

Memorandum

Date: 13 April 2011

To: Madeline Ramos, Puerto Rico Electric Power Authority (PREPA)

Copy: Boiling Nuclear Superheat (BONUS) File and Gunseli Shareef, URS (Program Manager)

From: Chad Webb, BONUS RADCON Manager (RCM)

Subject: 2010 Annual Survey

MMG conducted the comprehensive annual survey at the Dr. Modesto Iriarte Technological Museum (former BONUS Facility) during the dates of 27 September – 1 October 2010 with support from PREPA personnel. Due to PREPA's Ludlum Micro-R Meter, Model 19 being damaged and not responding within calibration parameters, direct radiation monitoring with this instrument was delayed and performed on 20 through 21 December 2010. This survey was conducted in accordance with the Sampling and Analysis Plan (SAP) for the BONUS Facility prepared by the U.S. Department of Energy (DOE) (or DOE contractor) as amended by a 16 January 2001 Memorandum from Webb to Alvarado. The survey was also altered, as presented below in this report, in consideration of the covering of contamination areas/surfaces by paint and/or concrete, the shielding (concrