrachioroethene	8/1/2018	0.16	0.16	U		µg/L	F
		10/30/2018	0.16	0.16	U		µg/L	F
		1/31/2018	0.16	0.16	U		µg/L	F
0200	trans 1.0 Disklausethause	4/24/2018	0.16	0.16	U		µg/L	F
0386	trans-1,2-Dichloroethene	8/1/2018	0.16	0.16	U		µg/L	F
		10/30/2018	0.16	0.16	U		μg/L	F
		1/31/2018	2.51	0.16			µg/L	F
0386	Trichloroethene	4/24/2018	2.89	0.16			µg/L	F
0300	Inchioroethene	8/1/2018	3.02	0.16			µg/L	F
		10/30/2018	2.03	0.16			µg/L	F
		1/31/2018	16.3				NTU	F
0386	Turbidity	4/24/2018	7.4				NTU	F
0300	Turbidity	8/1/2018	2.13				NTU	F
		10/30/2018	1.37				NTU	F
		1/31/2018	0.16	0.16	U		µg/L	F
0386	Vinul oblarida	4/24/2018	0.16	0.16	U		µg/L	F
0300	Vinyl chloride	8/1/2018	0.16	0.16	U		µg/L	F
		10/30/2018	0.16	0.16	U		µg/L	F
		1/31/2018	0.16	0.16	U		µg/L	F
0387	<i>cis</i> -1,2-Dichloroethene	4/24/2018	0.16	0.16	U		µg/L	F
0307		8/1/2018	0.16	0.16	U		μg/L	F
		10/30/2018	0.16	0.16	U		µg/L	F

Location	Analyte	Sample Date	Value	Detection Limit	Laboratory Qualifiers	Validation Qualifiers	Units	Sample Type
		1/31/2018	2.22				mg/L	F
0387	Disselved everyon	4/24/2018	0.84				mg/L	F
0307	Dissolved oxygen	8/1/2018	8.03				mg/L	F
		10/30/2018	2.45				mg/L	F
		1/31/2018	277.8				mV	F
0387		4/24/2018	88.3				mV	F
0387	Oxidation-reduction potential	8/1/2018	69				mV	F
		10/30/2018	46.5				mV	F
		1/31/2018	6.95				s.u.	F
0007	-11	4/24/2018	6.99				s.u.	F
0387	рН	8/1/2018	6.79				s.u.	F
		10/30/2018	7.07				s.u.	F
		1/31/2018	1310				µmho/cm	F
0007		4/24/2018	1410				µmho/cm	F
0387	Specific conductance	8/1/2018	1300				µmho/cm	F
		10/30/2018	1390				µmho/cm	F
		1/31/2018	11.6				С	F
0007	Tanan anafama	4/24/2018	13				С	F
0387	Temperature	8/1/2018	13.8				С	F
		10/30/2018	13.9				С	F
		1/31/2018	0.16	0.16	U		µg/L	F
0007	Totas aldana ath an a	4/24/2018	0.16	0.16	U		µg/L	F
0387	Tetrachloroethene	8/1/2018	0.16	0.16	U		µg/L	F
		10/30/2018	0.16	0.16	U		µg/L	F
		1/31/2018	0.16	0.16	U		µg/L	F
0207	turne 1.2 Disklausethere	4/24/2018	0.16	0.16	U		µg/L	F
0387	<i>trans</i> -1,2-Dichloroethene	8/1/2018	0.16	0.16	U		µg/L	F
		10/30/2018	0.16	0.16	U		µg/L	F F

Location	Analyte	Sample Date	Value	Detection Limit	Laboratory Qualifiers	Validation Qualifiers	Units	Sample Type
		1/31/2018	0.16	0.16	U		µg/L	F
0387	Trichloroethene	4/24/2018	0.16	0.16	U		µg/L	F
0307	Inchioroethene	8/1/2018	0.16	0.16	U		µg/L	F
		10/30/2018	0.16	0.16	U		µg/L	F
		1/31/2018	2.6				NTU	F
0387	Turbidity	4/24/2018	1.02				NTU	F
0307	Turblaity	8/1/2018	2.06				NTU	F
		10/30/2018	0.7				NTU	F
		1/31/2018	0.16	0.16	U		µg/L	F
0387	Vinul chlorida	4/24/2018	0.16	0.16	U		µg/L	F
0307	Vinyl chloride	8/1/2018	0.16	0.16	U		µg/L	F
		10/30/2018	0.16	0.16	U		µg/L	F
		1/31/2018	0.16	0.16	U		µg/L	F
0389	<i>cis</i> -1,2-Dichloroethene	4/24/2018	0.16	0.16	U		µg/L	F
0369	CIS-1,2-Dichloroethene	8/1/2018	0.16	0.16	U		µg/L	F
		10/30/2018	0.16	0.16	U		µg/L	F
		1/31/2018	2.45				mg/L	F
0389	Disselved everyon	4/24/2018	2.15				mg/L	F
0309	Dissolved oxygen	8/1/2018	0.42				mg/L	F
		10/30/2018	2.09				mg/L	F
		1/31/2018	278.7				mV	F
0389	Oxidation-reduction potential	4/24/2018	86.5				mV	F
0369		8/1/2018	69.1				mV	F
		10/30/2018	169				mV	F
		1/31/2018	6.82				s.u.	F
0389	рН	4/24/2018	6.85				s.u.	F
0209		8/1/2018	6.79				s.u.	F
		10/30/2018	7.02				s.u.	F

Location	Analyte	Sample Date	Value	Detection Limit	Laboratory Qualifiers	Validation Qualifiers	Units	Sample Type
		1/31/2018	1340				µmho/cm	F
0389	Specific conductores	4/24/2018	1410				µmho/cm	F
0309	Specific conductance	8/1/2018	1440				µmho/cm	F
		10/30/2018	1490				µmho/cm	F
		1/31/2018	11.4				°C	F
0389	Tomporatura	4/24/2018	12.9				°C	F
0389	Temperature	8/1/2018	14.1				°C	F
		10/30/2018	14				°C	F
		1/31/2018	0.16	0.16	U		µg/L	F
0000	Tata a blana ath an a	4/24/2018	0.16	0.16	U		µg/L	F
0389	Tetrachloroethene	8/1/2018	0.16	0.16	U		µg/L	F
		10/30/2018	0.16	0.16	U		µg/L	F
		1/31/2018	0.16	0.16	U		µg/L	F
0200	trans 1.2 Disblars athen a	4/24/2018	0.16	0.16	U		µg/L	F
0389	trans-1,2-Dichloroethene	8/1/2018	0.16	0.16	U		µg/L	F
		10/30/2018	0.16	0.16	U		µg/L	F
		1/31/2018	0.16	0.16	U		µg/L	F
0389	Trichloroethene	4/24/2018	0.16	0.16	U		µg/L	F
0309	Inchioroethene	8/1/2018	0.54	0.16	J		µg/L	F
		10/30/2018	0.16	0.16	U		µg/L	F
		1/31/2018	29.6				NTU	F
0200	Turbidity	4/24/2018	32.7				NTU	F
0389	Turbidity	8/1/2018	32.9				NTU	F
		10/30/2018	29				NTU	F
		1/31/2018	0.16	0.16	U		µg/L	F
0389		4/24/2018	0.16	0.16	U		µg/L	F
0309	Vinyl chloride	8/1/2018	0.16	0.16	U		µg/L	F
		10/30/2018	0.16	0.16	U		µg/L	F

Location	Analyte	Sample Date	Value	Detection Limit	Laboratory Qualifiers	Validation Qualifiers	Units	Sample Type
		1/31/2018	0.16	0.16	U		µg/L	F
		4/24/2018	0.16	0.16	U		µg/L	D
0392	cis-1,2-Dichloroethene	4/24/2018	0.16	0.16	U		µg/L	F
		8/1/2018	0.16	0.16	U		µg/L	F
		10/30/2018	0.16	0.16	U		µg/L	F
		1/31/2018	4.97				mg/L	F
0392	Dissolved ovurgen	4/24/2018	3.64				mg/L	F
0392	Dissolved oxygen	8/1/2018	5.01				mg/L	F
		10/30/2018	4.2				mg/L	F
		1/31/2018	294.8				mV	F
0202		4/24/2018	126.5				mV	F
0392	Oxidation-reduction potential	8/1/2018	78.8				mV	F
		10/30/2018	163.5				mV	F
		1/31/2018	6.72				s.u.	F
0000	-11	4/24/2018	6.78				s.u.	F
0392	рН	8/1/2018	6.6				s.u.	F
		10/30/2018	6.92				s.u.	F
		1/31/2018	1290				µmho/cm	F
0000		4/24/2018	1450				µmho/cm	F
0392	Specific conductance	8/1/2018	1250				µmho/cm	F
		10/30/2018	1310				µmho/cm	F
		1/31/2018	11.2				°C	F
0000	Taman anatama	4/24/2018	13.3				°C	F
0392	Temperature	8/1/2018	14.6				°C	F
		10/30/2018	15				°C	F
		1/31/2018	0.16	0.16	U		µg/L	F
		4/24/2018	0.16	0.16	U		µg/L	D
0392	Tetrachloroethene	4/24/2018	0.16	0.16	U		µg/L	F
		8/1/2018	0.16	0.16	U		µg/L	F
		10/30/2018	0.16	0.16	U		µg/L	F

Location	Analyte	Sample Date	Value	Detection Limit	Laboratory Qualifiers	Validation Qualifiers	Units	Sample Type
		1/31/2018	0.16	0.16	U		µg/L	F
		4/24/2018	0.16	0.16	U		µg/L	D
0392	trans-1,2-Dichloroethene	4/24/2018	0.16	0.16	U		µg/L	F
		8/1/2018	0.16	0.16	U		µg/L	F
		10/30/2018	0.16	0.16	U		µg/L	F
		1/31/2018	0.16	0.16	U		µg/L	F
		4/24/2018	0.16	0.16	U		µg/L	D
0392	Trichloroethene	4/24/2018	0.16	0.16	U		µg/L	F
		8/1/2018	0.16	0.16	U		µg/L	F
		10/30/2018	0.16	0.16	U		µg/L	F
		1/31/2018	1.43				NTU	F
0202	To sub-initia c	4/24/2018	0.87				NTU	F
0392	Turbidity	8/1/2018	3.98				NTU	F
		10/30/2018	1.23				NTU	F
		1/31/2018	0.16	0.16	U		µg/L	F
		4/24/2018	0.16	0.16	U		µg/L	D
0392	Vinyl chloride	4/24/2018	0.16	0.16	U		µg/L	F
		8/1/2018	0.16	0.16	U		µg/L	F
		10/30/2018	0.16	0.16	U		µg/L	F

Abbreviations:

D = analyte determined in diluted sample F = low flow sampling method used J = estimated value

 $\mu g/L =$ micrograms per liter $\mu mho/cm =$ micromhos per centimeter mg/L = milligrams per liter mV = millivolts

pCi/L = picocuries per liter Q = quantitative result due to sampling technique s.u. = standard unit

U = analytical result below detection limit

Table D-3. Seep Data

Location	Analyte	Sample Date	Value	Detection Limit	Laboratory Qualifiers	Validation Qualifiers	Units	Sample Type
		1/29/2018	0.65	0.16	J		µg/L	F
0601	<i>cis</i> -1,2-Dichloroethene	4/23/2018	0.48	0.16	J		µg/L	F
0001	CIS-1,2-Dichloroethene	7/30/2018	0.44	0.16	J		µg/L	F
		10/29/2018	0.16	0.16	U		µg/L	F
		1/29/2018	3.8				mg/L	F
0601	Disselved overgan	4/23/2018	5.28				mg/L	F
0001	Dissolved oxygen	7/30/2018	5.97				mg/L	F
		10/29/2018	8.35				mg/L	F
		1/29/2018	53.9				mV	F
0004		4/23/2018	174.3				mV	F
0601	Oxidation-reduction potential	7/30/2018	148.8				mV	F
		10/29/2018	62.7				mV	F
		1/29/2018	7.15				s.u.	F
0004		4/23/2018	7.08				s.u.	F
0601	рН	7/30/2018	7.83				s.u.	F
		10/29/2018	7.65				s.u.	F
		1/29/2018	900				µmho/cm	F
0004		4/23/2018	1270				µmho/cm	F
0601	Specific conductance	7/30/2018	1450				µmho/cm	F
		10/29/2018	1370				µmho/cm	F
		1/29/2018	13.6				°C	F
0004	Tanan anatana	4/23/2018	12.7				°C	F
0601	Temperature	7/30/2018	14.6				°C	F
		10/29/2018	14.6				°C	F
		1/29/2018	10.5	0.16			µg/L	F
0001	Tatua akia ya atka ya a	4/23/2018	12.9	0.16			µg/L	F
0601	Tetrachloroethene	7/30/2018	9.69	0.16			µg/L	F
		10/29/2018	6.18	0.16			µg/L	F

Location	Analyte	Sample Date	Value	Detection Limit	Laboratory Qualifiers	Validation Qualifiers	Units	Sample Type
		1/29/2018	0.16	0.16	U		µg/L	F
0601	trans 1.2 Disklass athens	4/23/2018	0.16	0.16	U		µg/L	F
0601	trans-1,2-Dichloroethene	7/30/2018	0.16	0.16	U		µg/L	F
		10/29/2018	0.16	0.16	U		µg/L	F
		1/29/2018	3.85	0.16			µg/L	F
0004	Tricklere othere	4/23/2018	2.91	0.16			µg/L	F
0601	Trichloroethene	7/30/2018	1.2	0.16			µg/L	F
		10/29/2018	0.72	0.16	J		µg/L	F
0004	Triticure	1/29/2018	7340	248			pCi/L	F
0601	Tritium	7/30/2018	19000	316			pCi/L	F
		1/29/2018	10.6				NTU	F
0004	- 1.5 m	4/23/2018	44.1				NTU	F
0601	Turbidity	7/30/2018	484				NTU	F
		10/29/2018	999			>	NTU	F
		1/29/2018	0.16	0.16	U		µg/L	F
0004		4/23/2018	0.16	0.16	U		µg/L	F
0601	Vinyl chloride	7/30/2018	0.16	0.16	U		µg/L	F
		10/29/2018	0.16	0.16	U		µg/L	F
		1/29/2018	6.16	0.16			µg/L	F
0602	cis-1,2-Dichloroethene	4/23/2018	4.51	0.16			µg/L	F
		10/29/2018	1.95	0.16			µg/L	F
		1/29/2018	6.6				mg/L	F
0602	Dissolved oxygen	4/23/2018	6.46				mg/L	F
		10/29/2018	3.94				mg/L	F
		1/29/2018	71.6				mV	F
0602	Oxidation-reduction potential	4/23/2018	80.3				mV	F
		10/29/2018	-48.3				mV	F
		1/29/2018	7.24				s.u.	F
0602	рН	4/23/2018	7.3				s.u.	F
		10/29/2018	7.91				s.u.	F

Location	Analyte	Sample Date	Value	Detection Limit	Laboratory Qualifiers	Validation Qualifiers	Units	Sample Type
		1/29/2018	1220				µmho/cm	F
0602	Specific conductance	4/23/2018	1120				µmho/cm	F
		10/29/2018	1450				µmho/cm	F
		1/29/2018	6.7				°C	F
0602	Temperature	4/23/2018	12.5				°C	F
		10/29/2018	13.7				°C	F
		1/29/2018	0.16	0.16	U		µg/L	F
0602	Tetrachloroethene	4/23/2018	0.16	0.16	U		µg/L	F
		10/29/2018	0.16	0.16	U		µg/L	F
		1/29/2018	0.38	0.16	J		µg/L	F
0602	trans-1,2-Dichloroethene	4/23/2018	0.31	0.16	J		µg/L	F
		10/29/2018	0.16	0.16	U		µg/L	F
		1/29/2018	8.56	0.16			µg/L	F
0602	Trichloroethene	4/23/2018	4.06	0.16			µg/L	F
		10/29/2018	0.46	0.16	J		µg/L	F
0602	Tritium	1/29/2018	1490	254			pCi/L	F
		1/29/2018	25.9				NTU	F
0602	Turbidity	4/23/2018	83.1				NTU	F
		10/29/2018	154				NTU	F
		1/29/2018	0.16	0.16	U		µg/L	F
0602	Vinyl chloride	4/23/2018	0.16	0.16	U		µg/L	F
		10/29/2018	0.16	0.16	U		µg/L	F
		1/29/2018	0.16	0.16	U		µg/L	F
0005		4/23/2018	1.09	0.16			µg/L	F
0605	cis-1,2-Dichloroethene	7/30/2018	0.96	0.16	J		µg/L	F
		10/29/2018	3.06	0.16			µg/L	F
		1/29/2018	2.03				mg/L	F
0005	Disastration	4/23/2018	7.76				mg/L	F
0605	Dissolved oxygen	7/30/2018	7.13				mg/L	F
		10/29/2018	2.27				mg/L	F

Location	Analyte	Sample Date	Value	Detection Limit	Laboratory Qualifiers	Validation Qualifiers	Units	Sample Typ
		1/29/2018	-11.2				mV	F
0605	Ovidation reduction natential	4/23/2018	54				mV	F
0605	Oxidation-reduction potential	7/30/2018	-39.2				mV	F
		10/29/2018	-61.2				mV	F
		1/29/2018	7.4				s.u.	F
0005		4/23/2018	7.34				s.u.	F
0605	pH	7/30/2018	7.38				s.u.	F
		10/29/2018	7.45				s.u.	F
		1/29/2018	2590				µmho/cm	F
0005		4/23/2018	1850				µmho/cm	F
0605	Specific conductance	7/30/2018	1880				µmho/cm	F
		10/29/2018	1620				µmho/cm	F
	Temperature	1/29/2018	9				°C	F
0005		4/23/2018	9.8				°C	F
0605		7/30/2018	16.6				°C	F
		10/29/2018	11.8				°C	F
		1/29/2018	0.16	0.16	U		µg/L	F
0005	- · · ·	4/23/2018	0.34	0.16	J		µg/L	F
0605	Tetrachloroethene	7/30/2018	0.16	0.16	U		µg/L	F
		10/29/2018	0.16	0.16	U		µg/L	F
		1/29/2018	0.16	0.16	U		µg/L	F
0005		4/23/2018	0.16	0.16	U		µg/L	F
0605	trans-1,2-Dichloroethene	7/30/2018	0.16	0.16	U		µg/L	F
		10/29/2018	0.16	0.16	U		µg/L	F
		1/29/2018	0.3	0.16	J		µg/L	F
0005	Trichlerecthere	4/23/2018	3.1	0.16			µg/L	F
0605	Trichloroethene	7/30/2018	1.08	0.16			µg/L	F
		10/29/2018	1.31	0.16			µg/L	F
0005	Tuitium	1/29/2018	2690	252			pCi/L	F
0605	Tritium	7/30/2018	4620	338			pCi/L	F

Location	Analyte	Sample Date	Value	Detection Limit	Laboratory Qualifiers	Validation Qualifiers	Units	Sample Type
		1/29/2018	999			^	NTU	F
0605	Turbidity	4/23/2018	505				NTU	F
0005	Turblatty	7/30/2018	212				NTU	F
		10/29/2018	999			>	NTU	F
		1/29/2018	0.16	0.16	U		µg/L	F
0605	Vinul oblorido	4/23/2018	0.16	0.16	U		µg/L	F
0005	Vinyl chloride	7/30/2018	0.16	0.16	U		µg/L	F
		10/29/2018	0.16	0.16	U		µg/L	F
		1/29/2018	1.32	0.16			µg/L	F
0000		4/23/2018	0.16	0.16	U		µg/L	F
0606	cis-1,2-Dichloroethene	7/30/2018	0.16	0.16	U		µg/L	F
		10/29/2018	0.16	0.16	U		µg/L	F
		1/29/2018	10.73				mg/L	F
0000	Disashund suuran	4/23/2018	8.86				mg/L	F
0606	Dissolved oxygen	7/30/2018	7.26				mg/L	F
		10/29/2018	9.52				mg/L	F
		1/29/2018	18.8				mV	F
0606		4/23/2018	257.3				mV	F
0000	Oxidation-reduction potential	7/30/2018	116				mV	F
		10/29/2018	114.2				mV	F
		1/29/2018	7.52				s.u.	F
0000		4/23/2018	7.43				s.u.	F
0606	рН	7/30/2018	7.49				s.u.	F
		10/29/2018	7.5				s.u.	F
		1/29/2018	1130				µmho/cm	F
0606	Specific conductorse	4/23/2018	1490				µmho/cm	F
0000	Specific conductance	7/30/2018	1910				µmho/cm	F
		10/29/2018	1500				µmho/cm	F

Location	Analyte	Sample Date	Value	Detection Limit	Laboratory Qualifiers	Validation Qualifiers	Units	Sample Type
		1/29/2018	5				°C	F
0606	Tomporaturo	4/23/2018	8.7				°C	F
0000	Temperature	7/30/2018	19.1				°C	F
		10/29/2018	10.8				°C	F
		1/29/2018	0.16	0.16	U		µg/L	F
0606	Tetrachloroethene	4/23/2018	0.16	0.16	U		µg/L	F
0000	retrachioroethene	7/30/2018	0.16	0.16	U		µg/L	F
		10/29/2018	0.16	0.16	U		µg/L	F
		1/29/2018	0.16	0.16	U		µg/L	F
0000	turne 4.0 Disklass others	4/23/2018	0.16	0.16	U		µg/L	F
0606	trans-1,2-Dichloroethene	7/30/2018	0.16	0.16	U		µg/L	F
		10/29/2018	0.16	0.16	U		µg/L	F
	Trichloroethene	1/29/2018	3.86	0.16			µg/L	F
0000		4/23/2018	0.16	0.16	U		µg/L	F
0606		7/30/2018	0.16	0.16	U		µg/L	F
		10/29/2018	0.16	0.16	U		µg/L	F
0000	Tuitium	1/29/2018	1360	252			pCi/L	F
0606	Tritium	7/30/2018	2870	333			pCi/L	F
		1/29/2018	999			>	NTU	F
0000	T 1 - 10	4/23/2018	882				NTU	F
0606	Turbidity	7/30/2018	1000			>	NTU	F
		10/29/2018	999			>	NTU	F
		1/29/2018	0.16	0.16	U		µg/L	F
0000		4/23/2018	0.16	0.16	U		µg/L	F
0606	Vinyl chloride	7/30/2018	0.16	0.16	U		µg/L	F
		10/29/2018	0.16	0.16	U		µg/L	F
		1/29/2018	0.16	0.16	U		µg/L	F
0007		4/23/2018	0.51	0.16	J		µg/L	F
0607	cis-1,2-Dichloroethene	7/30/2018	0.62	0.16	J		µg/L	F
		10/29/2018	0.42	0.16	J		µg/L	F

U.S. Department of Energy June 2019

Location	Analyte	Sample Date	Value	Detection Limit	Laboratory Qualifiers	Validation Qualifiers	Units	Sample Type
		1/29/2018	8.05				mg/L	F
0607	Disselved overgen	4/23/2018	8.54				mg/L	F
0007	Dissolved oxygen	7/30/2018	9.06				mg/L	F
		10/29/2018	8.76				mg/L	F
		1/29/2018	113.3				mV	F
0607	Ovidation raduation natantial	4/23/2018	265.4				mV	F
0007	Oxidation-reduction potential	7/30/2018	88.1				mV	F
		10/29/2018	199.6				mV	F
		1/29/2018	7.31				s.u.	F
0607		4/23/2018	7.14				s.u.	F
0607	рН	7/30/2018	7.44				s.u.	F
		10/29/2018	7.05				s.u.	F
	Specific conductance	1/29/2018	2460				µmho/cm	F
0007		4/23/2018	1520				µmho/cm	F
0607		7/30/2018	1550				µmho/cm	F
		10/29/2018	1450				µmho/cm	F
		1/29/2018	13				°C	F
0007	Tama anatum	4/23/2018	11.5				°C	F
0607	Temperature	7/30/2018	14.7				°C	F
		10/29/2018	15.3				°C	F
		1/29/2018	0.16	0.16	U		µg/L	F
0607	Tetrachlaraethana	4/23/2018	0.16	0.16	U		µg/L	F
0607	Tetrachloroethene	7/30/2018	0.16	0.16	U		µg/L	F
		10/29/2018	0.16	0.16	U		µg/L	F
		1/29/2018	0.16	0.16	U		µg/L	F
0607	trang 1.2 Diablargathang	4/23/2018	0.16	0.16	U		µg/L	F
0007	trans-1,2-Dichloroethene	7/30/2018	0.16	0.16	U		µg/L	F
		10/29/2018	0.16	0.16	U		µg/L	F

Location	Analyte	Sample Date	Value	Detection Limit	Laboratory Qualifiers	Validation Qualifiers	Units	Sample Type
		1/29/2018	0.85	0.16	J		µg/L	F
0607	Trichloroethene	4/23/2018	1.3	0.16			µg/L	F
0007	Inchloroethene	7/30/2018	1.14	0.16			µg/L	F
		10/29/2018	0.51	0.16	J		µg/L	F
0607	Tritium	2/5/2018	2270	257			pCi/L	F
0607	Inuum	7/30/2018	2370	326			pCi/L	F
		1/29/2018	24.5				NTU	F
0007	To sub-indite a	4/23/2018	23.7				NTU	F
0607	Turbidity	7/30/2018	25.1				NTU	F
		10/29/2018	34.6				NTU	F
		1/29/2018	0.16	0.16	U		µg/L	F
.	Vinyl chloride	4/23/2018	0.16	0.16	U		µg/L	F
0607		7/30/2018	0.16	0.16	U		µg/L	F
		10/29/2018	0.16	0.16	U		µg/L	F
0047		1/29/2018	1.43	0.16			µg/L	F
0617	cis-1,2-Dichloroethene	7/30/2018	1.41	0.16			µg/L	F
0047	D	1/29/2018	1.29				mg/L	F
0617	Dissolved oxygen	7/30/2018	6.71				mg/L	F
0047		1/29/2018	-24				mV	F
0617	Oxidation-reduction potential	7/30/2018	47.8				mV	F
0047		1/29/2018	7.28				s.u.	F
0617	рН	7/30/2018	6.88				s.u.	F
0047		1/29/2018	1350				µmho/cm	F
0617	Specific conductance	7/30/2018	1650				µmho/cm	F
0047	- ·	1/29/2018	9				°C	F
0617	Temperature	7/30/2018	18.7				°C	F
0047	-	1/29/2018	0.16	0.16	U		µg/L	F
0617	Tetrachloroethene	7/30/2018	0.16	0.16	U		µg/L	F
0047	frame (1.0. Disklass	1/29/2018	0.16	0.16	U		µg/L	F
0617	trans-1,2-Dichloroethene	7/30/2018	0.16	0.16	U		µg/L	F

Location	Analyte	Sample Date	Value	Detection Limit	Laboratory Qualifiers	Validation Qualifiers	Units	Sample Type
0617	Trichloroethene	1/29/2018	5.4	0.16			µg/L	F
0017	Thenioroethene	7/30/2018	5.99	0.16			µg/L	F
0617	Turkidity	1/29/2018	33.1				NTU	F
0017	Turbidity	7/30/2018	49.2				NTU	F
0047	View deble vide	1/29/2018	0.16	0.16	U		µg/L	F
0617	Vinyl chloride	7/30/2018	0.16	0.16	U		µg/L	F

Abbreviations:

J = estimated value

μg/L = micrograms per liter μmho/cm = micromhos per centimeter mg/L = milligrams per liter mV = millivolts

pCi/L = picocuries per literQ = quantitative result due to sampling technique s.u. = standard unit

U = analytical result below detection limit

This page intentionally left blank

Appendix E

Data Assessment Reports

This page intentionally left blank

Contractor to the U.S. Department of Energy Office of Legacy Management

Data Review and Validation Report

General Information

Task ID:	MND01-01.1801001
Sample Event:	January 29-February 1, 2018
Site(s):	Mound LTS&M Groundwater (Parcel 6-7-8)
Laboratory:	GEL Laboratories, Charleston, South Carolina
Work Order No.:	442977
Analysis:	Organics and Radiochemistry
Validator:	Peter Steves
Review Date:	April 17, 2018

This validation was performed according to the "Standard Practice for Validation of Environmental Data" found in Appendix A of *Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites* (LMS/PRO/S04351, continually updated, <u>http://energy.gov/lm/downloads/sampling-and-analysis-plan-us-department-energy-office-legacy-management-sites</u>). The procedure was applied at Level 3, Data Validation.

All analyses were successfully completed. The samples were prepared and analyzed using accepted procedures based on methods specified by line item code, which are listed in Table 1.

Analyte	Line Item Code	Prep Method	Analytical Method
Volatile Organics, VOA	VOA-A-007	SW-846 5030B	SW-846 8260 LL
Tritium	LSC-A-001	EPA 906.0 Modified	EPA 906.0 Modified

Data Qualifier Summary

Analytical results were qualified as listed in Table 2. Refer to the attached validation worksheets and the sections below for an explanation of the data qualifiers applied.

Table 2. Data Qu	alifiers
------------------	----------

Sample Number	Location	Analyte	Flag	Reason
MND01-01.1801001-015	0605	Acetone	U	Less than 10 times the trip blank
MND01-01.1801001-007	0347	Hexachlorobutadiene	J	MS less than lower acceptance limit

Sample Number	Location	Analyte	Flag	Reason
MND01-01.1801001-008	0379	Tritium	J	Less than the determination limit

Sample Shipping/Receiving

GEL Laboratories in Charleston, South Carolina, received 21 water samples on February 02, 2018, accompanied by a Chain of Custody (COC) form. The air waybill number was listed on the Sample Receipt and Review Form. The COC form was checked to confirm that all of the samples were listed with sample collection dates and times, and that signatures and dates were present indicating sample relinquishment and receipt. The COC forms were complete with no errors or omissions with the following exception:

• The original COC listed the wrong collection date for locations 0124, 0346, 0379, and 0999. The COC was hand corrected and re-submitted with all date times and signatures present and correct, with the exception of the received by signature was missing.

Preservation and Holding Times

The sample shipments were received intact with the temperature inside the iced cooler at 4 °C, which complies with requirements. All samples were analyzed within the applicable holding times. All samples were received in the correct container types and had been preserved correctly for the requested analyses with these exceptions:

- The tritium analysis for sample location 0346 could not be performed because the glass bottle for that aliquot was received broken.
- Headspace was noted in all containers for sample location 9347.

Detection and Quantitation Limits

The method detection limit (MDL) was reported for all organic analytes as required. The MDL, as defined in 40 CFR 136, is the minimum concentration of an analyte that can be measured and reported with 99 percent confidence that the analyte concentration is greater than zero. The practical quantitation limit (PQL) for these analytes is the lowest concentration that can be reliably measured, and is defined as 5 times the MDL.

For radiochemical analytes (those measured by radiometric counting) the MDL and PQL are not applicable, and these results are evaluated using the minimum detectable concentration (MDC), the decision level concentration (DLC), and the determination limit (DL). The DLC is the minimum concentration of an analyte that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is estimated as 3 times the 1-sigma total propagated uncertainty. Results that are greater than the MDC but less than the DLC are qualified with a U flag as not detected. The DL for radiochemical results is the lowest concentration that can be reliably measured and is defined as 3 times the MDC. Results that were not previously U qualified and are less than the DL are qualified with a J flag as estimated values.

The reported MDLs and MDCs demonstrate compliance with contractual requirements.

Laboratory Instrument Calibration

Method requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing acceptable qualitative and quantitative data for the analytes of interest. Initial calibration verification demonstrates that the instrument is capable of acceptable performance at the beginning of the analytical run. Continuing calibration verification demonstrates that the initial calibration is still valid by checking the performance of the instrument on a continuing basis. Initial and continuing calibration standards must be prepared from independent sources to ensure the validity of the calibration. All laboratory instrument calibrations and calibration verifications were performed correctly in accordance with the cited methods.

Method SW-846 8260 LL Volatile Organics, VOA

Initial calibration of instrument VOA2 was performed on January 8, 2018 using nine calibration standards. Calibration curves are established using linear regression, quadratic regression, or the average response factor approach. Calibrations using average response factors had relative standard deviations of less than 15 percent. Linear or higher order regression calibrations had correlation coefficient values greater than 0.99 and intercepts less than 3 times the MDL. Initial and continuing calibration verification checks were made at the required frequency. Some target compounds had percent drift values greater than 20 percent but were not detected at concentrations greater than the MDL. The mass spectrometer calibration and resolution was checked at the beginning of each analytical run in accordance with the procedure.

Radiochemical Analysis

Method EPA 906.0 Modified Tritium

Liquid scintillation calibrations for instrument MOCHA and SILVER were performed on June 11, 2017 and June 10, 2017. Calibrations resulted in quench curves covering a quench number range of 127 – 345 and 126 - 346. The sample quench values were all within the calibration range. Daily calibration checks were performed February 12–13, 2018 with acceptable results.

Volatiles Internal Standards and Surrogates

The volatile internal standard recoveries and surrogate recoveries were within the acceptance ranges for all samples.

Method Blanks

Method blanks are analyzed to assess any contamination that may have occurred during sample preparation. All method blank results associated with the samples were below the PQL for all analytes. In cases where a blank concentration exceeds or equals the MDL, the associated sample results are qualified with a U flag (not detected) when the sample result is greater than the MDL but less than 5 times the blank concentration.

<u>Trip Blank</u>

Trip blanks were prepared and analyzed to document contamination attributable to shipping and field handling procedures. This type of blank is useful in documenting contamination of volatile organic samples. Three trip blanks were submitted with these samples. Acetone was detected in the trip blanks. Associated sample acetone results that are less than ten times the blank concentration are qualified with a U flag as not detected.

Matrix Spike Analysis

Matrix spikes are aliquots of environmental samples to which a known concentration of analyte has been added before analysis. Matrix spike and matrix-spike duplicate (MS/MSD) analysis is used to assess the performance of the method by measuring the effects of interferences caused by the sample matrix and reflects the bias of the method for the particular matrix in question. The MS/MSD data are not evaluated when the concentration of the unspiked sample is greater than 4 times the spike. The spikes met the recovery and precision criteria for all analytes evaluated with the exception of hexachlorobutadiene. The associated result is qualified with a J flag as an estimated value.

Laboratory Replicate Analysis

Laboratory replicate analyses are used to determine laboratory precision for each sample matrix. The relative percent difference for non-radiochemical replicate results that are greater than 5 times the PQL should be less than 20 percent. For results that are less than 5 times the PQL, the range should be no greater than the PQL. For the radiochemistry analyses, a laboratory control sample duplicate was analyzed in lieu of a sample duplicate, which is acceptable. The relative error ratio for radiochemical replicate results (calculated using the one-sigma total propagated uncertainty) should be less than 3, indicating acceptable precision. The replicate results met these criteria.

Laboratory Control Sample

Laboratory control samples were analyzed at the correct frequency to provide information on the accuracy of the analytical method and the overall laboratory performance, including sample preparation. All control sample results were acceptable.

Field Duplicate

Field duplicate samples are collected and analyzed as an indication of overall precision of the measurement process. The precision observed includes both field and laboratory precision and has more variability than laboratory duplicates, which measure only laboratory performance. A duplicate sample was collected from location 0347. The relative percent difference for duplicate results that are greater than 5 times the PQL should be less than 20 percent. For results that are less than 5 times the PQL, the range should be no greater than the PQL. For radiochemical measurements, the relative error ratio (the ratio of the absolute difference between the sample

and duplicate results and the sum of the 1-sigma uncertainties) is used to evaluate duplicate results and should be less than 3. The duplicate results met the criteria.

Completeness

Results were reported in the correct units for all analytes requested using contract-required laboratory qualifiers. The analytical report included the MDL (MDC for radiochemistry) and PQL for all analytes and all required supporting documentation.

Electronic Data Deliverable (EDD) File

The EDD file arrived on March 1, 2018. The Sample Management System EDD validation module was used to verify that the EDD file was complete and in compliance with requirements. The module compares the contents of the file to the requested analyses to ensure all and only the requested data are delivered. The contents of the EDD were manually examined to verify that the sample results accurately reflect the data contained in the sample data package.

Potential Outliers

Potential outliers are results that lie outside the historical range, possibly due to transcription errors, data calculation errors, or measurement system problems. However, outliers can also represent true values outside the historical range. Potential outliers are identified by generating the Data Validation Outliers Report from data in the environmental database. The new data are compared to historical values and data that fall outside the historical data range are listed on the report along with the historical minimum and maximum values. The potential outliers are further reviewed and may be subject to statistical evaluation using the ProUCL application developed by the EPA (<u>https://www.epa.gov/land-research/proucl-software</u>). The review also includes an evaluation of any notable trends in the data that may indicate the outliers represent true extreme values.

There were no outliers identified and the data for this task are acceptable as qualified.

Report Prepared By: ____

Leslie P. Steves 2018.05.07 10:15:50 -06'00'

Peter Steves Data Validator

Data Validation Outliers Report - No Field Parameters Report Date: 04/18/2018

Comparison to Historical Data Since: 4/18/2007 12:00:00 AM Fraction: Any

Task: MND01-01.1801001

Analyte	Location	Analysis Location	Units	Fraction	Result	Lab Qualifier(s)	Туре	HistMIN	HistMAX	HistSetSize	Outlier?
Tritium	0602	LB	pCi/L	Ν	1490		< HistMIN	4110	45100	19	No
Tritium	0605	LB	pCi/L	Ν	2690		< HistMIN	4410	33400	30	No
Trichloroethene	0605	LB	ug/L	Ν	0.300	J	< HistMIN	6.22	24.7	42	No
Tritium	0606	LB	pCi/L	Ν	1360		< HistMIN	2480	14600	20	No
Trichloroethene	0607	LB	ug/L	Ν	0.850	J	< HistMIN	2.74	13	43	No

FRACTION: D = Dissolved N = NA T = Total

C	General Data	Validation Repo	Page 1 of 1
Task Code: MND01-01.180100	1 Lab Code: GEN	Validator: Peter Steves	Validation Date: 04-18-2018
Project: LTS&M (Parcel 6-7-8)			# Samples: 21
analysis Type: 🚺 General C	hemistry Metals	X Organics X Radioch	nemistry
Chain of Custody		Sample	
Present: <u>OK</u> Signed: <u>C</u>	DK Dated: OK	Integrity: <u>OK</u> Preservatio	on <u>OK</u> Temperature: <u>OK</u>
Check		Summary	
Holding Times	: All analyses were cor	npleted within the applicable ho	olding times.
Detection Limits	: The reported detectio	n limits are equal to or below th	ne contract required limits.
Field Blanks	: There were 3 field bla	anks associated with this task.	
Field Duplicates	: There was 1 duplicate	e evaluated.	

Blank Type Sample Code Location Method Analyte Result TB MND01-01.1801001.019 0999 SW-846 8260 Acetone 5.39 Associated Samples: Sample Code Location Result Dilution Lab Qualifiers Validation Qualifier MND01-01.1801001-013 0601 0.500 1 U Image: Code Validation Qualifier Validation Qualifier	Lab Qualifiers
Associated Samples: Sam ple Code Location Result Dilution Lab Qualifiers Validation Qualifier MND01-01.1801001-013 0601 0.500 1 U MND01-01.1801001-014 0602 0.500 1 U MND01-01.1801001-015 0605 2.72 1 J U MND01-01.1801001-016 0606 0.500 1 U]
Sample Code Location Result Dilution Lab Qualifiers Validation Qualifier MND01-01.1801001-013 0601 0.500 1 U MND01-01.1801001-014 0602 0.500 1 U MND01-01.1801001-015 0605 2.72 1 J U MND01-01.1801001-016 0606 0.500 1 U U]
MND01-01.1801001-013 0601 0.500 1 U MND01-01.1801001-014 0602 0.500 1 U MND01-01.1801001-015 0605 2.72 1 J U MND01-01.1801001-016 0606 0.500 1 U	
MND01-01.1801001-014 0602 0.500 1 U MND01-01.1801001-015 0605 2.72 1 J U MND01-01.1801001-016 0606 0.500 1 U	
MND01-01.1801001-015 0605 2.72 1 J U MND01-01.1801001-016 0606 0.500 1 U	
MND01-01.1801001-016 0606 0.500 1 U	
MND01-01.1801001-017 0607 0.500 1 U	

Asso	MND01-01.1801001.020 ociated Samples: Sample Code MND01-01.1801001-002 MND01-01.1801001-006 MND01-01.1801001-008	0999 Location 0124 0346 0379	Result 0.500 0.500	846 8260 Dilution	Aceton Lab Qualifiers	e Validation	5.88	J	
Asso	Sample Code MND01-01.1801001-002 MND01-01.1801001-006	0124 0346	0.500 0.500			Validation	Qualifian]	
	MND01-01.1801001-002 MND01-01.1801001-006	0124 0346	0.500 0.500			Validation	Qualifian		1
	MND01-01.1801001-006	0346	0.500	1			Qualifier		
					U				
	MND01-01.1801001-008	0379	0.500	1	U				
			0.500	1	U				

t: L	TS&M (Parcel 6-7-8)	Tas	k Code: MND	01-01.1801001	Lab Cod	e: GEN		18-Apr-2018
ТВ	MND01-01.1801001.021	0999	SW	-846 8260	Aceton	e	5.12	J
A	Associated Samples:							7
	Sample Code	Location	Result	Dilution	Lab Qualifiers	Validation	Qualifier	
	MND01-01.1801001.018	0347	0.500	1	U	U		
	MND01-01.1801001-001	0118	0.500	1	U			
	MND01-01.1801001-003	0126	0.500	1	U			
	MND01-01.1801001-004	0138	0.500	1	U			
	MND01-01.1801001-005	0315	0.500	1	U			
	MND01-01.1801001-007	0347	0.500	1	U			
	MND01-01.1801001-009	0386	0.500	1	U			
	MND01-01.1801001-010	0387	0.500	1	U			
	MND01-01.1801001-011	0389	0.500	1	U			
	MND01-01.1801001-012	0392	0.500	1	U			
								1

Validation	Report: Fi	eld Duplicates
------------	------------	----------------

Page 1 of 4 18-Apr-2018

Project: LTS&M (Parcel 6-7-8) Task Code: MND01-01.1801001 Lab Code: GEN

	Duplic	ate: MND0 ⁻	1-01.1801	001.018	Samp	le: MND01- 034		01-007			
Analyte	Result	Qualifiers	Uncert.	Dilution	Result	Qualifiers	Uncert.	Dilution	RPD	RER	Units
1,1,1,2-Tetrachloroethane	0.160	U		1	0.160	U		1			ug/L
1,1,1-Trichloroethane	0.160	U		1	0.160	U		1			ug/L
1,1,2,2-Tetrachloroethane	0.160	U		1	0.160	U		1			ug/L
1,1,2-Trichloro-1,2,2-trifluoroethane	1.50	U		1	1.50	U		1			ug/L
1,1,2-Trichloroethane	0.160	U		1	0.160	U		1			ug/L
1,1-Dichloroethane	0.160	U		1	0.160	U		1			ug/L
1,1-Dichloroethene	0.160	U		1	0.160	U		1			ug/L
1,1-Dichloropropene	0.160	U		1	0.160	U		1			ug/L
1,2,3-Trichlorobenzene	0.200	U		1	0.200	U		1			ug/L
1,2,3-Trichloropropane	0.160	U		1	0.160	U		1			ug/L
1,2,4-Trichlorobenzene	0.160	U		1	0.160	U		1			ug/L
1,2,4-Trimethylbenzene	0.160	U		1	0.160	U		1			ug/L
1,2-Dibromo-3-chloropropane	0.160	U		1	0.160	U		1			ug/L
1,2-Dibromoethane	0.160	U		1	0.160	U		1			ug/L
1,2-Dichlorobenzene	0.160	U		1	0.160	U		1			ug/L
1,2-Dichloroethane	0.160	U		1	0.160	U		1			ug/L
1,2-Dichloropropane	0.160	U		1	0.160	U		1			ug/L
1,3,5-Trimethylbenzene	0.160	U		1	0.160	U		1			ug/L

	Duplic	ate: MND0 [,]	1-01.1801	001.018	Samp	le: MND01- 034					
Analyte	Result	Qualifiers	Uncert.	Dilution	Result	Qualifiers	Uncert.	Dilution	RPD	RER	Units
1,3-Dichlorobenzene	0.160	U		1	0.160	U		1			ug/L
1,3-Dichloropropane	0.160	U		1	0.160	U		1			ug/L
1,4-Dichlorobenzene	0.160	U		1	0.160	U		1			ug/L
2,2-Dichloropropane	0.160	U		1	0.160	U		1			ug/L
2-Butanone	0.500	U		1	0.500	U		1			ug/L
2-Chlorotoluene	0.160	U		1	0.160	U		1			ug/L
2-Hexanone	0.500	U		1	0.500	U		1			ug/L
4-Chlorotoluene	0.160	U		1	0.160	U		1			ug/L
4-Methyl-2-Pentanone	0.500	U		1	0.500	U		1			ug/L
Acetone	0.500	U		1	0.500	U		1			ug/L
Benzene	0.160	U		1	0.160	U		1			ug/L
Bromobenzene	0.160	U		1	0.160	U		1			ug/L
Bromochloromethane	0.160	U		1	0.160	U		1			ug/L
Bromodichloromethane	0.160	U		1	0.160	U		1			ug/L
Bromoform	0.160	U		1	0.160	U		1			ug/L
Bromomethane	0.160	U		1	0.160	U		1			ug/L
Carbon Disulfide	0.500	U		1	0.500	U		1			ug/L
Carbon tetrachloride	1.47			1	1.54			1	4.7		ug/L
Chlorobenzene	0.160	U		1	0.160	U		1			ug/L
Chlorodibromomethane	0.160	U		1	0.160	U		1			ug/L

Page 2 of 4

	Data Validation Summary	Page 1 of 1 19-Apr-2018
roject: LTS&M (Parcel 6-7-8)		
ask Code: MND01- 01.1801001		
ab Code: GEN		
Surrogate Recovery:	All surrogate recoveries were within the laboratory acceptance limits.	
LCS/LCSD Performance:	All LCS/LCSD results were within the laboratory acceptance limits.	
MS/MSD Performance:	There was 1 MS/MSD result outside the laboratory acceptance limits.	
Method Blank Performance:	All method blanks were below the MDL.	

	N	oncompl	iance Report:	MS/MS	D Per	form	ance	2		Page 1 of 1
inst ITS?M										19-Apr-2018
ject: LTS&M	(Parcel 6-7-8)		Task Code: MND01-01.1	1801001	Lab	Code:	GEN			
ample ID	Date Analyzed	Method	Analyte	MS Recovery	MSD Recovery	Lower Limit	Upper Limit	RPD	RPD Limit	Comment
	02-06-2018	SW-846 8260	Hexachlorobutadiene	60		65	123			MS recovery out of acceptance range

+ ITS				mist	ry Da	ta \	Valio	dation	Work	shee	t				Page 1 of 1 19-Apr-2018
	&M (Parcel 6-7-8)			Task Co	ode: MN	ID01-0	01.1801	001		Lab C	ode: G	BEN			
ample ID	Analyte	Analysis Date	QC Type	Result Type	Result	Flag	TPU	Spike Recovery	Spike Dup Recovery	Lower Limit	Upper Limit	RPD	RPD Limit	RER	Comments
	Tritium	02-12-2018	MS	SC	5980		1270	94.8		75	125				
	Tritium	02-13-2018	R	TRG	1190		303					10.2	100		
Types: L	.CS: Laboratory Confiro		Sample LC	Sample LCSD: Labo	Sample LCSD: Laboratory Contr	Sample LCSD: Laboratory Control Sample D	Sample LCSD: Laboratory Control Sample Duplicate	Sample LCSD: Laboratory Control Sample Duplicate MB:	Sample LCSD: Laboratory Control Sample Duplicate MB: Method Blank	Sample LCSD: Laboratory Control Sample Duplicate MB: Method Blank MS: Matrix S	Sample LCSD: Laboratory Control Sample Duplicate MB: Method Blank MS: Matrix Spike N	Sample LCSD: Laboratory Control Sample Duplicate MB: Method Blank MS: Matrix Spike MSD: Matri	Sample LCSD: Laboratory Control Sample Duplicate MB: Method Blank MS; Matrix Spike MSD: Matrix Spike D	Sample LCSD: Laboratory Control Sample Duplicate MB: Method Blank MS: Matrix Spike MSD: Matrix Spike Duplicate F	Sample LCSD: Laboratory Control Sample Duplicate MB: Method Blank MS: Matrix Spike MSD: Matrix Spike Duplicate R: Replicate

Contractor to the U.S. Department of Energy Office of Legacy Management

Data Review and Validation Report

General Information

Task ID:	MND01-01.1802002
Sample Event:	February 5 and 8, 2018
Site(s):	LTS&M (Parcel 6-7-8)
Laboratory:	GEL Laboratories, Charleston, South Carolina
Work Order No.:	443140
Analysis:	Radiochemistry
Validator:	Peter Steves
Review Date:	April 20, 2018

This validation was performed according to the "Standard Practice for Validation of Environmental Data" found in Appendix A of *Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites* (LMS/PRO/S04351, continually updated, <u>http://energy.gov/lm/downloads/sampling-and-analysis-plan-us-department-energy-office-legacy-management-sites</u>). The procedure was applied at Level 3, Data Validation.

This validation includes the evaluation of data quality indicators (DQIs) associated with the data. DQIs are the quantitative and qualitative descriptors that are used to interpret the degree of acceptability or utility of data. Indicators of data quality include the analysis of laboratory control samples to assess accuracy; duplicates and replicates to assess precision; and interference check samples to assess bias (see attached Data Validation Worksheets). The comparability, completeness, and sensitivity of the data are also evaluated in the sections to follow.

All analyses were successfully completed. The samples were prepared and analyzed using accepted procedures based on methods specified by line item code, which are listed in Table 1.

Table 1. Analytes and Methods

Analyte	Line Item Code	Prep Method	Analytical Method
Tritium	LSC-A-001	EPA 906.0 Modified	EPA 906.0 Modified

Data Qualifier Summary

Analytical results were qualified as listed in Table 2. Refer to the attached validation worksheets and the sections below for an explanation of the data qualifiers applied.

Table 2. Data Qualifiers

Sample Number	Location	Analyte	Flag	Reason
MND01-01.1802002-006	346	Tritium	J	Less than 3 times MDC

Sample Shipping/Receiving

GEL Laboratories in Charleston, South Carolina, received 2 water samples on February 06 and 09, 2018, accompanied by Chain of Custody (COC) forms. The air waybill numbers were listed on the Sample Receipt and Review Form. The COC forms were checked to confirm that all of the samples were listed with sample collection dates and times, and that signatures and dates were present indicating sample relinquishment and receipt. The COC forms were complete with no errors or omissions.

Preservation and Holding Times

The sample shipments were received intact with the temperature inside the iced coolers between 1 and 4 °C, which complies with requirements. All samples were analyzed within the applicable holding times. All samples were received in the correct container types and had been preserved correctly for the requested analyses.

Detection and Quantitation Limits

For radiochemical analytes (those measured by radiometric counting) the MDL and PQL are not applicable, and these results are evaluated using the minimum detectable concentration (MDC), the decision level concentration (DLC), and the determination limit (DL). The DLC is the minimum concentration of an analyte that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is estimated as 3 times the 1-sigma total propagated uncertainty. Results that are greater than the MDC but less than the DLC are qualified with a U flag as not detected. The DL for radiochemical results is the lowest concentration that can be reliably measured and is defined as 3 times the MDC. Results that were not previously U qualified and are less than the DL are qualified with a J flag as estimated values.

The reported MDLs and MDCs demonstrate compliance with contractual requirements.

Laboratory Instrument Calibration

Method requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing acceptable qualitative and quantitative data for the analytes of interest. Initial calibration verification demonstrates that the instrument is capable of acceptable performance at the beginning of the analytical run. Continuing calibration verification demonstrates that the initial calibration is still valid by checking the performance of the instrument on a continuing basis. Initial and continuing calibration standards must be prepared from independent sources to ensure the validity of the calibration. All laboratory instrument

calibrations and calibration verifications were performed correctly in accordance with the cited methods.

Radiochemical Analysis

Method EPA 906.0 Modified Tritium

Liquid scintillation calibrations for instrument MOCHA and SILVER were performed on June 11, 2017 and June 10, 2017. Calibrations resulted in quench curves covering a quench number range of 127 – 345 and 126 - 346. The sample quench values were all within the calibration range. Daily calibration checks were performed February 12, 13 and 24, 2018 with acceptable results.

Matrix Spike Analysis

Matrix spikes are aliquots of environmental samples to which a known concentration of analyte has been added before analysis. Matrix spike and matrix-spike duplicate (MS/MSD) analysis is used to assess the performance of the method by measuring the effects of interferences caused by the sample matrix and reflects the bias of the method for the particular matrix in question. The MS/MSD data are not evaluated when the concentration of the unspiked sample is greater than 4 times the spike. The spikes met the recovery and precision criteria for all analytes evaluated.

Laboratory Replicate Analysis

Laboratory replicate analyses are used to determine laboratory precision for each sample matrix. The relative percent difference for non-radiochemical replicate results that are greater than 5 times the PQL should be less than 20 percent. For results that are less than 5 times the PQL, the range should be no greater than the PQL. For the radiochemistry analyses, a laboratory control sample duplicate was analyzed in lieu of a sample duplicate, which is acceptable. The relative error ratio for radiochemical replicate results (calculated using the one-sigma total propagated uncertainty) should be less than 3, indicating acceptable precision. The replicate results met these criteria.

Laboratory Control Sample

Laboratory control samples were analyzed at the correct frequency to provide information on the accuracy of the analytical method and the overall laboratory performance, including sample preparation. All control sample results were acceptable.

Completeness

Results were reported in the correct units for all analytes requested using contract-required laboratory qualifiers. The analytical report included the MDL (MDC for radiochemistry) and PQL for all analytes and all required supporting documentation.

Electronic Data Deliverable (EDD) File

The EDD file arrived on March 21, 2018. The Sample Management System EDD validation module was used to verify that the EDD file was complete and in compliance with requirements. The module compares the contents of the file to the requested analyses to ensure all and only the requested data are delivered. The contents of the EDD were manually examined to verify that the sample results accurately reflect the data contained in the sample data package.

Potential Outliers

Potential outliers are results that lie outside the historical range, possibly due to transcription errors, data calculation errors, or measurement system problems. However, outliers can also represent true values outside the historical range. Potential outliers are identified by generating the Data Validation Outliers Report from data in the environmental database. The new data are compared to historical values and data that fall outside the historical data range are listed on the report along with the historical minimum and maximum values. The potential outliers are further reviewed and may be subject to statistical evaluation using the ProUCL application developed by the EPA (<u>https://www.epa.gov/land-research/proucl-software</u>). The review also includes an evaluation of any notable trends in the data that may indicate the outliers represent true extreme values.

There were no outliers identified and the data for this Task are acceptable as qualified.

Report Prepared By: ____

Peter Steves Data Validator

ask Code: MNDD1-01.1802002 Lab Code: GEN Validator: Peter Steve: Validation Date: 04-20-2018 Project: LTS&M (Parcel 6-7-8) # Sample: # Sample: # Inlaysis Type: General Chemistry Metals Organics Image: Radiochemistry Check Signed: OK Dated: OK Date: OK Temperature: OK Check Signed: OK Dated: OK Summary Integrity: OK Preservation OK Temperature: OK Obtact OK Signed: OK Dated: OK Date: OK O	roject: LTS&M (Parcel 6-7-8) # Samples: 2 alysis Type: General Chemistry Metals Organics X Radiochemistry hain of Custody Sample Present: OK Signed: OK Dated: OK Present: OK Signed: OK Dated: OK Integrity: OK Preservation OK Temperature: OK Check Summary Holding Times: All analyses were completed within the applicable holding times. Detection Limits: The reported detection limits are equal to or below the contract required limits.	G	eneral Data Valida	ation Repo	Page 1 of 1
nalysis Type: General Chemistry Metals Organics X Radiochemistry Chain of Custody Sample Present: OK Signed: OK Dated: OK Present: OK Signed: OK Dated: OK Integrity: OK Preservation OK Temperature: OK Check Summary Holding Times: All analyses were completed within the applicable holding times. Detection Limits: The reported detection limits are equal to or below the contract required limits.	alysis Type: General Chemistry Metals Organics X Radiochemistry hain of Custody Sample Present: OK Signed: OK Dated: OK Present: OK Signed: OK Dated: OK Check Summary Holding Times: All analyses were completed within the applicable holding times. Detection Limits: The reported detection limits are equal to or below the contract required limits.	ask Code: MND01-01.1802002	Lab Code: GEN Validator:	Peter Steves	Validation Date: 04-20-2018
Chain of Custody Sample Present: OK Signed: OK Dated: OK Integrity: OK Preservation OK Temperature: OK Check Summary Holding Times: All analyses were completed within the applicable holding times. Detection Limits: The reported detection limits are equal to or below the contract required limits.	bain of Custody Sample Present: OK Signed: OK Dated: OK Integrity: OK Preservation OK Temperature: OK Check Summary Holding Times: All analyses were completed within the applicable holding times. Detection Limits: The reported detection limits are equal to or below the contract required limits.	Project: LTS&M (Parcel 6-7-8)			# Samples: 2
Present: OK Signed: OK Dated: OK Integrity: OK Preservation OK Temperature: OK Check Summary Holding Times: All analyses were completed within the applicable holding times. Detection Limits: The reported detection limits are equal to or below the contract required limits.	Present: OK Signed: OK Dated: OK Integrity: OK Preservation OK Temperature: OK Check Summary Holding Times: All analyses were completed within the applicable holding times. Detection Limits: The reported detection limits are equal to or below the contract required limits.	nalysis Type: 📃 General Ch	emistry Metals Orga	nics X Radioc	hemistry
Check Summary Holding Times: All analyses were completed within the applicable holding times. Detection Limits: The reported detection limits are equal to or below the contract required limits.	Check Summary Holding Times: All analyses were completed within the applicable holding times. Detection Limits: The reported detection limits are equal to or below the contract required limits.	chain of Custody	Sample		
Holding Times: All analyses were completed within the applicable holding times. Detection Limits: The reported detection limits are equal to or below the contract required limits.	Holding Times: All analyses were completed within the applicable holding times. Detection Limits: The reported detection limits are equal to or below the contract required limits.	Present: OK Signed: O	K Dated: <u>OK</u> Integrity	y: <u>OK</u> Preservatio	on <u>OK</u> Temperature: <u>OK</u>
Detection Limits: The reported detection limits are equal to or below the contract required limits.	Detection Limits: The reported detection limits are equal to or below the contract required limits.				
		Holding Times:	All analyses were completed with	in the applicable h	olding times.
Field Duplicates: There are no duplicates associated with this task.	Field Duplicates: There are no duplicates associated with this task.	Detection Limits:	The reported detection limits are	equal to or below t	he contract required limits.
		Field Duplicates:	There are no duplicates associate	ed with this task.	

ect: LTS	&M (Parcel 6-7-8)			Task Co	ode: MN	ID01-	01.1802	002		Lab C	ode: G	BEN			
Sample ID	Analyte	Analysis Date	QC Type	Result Type	Result	Flag	TPU	Spike Recovery	Spike Dup Recovery	Lower Limit	Upper Limit	RPD	RPD Limit	RER	Comments
	Tritium	02-12-2018	LCS	SC	2610		566	101		75	125				
	Tritium	02-12-2018	MB	TRG	72.6	U	165								
	Tritium	02-24-2018	LCS	SC	2570		673	99.9		75	125				
	Tritium	02-24-2018	MB	TRG	-112	U	136								
	Tritium	02-24-2018	MS	SC	2550		663	84		75	125				
	Tritium	02-24-2018	R	TRG	452	-	187					17.9	100		

QC Checks: RPD: Relative Percent Difference RER: Relative Error Ratio TPU: Total Propagated Uncertainty

Contractor to the U.S. Department of Energy Office of Legacy Management

Data Review and Validation Report

General Information

Task ID:	MND01-01.1804003
Sample Event:	April 23-25, 2018
Site(s):	Mound LTS&M Groundwater (Parcel 6-7-8)
Laboratory:	GEL Laboratories, Charleston, South Carolina
Work Order No.:	448883
Analysis:	Organics
Validator:	Steve Donivan
Review Date:	July 23, 2018

This validation was performed according to the *Environmental Data Validation Procedure* (LMS/PRO/S15870). The procedure was applied at Level 3, Data Validation.

All analyses were successfully completed. The samples were prepared and analyzed using accepted procedures based on methods specified by line item code, which are listed in Table 1.

Table 1. Analytes and Methods

Analyte	Line Item Code	Prep Method	Analytical Method
Volatile Organics, VOA	VOA-A-007	SW-846 5030B	SW-846 8260 LL

Data Qualifier Summary

Analytical results were qualified as listed in Table 2. Refer to the attached validation worksheets and the sections below for an explanation of the data qualifiers applied.

Table 2. Data Qualifiers

Sample Number	Location	Analyte	Flag	Reason
MND01-01.1804003-012	0392	Bromochloromethane	J	Matrix spike recovery
MND01-01.1804003-014	0602	Acetone	U	Less than 10 times the trip blank
MND01-01.1804003-021	Trip blank	Acetone	J	Calibration drift

Sample Shipping/Receiving

GEL Laboratories in Charleston, South Carolina, received 21 water samples on April 26, 2018, accompanied by a Chain of Custody (COC) form. The air waybill number was listed on the Sample Receipt and Review Form. The COC form was checked to confirm that all of the samples were listed with sample collection dates and times, and that signatures and dates were present indicating sample relinquishment and receipt. The COC forms were complete with no errors or omissions .

Preservation and Holding Times

The sample shipments were received intact with the temperature inside the iced cooler at 4 °C, which complies with requirements. All samples were analyzed within the applicable holding times. All samples were received in the correct container types and had been preserved correctly for the requested analyses.

Detection and Quantitation Limits

The method detection limit (MDL) was reported for all organic analytes as required. The MDL, as defined in 40 CFR 136, is the minimum concentration of an analyte that can be measured and reported with 99 percent confidence that the analyte concentration is greater than zero. The practical quantitation limit (PQL) for these analytes is the lowest concentration that can be reliably measured, and is defined as 5 times the MDL. The reported MDLs demonstrate compliance with contractual requirements.

Laboratory Instrument Calibration

Method requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing acceptable qualitative and quantitative data for the analytes of interest. Initial calibration verification demonstrates that the instrument is capable of acceptable performance at the beginning of the analytical run. Continuing calibration verification demonstrates that the initial calibration is still valid by checking the performance of the instrument on a continuing basis. Initial and continuing calibration standards must be prepared from independent sources to ensure the validity of the calibration. All laboratory instrument calibrations and calibration verifications were performed correctly in accordance with the cited methods.

Method SW-846 8260 LL Volatile Organics, VOA

Initial calibration of instrument VOA2 was performed on April 26, 2018 using nine calibration standards. Calibration curves are established using linear regression, quadratic regression, or the average response factor approach. Calibrations using average response factors had relative standard deviations of less than 15 percent. Linear or higher order regression calibrations had correlation coefficient values greater than 0.99 and intercepts less than 3 times the MDL. Initial and continuing calibration verification checks were made at the required frequency. Some target compounds had percent drift values greater than 20 percent. Associated sample results that are greater than the MDL are qualified with a "J" flag as estimated values. The mass spectrometer

calibration and resolution was checked at the beginning of each analytical run in accordance with the procedure.

Volatiles Internal Standards and Surrogates

The volatile internal standard recoveries and surrogate recoveries were within the acceptance ranges for all samples.

Method Blanks

Method blanks are analyzed to assess any contamination that may have occurred during sample preparation. All method blank results associated with the samples were below the PQL for all analytes. In cases where a blank concentration exceeds or equals the MDL, the associated sample results are qualified with a U flag (not detected) when the sample result is greater than the MDL but less than 5 times the blank concentration.

<u>Trip Blank</u>

Trip blanks were prepared and analyzed to document contamination attributable to shipping and field handling procedures. This type of blank is useful in documenting contamination of volatile organic samples. Three trip blanks were submitted with these samples. Acetone was detected in the trip blanks. Associated sample acetone results that are less than ten times the blank concentration are qualified with a U flag as not detected.

Matrix Spike Analysis

Matrix spikes are aliquots of environmental samples to which a known concentration of analyte has been added before analysis. Matrix spike and matrix-spike duplicate (MS/MSD) analysis is used to assess the performance of the method by measuring the effects of interferences caused by the sample matrix and reflects the bias of the method for the particular matrix in question. The MS/MSD data are not evaluated when the concentration of the unspiked sample is greater than 4 times the spike. The spikes met the recovery and precision criteria for all analytes evaluated with the exception of bromochloromethane. The associated result is qualified with a J flag as an estimated value.

Laboratory Replicate Analysis

Laboratory replicate analyses are used to determine laboratory precision for each sample matrix. The relative percent difference for non-radiochemical replicate results that are greater than 5 times the PQL should be less than 20 percent. For results that are less than 5 times the PQL, the range should be no greater than the PQL. For the radiochemistry analyses, a laboratory control sample duplicate was analyzed in lieu of a sample duplicate, which is acceptable. The relative error ratio for radiochemical replicate results (calculated using the one-sigma total propagated uncertainty) should be less than 3, indicating acceptable precision. The replicate results met these criteria.

Laboratory Control Sample

Laboratory control samples were analyzed at the correct frequency to provide information on the accuracy of the analytical method and the overall laboratory performance, including sample preparation. All control sample results were acceptable.

Field Duplicate

Field duplicate samples are collected and analyzed as an indication of overall precision of the measurement process. The precision observed includes both field and laboratory precision and has more variability than laboratory duplicates, which measure only laboratory performance. A duplicate sample was collected from location 0392. The relative percent difference for duplicate results that are greater than 5 times the PQL should be less than 20 percent. For results that are less than 5 times the PQL, the range should be no greater than the PQL. The duplicate results met the criteria.

Completeness

Results were reported in the correct units for all analytes requested using contract-required laboratory qualifiers. The analytical report included the MDL (MDC for radiochemistry) and PQL for all analytes and all required supporting documentation.

Electronic Data Deliverable (EDD) File

The EDD file arrived on May 23, 2018. The EDD was examined to verify that the file was complete and in compliance with requirements. The contents of the files were compared to the requested analyses to ensure all and only the requested data are delivered. The contents of the EDDs were manually examined to verify that the sample results accurately reflect the data contained in the sample data package.

Potential Outliers

Potential outliers are results that lie outside the historical range, possibly due to transcription errors, data calculation errors, or measurement system problems. However, outliers can also represent true values outside the historical range. Potential outliers are identified by generating the Data Validation Outliers Report from data in the environmental database. The new data are compared to historical values and data that fall outside the historical data range are listed on the report along with the historical minimum and maximum values. The potential outliers are further reviewed and may be subject to statistical evaluation using the ProUCL application developed by the EPA (<u>https://www.epa.gov/land-research/proucl-software</u>). The review also includes an evaluation of any notable trends in the data that may indicate the outliers represent true extreme values.

There were no outliers identified and the data for this task are acceptable as qualified.

Stoppon Donie

STEPHEN DONIVAN (Affiliate) 2018.07.23 12:03:31 -06'00'

Report Prepared By: _____

Stephen Donivan Laboratory Coordinator

Gen	eral Data Validation Report	Page 1 of 1
Task Code: MND01-01.1804003 La	ab Code: GEN Validator: Stephen Donivan Validation	n Date: 07-23-2018
Project: LTS&M (Parcel 6-7-8)	# Sa	mples: 21
Analysis Type: General Chemist	stry Metals X Organics Radiochemistry	
Chain of Custody	Sample	
Present: <u>OK</u> Signed: <u>OK</u>	Dated: <u>OK</u> Integrity: <u>OK</u> Preservation <u>OK</u> Tempe	erature: <u>OK</u>
<u>Check</u>	Summary	
	analyses were completed within the applicable holding times.	
	reported detection limits are equal to or below the contract req	uirea limits.
	ere were 3 field blanks associated with this task.	
	re was 1 duplicate evaluated.	

Blank Type	Sample Code	Location		Vlethod	Analyte	e	Result	Lab Qualifiers
ТВ	MND01-01.1804003.019	0999	SW	-846 8260	Aceton	е	3.01	J
As	sociated Samples:							1
	Sample Code	Location	Result	Dilution	Lab Qualifiers	Validation (Qualifier	
	MND01-01.1804003-001	0118	0.500	1	U			
	MND01-01.1804003-002	0124	0.500	1	U			
	MND01-01.1804003-003	0126	0.500	1	U			
	MND01-01.1804003-004	0138	0.500	1	U			
	MND01-01.1804003-013	0601	0.500	1	U			
	MND01-01.1804003-014	0602	3.07	1	J	U		
	MND01-01.1804003-015	0605	0.500	1	U			
	MND01-01.1804003-016	0606	0.500	1	U			
	MND01-01.1804003-017	0607	0.500	1	U			
								1

t: LTS&M (Parcel 6-7-8) Task Code: MND01-01.1804003 Lab Code: GEN TB MND01-01.1804003.020 0999 SW-846 8260 Acetone 2.60 J Associated Samples: Sample Code Location Result Dilution Lab Qualifiers Validation Qualifier MND01-01.1804003.018 0392 0.500 1 U U MND01-01.1804003.005 0315 0.500 1 U U MND01-01.1804003.007 0347 0.500 1 U U MND01-01.1804003.009 0386 0.500 1 U U MND01-01.1804003-010 0387 0.500 1 U U U MND01-01.1804003-011 0389 0.500 1 U<	t: LTS&M (Parcel 6-7-8) Task Code: MND01-01.1804003 Lab Code: GEN TB MND01-01.1804003.020 0999 SW-846 8260 Acetone 2.60 J Associated Samples:	MND01-01.1804003.020 iated Samples: Sample Code ND01-01.1804003.018 ND01-01.1804003-005 ND01-01.1804003-007 ND01-01.1804003-009 ND01-01.1804003-010 ND01-01.1804003-011	0999 Location 0392 0315 0347 0386 0387	Result 0.500 0.500 0.500 0.500 0.500	B46 8260 Dilution 1 1 1 1	Aceton Lab Qualifiers U U U U U	e Validation (2.60 Qualifier	_
Associated Samples: Sample Code Location Result Dilution Lab Qualifiers Validation Qualifier MND01-01.1804003.018 0392 0.500 1 U U MND01-01.1804003.005 0315 0.500 1 U U MND01-01.1804003-007 0347 0.500 1 U U MND01-01.1804003-009 0386 0.500 1 U U MND01-01.1804003-010 0387 0.500 1 U U MND01-01.1804003-011 0389 0.500 1 U U	Associated Samples: Sample Code Location Result Dilution Lab Qualifiers Validation Qualifier MND01-01.1804003.018 0392 0.500 1 U U MND01-01.1804003.005 0315 0.500 1 U U MND01-01.1804003-007 0347 0.500 1 U U MND01-01.1804003-009 0386 0.500 1 U U MND01-01.1804003-010 0387 0.500 1 U U MND01-01.1804003-011 0389 0.500 1 U U	iated Samples: Sample Code IND01-01.1804003.018 IND01-01.1804003-005 IND01-01.1804003-007 IND01-01.1804003-009 IND01-01.1804003-010 IND01-01.1804003-011	Location 0392 0315 0347 0386 0387	Result 0.500 0.500 0.500 0.500 0.500	Dilution 1 1 1	Lab Qualifiers U U U U	Validation	Qualifier	J
Sample Code Location Result Dilution Lab Qualifiers Validation Qualifier MND01-01.1804003.018 0392 0.500 1 U U MND01-01.1804003-005 0315 0.500 1 U U MND01-01.1804003-007 0347 0.500 1 U U MND01-01.1804003-009 0386 0.500 1 U U MND01-01.1804003-010 0387 0.500 1 U U MND01-01.1804003-010 0387 0.500 1 U U	Sample Code Location Result Dilution Lab Qualifiers Validation Qualifier MND01-01.1804003.018 0392 0.500 1 U U MND01-01.1804003-005 0315 0.500 1 U U MND01-01.1804003-007 0347 0.500 1 U U MND01-01.1804003-009 0386 0.500 1 U U MND01-01.1804003-010 0387 0.500 1 U U MND01-01.1804003-010 0387 0.500 1 U U	Sam ple Code IND01-01.1804003.018 IND01-01.1804003-005 IND01-01.1804003-007 IND01-01.1804003-009 IND01-01.1804003-010 IND01-01.1804003-011	0392 0315 0347 0386 0387	0.500 0.500 0.500 0.500 0.500	1 1 1	U U U			
MND01-01.1804003.018 0392 0.500 1 U U MND01-01.1804003-005 0315 0.500 1 U U MND01-01.1804003-007 0347 0.500 1 U U MND01-01.1804003-007 0347 0.500 1 U U MND01-01.1804003-009 0386 0.500 1 U U MND01-01.1804003-010 0387 0.500 1 U U MND01-01.1804003-011 0389 0.500 1 U U	MND01-01.1804003.018 0392 0.500 1 U U MND01-01.1804003-005 0315 0.500 1 U U MND01-01.1804003-007 0347 0.500 1 U U MND01-01.1804003-007 0347 0.500 1 U U MND01-01.1804003-009 0386 0.500 1 U U MND01-01.1804003-010 0387 0.500 1 U U MND01-01.1804003-011 0389 0.500 1 U U	ND01-01.1804003.018 ND01-01.1804003-005 ND01-01.1804003-007 ND01-01.1804003-009 ND01-01.1804003-010 ND01-01.1804003-011	0392 0315 0347 0386 0387	0.500 0.500 0.500 0.500 0.500	1 1 1	U U U			
MND01-01.1804003-005 0315 0.500 1 U MND01-01.1804003-007 0347 0.500 1 U MND01-01.1804003-009 0386 0.500 1 U MND01-01.1804003-010 0387 0.500 1 U MND01-01.1804003-011 0389 0.500 1 U	MND01-01.1804003-005 0315 0.500 1 U MND01-01.1804003-007 0347 0.500 1 U MND01-01.1804003-009 0386 0.500 1 U MND01-01.1804003-010 0387 0.500 1 U MND01-01.1804003-011 0389 0.500 1 U	ND01-01.1804003-005 ND01-01.1804003-007 ND01-01.1804003-009 ND01-01.1804003-010 ND01-01.1804003-011	0315 0347 0386 0387	0.500 0.500 0.500 0.500	1 1 1	U U U	U		
MND01-01.1804003-007 0347 0.500 1 U MND01-01.1804003-009 0386 0.500 1 U MND01-01.1804003-010 0387 0.500 1 U MND01-01.1804003-011 0389 0.500 1 U	MND01-01.1804003-007 0347 0.500 1 U MND01-01.1804003-009 0386 0.500 1 U MND01-01.1804003-010 0387 0.500 1 U MND01-01.1804003-011 0389 0.500 1 U	ND01-01.1804003-007 ND01-01.1804003-009 ND01-01.1804003-010 ND01-01.1804003-011	0347 0386 0387	0.500 0.500 0.500	1	U			
MND01-01.1804003-009 0386 0.500 1 U MND01-01.1804003-010 0387 0.500 1 U MND01-01.1804003-011 0389 0.500 1 U	MND01-01.1804003-009 0386 0.500 1 U MND01-01.1804003-010 0387 0.500 1 U MND01-01.1804003-011 0389 0.500 1 U	ND01-01.1804003-009 ND01-01.1804003-010 ND01-01.1804003-011	0386 0387	0.500 0.500	1	U			
MND01-01.1804003-010 0387 0.500 1 U MND01-01.1804003-011 0389 0.500 1 U	MND01-01.1804003-010 0387 0.500 1 U MND01-01.1804003-011 0389 0.500 1 U	ND01-01.1804003-010 ND01-01.1804003-011	0387	0.500					
MND01-01.1804003-011 0389 0.500 1 U	MND01-01.1804003-011 0389 0.500 1 U	ND01-01.1804003-011			1	U			
			0389	0.500					
MND01-01.1804003-012 0392 0.500 1 U	MND01-01.1804003-012 0392 0.500 1 U	ND01-01 1804003-012		0.000	1	U			
		1001-01.1004000-012	0392	0.500	1	U			

		Validation F	Report: Fie	d Blanks			F	age 3 of 3
ct: LT	S&M (Parcel 6-7-8)	Tasl	k Code: MND	01-01.1804003	Lab Cod	e: GEN	2	3-Jul-2018
ТВ	MND01-01.1804003.021	0999	SW	-846 8260	Aceton	e	2.89	J
As	sociated Samples:							
	Sam ple Code	Location	Result	Dilution	Lab Qualifiers	Validation	Qualifier	
	MND01-01.1804003-006	0346	0.500	1	U			
	MND01-01.1804003-008	0379	0.500	1	U			
]

Page 1 of 4 23-Jul-2018

Project: LTS&M (Parcel 6-7-8)

Task Code: MND01-01.1804003 Lab Code: GEN

	Duplic	ate: MND0 ⁻	1-01.1804	003.018	8 Sample: MND01-01.1804003-012 0392						
Analyte	Result	Qualifiers	Uncert.	Dilution	Result	Qualifiers	Uncert.	Dilution	RPD	RER	Units
1,1,1,2-Tetrachloroethane	0.160	U		1	0.160	U		1			ug/L
1,1,1-Trichloroethane	0.160	U		1	0.160	U		1			ug/L
1,1,2,2-Tetrachloroethane	0.160	U		1	0.160	U		1			ug/L
1,1,2-Trichloro-1,2,2-trifluoroethane	1.50	U		1	1.50	U		1			ug/L
1,1,2-Trichloroethane	0.160	U		1	0.160	U		1			ug/L
1,1-Dichloroethane	0.160	U		1	0.160	U		1			ug/L
1,1-Dichloroethene	0.160	U		1	0.160	U		1			ug/L
1,1-Dichloropropene	0.160	U		1	0.160	U		1			ug/L
1,2,3-Trichlorobenzene	0.200	U		1	0.200	U		1			ug/L
1,2,3-Trichloropropane	0.160	U		1	0.160	U		1			ug/L
1,2,4-Trichlorobenzene	0.160	U		1	0.160	U		1			ug/L
1,2,4-Trimethylbenzene	0.160	U		1	0.160	U		1			ug/L
1,2-Dibromo-3-chloropropane	0.160	U		1	0.160	U		1			ug/L
1,2-Dibromoethane	0.160	U		1	0.160	U		1			ug/L
1,2-Dichlorobenzene	0.160	U		1	0.160	U		1			ug/L
1,2-Dichloroethane	0.160	U		1	0.160	U		1			ug/L
1,2-Dichloropropane	0.160	U		1	0.160	U		1			ug/L
1,3,5-Trimethylbenzene	0.160	U		1	0.160	U		1			ug/L

	Duplic	ate: MND0	1-01.1804	003.018	Sample: MND01-01.1804003-012 0392						
Analyte	Result	Qualifiers	Uncert.	Dilution	Result	Qualifiers	Uncert.	Dilution	RPD	RER	Units
1,3-Dichlorobenzene	0.160	U		1	0.160	U		1			ug/L
1,3-Dichloropropane	0.160	U		1	0.160	U		1			ug/L
1,4-Dichlorobenzene	0.160	U		1	0.160	U		1			ug/L
2,2-Dichloropropane	0.160	U		1	0.160	U		1			ug/L
2-Butanone	0.500	U		1	0.500	U		1			ug/L
2-Chlorotoluene	0.160	U		1	0.160	U		1			ug/L
2-Hexanone	0.500	U		1	0.500	U		1			ug/L
4-Chlorotoluene	0.160	U		1	0.160	U		1			ug/L
4-Methyl-2-Pentanone	0.500	U		1	0.500	U		1			ug/L
Acetone	0.500	U		1	0.500	U		1			ug/L
Benzene	0.160	U		1	0.160	U		1			ug/L
Bromobenzene	0.160	U		1	0.160	U		1			ug/L
Bromochloromethane	0.160	U		1	0.160	U		1			ug/L
Bromodichloromethane	0.160	U		1	0.160	U		1			ug/L
Bromoform	0.160	U		1	0.160	U		1			ug/L
Bromomethane	0.160	U		1	0.160	U		1			ug/L
Carbon Disulfide	0.500	U		1	0.500	U		1			ug/L
Carbon tetrachloride	0.160	U		1	0.160	U		1			ug/L
Chlorobenzene	0.160	U		1	0.160	U		1			ug/L
Chlorodibromomethane	0.160	U		1	0.160	U		1			ug/L

Page 2 of 4 23-Jul-2018

	Duplic	ate: MND0	1-01.1804	003.018	3 Sample: MND01-01.1804003-012 0392						
Analyte	Result	Qualifiers	Uncert.	Dilution	Result	Qualifiers	Uncert.	Dilution	RPD	RER	Units
Chloroethane	0.160	U		1	0.160	U		1			ug/L
Chloroform	0.160	U		1	0.160	U		1			ug/L
Chloromethane	0.160	U		1	0.160	U		1			ug/L
cis-1,2-Dichloroethene	0.160	U		1	0.160	U		1			ug/L
cis-1,3-Dichloropropene	0.160	U		1	0.160	U		1			ug/L
Dibromomethane	0.160	U		1	0.160	U		1			ug/L
Dichlorodifluoromethane	0.160	U		1	0.160	U		1			ug/L
Ethylbenzene	0.160	U		1	0.160	U		1			ug/L
Hexachlorobutadiene	0.160	U		1	0.160	U		1			ug/L
Isopropylbenzene	0.160	U		1	0.160	U		1			ug/L
Methylene chloride	0.160	U		1	0.160	U		1			ug/L
n-Butylbenzene	0.160	U		1	0.160	U		1			ug/L
n-Propylbenzene	0.160	U		1	0.160	U		1			ug/L
Naphthalene	0.160	U		1	0.160	U		1			ug/L
p-IsopropyItoluene	0.160	U		1	0.160	U		1			ug/L
sec-Butylbenzene	0.160	U		1	0.160	U		1			ug/L
Styrene	0.160	U		1	0.160	U		1			ug/L
tert-Butylbenzene	0.160	U		1	0.160	U		1			ug/L
Tetrachloroethene	0.160	U		1	0.160	U		1			ug/L
Toluene	0.160	U		1	0.160	U		1			ug/L

Page 3 of 4 23-Jul-2018

		andat		lopon		d Dup	noute			23-J	ul-2018
Project: LTS&M (Parcel 6-7-8)	Task C	Task Code: MND01-01.1804003 Lab Code: GEN									
	Duplicate: MND01-01.1804003.018			Sample: MND01-01.1804003-012 0392							
Analyte	Result	Qualifiers	Uncert.	Dilution	Result	Qualifiers	Uncert.	Dilution	RPD	RER	Units
Fotal Xylenes	0.160	U		1	0.160	U		1			ug/L
rans-1,2-Dichloroethene	0.160	U		1	0.160	U		1			ug/L
trans-1,3-dichloropropene	0.160	U		1	0.160	U		1			ug/L
Trichloroethene	0.160	U		1	0.160	U		1			ug/L
Trichlorofluoromethane	0.160	U		1	0.160	U		1			ug/L
Vinyl chloride	0.160	U		1	0.160	U		1			ug/L
		1	<u> </u>	1		1	1			I	
		1	1	1			1				
		1		L							
		1		L							

Organics	Data Validation Summary	Page 1 of 1 23-Jul-2018				
roject: LTS&M (Parcel 6-7-8)						
sk Code: MND01- 01.1804003						
b Code: GEN						
Surrogate Recovery:	All surrogate recoveries were within the laboratory acceptance limits.					
LCS/LCSD Performance:	All LCS/LCSD results were within the laboratory acceptance limits.					
MS/MSD Performance:	There was 1 MS/MSD result outside the laboratory acceptance limits.					
Method Blank Performance:	All method blanks were below the MDL.					

	N	oncompl	iance Report:	MS/MS	D Perl	form	ance	•		Page 1 of 1 23-Jul-2018
ect: LTS&M (Task Code: MND01-01.1			Code:				23-Jul-2018
ample ID	Date Analyzed	Method	Analyte	MS Recovery	MSD Recovery	Lower Limit	Upper Limit	RPD	RPD Limit	Comment
	05-02-2018	SW-846 8260	Bromochloromethane	78		79	120			

Contractor to the U.S. Department of Energy Office of Legacy Management

Data Review and Validation Report

General Information

Task ID:	MND01-01.1807004
Sample Event:	July 30-August 2, 2018
Site(s):	Mound LTS&M (Parcel 6-7-8)
Laboratory:	GEL Laboratories, Charleston, South Carolina
Work Order No.:	455819
Analysis:	Organics and Radiochemistry
Validator:	Samantha Tigar
Review Date:	October 22, 2018

This validation was performed according to *Environmental Data Validation Procedure* (LMS/PRO/S15870), which is available athttp://sp.lm.doe.gov/Contractor/ControlledDocuments/Controlled%20Documents/S15870_Env_DV_Procedure.pdf. The procedure was applied at Level 3, Data Validation.

All analyses were successfully completed. The samples were prepared and analyzed using accepted procedures based on methods specified by line item code, which are listed in Table 1.

Analyte	Line Item Code	Prep Method	Analytical Method
Tritium	LSC-A-001	EPA 906.0 Modified	EPA 906.0 Modified
Volatile Organics, VOA	VOA-A-007	SW-846 5030B	SW-846 8260 LL

Table 1. Analytes and Methods

Data Qualifier Summary

Analytical results were qualified as listed in Table 2. Refer to the attached validation worksheets and the sections below for an explanation of the data qualifiers applied.

Sample Number	Location	Analyte	Flag	Reason
MND01-01.1807004-004	0138	Tritium	J	Less than the determination limit
MND01-01.1807004-008	0379	Tritium	J	Less than the determination limit

Table 2. Data Qualifiers

Sample Shipping/Receiving

GEL Laboratories in Charleston, South Carolina, received 21 water samples Between July 31 and August 3, 2018, accompanied by a Chain of Custody (COC) form. The air waybill number was listed on the Sample Receipt and Review Form. The COC form was checked to confirm that all of the samples were listed with sample collection dates and times, and that signatures and dates were present indicating sample relinquishment and receipt. The COC forms were complete with no errors or omissions.

A VOA vial for location 0138 was received broken. A trip blank vial was received with headspace. Sufficient volume remained in the remaining vials for analysis.

Preservation and Holding Times

The sample shipments were received intact with the temperature inside the iced cooler between 2 °C and 4 °C, which complies with requirements. All samples were received in the correct container types and had been preserved correctly for the requested analyses. All samples were analyzed within the applicable holding times.

Detection and Quantitation Limits

The method detection limit (MDL) was reported for all organic analytes as required. The MDL, as defined in 40 CFR 136, is the minimum concentration of an analyte that can be measured and reported with 99 percent confidence that the analyte concentration is greater than zero. The practical quantitation limit (PQL) for these analytes is the lowest concentration that can be reliably measured, and is defined as 5 times the MDL.

For radiochemical analytes (those measured by radiometric counting) the MDL and PQL are not applicable, and these results are evaluated using the minimum detectable concentration (MDC), the decision level concentration (DLC), and the determination limit (DL). The DLC is the minimum concentration of an analyte that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is estimated as 3 times the 1-sigma total propagated uncertainty. Results that are greater than the MDC but less than the DLC are qualified with a U flag as not detected. The DL for radiochemical results is the lowest concentration that can be reliably measured and is defined as 3 times the MDC. Results that were not previously U qualified and are less than the DL are qualified with a J flag as estimated values.

The reported MDLs and MDCs demonstrate compliance with contractual requirements.

Laboratory Instrument Calibration

Method requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing acceptable qualitative and quantitative data for the analytes of interest. Initial calibration verification demonstrates that the instrument is capable of acceptable performance at the beginning of the analytical run. Continuing calibration verification

demonstrates that the initial calibration is still valid by checking the performance of the instrument on a continuing basis. Initial and continuing calibration standards must be prepared from independent sources to ensure the validity of the calibration. All laboratory instrument calibrations and calibration verifications were performed correctly in accordance with the cited methods.

Method SW-846 8260 LL Volatile Organics, VOA

Initial calibration of instrument VOA2 was performed on July 17, 2018 using nine calibration standards. Calibration curves are established using linear regression, quadratic regression, or the average response factor approach. Calibrations using average response factors had relative standard deviations of less than 15 percent. Linear or higher order regression calibrations had correlation coefficient values greater than 0.99 and intercepts less than 3 times the MDL. Initial and continuing calibration verification checks were made at the required frequency. Some target compounds had percent drift values greater than 20 percent but were not detected at concentrations greater than the MDL. The mass spectrometer calibration and resolution was checked at the beginning of each analytical run in accordance with the procedure.

Method EPA 906.0 Modified Tritium

Liquid scintillation calibrations for instrument BROWN were performed on July 1, 2018. Calibrations resulted in quench curves covering a quench number range of 137 – 332. The sample quench values were all within the calibration range. Daily calibration checks were performed August 9 and 10, 2018 with acceptable results.

Volatiles Internal Standards and Surrogates

The volatile internal standard recoveries and surrogate recoveries were within the acceptance ranges for all samples.

Method Blanks

Method blanks are analyzed to assess any contamination that may have occurred during sample preparation. All method blank results associated with the samples were below the PQL for all analytes. In cases where a blank concentration exceeds or equals the MDL, the associated sample results are qualified with a U flag (not detected) when the sample result is greater than the MDL but less than 5 times the blank concentration.

<u>Trip Blank</u>

Trip blanks were prepared and analyzed to document contamination attributable to shipping and field handling procedures. This type of blank is useful in documenting contamination of volatile organic samples. Three trip blanks were submitted with these samples. Acetone and chlorobenzene were detected in the trip blanks but were not detected above the MDL in the associated samples.

Matrix Spike Analysis

Matrix spikes are aliquots of environmental samples to which a known concentration of analyte has been added before analysis. Matrix spike and matrix-spike duplicate (MS/MSD) analysis is used to assess the performance of the method by measuring the effects of interferences caused by the sample matrix and reflects the bias of the method for the particular matrix in question. The MS/MSD data are not evaluated when the concentration of the unspiked sample is greater than 4 times the spike. The spikes met the recovery and precision criteria for all analytes evaluated.

Laboratory Replicate Analysis

Laboratory replicate analyses are used to determine laboratory precision for each sample matrix. The relative percent difference for non-radiochemical replicate results that are greater than 5 times the PQL should be less than 20 percent. For results that are less than 5 times the PQL, the range should be no greater than the PQL. For the radiochemistry analyses, a laboratory control sample duplicate was analyzed in lieu of a sample duplicate, which is acceptable. The relative error ratio for radiochemical replicate results (calculated using the one-sigma total propagated uncertainty) should be less than 3, indicating acceptable precision. The replicate results met these criteria.

Laboratory Control Sample

Laboratory control samples were analyzed at the correct frequency to provide information on the accuracy of the analytical method and the overall laboratory performance, including sample preparation. All control sample results were acceptable.

Field Duplicate

Field duplicate samples are collected and analyzed as an indication of overall precision of the measurement process. The precision observed includes both field and laboratory precision and has more variability than laboratory duplicates, which measure only laboratory performance. The relative percent difference for duplicate results that are greater than 5 times the PQL should be less than 20 percent. For results that are less than 5 times the PQL, the range should be no greater than the PQL. For radiochemical measurements, the relative error ratio (the ratio of the absolute difference between the sample and duplicate results and the sum of the 1-sigma uncertainties) is used to evaluate duplicate results and should be less than 3. A duplicate sample was collected from location 0347. The duplicate results met the criteria.

Completeness

Results were reported in the correct units for all analytes requested using contract-required laboratory qualifiers. The analytical report included the MDL (MDC for radiochemistry) and PQL for all analytes and all required supporting documentation.

Electronic Data Deliverable (EDD) File

A revised EDD file arrived on October 26, 2018. The EDD was examined to verify that the file was complete and in compliance with requirements. The contents of the file were compared to the requested analyses to ensure all and only the requested data are delivered. The contents of the EDD were manually examined to verify that the sample results accurately reflect the data contained in the sample data package.

Field Measurements

The pre-sampling purge criteria were met for all wells. A turbidity less than 50NTU could not be achieved at monitoring well 0379.

Potential Outliers

Potential outliers are results that lie outside the historical range, possibly due to transcription errors, data calculation errors, or measurement system problems. However, outliers can also represent true values outside the historical range. Potential outliers are identified by generating the Data Validation Outliers Report from data in the environmental database. The new data are compared to historical values and data that fall outside the historical data range are listed on the report along with the historical minimum and maximum values. The potential outliers are further reviewed and may be subject to statistical evaluation using the ProUCL application developed by the EPA (<u>https://www.epa.gov/land-research/proucl-software</u>). The review also includes an evaluation of any notable trends in the data that may indicate the outliers represent true extreme values. There were no outliers identified and the data for this task are acceptable as qualified.

famantha Tigar

Report Prepared By: _

Digitally signed by SAMANTHA TIGAR (Affiliate) Date: 2018.10.29 15:26:50 -06'00'

Samantha Tigar Data Validator

Task Code: MND01-01.180700 Project: LTS&M (Parcel 6-7-8) Analysis Type: General C			Validation Date: 10-10-2018 # Samples: 22 emistry
Chain of Custody	, 🛄	Sample	
Present: <u>OK</u> Signed: <u>C</u>	OK Dated: OK	Integrity: <u>OK</u> Preservation	n <u>OK</u> Temperature: <u>OK</u>
Check		<u>Summary</u>	
	12 h. H. Dollarsz Marcon, L. S. Korabala 19	npleted within the applicable hol	
		n limits are equal to or below the	e contract required limits.
-		anks associated with this task.	
Field Duplicates	: There was 1 duplicate	e evaluated.	

Blank	Sample Code	Location		Method	Analyt	e	Result	Lab Qualifiers
Type TB	MND01-01.1807004-019	0999	SW	/-846 8260	Aceton	ie	22.0	Quaimers
As	sociated Samples:							
	Sample Code	Location	Result	Dilution	Lab Qualifiers	Validation C	tualifier	
	MND01-01.1807004-002	0124	5.00	1	U			
	MND01-01.1807004-003	0126	5.00	1	U			
	MND01-01.1807004-004	0138	5.00	1	U			
	MND01-01.1807004-013	0601	5.00	1	U			
	MND01-01.1807004-015	0605	5.00	1	U			
	MND01-01.1807004-016	0606	5.00	1	U			
	MND01-01.1807004-017	0607	5.00	1	U			

ct: LT	S&M (Parcel 6-7-8)	Tas	sk Code: MND	01-01.1807004	Lab Coo	de: GEN		10-Oct-2018
ТВ	MND01-01.1807004-020	0999	SW	846 8260	Acetor	ne	14.3	
As	sociated Samples:							п
	Sample Code MND01-01.1807004-001	Location 0118	Result	Dilution 1	Lab Qualifiers U	Validation	Qualifier	
	MND01-01.1807004-008	0379	5.00	1	U			

Hett: LTS&M (Parcel 6-7-8) Task Code: MND01-01.1807004 Cab Code: GEM GEM J TB MND01-01.1807004-021 0999 SW-846 8260 Acetone 3.90 J Associated Samples: Sample Code Location Result Dilution Lab Qualifiers Validation Qualifier MND01-01.1807004-009 0386 5.00 1 U U MND01-01.1807004-010 0387 5.00 1 U U MND01-01.1807004-011 0389 5.00 1 U U MND01-01.1807004-012 0392 5.00 1 U U U MND01-01.1807004-012 0392 5.00 1 U			Validation	Report: Fie	eld Blanks			Page 3 of 5
Sample Code Location Result Dilution Lab Qualifiers Validation Qualifier MND01-01.1807004-006 0346 5.00 1 U MND01-01.1807004-009 0386 5.00 1 U MND01-01.1807004-010 0387 5.00 1 U MND01-01.1807004-011 0389 5.00 1 U	ect: LT	TS&M (Parcel 6-7-8)	Та	sk Code: MNE	001-01.1807004	Lab Coc	le: GEN	10-Oct-2018
Sample Code Location Result Dilution Lab Qualifiers Validation Qualifier MND01-01.1807004-006 0346 5.00 1 U U MND01-01.1807004-009 0386 5.00 1 U U MND01-01.1807004-010 0387 5.00 1 U U MND01-01.1807004-011 0389 5.00 1 U U	ТВ	MND01-01.1807004-021	0999	SW	-846 8260	Aceton	ie 3.90	J
MND01-01.1807004-006 0346 5.00 1 U MND01-01.1807004-009 0386 5.00 1 U MND01-01.1807004-010 0387 5.00 1 U MND01-01.1807004-011 0389 5.00 1 U	A	ssociated Samples:						٦ L
MND01-01.1807004-009 0386 5.00 1 U MND01-01.1807004-010 0387 5.00 1 U MND01-01.1807004-011 0389 5.00 1 U		Sam ple Code	Location	Result	Dilution	Lab Qualifiers	Validation Qualifier	
MND01-01.1807004-010 0387 5.00 1 U MND01-01.1807004-011 0389 5.00 1 U		MND01-01.1807004-006	0346	5.00	1	U		
MND01-01.1807004-011 0389 5.00 1 U		MND01-01.1807004-009	0386	5.00	1	U		
		MND01-01.1807004-010	0387	5.00	1	U		
MND01-01.1807004-012 0392 5.00 1 U		MND01-01.1807004-011	0389	5.00	1	U		
		MND01-01.1807004-012	0392	5.00	1	U		

Interview Otec Off off off off off Off off off off off off Off off off off off off Off off off off off off Off off off off off off off Off off off off off off Off off off off off off Off off off off off off off Off off off off off off off Off off off off off off Off off off off off off Off off off off off off Off off off off off off Off off off off off off off Off off off off off off off off Off off off off off off off off Off off off off off off off off off Off off off off off off off off off off	Sample Code Location Result Dilution Lab Qualifiers Validation Qualifier MND01-01.1807004-006 0346 1.00 1 U MND01-01.1807004-009 0386 1.00 1 U MND01-01.1807004-010 0387 1.00 1 U MND01-01.1807004-011 0389 1.00 1 U	TB	MND01-01.1807004-021	0999	SW	-846 8260	Chloroben	zene	0.420	J
Sample Code Location Result Dilution Lab Qualifiers Validation Qualifier MND01-01.1807004-006 0346 1.00 1 U MND01-01.1807004-009 0386 1.00 1 U MND01-01.1807004-010 0387 1.00 1 U MND01-01.1807004-011 0389 1.00 1 U	Sample Code Location Result Dilution Lab Qualifiers Validation Qualifier MND01-01.1807004-006 0346 1.00 1 U MND01-01.1807004-009 0386 1.00 1 U MND01-01.1807004-010 0387 1.00 1 U MND01-01.1807004-011 0389 1.00 1 U	10	WINDO 1-01, 1007 004-021	0000	000	-040 0200	Ghioloben	20110	0.420	
MND01-01.1807004-006 0346 1.00 1 U MND01-01.1807004-009 0386 1.00 1 U MND01-01.1807004-010 0387 1.00 1 U MND01-01.1807004-011 0389 1.00 1 U	MND01-01.1807004-006 0346 1.00 1 U MND01-01.1807004-009 0386 1.00 1 U MND01-01.1807004-010 0387 1.00 1 U MND01-01.1807004-011 0389 1.00 1 U	A	ssociated Samples:							1
MND01-01.1807004-009 0386 1.00 1 U MND01-01.1807004-010 0387 1.00 1 U MND01-01.1807004-011 0389 1.00 1 U	MND01-01.1807004-009 0386 1.00 1 U MND01-01.1807004-010 0387 1.00 1 U MND01-01.1807004-011 0389 1.00 1 U		Sample Code	Location	Result	Dilution	Lab Qualifiers	Validation Qu	alifier	
MND01-01.1807004-010 0387 1.00 1 U MND01-01.1807004-011 0389 1.00 1 U	MND01-01.1807004-010 0387 1.00 1 U MND01-01.1807004-011 0389 1.00 1 U		MND01-01.1807004-006	0346	1.00	1	U			
MND01-01.1807004-011 0389 1.00 1 U	MND01-01.1807004-011 0389 1.00 1 U		MND01-01.1807004-009	0386	1.00	1	U			
			MND01-01.1807004-010	0387	1.00	1	U			
MND01-01.1807004-012 0392 1.00 1 U	MND01-01.1807004-012 0392 1.00 1 U		MND01-01.1807004-011	0389	1.00	1	U			
			MND01-01.1807004-012	0392	1.00	1	U			

oject: LT	S&M (Parcel 6-7-8)	Та	sk Code: MND	01-01.1807004	Lab Coo	de: GEN	10-Oct-2018
TB	MND01-01.1807004-022	0999	SW	-846 8260	Acetor	ne 8.96	J
A	ssociated Samples:						- I
	Sample Code	Location	Result	Dilution	Lab Qualifiers	Validation Qualifier	
	MND01-01.1807004-005	0315	5.00	1	U		
	MND01-01.1807004-007	0347	5.00	1	U		
	MND01-01.1807004-018	0347	5.00	1	U	U	
l							

Page 1 of 4 10-Oct-2018

Project: LTS&M (Parcel 6-7-8)

Task Code: MND01-01.1807004 Lab Code: GEN

	Duplic	ate: MND01	-01.1807	7004-018	Samp	ole: MND01 034		004-007			
Analyte	Result	Qualifiers	Uncert	Dilution	Result	Qualifiers	Uncert.	Dilution	RPD	RER	Units
1,1,1,2-Tetrachloroethane	1.00	U		1	1.00	U		1			ug/L
1,1,1-Trichloroethane	1.00	U		1	1.00	U		1			ug/L
1,1,2,2-Tetrachloroethane	1.00	U		1	1.00	U		1			ug/L
1,1,2-Trichloro-1,2,2-trifluoroethane	5.00	U		1	5.00	U		1			ug/L
1,1,2-Trichloroethane	1.00	U		1	1.00	U		1			ug/L
1,1-Dichloroethane	1.00	U		1	1.00	U		1			ug/L
1,1-Dichloroethene	1.00	U		1	1.00	U		1			ug/L
1,1-Dichloropropene	1.00	U		1	1.00	U		1	1		ug/L
1,2,3-Trichlorobenzene	1.00	U		1	1.00	U		1			ug/L
1,2,3-Trichloropropane	1.00	U		1	1.00	U	-	1			ug/L
1,2,4-Trichlorobenzene	1.00	U		1	1.00	U		1			ug/L
1,2,4-Trimethylbenzene	1.00	U		1	1.00	U		1			ug/L
1,2-Dibromo-3-chloropropane	1.00	U		1	1.00	U		1			ug/L
1,2-Dibromoethane	1.00	U		1	1.00	U		1			ug/L
1,2-Dichlorobenzene	1.00	U		1	1.00	U		1			ug/L
1,2-Dichloroethane	1.00	U		1	1.00	U		1	1		ug/L
1,2-Dichloropropane	1.00	U		1	1.00	U		1			ug/L
1,3,5-Trimethylbenzene	1.00	U		1	1.00	U		1			ug/L

	Duplic	ate: MND0	1-01.1807	004-018	Samp	ole: MND01 034		004-007			
Analyte	Result	Qualifiers	Uncert	Dilution	Result	Qualifiers	Uncert.	Dilution	RPD	RER	Units
1,3-Dichlorobenzene	1.00	U	-	1	1.00	U		1			ug/L
1,3-Dichloropropane	1.00	U		1	1.00	U		1			ug/L
1,4-Dichlorobenzene	1.00	U		1	1.00	U		1			ug/L
2,2-Dichloropropane	1.00	U		1	1.00	U		1			ug/L
2-Butanone	5.00	U		1	5.00	U		1			ug/L
2-Chlorotoluene	1.00	U		1	1.00	U		1			ug/L
2-Hexanone	5.00	U		1	5.00	U		1			ug/L
4-Chlorotoluene	1.00	U		1	1.00	U		1			ug/L
4-Methyl-2-Pentanone	5.00	U		1	5.00	U		1			ug/L
Acetone	5.00	U		1	5.00	U		1			ug/L
Benzene	1.00	U		1	1.00	U		1			ug/L
Bromobenzene	1.00	U		1	1.00	U		1			ug/L
Bromochloromethane	1.00	U		1	1.00	U		1	-		ug/L
Bromodichloromethane	1.00	U		1	1.00	U		1			ug/L
Bromoform	1.00	U		1	1.00	U		1	í į		ug/L
Bromomethane	1.00	U		1	1.00	U		1			ug/L
Carbon Disulfide	5.00	U		1	5.00	U		1	() ()		ug/L
Carbon tetrachloride	1.10			1	1.11	U		1	0.9		ug/L
Chlorobenzene	1.00	U		1	1.00	U		1			ug/L
Chlorodibromomethane	1.00	U		1	1.00	U		1			ug/L

QC Checks: RPD: Relative Percent Difference RER: Relative Error Ratio

Page 2 of 4

	Duplic	ate: MND0	1-01.1807	004-018	Samp	ole: MND01- 034		004-007			
Analyte	Result	Qualifiers	Uncert	Dilution	Result	Qualifiers	Uncert.	Dilution	RPD	RER	Units
Chloroethane	1.00	U		1	1.00	U		1			ug/L
Chloroform	0.370	J		1	0.340	U		1			ug/L
Chloromethane	1.00	U		1	1.00	U		1			ug/L
cis-1,2-Dichloroethene	1.00	U		1	1.00	U		1			ug/L
cis-1,3-Dichloropropene	1.00	U		1	1.00	U		1			ug/L
Dibromomethane	1.00	U		1	1.00	U		1			ug/L
Dichlorodifluoromethane	1.00	U		1	1.00	U		1			ug/L
Ethylbenzene	1.00	U		1	1.00	U		1			ug/L
Hexachlorobutadiene	1.00	U		1	1.00	U		1			ug/L
Isopropylbenzene	1.00	U		1	1.00	U		1			ug/L
Methylene chloride	5.00	U		1	5.00	U		1			ug/L
n-Butylbenzene	1.00	U		1	1.00	U		1			ug/L
n-Propylbenzene	1.00	U		1	1.00	U		1			ug/L
Naphthalene	1.00	U		1	1.00	U		1			ug/L
p-IsopropyItoluene	1.00	U		1	1.00	U		1	ĩ i		ug/L
sec-Butylbenzene	1.00	U		1	1.00	U		1			ug/L
Styrene	1.00	U		1	1.00	U		1	1		ug/L
tert-Butylbenzene	1.00	U		1	1.00	U		1			ug/L
Tetrachloroethene	1.00	U		1	1.00	U		1			ug/L
Toluene	1.00	U		1	1.00	U		1			ug/L

Page 3 of 4

QC Checks: RPD: Relative Percent Difference RER: Relative Error Ratio

Page 4 of 4 10-Oct-2018

Project: LTS&M (Parcel 6-7-8) Task Code: MND01-01.1807004 Lab Code: GEN

	Duplic	ate: MND0	1-01.1807	004-018	Samp	ole: MND01 034		04-007			
Analyte	Result	Qualifiers	Uncert	Dilution	Result	Qualifiers	Uncert.	Dilution	RPD	RER	Units
Total Xylenes	3.00	U		1	3.00	U		1			ug/L
trans-1,2-Dichloroethene	1.00	U		1	1.00	U		1			ug/L
trans-1,3-dichloropropene	1.00	U		1	1.00	U		1			ug/L
Trichloroethene	21.8			1	21.3			1	2.3		ug/L
Trichlorofluoromethane	1.00	U		1	1.00	U		1			ug/L
Tritium	1230		333	1	1080		308	1		0.6	pCi/L
Vinyl chloride	1.00	U		1	1.00	U		1			ug/L

sk Code: b Code: G	MND01- 01.1807004	
Code: G	01.1007004	
	GEN	
	Surrogate Recovery:	All surrogate recoveries were within the laboratory acceptance limits.
	LCS/LCSD Performance:	All LCS/LCSD results were within the laboratory acceptance limits.
	MS/MSD Performance:	All MS/MSD results were within the laboratory acceptance limits.
	Method Blank Performance:	All method blanks were below the MDL.

ject: LTS	&M (Parcel 6-7-8)			Task Co	ode: MN	ID01-	01.1807	004		Lab C	ode: G	SEN			
Sample ID	Analyte	Analysis Date	QC Type	Result Type	Result	Flag	TPU	Spike Recovery	Spike Dup Recovery	Lower Limit	Upper Limit	RPD	RPD Limit	RER	Comments
	Tritium	08-10-2018	LCS	SC	2340		533	93.3		75	125				
	Tritium	08-10-2018	MB	TRG	-131	U	177								
	Tritium	08-10-2018	MS	SC	5940		1290	96.7		75	125				
	Tritium	08-10-2018	R	TRG	1090	1	310					1.04	100		RER=0.0
	.CS: Laboratory Control IS: Internal Standard					uplicate	e MB:	Method Blank	MS: Matrix 8	Spike M	15D: Matri	ix Spike D	uplicate F	₹: Replica	že

Contractor to the U.S. Department of Energy Office of Legacy Management

Data Review and Validation Report

General Information

Task ID:	MND01-01.1810005
Sample Event:	October 29 and 30, 2018
Site(s):	Mound, Ohio: LTS&M (Parcel 6-7-8)
Laboratory:	GEL Laboratories, Charleston, South Carolina
Work Order No.:	462986
Analysis:	Organics
Validator:	Samantha Tigar
Review Date:	January 23, 2019

This validation was performed according to *Environmental Data Validation Procedure* (LMS/PRO/S15870), which is available at<u>http://sp.lm.doe.gov/Contractor/ControlledDocuments/Controlled%20Documents/S15870_Env_DV_Procedure.pdf</u>. The procedure was applied at Level 3, Data Validation.

All analyses were successfully completed. The samples were prepared and analyzed using accepted procedures based on methods specified by line item code, which are listed in Table 1.

Table 1. Analytes and Methods

Analyte	Line Item Code	Prep Method	Analytical Method
Volatile Organics, VOA	VOA-A-007	SW-846 5030B	SW-846 8260 LL

Data Qualifier Summary

Analytical results were qualified as listed in Table 2. Refer to the attached validation worksheets and the sections below for an explanation of the data qualifiers applied.

Sample Number	Location	Analyte	Flag	Reason
MND01-01.1810005-014	0602	2-Butanone	U	Less than 10 times the trip blank
MND01-01.1810005-015	0605	2-Butanone	U	Less than 10 times the trip blank
MND01-01.1810005-001	0118	Acetone	U	Less than 10 times the trip blank
MND01-01.1810005-002	0124	Acetone	U	Less than 10 times the trip blank
MND01-01.1810005-003	0126	Acetone	U	Less than 10 times the trip blank

Table 2. Data Qualifiers

Sample Number	Location	Analyte	Flag	Reason		
MND01-01.1810005-004	0138	Acetone	U	Less than 10 times the trip blank		
MND01-01.1810005-005	0315	Acetone	U	Less than 10 times the trip blank		
MND01-01.1810005-008	0379	Acetone	U	Less than 10 times the trip blank		
MND01-01.1810005-012	0392	Acetone	U	Less than 10 times the trip blank		
MND01-01.1810005-013	0601	Acetone	U	Less than 10 times the trip blank		
MND01-01.1810005-014	0602	Acetone	U	Less than 10 times the trip blank		
MND01-01.1810005-015	0605	Acetone	U	Less than 10 times the trip blank		
MND01-01.1810005-016	0606	Acetone	U	Less than 10 times the trip blank		
MND01-01.1810005-018	0379	Acetone	U	Less than 10 times the trip blank		

Sample Shipping/Receiving

GEL Laboratories in Charleston, South Carolina, received 20 water samples on October 31, 2018, accompanied by a Chain of Custody (COC) form. The air waybill numbers were listed on the Sample Receipt and Review Form. The COC form was checked to confirm that all of the samples were listed with sample collection dates and times, and that signatures and dates were present indicating sample relinquishment and receipt. The COC forms were complete with no errors or omissions.

Preservation and Holding Times

The sample shipments were received intact with the temperatures inside the iced cooler between 1 °C and 2 °C, which complies with requirements. All samples were received in the correct container types and had been preserved correctly for the requested analyses. All samples were analyzed within the applicable holding times.

Detection and Quantitation Limits

The method detection limit (MDL) was reported for all organic analytes as required. The MDL, as defined in 40 CFR 136, is the minimum concentration of an analyte that can be measured and reported with 99 percent confidence that the analyte concentration is greater than zero. The practical quantitation limit (PQL) for these analytes is the lowest concentration that can be reliably measured, and is defined as 5 times the MDL. The reported MDLs demonstrate compliance with contractual requirements.

Laboratory Instrument Calibration

Method requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing acceptable qualitative and quantitative data for the analytes of interest. Initial calibration verification demonstrates that the instrument is capable of acceptable performance at the beginning of the analytical run. Continuing calibration verification demonstrates that the initial calibration is still valid by checking the performance of the instrument on a continuing basis. Initial and continuing calibration standards must be prepared from independent sources to ensure the validity of the calibration. All laboratory instrument

calibrations and calibration verifications were performed correctly in accordance with the cited methods.

Method SW-846 8260 LL Volatile Organics, VOA

Initial calibration of instrument VOA2 was performed on November 1, 2018 using nine calibration standards. Calibration curves are established using linear regression, quadratic regression, or the average response factor approach. Calibrations using average response factors had relative standard deviations of less than 15 percent. Linear or higher order regression calibrations had correlation coefficient values greater than 0.99 and intercepts less than 3 times the MDL. Initial and continuing calibration verification checks were made at the required frequency. Some target compounds had percent drift values greater than 20 percent but were not detected at concentrations greater than the MDL in the associated samples. The mass spectrometer calibration and resolution was checked at the beginning of each analytical run in accordance with the procedure.

Volatiles Internal Standards and Surrogates

The volatile internal standard recoveries and surrogate recoveries were within the acceptance ranges for all samples.

Method Blanks

Method blanks are analyzed to assess any contamination that may have occurred during sample preparation. All method blank results associated with the samples were below the PQL for all analytes. In cases where a blank concentration exceeds or equals the MDL, the associated sample results are qualified with a U flag (not detected) when the sample result is greater than the MDL but less than 5 times the blank concentration.

Matrix Spike Analysis

Matrix spikes are aliquots of environmental samples to which a known concentration of analyte has been added before analysis. Matrix spike and matrix-spike duplicate (MS/MSD) analysis is used to assess the performance of the method by measuring the effects of interferences caused by the sample matrix and reflects the bias of the method for the particular matrix in question. The MS/MSD data are not evaluated when the concentration of the unspiked sample is greater than 4 times the spike. The spikes met the recovery and precision criteria for all analytes evaluated.

Laboratory Replicate Analysis

Laboratory replicate analyses are used to determine laboratory precision for each sample matrix. The relative percent difference for non-radiochemical replicate results that are greater than 5 times the PQL should be less than 20 percent. For results that are less than 5 times the PQL, the range should be no greater than the PQL. The replicate results met these criteria.

Laboratory Control Sample

Laboratory control samples were analyzed at the correct frequency to provide information on the accuracy of the analytical method and the overall laboratory performance, including sample preparation. Several control sample results exceeded the acceptance criteria. The compounds were not detected at concentrations greater than the MDL in the associated samples and no qualification is needed.

Field Duplicate

Field duplicate samples are collected and analyzed as an indication of overall precision of the measurement process. The precision observed includes both field and laboratory precision and has more variability than laboratory duplicates, which measure only laboratory performance. The relative percent difference for duplicate results that are greater than 5 times the PQL should be less than 20 percent. For results that are less than 5 times the PQL, the range should be no greater than the PQL. A duplicate sample was collected from location 0379. The duplicate results met the criteria for all analytes, demonstrating acceptable overall precision.

<u>Trip Blank</u>

Trip blanks were prepared and analyzed to document contamination attributable to shipping and field handling procedures. This type of blank is useful in documenting contamination of volatile organic samples. Two trip blanks were submitted with these samples. Acetone and 2-butanone were detected in the trip blanks. All associated results greater than the MDL and less than ten times the trip blank concentrations were qualified with a U flag as not detected.

Completeness

Results were reported in the correct units for all analytes requested using contract-required laboratory qualifiers. The analytical report included the MDL and PQL for all analytes and all required supporting documentation.

Electronic Data Deliverable (EDD) File

A revised EDD file arrived on January 14, 2019. The EDD was examined to verify that the file was complete and in compliance with requirements. The contents of the file were compared to the requested analyses to ensure all and only the requested data are delivered. The contents of the EDD were manually examined to verify that the sample results accurately reflect the data contained in the sample data package.

Field Measurements

The minimum purge volume was met at all wells before sampling. A turbidity less than 50NTU could not be achieved at monitoring well 0315.

Potential Outliers

Potential outliers are results that lie outside the historical range, possibly due to transcription errors, data calculation errors, or measurement system problems. However, outliers can also represent true values outside the historical range. Potential outliers are identified by generating the Data Validation Outliers Report from data in the environmental database. The new data are compared to historical values and data that fall outside the historical data range are listed on the report along with the historical minimum and maximum values. The potential outliers are further reviewed and may be subject to statistical evaluation using the ProUCL application developed by the EPA (<u>https://www.epa.gov/land-research/proucl-software</u>). The review also includes an evaluation of any notable trends in the data that may indicate the outliers represent true extreme values.

Data were identified as potentially anomalous for five acetone results (see the Data Validation Outliers Report, below). These results were previously qualified with U flags (not detected) and review of the data did not indicate any laboratory errors.

Digitally signed by Samantha

Date: 2019.01.23 14:47:05

M. Tigar

-07'00'

famanthe Tiga

Report Prepared By:

Samantha Tigar Data Validator

Data Validation Outliers Report - No Field Parameters Report Date: 01/22/2019

Comparison to Historical Data Since: 1/1/2008 12:00:00 AM Fraction: Any

Task: MND01-01.1810005

Analyte	Location	Analysis Location	Units	Fraction	Result	Lab Qualifier(s)	Туре	HistMIN	HistMAX	HistSetSize	Potential Outlier?
Acetone	0138	LB	ug/L	Ν	4.30	J	> HistMAX	0.37	2.99	43	Yes
Acetone	0315	LB	ug/L	Ν	3.07	J	> HistMAX	0.37	2.84	46	Yes
Acetone	0392	LB	ug/L	N	3.16	J	> HistMAX	0.37	2.91	44	Yes
Acetone	0601	LB	ug/L	N	5.52		> HistMAX	0.37	2.93	53	Yes
cis-1,2-Dichloroethene	0602	LB	ug/L	Ν	1.95		< HistMIN	4.51	42.3	29	No
Trichloroethene	0602	LB	ug/L	Ν	0.460	J	< HistMIN	2.78	139	29	No
Acetone	0605	LB	ug/L	N	9.63		> HistMAX	0.37	9.59	44	Yes
Trichloroethene	0607	LB	ug/L	Ν	0.510	J	< HistMIN	0.85	11.5	45	No

FRACTION: D = Dissolved N = NA T = Total

General Data	Validation Repo	Page 1 of 1
Task Code: MND01-01.1810005 Lab Code: GEN	Validator: Samantha Tigar	Validation Date: 01-22-2019
Project: LTS&M (Parcel 6-7-8)		# Samples: 20
Analysis Type: General Chemistry Metals	X Organics Radioch	nemistry
Chain of Custody	Sample	
Present: <u>OK</u> Signed: <u>OK</u> Dated: <u>OK</u>	Integrity: <u>OK</u> Preservatio	on <u>OK</u> Temperature: <u>OK</u>

Check	Summary
Holding Times:	All analyses were completed within the applicable holding times.
Detection Limits:	The reported detection limits are equal to or below the contract required limits.
Field Blanks:	There were 2 field blanks associated with this task.
Field Duplicates:	There was 1 duplicate evaluated.

Validation Report: Field Blanks

Page 1 of 4

Project: LTS&M (Parcel 6-7-8)

Task Code: MND01-01.1810005

Lab Code: GEN

22-Jan-2019

Blank Type	Sample Code	Location	1	/lethod	Analyt	e Res	ult Lab Qualifier
ТВ	MND01-01.1810005-019	0999	SW-846 8260		2-Butanc	one 4.2	4 J
Ass	sociated Samples:						
	Sample Code	Location	Result	Dilution	Lab Qualifiers	Validation Qualifier	
	MND01-01.1810005-001	0118	0.500	1	U		
	MND01-01.1810005-005	0315	0.500	1	U		
	MND01-01.1810005-006	0346	0.500	1	U		
	MND01-01.1810005-007	0347	0.500	1	U		
	MND01-01.1810005-008	0379	0.500	1	U		
	MND01-01.1810005-013	0601	0.500	1	U		
	MND01-01.1810005-014	0602	3.64	1	J	U	
	MND01-01.1810005-015	0605	3.74	1	J	U	
	MND01-01.1810005-016	0606	0.500	1	U		
	MND01-01.1810005-017	0607	0.500	1	U		
	MND01-01.1810005-018	0379	0.500	1	U	U	

		Validation	Report: Fie	eld Blanks			Page 2 of 4
ect: LT	S&M (Parcel 6-7-8)	Та	sk Code: MND	001-01.1810005	Lab Cod	e: GEN	22-Jan-2019
ΤB	MND01-01.1810005-019	0999	SW	-846 8260	Aceton	e 8.12	
As	ssociated Samples:						
	Sample Code	Location	Result	Dilution	Lab Qualifiers	Validation Qualifier	
	MND01-01.1810005-001	0118	3.06	1	L	U	
	MND01-01.1810005-005	0315	3.07	1	J	U	
	MND01-01.1810005-006	0346	0.500	1	U		
	MND01-01.1810005-007	0347	0.500	1	U		
	MND01-01.1810005-008	0379	3.52	1	J	U	
	MND01-01.1810005-013	0601	5.52	1		U	
	MND01-01.1810005-014	0602	6.08	1		U	
	MND01-01.1810005-015	0605	9.63	1		U	
	MND01-01.1810005-016	0606	4.99	1	J	U	
	MND01-01.1810005-017	0607	0.500	1	U		
	MND01-01.1810005-018	0379	4.04	1	J	U	

		Validation	Report: Fie	eld Blanks				age 3 of 4
ect: LT	S&M (Parcel 6-7-8)	Та	sk Code: MNE	001-01.1810005	Lab Cod	e: GEN	22	2-Jan-2019
ТВ	MND01-01.1810005-020	0999	SW	-846 8260	2-Butanc	ne	4.18	J
As	ssociated Samples:							
	Sample Code	Location	Result	Dilution	Lab Qualifiers	Validation C	Qualifier	
	MND01-01.1810005-002	0124	0.500	1	U			
	MND01-01.1810005-003	0126	0.500	1	U			
	MND01-01.1810005-004	0138	0.500	1	U			
	MND01-01.1810005-009	0386	0.500	1	U			
	MND01-01.1810005-010	0387	0.500	1	U			
	MND01-01.1810005-011	0389	0.500	1	U			
	MND01-01.1810005-012	0392	0.500		U			

		Validation	Report: Fie	eld Blanks			Page 4 of 4
ect: LT	S&M (Parcel 6-7-8)	Та	sk Code: MND	001-01.1810005	Lab Cod	e: GEN	22-Jan-2019
ΤB	MND01-01.1810005-020	0999	SW	-846 8260	Aceton	e 6.08	li -
As	sociated Samples:						
	Sample Code	Location	Result	Dilution	Lab Qualifiers	Validation Qualifier	
	MND01-01.1810005-002	0124	2.86	1	L	U	
	MND01-01.1810005-003	0126	4.72	1	J	U	
	MND01-01.1810005-004	0138	4.30	1	J	U	
	MND01-01.1810005-009	0386	0.500	1	U		
	MND01-01.1810005-010	0387	0.500	1	U		
	MND01-01.1810005-011	0389	0.500	1	U		
	MND01-01.1810005-012	0392	3.16	1	J	U	

Page 1 of 4 22-Jan-2019

Project: LTS&M (Parcel 6-7-8)

Task Code:

MND01-01.1810005 Lab Code: GEN

	Duplic	ate: MND0	1-01.1810	0005-018	Sample: MND01-01.1810005-008 0379				2		
Analyte	Result	Qualifiers	Uncert.	Dilution	Result	Qualifiers	Uncert.	Dilution	RPD	RER	Units
1,1,1,2-Tetrachloroethane	0.160	U		1	0.160	U		1			ug/L
1,1,1-Trichloroethane	0.160	U		1	0.160	U		1			ug/L
1,1,2,2-Tetrachloroethane	0.160	U		1	0.160	U		1			ug/L
1,1,2-Trichloro-1,2,2-trifluoroethane	1.50	U		1	1.50	U		1			ug/L
1,1,2-Trichloroethane	0.160	U		1	0.160	U		1			ug/L
1,1-Dichloroethane	0.160	U		1	0.160	U		1			ug/L
1,1-Dichloroethene	0.160	U		1	0.160	U		1			ug/L
1,1-Dichloropropene	0.160	U		1	0.160	U		1			ug/L
1,2,3-Trichlorobenzene	0.200	U		1	0.200	U		1			ug/L
1,2,3-Trichloropropane	0.160	U		1	0.160	U		1			ug/L
1,2,4-Trichlorobenzene	0.160	U		1	0.160	U		1			ug/L
1,2,4-Trimethylbenzene	0.160	U		1	0.160	U		1			ug/L
1,2-Dibromo-3-chloropropane	0.160	U		1	0.160	U		1			ug/L
1,2-Dibromoethane	0.160	U		1	0.160	U		1			ug/L
1,2-Dichlorobenzene	0.160	U		1	0.160	U		1			ug/L
1,2-Dichloroethane	0.160	U		1	0.160	U		1			ug/L
1,2-Dichloropropane	0.160	U		1	0.160	U		1			ug/L
1,3,5-Trimethylbenzene	0.160	U		1	0.160	U		1			ug/L

Page 2 of 4 22-Jan-2019

Project: LTS&M (Parcel 6-7-8)

7-8) Task Code:

MND01-01.1810005

Lab Code: GEN

	Duplic	ate: MND0	1-01.1810	005-018	Samp	ole: MND01 03		005-008			
Analyte	Result	Qualifiers	Uncert.	Dilution	Result	Qualifiers	Uncert.	Dilution	RPD RER	Units	
1,3-Dichlorobenzene	0.160	U		1	0.160	U		1			ug/L
1,3-Dichloropropane	0.160	U		1	0.160	U		1			ug/L
1,4-Dichlorobenzene	0.160	U		1	0.160	U		1			ug/L
2,2-Dichloropropane	0.160	U		1	0.160	U		1			ug/L
2-Butanone	0.500	U		1	0.500	U		1			ug/L
2-Chlorotoluene	0.160	U		1	0.160	U		1			ug/L
2-Hexanone	0.500	U		1	0.500	U		1			ug/L
4-Chlorotoluene	0.160	U		1	0.160	U		1			ug/L
4-Methyl-2-Pentanone	0.500	U		1	0.500	U		1			ug/L
Acetone	4.04	J		1	3.52	U		1	13.8		ug/L
Benzene	0.160	U		1	0.160	U		1			ug/L
Bromobenzene	0.160	U		1	0.160	U		1			ug/L
Bromochloromethane	0.160	U		1	0.160	U		1			ug/L
Bromodichloromethane	0.160	U		1	0,160	U		1			ug/L
Bromoform	0.160	U		1	0.160	U		1			ug/L
Bromomethane	0,160	U		1	0.160	U		1			ug/L
Carbon Disulfide	0.500	U		1	0.500	U		1			ug/L
Carbon tetrachloride	0.650	J		1	0.650	U		1			ug/L
Chlorobenzene	0.160	U		1	0.160	U		1			ug/L
Chlorodibromomethane	0.160	U		1	0.160	U		1			ug/L

Page 3 of 4 22-Jan-2019

Project: LTS&M (Parcel 6-7-8)

7-8) Task Code:

MND01-01.1810005

Lab Code: GEN

	Duplic	ate: MND0 ⁴	1-01.1810	0005-018	Samp	ole: MND01 03		1810005-008			
Analyte	Result	Qualifiers	Uncert.	Dilution	Result	Qualifiers	Uncert.	Dilution	RPD RER	Units	
Chloroethane	0.160	U		1	0.160	U		1			ug/L
Chloroform	0.160	U		1	0.160	U		1			ug/L
Chloromethane	0.160	U		1	0.160	U		1			ug/L
cis-1,2-Dichloroethene	0.160	U		1	0.160	U		1			ug/L
cis-1,3-Dichloropropene	0.160	U		1	0.160	U		1			ug/L
Dibromomethane	0.160	U		1	0.160	U		1			ug/L
Dichlorodifluoromethane	0.160	U		1	0.160	U		1			ug/L
Ethylbenzene	0.160	U		1	0.160	U	l i	1			ug/L
Hexachlorobutadiene	0.160	U		1	0.160	U		1			ug/L
Isopropylbenzene	0.160	U		1	0.160	U		1			ug/L
Methylene chloride	0.160	U		1	0.160	U		1			ug/L
n-Butylbenzene	0.160	U		1	0.160	U		1			ug/L
n-Propylbenzene	0.160	U		1	0.160	U		1			ug/L
Naphthalene	0.160	U		1	0.160	U		1			ug/L
p-IsopropyItoluene	0.160	U		1	0.160	U		1			ug/L
sec-Butylbenzene	0.160	U		1	0.160	U		1			ug/L
Styrene	0.160	U		1	0.160	U		1			ug/L
tert-Butylbenzene	0.160	U		1	0.160	U		1			ug/L
Tetrachloroethene	0.430	J		1	0.400	U		1			ug/L
Toluene	0.160	U		1	0.160	U		1			ug/L

Page 4 of 4 22-Jan-2019

Project: LTS&M (Parcel 6-7-8)

Task Code:

MND01-01.1810005 Lab Code: GEN

	Duplic	ate: MND0	1-01.1810	005-018	Samp	ole: MND01 03		05-008			
Analyte	Result	Qualifiers	Uncert	Dilution	Result	Qualifiers	Uncert.	Dilution	RPD	RER	Units
Total Xylenes	0.160	U		1	0.160	U		1			ug/L
trans-1,2-Dichloroethene	0.160	U		1	0.160	U		1			ug/L
trans-1,3-dichloropropene	0.160	U		1	0.160	U		1	í l		ug/L
Trichloroethene	1.30			1	1.34			1	3.0		ug/L
Trichlorofluoromethane	0.160	U		1	0.160	U		1			ug/L
Vinyl chloride	0.160	U		1	0.160	U		1			ug/L

QC Checks: RPD: Relative Percent Difference RER: Relative Error Ratio

Page E-68

Organics Data Validation Summary

Project: LTS&M (Parcel 6-7-8)

Page 1 of 1 22-Jan-2019

Task Code: MND01-01.1810005

Lab Code: GEN

Surrogate Recovery:	All surrogate recoveries were within the laboratory acceptance limits.
LCS/LCSD Performance:	There were 21 LCS/LCSD results outside the laboratory acceptance limits.
MS/MSD Performance:	All MS/MSD results were within the laboratory acceptance limits.
Method Blank Performance:	All method blanks were below the MDL.

Noncompliance Report: LCS/LCSD Performance

Page 1 of 1

22-Jan-2019

Project: LTS&M (Parcel 6-7-8)

Task Code: MND01-01.1810005

Lab Code: GEN

Sample ID	Date Method Analyte Analyzed		Analyte	LCS Recovery	LCSD recovery	Lower Limit	Upper Limit	RPD	RPD Limit	Comment
	11-02-2018	SW-846 8260	1,1,1,2-Tetrachloroethane	121		79	120			
	11-02-2018	SW-846 8260	1,1,2,2-Tetrachloroethane	126		76	120			
	11-05-2018	SW-846 8260	1,1,2,2-Tetrachloroethane	122		76	120			
	11-02-2018	SW-846 8260	1,2,3-Trichlorobenzene	124		72	120			
	11-02-2018	SW-846 8260	1,2,3-Trichloropropane	126		70	122			
	11-05-2018	SW-846 8260	1,2,3-Trichloropropane	123		70	122			
	11-02-2018	SW-846 8260	1,2,4-Trichlorobenzene	128		71	121			
	11-02-2018	SW-846 8260	1,2-Dibromo-3- chloropropane	122		60	121			
	11-02-2018	SW-846 8260	1,2-Dichlorobenzene	122		72	120			
	11-02-2018	SW-846 8260	1,3,5-Trimethylbenzene	126		76	125			
	11-02-2018	SW-846 8260	1,3-Dichlorobenzene	125		72	120			
	11-02-2018	SW-846 8260	1,4-Dichlorobenzene	122		71	120			
	11-02-2018	SW-846 8260	2-Chlorotoluene	122		73	121			
	11-02-2018	SW-846 8260	4-Chlorotoluene	126		72	123			
	11-02-2018	SW-846 8260	Bromobenzene	122		74	120			
	11-02-2018	SW-846 8260	Naphthalene	128		69	125			
	11-02-2018	SW-846 8260	n-Propylbenzene	126		73	125			
	11-02-2018	SW-846 8260	p-Isopropyltoluene	130		74	127			
	11-02-2018	SW-846 8260	sec-Butylbenzene	127		74	126			
	11-02-2018	SW-846 8260	tert-Butylbenzene	127		74	126			
	11-02-2018	SW-846 8260	trans-1,3-dichloropropene	124		77	123			

Contractor to the U.S. Department of Energy Office of Legacy Management

Data Review and Validation Report

General Information

Task ID: Sample Event:	MND01-02.1801001 January 29-30, 2018
Site(s):	LTS&M (Phase 1)
Laboratory:	GEL Laboratories, Charleston, South Carolina
Work Order No.:	442979
Analysis:	Organics
Validator:	Peter Steves
Review Date:	April 24, 2018

This validation was performed according to the "Standard Practice for Validation of Environmental Data" found in Appendix A of *Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites* (LMS/PRO/S04351, continually updated, <u>http://energy.gov/lm/downloads/sampling-and-analysis-plan-us-department-energy-office-legacy-management-sites</u>). The procedure was applied at Level 3, Data Validation.

This validation includes the evaluation of data quality indicators (DQIs) associated with the data. DQIs are the quantitative and qualitative descriptors that are used to interpret the degree of acceptability or utility of data. Indicators of data quality include the analysis of laboratory control samples to assess accuracy; duplicates and replicates to assess precision; and interference check samples to assess bias (see attached Data Validation Worksheets). The comparability, completeness, and sensitivity of the data are also evaluated in the sections to follow.

All analyses were successfully completed. The samples were prepared and analyzed using accepted procedures based on methods specified by line item code, which are listed in Table 1.

Table 1. Analytes and Methods

Analyte	Line Item Code	Prep Method	Analytical Method
Volatile Organics, VOA	VOA-A-007	SW-846 5030B	SW-846 8260 LL

Data Qualifier Summary

Analytical results were qualified as listed in Table 2. Refer to the attached validation worksheets and the sections below for an explanation of the data qualifiers applied.

Table 2. Data Qualifiers

Sample Number	Location	Analyte	Flag	Reason
MND01-02.1801001-012	P064	Hexachlorobutadiene	J	Matrix spike result
MND01-02.1801001-013	P064 Duplicate	Hexachlorobutadiene	J	Matrix spike result

Sample Shipping/Receiving

GEL Laboratories in Charleston, South Carolina, received 10 water samples on February 02, 2018, accompanied by a Chain of Custody (COC) form. The air waybill number was listed on the Sample Receipt and Review Form. The COC form was checked to confirm that all of the samples were listed with sample collection dates and times, and that signatures and dates were present indicating sample relinquishment and receipt. The COC forms were complete with no errors or omissions with the following exception:

• The original COC listed the wrong sample collection time for locations 0353, 0445 and 0999. The COC was hand corrected and re-submitted with all date times and signatures present and correct.

Preservation and Holding Times

The sample shipments were received intact with the temperature inside the iced cooler at 4 °C, which complies with requirements. All samples were analyzed within the applicable holding times. All samples were received in the correct container types and had been preserved correctly for the requested analyses with these exceptions:

• Headspace was noted in all containers for sample locations 0445 and P064.

Detection and Quantitation Limits

The method detection limit (MDL) was reported for all organic analytes as required. The MDL, as defined in 40 CFR 136, is the minimum concentration of an analyte that can be measured and reported with 99 percent confidence that the analyte concentration is greater than zero. The practical quantitation limit (PQL) for these analytes is the lowest concentration that can be reliably measured, and is defined as 5 times the MDL.

The reported MDLs demonstrate compliance with contractual requirements.

Laboratory Instrument Calibration

Method requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing acceptable qualitative and quantitative data for the analytes of interest. Initial calibration verification demonstrates that the instrument is capable of acceptable performance at the beginning of the analytical run. Continuing calibration verification demonstrates that the initial calibration is still valid by checking the performance of the instrument on a continuing basis. Initial and continuing calibration standards must be prepared from independent sources to ensure the validity of the calibration. All laboratory instrument

calibrations and calibration verifications were performed correctly in accordance with the cited methods.

Method SW-846 8260 LL Volatile Organics, VOA

Initial calibration of instrument VOA2 was performed on January 8, 2018 using eight calibration standards. Calibration curves are established using linear regression, quadratic regression, or the average response factor approach. Calibrations using average response factors had relative standard deviations of less than 15 percent. Linear or higher order regression calibrations had correlation coefficient values greater than 0.99 and intercepts less than 3 times the MDL. Initial and continuing calibration verification checks were made at the required frequency. Some target compounds had percent drift values greater than 20 percent but were not detected at concentrations greater than the MDL. The mass spectrometer calibration and resolution was checked at the beginning of each analytical run in accordance with the procedure.

Volatiles Internal Standards and Surrogates

The volatile internal standard recoveries and surrogate recoveries were within the acceptance ranges for all samples.

Method Blanks

Method blanks are analyzed to assess any contamination that may have occurred during sample preparation. All method blank results associated with the samples were below the PQL for all analytes. In cases where a blank concentration exceeds or equals the MDL, the associated sample results are qualified with a "U" flag (not detected) when the sample result is greater than the MDL but less than 5 times the blank concentration.

<u>Trip Blank</u>

Trip blanks were prepared and analyzed to document contamination attributable to shipping and field handling procedures. This type of blank is useful in documenting contamination of volatile organic samples. Two trip blanks were submitted with these samples. Acetone was detected in the trip blanks. There were no sample acetone results greater than the MDL.

Matrix Spike Analysis

Matrix spikes are aliquots of environmental samples to which a known concentration of analyte has been added before analysis. Matrix spike and matrix-spike duplicate (MS/MSD) analysis is used to assess the performance of the method by measuring the effects of interferences caused by the sample matrix and reflects the bias of the method for the particular matrix in question. The MS/MSD data are not evaluated when the concentration of the unspiked sample is greater than 4 times the spike. The spikes met the recovery and precision criteria for all analytes evaluated with the exception of hexachlorobutadiene. The associated sample hexachlorobutadiene result is qualified with a "J" flag as an estimated value.

Laboratory Replicate Analysis

Laboratory replicate analyses are used to determine laboratory precision for each sample matrix. The relative percent difference for results that are greater than 5 times the PQL should be less than 20 percent (or less than the laboratory-derived control limits for organics). For results that are less than 5 times the PQL, the range should be no greater than the PQL. The RPDs for five volatile organic compounds in the matrix spike samples exceeded the laboratory criteria; these compounds were not detected in any field sample, so no further qualification is necessary. All other replicate results met the criteria, demonstrating acceptable precision.

Laboratory Control Sample

Laboratory control samples were analyzed at the correct frequency to provide information on the accuracy of the analytical method and the overall laboratory performance, including sample preparation. All control sample results were acceptable.

Field Duplicate

Field duplicate samples are collected and analyzed as an indication of overall precision of the measurement process. The precision observed includes both field and laboratory precision and has more variability than laboratory duplicates, which measure only laboratory performance. A duplicate sample was collected from location P064. The relative percent difference for duplicate results that are greater than 5 times the PQL should be less than 20 percent. For results that are less than 5 times the PQL, the range should be no greater than the PQL. The duplicate results met the criteria.

Completeness

Results were reported in the correct units for all analytes requested using contract-required laboratory qualifiers. The analytical report included the MDL (MDC for radiochemistry) and PQL for all analytes and all required supporting documentation.

Electronic Data Deliverable (EDD) File

The EDD file arrived on March 22, 2018. The Sample Management System EDD validation module was used to verify that the EDD file was complete and in compliance with requirements. The module compares the contents of the file to the requested analyses to ensure all and only the requested data are delivered. The contents of the EDD were manually examined to verify that the sample results accurately reflect the data contained in the sample data package.

Potential Outliers

Potential outliers are results that lie outside the historical range, possibly due to transcription errors, data calculation errors, or measurement system problems. However, outliers can also represent true values outside the historical range. Potential outliers are identified by generating the Data Validation Outliers Report from data in the environmental database. The new data are

compared to historical values and data that fall outside the historical data range are listed on the report along with the historical minimum and maximum values. The potential outliers are further reviewed and may be subject to statistical evaluation using the ProUCL application developed by the EPA (<u>https://www.epa.gov/land-research/proucl-software</u>). The review also includes an evaluation of any notable trends in the data that may indicate the outliers represent true extreme values.

There were no outliers identified and the data for this Task are acceptable as qualified.

Leslie P. Steves 2018.07.23 14:32:26 -06'00' Report Prepared By: Peter Steves Data Validator

G	eneral Data	Validation Repo	Page 1 of 1
Task Code: MND01-02.1801001	Lab Code: GEN	Validator: Peter Steves	Validation Date: 04-24-2018
Project: LTS&M (Phase I)			# Samples: 10
Analysis Type: General Ch	nemistry Metals	X Organics Radioc	hemistry
Chain of Custody		Sample	
Present: <u>OK</u> Signed: <u>C</u>	DATE Dated: OK	Integrity: <u>OK</u> Preservatio	on <u>OK</u> Temperature: <u>OK</u>
Check		Summary	
Holding Times:	All analyses were con	npleted within the applicable he	olding times.
Detection Limits:	The reported detectio	n limits are equal to or below th	he contract required limits.
Field Blanks:	There were 2 field bla	anks associated with this task.	
Field Duplicates:	There was 1 duplicate	e evaluated.	

		Validation F						Page 1 of 2 24-Apr-2018
ect: LT	S&M (Phase I)	Tas	k Code: MNE	01-02.1801001	Lab Cod	e: GEN		
Blank Type	Sample Code	Location	r	Method	Analyt	e	Result	Lab Qualifiers
ТВ	MND01-02.1801001.010	0999	SW	-846 8260	Aceton	e	4.07	J
As	sociated Samples:							1
	Sample Code	Location	Result	Dilution	Lab Qualifiers	Validation 0	Qualifier	
	MND01-02.1801001-001	0353	0.500	1	U			
	MND01-02.1801001-007	0445	0.500	1	U			
	MND01-02.1801001-008	0617	0.500	1	U			

		vanuation	Report: Fie					age 2 of 2
ct: LT	TS&M (Phase I)	Та	sk Code: MND	001-02.1801001	Lab Coo	le: GEN	2	4-Apr-2018
ТВ	MND01-02.1801001.011	0999	SW	-846 8260	Acetor	e	4.95	J
A	ssociated Samples:							
	Sam ple Code	Location	Result	Dilution	Lab Qualifiers	Validation	Qualifier	
	MND01-02.1801001.013	P064	0.500	1	U	U		
	MND01-02.1801001-004	0411	0.500	1	U			
	MND01-02.1801001-005	0443	0.500	1	U			
	MND01-02.1801001-006	0444	0.500	1	U			

Page 1 of 4 24-Apr-2018

Project: LTS&M (Phase I)

el) Tas

Task Code: MND01-02.1801001 Lab Code: GEN

	Duplic	ate: MND0 ⁻	1-02.1801	001.013	Samp	le: MND01 P0		001-012			
Analyte	Result	Qualifiers	Uncert.	Dilution	Result	Qualifiers	Uncert.	Dilution	RPD	RER	Units
1,1,1,2-Tetrachloroethane	0.160	U		1	0.160	U		1			ug/L
1,1,1-Trichloroethane	0.160	U		1	0.160	U		1			ug/L
1,1,2,2-Tetrachloroethane	0.160	U		1	0.160	U		1			ug/L
1,1,2-Trichloro-1,2,2-trifluoroethane	1.50	U		1	1.50	U		1			ug/L
1,1,2-Trichloroethane	0.160	U		1	0.160	U		1			ug/L
1,1-Dichloroethane	0.160	U		1	0.160	U		1			ug/L
1,1-Dichloroethene	0.160	U		1	0.160	U		1			ug/L
1,1-Dichloropropene	0.160	U		1	0.160	U		1			ug/L
1,2,3-Trichlorobenzene	0.200	U		1	0.200	U		1			ug/L
1,2,3-Trichloropropane	0.160	U		1	0.160	U		1			ug/L
1,2,4-Trichlorobenzene	0.160	U		1	0.160	U		1			ug/L
1,2,4-Trimethylbenzene	0.160	U		1	0.160	U		1			ug/L
1,2-Dibromo-3-chloropropane	0.160	U		1	0.160	U		1			ug/L
1,2-Dibromoethane	0.160	U		1	0.160	U		1			ug/L
1,2-Dichlorobenzene	0.160	U		1	0.160	U		1			ug/L
1,2-Dichloroethane	0.160	U		1	0.160	U		1			ug/L
1,2-Dichloropropane	0.160	U		1	0.160	U		1			ug/L
1,3,5-Trimethylbenzene	0.160	U		1	0.160	U		1			ug/L

Page 2 of 4 24-Apr-2018

Project: LTS&M (Phase I)

e I) Task Code:

MND01-02.1801001 Lab Code: GEN

	Duplic	ate: MND0 ⁻	1-02.1801	001.013	Samp	le: MND01 P0		001-012			
Analyte	Result	Qualifiers	Uncert.	Dilution	Result	Qualifiers	Uncert.	Dilution	RPD	RER	Units
1,3-Dichlorobenzene	0.160	U		1	0.160	U		1			ug/L
1,3-Dichloropropane	0.160	U		1	0.160	U		1			ug/L
1,4-Dichlorobenzene	0.160	U		1	0.160	U		1			ug/L
2,2-Dichloropropane	0.160	U		1	0.160	U		1			ug/L
2-Butanone	0.500	U		1	0.500	U		1			ug/L
2-Chlorotoluene	0.160	U		1	0.160	U		1			ug/L
2-Hexanone	0.500	U		1	0.500	U		1			ug/L
4-Chlorotoluene	0.160	U		1	0.160	U		1			ug/L
4-Methyl-2-Pentanone	0.500	U		1	0.500	U		1			ug/L
Acetone	0.500	U		1	0.500	U		1			ug/L
Benzene	0.160	U		1	0.160	U		1			ug/L
Bromobenzene	0.160	U		1	0.160	U		1			ug/L
Bromochloromethane	0.160	U		1	0.160	U		1			ug/L
Bromodichloromethane	0.160	U		1	0.160	U		1			ug/L
Bromoform	0.160	U		1	0.160	U		1			ug/L
Bromomethane	0.160	U		1	0.160	U		1			ug/L
Carbon Disulfide	0.500	U		1	0.500	U		1			ug/L
Carbon tetrachloride	0.160	U		1	0.160	U		1			ug/L
Chlorobenzene	0.160	U		1	0.160	U		1			ug/L
Chlorodibromomethane	0.160	U		1	0.160	U		1			ug/L

Page 3 of 4 24-Apr-2018

Project: LTS&M (Phase I)

e I) Task Code:

MND01-02.1801001 Lab Code: GEN

	Duplic	ate: MND0 ⁻	1-02.1801	001.013	Samp	le: MND01 P00		001-012			
Analyte	Result	Qualifiers	Uncert.	Dilution	Result	Qualifiers	Uncert.	Dilution	RPD	RER	Units
Chloroethane	0.160	U		1	0.160	U		1			ug/L
Chloroform	0.160	U		1	0.160	U		1			ug/L
Chloromethane	0.160	U		1	0.160	U		1			ug/L
cis-1,2-Dichloroethene	0.160	U		1	0.160	U		1			ug/L
cis-1,3-Dichloropropene	0.160	U		1	0.160	U		1			ug/L
Dibromomethane	0.160	U		1	0.160	U		1			ug/L
Dichlorodifluoromethane	0.160	U		1	0.160	U		1			ug/L
Ethylbenzene	0.160	U		1	0.160	U		1			ug/L
Hexachlorobutadiene	0.160	U		1	0.160	U		1			ug/L
Isopropylbenzene	0.160	U		1	0.160	U		1			ug/L
Methylene chloride	0.160	U		1	0.160	U		1			ug/L
n-Butylbenzene	0.160	U		1	0.160	U		1			ug/L
n-Propylbenzene	0.160	U		1	0.160	U		1			ug/L
Naphthalene	0.160	U		1	0.160	U		1			ug/L
p-lsopropyltoluene	0.160	U		1	0.160	U		1			ug/L
sec-Butylbenzene	0.160	U		1	0.160	U		1			ug/L
Styrene	0.160	U		1	0.160	U		1			ug/L
tert-Butylbenzene	0.160	U		1	0.160	U		1			ug/L
Tetrachloroethene	0.730	J		1	0.720	U		1			ug/L
Toluene	0.160	U		1	0.160	U		1			ug/L

Page 4 of 4 24-Apr-2018

Project:	LTS&M (Phase I)	Task Code:	MND01-02.1801001	Lab Code:	GEN

	Duplic	Duplicate: MND01-02.1801001.013				le: MND01- P06		01-012			
Analyte	Result	Qualifiers	Uncert.	Dilution	Result	Qualifiers	Uncert.	Dilution	RPD	RER	Units
Total Xylenes	0.160	U		1	0.160	U		1			ug/L
trans-1,2-Dichloroethene	0.160	U		1	0.160	U		1			ug/L
trans-1,3-dichloropropene	0.160	U		1	0.160	U		1			ug/L
Trichloroethene	1.12			1	1.14			1	1.8		ug/L
Trichlorofluoromethane	0.160	U		1	0.160	U		1			ug/L
Vinyl chloride	0.160	U		1	0.160	U		1			ug/L

Organics	Data Validation Summary	Page 1 of 1 24-Apr-2018
_TS&M (Phase I)		
e: MND01- 02.1801001		
GEN		
Surrogate Recovery:	All surrogate recoveries were within the laboratory acceptance limits.	
LCS/LCSD Performance:	All LCS/LCSD results were within the laboratory acceptance limits.	
MS/MSD Performance:	There were 6 MS/MSD results outside the laboratory acceptance limits.	
Method Blank Performance:	All method blanks were below the MDL.	
	LTS&M (Phase I) e: MND01- 02.1801001 GEN Surrogate Recovery: LCS/LCSD Performance: MS/MSD Performance:	e: MND01- 02.1801001 GEN Surrogate Recovery: All surrogate recoveries were within the laboratory acceptance limits. LCS/LCSD Performance: All LCS/LCSD results were within the laboratory acceptance limits. MS/MSD Performance: There were 6 MS/MSD results outside the laboratory acceptance limits.

ample ID	Date Analyzed	Method	Analyte	MS Recovery	MSD Recovery	Lower Limit	Upper Limit	RPD	RPD Limit	Comment
	02-06-2018	SW-846 8260	Hexachlorobutadiene		57	65	123	29	20	MS recovery out of acceptance range
	02-06-2018	SW-846 8260	n-Butylbenzene		68	64	128	29	20	RPD > 20%
	02-06-2018	SW-846 8260	n-Propylbenzene		77	66	124	23	20	RPD > 20%
	02-06-2018	SW-846 8260	p-Isopropyltoluene		75	66	126	25	20	RPD > 20%
	02-06-2018	SW-846 8260	sec-Butylbenzene		78	67	126	24	20	RPD > 20%
	02-06-2018	SW-846 8260	tert-Butylbenzene		79	68	124	21	20	RPD > 20%

Contractor to the U.S. Department of Energy Office of Legacy Management

Data Review and Validation Report

General Information

Task ID:	MND01-02.1807002
Sample Event:	July 30 and 31, 2018
Site(s):	Mound LTS&M (Phase 1)
Laboratory:	GEL Laboratories, Charleston, South Carolina
Work Order No.:	455812
Analysis:	Organics
Validator:	Samantha Tigar
Review Date:	October 23, 2018

This validation was performed according to *Environmental Data Validation Procedure* (LMS/PRO/S15870), which is available at<u>http://sp.lm.doe.gov/Contractor/ControlledDocuments/Controlled%20Documents/S15870_Env_DV_Procedure.pdf</u>. The procedure was applied at Level 3, Data Validation.

All analyses were successfully completed. The samples were prepared and analyzed using accepted procedures based on methods specified by line item code, which are listed in Table 1.

Analyte	Line Item Code	Prep Method	Analytical Method
Volatile Organics, VOA	VOA-A-007	SW-846 5030B	SW-846 8260 LL

Table 1. Analytes and Methods

Data Qualifier Summary

None of the analytical results required qualification.

Sample Shipping/Receiving

GEL Laboratories in Charleston, South Carolina, received 9 water samples on July 31 and August 1, 2018, accompanied by a Chain of Custody (COC) form. The air waybill number was listed on the Sample Receipt and Review Form. The COC form was checked to confirm that all of the samples were listed with sample collection dates and times, and that signatures and dates were present indicating sample relinquishment and receipt. The COC forms were complete with no errors or omissions.

Preservation and Holding Times

The sample shipments were received intact with the temperature inside the iced coolers at 2 $^{\circ}$ C and 3 $^{\circ}$ C, which complies with requirements. All samples were received in the correct container types and had been preserved correctly for the requested analyses. All samples were analyzed within the applicable holding times.

Detection and Quantitation Limits

The method detection limit (MDL) was reported for all organic analytes as required. The MDL, as defined in 40 CFR 136, is the minimum concentration of an analyte that can be measured and reported with 99 percent confidence that the analyte concentration is greater than zero. The practical quantitation limit (PQL) for these analytes is the lowest concentration that can be reliably measured, and is defined as 5 times the MDL. The reported MDLs demonstrate compliance with contractual requirements.

Laboratory Instrument Calibration

Method requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing acceptable qualitative and quantitative data for the analytes of interest. Initial calibration verification demonstrates that the instrument is capable of acceptable performance at the beginning of the analytical run. Continuing calibration verification demonstrates that the initial calibration is still valid by checking the performance of the instrument on a continuing basis. Initial and continuing calibration standards must be prepared from independent sources to ensure the validity of the calibration. All laboratory instrument calibration verifications were performed correctly in accordance with the cited methods.

Method SW-846 8260 LL, Volatile Organics

Initial calibration of instrument VOA2 was performed on July 17, 2018 using nine calibration standards. Calibration curves are established using linear regression, quadratic regression, or the average response factor approach. Calibrations using average response factors had relative standard deviations of less than 15 percent. Linear or higher order regression calibrations had correlation coefficient values greater than 0.99 and intercepts less than 3 times the MDL. Initial and continuing calibration verification checks were made at the required frequency. All target compounds had percent drift values less than 20 percent. The mass spectrometer calibration and resolution was checked at the beginning of each analytical run in accordance with the procedure.

Volatiles Internal Standards and Surrogates

The volatile internal standard recoveries and surrogate recoveries were within the acceptance ranges for all samples.

Method Blanks

Method blanks are analyzed to assess any contamination that may have occurred during sample preparation. All method blank results associated with the samples were below the PQL for all analytes. In cases where a blank concentration exceeds or equals the MDL, the associated sample results are qualified with a U flag (not detected) when the sample result is greater than the MDL but less than 5 times the blank concentration.

Trip Blank

Trip blanks were prepared and analyzed to document contamination attributable to shipping and field handling procedures. This type of blank is useful in documenting contamination of volatile organic samples. Two trip blanks were submitted with these samples. Acetone was detected in the trip blanks but was not detected at concentrations greater than the MDL in the associated samples.

Matrix Spike Analysis

Matrix spikes are aliquots of environmental samples to which a known concentration of analyte has been added before analysis. Matrix spike and matrix-spike duplicate (MS/MSD) analysis is used to assess the performance of the method by measuring the effects of interferences caused by the sample matrix and reflects the bias of the method for the particular matrix in question. The MS/MSD data are not evaluated when the concentration of the unspiked sample is greater than 4 times the spike. Several spike recoveries did not meet the acceptance criteria. These compounds were not detected at concentrations greater than the MDL in the associated samples and no qualification was required.

Laboratory Replicate Analysis

Laboratory replicate analyses are used to determine laboratory precision for each sample matrix. The relative percent difference for results that are greater than 5 times the PQL should be less than 20 percent (or less than the laboratory-derived control limits for organics). For results that are less than 5 times the PQL, the range should be no greater than the PQL. Several compounds exceeded the acceptance criteria but were not detected at concentrations greater than the MDL in the associated samples.

Laboratory Control Sample

Laboratory control samples were analyzed at the correct frequency to provide information on the accuracy of the analytical method and the overall laboratory performance, including sample preparation. All control sample results were acceptable.

Field Duplicate

Field duplicate samples are collected and analyzed as an indication of overall precision of the measurement process. The precision observed includes both field and laboratory precision and

has more variability than laboratory duplicates, which measure only laboratory performance. The relative percent difference for duplicate results that are greater than 5 times the PQL should be less than 20 percent. For results that are less than 5 times the PQL, the range should be no greater than the PQL. A duplicate sample was collected from location P064. The duplicate results met the criteria for all analytes, demonstrating acceptable overall precision.

Completeness

Results were reported in the correct units for all analytes requested using contract-required laboratory qualifiers. The analytical report included the MDL and PQL for all analytes and all required supporting documentation.

Electronic Data Deliverable (EDD) File

A revised EDD file arrived on October 26, 2018. The EDD was examined to verify that the file was complete and in compliance with requirements. The contents of the file were compared to the requested analyses to ensure all and only the requested data are delivered. The contents of the EDD were manually examined to verify that the sample results accurately reflect the data contained in the sample data package.

Field Measurements

The pre-sampling purge criteria were met for all wells.

Potential Outliers

Potential outliers are results that lie outside the historical range, possibly due to transcription errors, data calculation errors, or measurement system problems. However, outliers can also represent true values outside the historical range. Potential outliers are identified by generating the Data Validation Outliers Report from data in the environmental database. The new data are compared to historical values and data that fall outside the historical data range are listed on the report along with the historical minimum and maximum values. The potential outliers are further reviewed and may be subject to statistical evaluation using the ProUCL application developed by the EPA (<u>https://www.epa.gov/land-research/proucl-software</u>). The review also includes an evaluation of any notable trends in the data that may indicate the outliers represent true extreme values. There were no outliers identified and the data for this task are acceptable as qualified.

famanthe Tiga

Report Prepared By: _

Digitally signed by SAMANTHA TIGAR (Affiliate) Date: 2018.10.30 15:04:13 -06'00'

Samantha Tigar Data Validator

Data Validation Outliers Report - No Field Parameters Report Date: 10/30/2018

Comparison to Historical Data Since: 10/30/2007 12:00:00 AM Fraction: Any

Task: MND01-02.1807002

Analyte	Location	Analysis Location	Units	Fraction	Result	Lab Qualifier(s)	Туре	HistMIN	HistMAX	HistSetSize	Potential Outlier?
Tetrachloroet hene	P064	LB	ug/L	Ν	0.800	J	> HistMAX	0.67	0.75	5	No
Tetrachloroet hene	P064	LB	ug/L	Ν	0.670	J	< HistMIN	0.71	0.8	5	No
Trichloroethe ne	P064	LB	ug/L	Ν	1.10		< HistMIN	1.12	1.54	5	No

FRACTION: D = Dissolved N = NA T = Total

nalysis Type: General Ch	emistry Metals X Organics Radiochemistry
Present: <u>OK</u> Signed: <u>C</u>	K Dated: OK Integrity: OK Preservation OK Temperature: OK
Check	Summary
Holding Times:	All analyses were completed within the applicable holding times.
Detection Limits:	The reported detection limits are equal to or below the contract required limits.
Field Blanks	There were 2 field blanks associated with this task.
Field Duplicates:	There was 1 duplicate evaluated.

Blank Type Sample Code Location Method Analyte Result Lab Code: Califiers TB MND01-02.1807002-010 0999 SW-846 8260 Acetone 24.1			Validation I	Report: Fie	eld Blanks				Page 1 of 2	
Type Qualifiers Qualifiers TB MND01-02.1807002-010 0999 SW-846 8260 Acetone 24.1 Associated Samples: Sample Code Location Result Dilution Lab Qualifiers Validation Qualifier MND01-02.1807002-001 0353 0.500 1 U U U MND01-02.1807002-005 0443 0.500 1 U U U MND01-02.1807002-006 0444 0.500 1 U U U	ect: LT	S&M (Phase I)	Tas	Task Code: MND01-02.1807002 Lab Code: GEN						
Associated Samples: Sample Code Location Result Dilution Lab Qualifiers Validation Qualifier MND01-02.1807002-001 0353 0.500 1 U MND01-02.1807002-005 0443 0.500 1 U MND01-02.1807002-006 0444 0.500 1 U MND01-02.1807002-007 0445 0.500 1 U		Sample Code	Location		Method	Analyt	e	Result		
Sample Code Location Result Dilution Lab Qualifiers Validation Qualifier MND01-02.1807002-001 0353 0.500 1 U MND01-02.1807002-005 0443 0.500 1 U MND01-02.1807002-006 0444 0.500 1 U MND01-02.1807002-006 0445 0.500 1 U	TB	MND01-02.1807002-010	0999	SW	-846 8260	Aceton	e	24.1		
MND01-02.1807002-001 0353 0.500 1 U MND01-02.1807002-005 0443 0.500 1 U MND01-02.1807002-006 0444 0.500 1 U MND01-02.1807002-007 0445 0.500 1 U	As	sociated Samples:							1	
MND01-02.1807002-005 0443 0.500 1 U MND01-02.1807002-006 0444 0.500 1 U MND01-02.1807002-007 0445 0.500 1 U		Sam ple Code	Location	Result	Dilution	Lab Qualifiers	Validation	Qualifier		
MND01-02.1807002-006 0444 0.500 1 U MND01-02.1807002-007 0445 0.500 1 U		MND01-02.1807002-001	0353	0.500	1	U				
MND01-02.1807002-007 0445 0.500 1 U		MND01-02.1807002-005	0443	0.500	1	U				
		MND01-02.1807002-006	0444	0.500	1	U				
MND01-02.1807002-008 0617 0.500 1 U		MND01-02.1807002-007	0445	0.500	1	U				
		MND01-02.1807002-008	0617	0.500	1	U				

ct: LT:	S&M (Phase I)	Tas	sk Code: MND	01-02.1807002	Lab Coo	de: GEN		30-Oct-2018
TB	MND01-02.1807002-011	0999	SW	-846 8260	Acetor	ne	13.8	
As	sociated Samples:							٦
	Sample Code	Location	Result	Dilution	Lab Qualifiers	Validation	Qualifier	
	MND01-02.1807002-012	P064	0.500	1	U			
	MND01-02.1807002-015	P064	0.500	1	U	U		

Page 1 of 4 30-Oct-2018

Project: LTS&M (Phase I)

Task Code: MND01-02.1807002 Lab Code: GEN

	Duplic	ate: MND0	1-02.1807	7002-015	Samp	ole: MND01 P0		002-012			
Analyte	Result	Qualifiers	Uncert.	Dilution	Result	Qualifiers	Uncert.	Dilution	RPD	RER	Units
1,1,1,2-Tetrachloroethane	0.160	U		1	0.160	U		1			ug/L
1,1,1-Trichloroethane	0.160	U		1	0.160	U		1			ug/L
1,1,2,2-Tetrachloroethane	0.160	U		1	0.160	U		1			ug/L
1,1,2-Trichloro-1,2,2-trifluoroethane	1.50	U		1	1.50	U		1			ug/L
1,1,2-Trichloroethane	0.160	U		1	0.160	U		1			ug/L
1,1-Dichloroethane	0.160	U		1	0.160	U		1			ug/L
1,1-Dichloroethene	0.160	U		1	0.160	U		1			ug/L
1,1-Dichloropropene	0.160	U		1	0.160	U		1	1		ug/L
1,2,3-Trichlorobenzene	0.200	U		1	0.200	U		1			ug/L
1,2,3-Trichloropropane	0.160	U		1	0.160	U		1			ug/L
1,2,4-Trichlorobenzene	0.160	U		1	0.160	U		1			ug/L
1,2,4-Trimethylbenzene	0.160	U		1	0.160	U		1			ug/L
1,2-Dibromo-3-chloropropane	0.160	U		1	0.160	U		1			ug/L
1,2-Dibromoethane	0.160	U		1	0.160	U		1			ug/L
1,2-Dichlorobenzene	0.160	U		1	0.160	U		1			ug/L
1,2-Dichloroethane	0.160	U		1	0.160	U		1			ug/L
1,2-Dichloropropane	0.160	U		1	0.160	U		1			ug/L
1,3,5-Trimethylbenzene	0.160	U		1	0.160	U		1	-		ug/L

	Duplic	ate: MND0	1-02.1807	002-015	Samp	le: MND01 P0		02-012			
Analyte	Result	Qualifiers	Uncert	Dilution	Result	Qualifiers	Uncert.	Dilution	RPD	RER	Units
1,3-Dichlorobenzene	0.160	U		1	0.160	U		1			ug/L
1,3-Dichloropropane	0.160	U		1	0.160	U		1			ug/L
1,4-Dichlorobenzene	0.160	U		1	0.160	U		1			ug/L
2,2-Dichloropropane	0.160	U		1	0.160	U		1			ug/L
2-Butanone	0.500	U		1	0.500	U		1			ug/L
2-Chlorotoluene	0.160	U		1	0.160	U		1			ug/L
2-Hexanone	0.500	U		1	0.500	U		1			ug/L
4-Chlorotoluene	0.160	U		1	0.160	U		1			ug/L
4-Methyl-2-Pentanone	0.500	U		1	0.500	U		1			ug/L
Acetone	0.500	U		1	0.500	U		1			ug/L
Benzene	0,160	U		1	0.160	U		1			ug/L
Bromobenzene	0.160	U		1	0.160	U		1			ug/L
Bromochloromethane	0.160	U		1	0.160	U		1			ug/L
Bromodichloromethane	0.160	U		1	0.160	U		1			ug/L
Bromoform	0.160	U		1	0.160	U		1			ug/L
Bromomethane	0.160	U		1	0.160	U		1	())		ug/L
Carbon Disulfide	0.500	U		1	0.500	U		1			ug/L
Carbon tetrachloride	0.160	U		1	0.160	U		1			ug/L
Chlorobenzene	0.160	U		1	0.160	U		1			ug/L
Chlorodibromomethane	0.160	U		1	0.160	U		1			ug/L

QC Checks: RPD: Relative Percent Difference RER: Relative Error Ratio

Page 2 of 4

30-Oct-2018

	Duplic	ate: MND0	1-02.1807	002-015	Samp	e: MND01 P0		002-012			
Analyte	Result	Qualifiers	Uncert	Dilution	Result	Qualifiers	Uncert.	Dilution	RPD	RER	Units
Chloroethane	0,160	U		1	0.160	U		1			ug/L
Chloroform	0.160	U		1	0.160	U		1			ug/L
Chloromethane	0.160	U		1	0.160	U		1			ug/L
cis-1,2-Dichloroethene	0.360	J		1	0.360	U		1			ug/L
cis-1,3-Dichloropropene	0.160	U		1	0.160	U		1			ug/L
Dibromomethane	0.160	U		1	0.160	U		1			ug/L
Dichlorodifluoromethane	0.160	U		1	0.160	U		1			ug/L
Ethylbenzene	0.160	U		1	0.160	U		1			ug/L
Hexachlorobutadiene	0,160	U		1	0.160	U		1			ug/L
Isopropylbenzene	0.160	U		1	0.160	U		1			ug/L
Methylene chloride	0,160	U		1	0.160	U		1			ug/L
n-Butylbenzene	0.160	U		1	0.160	U		1			ug/L
n-Propylbenzene	0.160	U		1	0.160	U		1	-		ug/L
Naphthalene	0.160	U		1	0.160	U		1			ug/L
p-lsopropyltoluene	0.160	U		1	0.160	U		1			ug/L
sec-Butylbenzene	0.160	U		1	0.160	U		1	0		ug/L
Styrene	0.160	U		1	0.160	U		1	1		ug/L
tert-Butylbenzene	0.160	U		1	0.160	U		1			ug/L
Tetrachloroethene	0.670	J		1	0,800	J		1			ug/L
Toluene	0.160	U		1	0.160	U		1			ug/L

QC Checks: RPD: Relative Percent Difference RER: Relative Error Ratio

30-Oct-2018

Page 3 of 4

Page 4 of 4 30-Oct-2018

Project: LTS&M (Phase I)

Task Code: MND01-02.1807002 Lab Code: GEN

	Duplic	ate: MND0	1-02.1807	002-015	Samp	le: MND01 P0		02-012			
Analyte	Result	Qualifiers	Uncert.	Dilution	Result	Qualifiers	Uncert.	Dilution	RPD	RER	Units
Total Xylenes	0.160	U		1	0.160	U		1			ug/L
trans-1,2-Dichloroethene	0.160	U		1	0.160	U		1			ug/L
trans-1,3-dichloropropene	0.160	U		1	0.160	U		1			ug/L
Trichloroethene	1.10			1	1.12			1	1.8		ug/L
Trichlorofluoromethane	0.160	U		1	0.160	U		1			ug/L
Vinyl chloride	0.160	U		1	0.160	U		1			ug/L

pject: LTS&M (Phase I)		23-Oct-2018
k Code: MND01- 02.1807002		
Code: GEN		
Surrogate Recovery:	All surrogate recoveries were within the laboratory acceptance limits.	
LCS/LCSD Performance:	All LCS/LCSD results were within the laboratory acceptance limits.	
MS/MSD Performance:	There were 23 MS/MSD results outside the laboratory acceptance limits.	
Method Blank Performance	: All method blanks were below the MDL.	

Noncompliance Report: MS/MSD Performance

Page 1 of 1 23-Oct-2018

Project: LTS&M (Phase I)

Task Code: MND01-02.1807002

Lab Code: GEN

Sample ID	Date Analyzed	Method	Analyte	MS Recovery	MSD Recovery		Upper Limit	RPD	RPD Limit	Comment
	08-03-2018	SW-846 8260	1,2,3-Trichlorobenzene		63	70	120	13	20	
	08-03-2018	SW-846 8260	1,2,4-Trichlorobenzene		58	66	120	14	20	
	08-03-2018	SW-846 8260	1,2,4-Trimethylbenzene		59	66	122	20	20	
	08-03-2018	SW-846 8260	1,2-Dichlorobenzene		64	70	120	18	20	
	08-03-2018	SW-846 8260	1,3,5-Trimethylbenzene		60	71	122	20	20	
	08-03-2018	SW-846 8260	1,3-Dichlorobenzene		60	68	120	19	20	
	08-03-2018	SW-846 8260	1,4-Dichlorobenzene		57	67	120	18	20	
	08-03-2018	SW-846 8260	2-Chlorotoluene		59	68	120	20	20	
	08-03-2018	SW-846 8260	4-Chlorotoluene		58	68	120	20	20	
	08-03-2018	SW-846 8260	Bromobenzene		70	72	120	14	20	
	08-03-2018	SW-846 8260	Chlorobenzene		71	73	120	13	20	
	08-03-2018	SW-846 8260	Ethylbenzene		70	72	122	15	20	
	08-03-2018	SW-846 8260	Hexachlorobutadiene	45	1	65	123			
	08-03-2018	SW-846 8260	Hexachlorobutadiene		38	65	123	18	20	
	08-03-2018	SW-846 8260	Isopropylbenzene		64	67	124	19	20	
	08-03-2018	SW-846 8260	n-Butylbenzene	58		64	128			
	08-03-2018	SW-846 8260	n-Butylbenzene		45	64	128	24	20	
	08-03-2018	SW-846 8260	n-Propylbenzene		56	66	124	22	20	
	08-03-2018	SW-846 8260	p-Isopropyltoluene	64		66	126			
	08-03-2018	SW-846 8260	p-Isopropyltoluene		51	66	126	23	20	
	08-03-2018	SW-846 8260	sec-Butylbenzene		53	67	126	23	20	
	08-03-2018	SW-846 8260	Styrene		68	75	125	15	20	
	08-03-2018	SW-846 8260	tert-Butylbenzene		57	68	124	22	20	

Contractor to the U.S. Department of Energy Office of Legacy Management

Data Review and Validation Report

General Information

Task ID:	MND01-02.1808003
Sample Event:	August 9, 2018
Site(s):	Mound LTS&M (Phase 1)
Laboratory:	GEL Laboratories, Charleston, South Carolina
Work Order No.:	456932
Analysis:	Organics
Validator:	Samantha Tigar
Review Date:	October 23, 2018

This validation was performed according to *Environmental Data Validation Procedure* (LMS/PRO/S15870), which is available at<u>http://sp.lm.doe.gov/Contractor/ControlledDocuments/Controlled%20Documents/S15870_Env_DV_Procedure.pdf</u>. The procedure was applied at Level 3, Data Validation.

All analyses were successfully completed. The samples were prepared and analyzed using accepted procedures based on methods specified by line item code, which are listed in Table 1.

Analyte	Line Item Code	Prep Method	Analytical Method
Volatile Organics, VOA	VOA-A-007	SW-846 5030B	SW-846 8260 LL

Table 1. Analytes and Methods

Data Qualifier Summary

None of the analytical results required qualification.

Sample Shipping/Receiving

GEL Laboratories in Charleston, South Carolina, received 3 water samples on August 10, 2018, accompanied by a Chain of Custody (COC) form. The air waybill number was listed on the Sample Receipt and Review Form. The COC form was checked to confirm that all of the samples were listed with sample collection dates and times, and that signatures and dates were present indicating sample relinquishment and receipt. The COC forms were complete with no errors or omissions.

Preservation and Holding Times

The sample shipments were received intact with the temperature inside the iced cooler at 3 °C, which complies with requirements. All samples were received in the correct container types and had been preserved correctly for the requested analyses. All samples were analyzed within the applicable holding times.

Detection and Quantitation Limits

The method detection limit (MDL) was reported for all organic analytes as required. The MDL, as defined in 40 CFR 136, is the minimum concentration of an analyte that can be measured and reported with 99 percent confidence that the analyte concentration is greater than zero. The practical quantitation limit (PQL) for these analytes is the lowest concentration that can be reliably measured, and is defined as 5 times the MDL. The reported MDLs demonstrate compliance with contractual requirements.

Laboratory Instrument Calibration

Method requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing acceptable qualitative and quantitative data for the analytes of interest. Initial calibration verification demonstrates that the instrument is capable of acceptable performance at the beginning of the analytical run. Continuing calibration verification demonstrates that the initial calibration is still valid by checking the performance of the instrument on a continuing basis. Initial and continuing calibration standards must be prepared from independent sources to ensure the validity of the calibration. All laboratory instrument calibration verifications were performed correctly in accordance with the cited methods.

Method SW-846 8260 LL, Volatile Organics

Initial calibration of instrument VOA2 was performed on August 13, 2018 using nine calibration standards. Calibration curves are established using linear regression, quadratic regression, or the average response factor approach. Calibrations using average response factors had relative standard deviations of less than 15 percent. Linear or higher order regression calibrations had correlation coefficient values greater than 0.99 and intercepts less than 3 times the MDL. Initial and continuing calibration verification checks were made at the required frequency. Some target compounds had percent drift values less than 20 percent but were not detected at concentrations greater than the MDL. The mass spectrometer calibration and resolution was checked at the beginning of each analytical run in accordance with the procedure.

Volatiles Internal Standards and Surrogates

The volatile internal standard recoveries and surrogate recoveries were within the acceptance ranges for all samples.

Method Blanks

Method blanks are analyzed to assess any contamination that may have occurred during sample preparation. All method blank results associated with the samples were below the PQL for all analytes. In cases where a blank concentration exceeds or equals the MDL, the associated sample results are qualified with a "U" flag (not detected) when the sample result is greater than the MDL but less than 5 times the blank concentration.

<u>Trip Blank</u>

Trip blanks were prepared and analyzed to document contamination attributable to shipping and field handling procedures. This type of blank is useful in documenting contamination of volatile organic samples. One trip blank was submitted with these samples. Acetone was detected in the trip blank but was not detected at concentrations greater than the MDL in the associated samples.

Matrix Spike Analysis

Matrix spikes are aliquots of environmental samples to which a known concentration of analyte has been added before analysis. Matrix spike and matrix-spike duplicate (MS/MSD) analysis is used to assess the performance of the method by measuring the effects of interferences caused by the sample matrix and reflects the bias of the method for the particular matrix in question. The MS/MSD data are not evaluated when the concentration of the unspiked sample is greater than 4 times the spike. The spike recoveries met the acceptance criteria for all analytes evaluated.

Laboratory Replicate Analysis

Laboratory replicate analyses are used to determine laboratory precision for each sample matrix. The relative percent difference for results that are greater than 5 times the PQL should be less than 20 percent (or less than the laboratory-derived control limits for organics). For results that are less than 5 times the PQL, the range should be no greater than the PQL. The replicate results met these criteria.

Laboratory Control Sample

Laboratory control samples were analyzed at the correct frequency to provide information on the accuracy of the analytical method and the overall laboratory performance, including sample preparation. All control sample results were acceptable.

Field Duplicate

Field duplicate samples are collected and analyzed as an indication of overall precision of the measurement process. The precision observed includes both field and laboratory precision and has more variability than laboratory duplicates, which measure only laboratory performance. The relative percent difference for duplicate results that are greater than 5 times the PQL should be less than 20 percent. For results that are less than 5 times the PQL, the range should be no greater

than the PQL. A duplicate sample was collected from location 0411. The duplicate results met the criteria.

Completeness

Results were reported in the correct units for all analytes requested using contract-required laboratory qualifiers. The analytical report included the MDL and PQL for all analytes and all required supporting documentation.

Electronic Data Deliverable (EDD) File

A revised EDD file arrived on October 26, 2018. The EDD was examined to verify that the file was complete and in compliance with requirements. The contents of the file were compared to the requested analyses to ensure all and only the requested data are delivered. The contents of the EDD were manually examined to verify that the sample results accurately reflect the data contained in the sample data package.

Field Measurements

The pre-sampling purge criteria were met for all wells.

Potential Outliers

Potential outliers are results that lie outside the historical range, possibly due to transcription errors, data calculation errors, or measurement system problems. However, outliers can also represent true values outside the historical range. Potential outliers are identified by generating the Data Validation Outliers Report from data in the environmental database. The new data are compared to historical values and data that fall outside the historical data range are listed on the report along with the historical minimum and maximum values. The potential outliers are further reviewed and may be subject to statistical evaluation using the ProUCL application developed by the EPA (https://www.epa.gov/land-research/proucl-software). The review also includes an evaluation of any notable trends in the data that may indicate the outliers represent true extreme values. There were no outliers identified and the data for this task are acceptable as qualified.

farmanthe Tiga

Digitally signed by SAMANTHA TIGAR (Affiliate) Date: 2018.10.30 15:34:26 -06'00'

Report Prepared By: _

Samantha Tigar Data Validator

Data Validation Outliers Report - No Field Parameters Report Date: 10/23/2018

Comparison to Historical Data Since: 10/23/2007 12:00:00 AM Fraction: Any

Task: MND01-02.1808003

Analyte	Location	Analysis Location	Units	Fraction	Result	Lab Qualifier(s)	Туре	HistMIN	HistMAX	HistSetSize	Potential Outlier?
Trichloroethene	0411	LB	ug/L	Ν	8.87		< HistMIN	9.01	14.1	28	No

FRACTION: D = Dissolved N = NA T = Total

Present: OK Signed: OK Dated: OK Integrity: OK Preservation OK Temperature: OK	nalysis Type: General C	hemistry Metals X Organics Radiochemistry Sample
Holding Times: All analyses were completed within the applicable holding times. Detection Limits: The reported detection limits are equal to or below the contract required limits. Field Blanks: There was 1 field blank associated with this task.	Present: <u>OK</u> Signed: <u>C</u>	DK Dated: OK Integrity: OK Preservation OK Temperature: OK
Detection Limits: The reported detection limits are equal to or below the contract required limits. Field Blanks: There was 1 field blank associated with this task.	Check	Summary
Field Blanks: There was 1 field blank associated with this task.	Holding Times	: All analyses were completed within the applicable holding times.
	Detection Limits	The reported detection limits are equal to or below the contract required limits.
Field Duplicates: There was 1 duplicate evaluated.	Field Blanks	There was 1 field blank associated with this task.
	Field Duplicates	There was 1 duplicate evaluated.

		Validation I	Report: Flo	eiu bianks				Page 1 of 1 23-Oct-2018			
ect: LTS	S&M (Phase I)	Task Code: MND01-02,1808003 Lab Code: GEN									
Blank Type	Sample Code	Location	Location Method		Analyt	te	Result	Lab Qualifiers			
ТВ	MND01-02.1808003-014	0999	SW	/-846 8260	Acetor	ne	3.79	J			
Ass	sociated Samples:]			
	Sample Code	Location	Result	Dilution	Lab Qualifiers	Validation	Qualifier				

Page 1 of 4 30-Oct-2018

Project: LTS&M (Phase I)

Task Code: MND01-02.1808003 Lab Code: GEN

	Duplic	ate: MND0	1-02.1808	3003-013	Sample: MND01-02.1808003-004 0411						
Analyte	Result	Qualifiers	Uncert.	Dilution	Result	Qualifiers	Uncert.	Dilution	RPD	RER	Units
1,1,1,2-Tetrachloroethane	0.160	U		1	0.160	U		1			ug/L
1,1,1-Trichloroethane	0.160	U		1	0.160	U		1			ug/L
1,1,2,2-Tetrachloroethane	0.160	U		1	0.160	U		1			ug/L
1,1,2-Trichloro-1,2,2-trifluoroethane	1.50	U		1	1.50	U		1			ug/L
1,1,2-Trichloroethane	0.160	U		1	0.160	U		1			ug/L
1,1-Dichloroethane	0.160	U		1	0.160	U		1			ug/L
1,1-Dichloroethene	0.160	U		1	0.160	U		1			ug/L
1,1-Dichloropropene	0.160	U		1	0.160	U		1			ug/L
1,2,3-Trichlorobenzene	0.200	U		1	0.200	U		1			ug/L
1,2,3-Trichloropropane	0.160	U		1	0.160	U		1			ug/L
1,2,4-Trichlorobenzene	0.160	U		1	0.160	U		1			ug/L
1,2,4-Trimethylbenzene	0.160	U		1	0.160	U		1			ug/L
1,2-Dibromo-3-chloropropane	0.160	U		1	0.160	U		1			ug/L
1,2-Dibromoethane	0.160	U		1	0.160	U		1			ug/L
1,2-Dichlorobenzene	0.160	U		1	0.160	U		1			ug/L
1,2-Dichloroethane	0.160	U		1	0.160	U		1	(i)		ug/L
1,2-Dichloropropane	0.160	U		1	0.160	U		1			ug/L
1,3,5-Trimethylbenzene	0.160	U		1	0.160	U		1	1		ug/L

	Duplic	ate: MND0	1-02.1808	8003-013	Samp	ole: MND01- 041		003-004			
Analyte	Result	Qualifiers	Uncert	Dilution	Result	Qualifiers	Uncert.	Dilution	RPD	RER	Units
1,3-Dichlorobenzene	0.160	U		1	0.160	U		1			ug/L
1,3-Dichloropropane	0.160	U		1	0.160	U		1			ug/L
1,4-Dichlorobenzene	0.160	U		1	0.160	U		1			ug/L
2,2-Dichloropropane	0.160	U		1	0.160	U		1			ug/L
2-Butanone	0.500	U		1	0.500	U		1			ug/L
2-Chlorotoluene	0.160	U		1	0.160	U		1			ug/L
2-Hexanone	0.500	U		1	0.500	U		1			ug/L
4-Chlorotoluene	0.160	U		1	0.160	U		1			ug/L
4-Methyl-2-Pentanone	0.500	U		1	0.500	U		1			ug/L
Acetone	0.500	U		1	0.500	U		1			ug/L
Benzene	0,160	U		1	0.160	U		1			ug/L
Bromobenzene	0.160	U		1	0.160	U		1			ug/L
Bromochloromethane	0.160	U		1	0.160	U		1			ug/L
Bromodichloromethane	0.160	U		1	0.160	U		1			ug/L
Bromoform	0.160	U		1	0.160	U		1			ug/L
Bromomethane	0.160	U		1	0.160	U		1			ug/L
Carbon Disulfide	0.500	U		1	0.500	U		1			ug/L
Carbon tetrachloride	0.160	U		1	0.160	U		1			ug/L
Chlorobenzene	0.160	U		1	0.160	U		1			ug/L
Chlorodibromomethane	0.160	U		1	0.160	U		1			ua/L

QC Checks: RPD: Relative Percent Difference RER: Relative Error Ratio

Page 2 of 4 30-Oct-2018

	Duplic	ate: MND0	1-02.1808	003-013	Samp	Sample: MND01-02.1808003-004 0411					
Analyte	Result	Qualifiers	Uncert	Dilution	Result	Qualifiers	Uncert.	Dilution	RPD	RER	Units
Chloroethane	0,160	U		1	0.160	U		1			ug/L
Chloroform	0.160	U		1	0.160	U		1			ug/L
Chloromethane	0.160	U		1	0.160	U		1			ug/L
cis-1,2-Dichloroethene	2.11			1	2.08			1	1.4		ug/L
cis-1,3-Dichloropropene	0.160	U		1	0.160	U		1			ug/L
Dibromomethane	0.160	U		1	0.160	U		1			ug/L
Dichlorodifluoromethane	0.160	U		1	0.160	U		1			ug/L
Ethylbenzene	0.160	U		1	0.160	U		1			ug/L
Hexachlorobutadiene	0,160	U		1	0.160	U		1			ug/L
Isopropylbenzene	0.160	U		1	0.160	U		1			ug/L
Methylene chloride	0,160	U		1	0.160	U		1			ug/L
n-Butylbenzene	0.160	U		1	0.160	U		1			ug/L
n-Propylbenzene	0.160	U		1	0.160	U		1			ug/L
Naphthalene	0.160	U		1	0.160	U		1			ug/L
p-IsopropyItoluene	0.160	U		1	0.160	U		1	ñ (ug/L
sec-Butylbenzene	0.160	U		1	0.160	U		1	1		ug/L
Styrene	0.160	U		1	0.160	U		1	(i)		ug/L
tert-Butylbenzene	0.160	U		1	0.160	U		1			ug/L
Tetrachloroethene	0.160	U		1	0.160	U		1			ug/L
Toluene	0.160	U		1	0.160	U		1			ug/L

QC Checks: RPD: Relative Percent Difference RER: Relative Error Ratio

30-Oct-2018

Page 3 of 4

Page 4 of 4 30-Oct-2018

Project: LTS&M (Phase I)

Task Code: MND01-02.1808003 Lab Code: GEN

	Duplic	ate: MND0	1-02.1808	3003-013	Samp	le: MND01 04		03-004			
Analyte	Result	Qualifiers	Uncert.	Dilution	Result	Qualifiers	Uncert.	Dilution	RPD	RER	Units
Total Xylenes	0.160	U		1	0.160	U		1			ug/L
trans-1,2-Dichloroethene	0.160	U		1	0.160	U		1			ug/L
trans-1,3-dichloropropene	0.160	U		1	0.160	U		1			ug/L
Trichloroethene	8.87			1	9.01			1	1.6		ug/L
Trichlorofluoromethane	0.160	U		1	0.160	U		1			ug/L
Vinyl chloride	0.160	U		1	0.160	U		1			ug/L

ect: LTS&M (Phase I)	Data Validation Summary 23-Oct-2018
Code: MND01- 02.1808003	
Code: GEN	
Surrogate Recovery:	All surrogate recoveries were within the laboratory acceptance limits.
LCS/LCSD Performance:	All LCS/LCSD results were within the laboratory acceptance limits.
MS/MSD Performance:	All MS/MSD results were within the laboratory acceptance limits.
Method Blank Performance:	All method blanks were below the MDL.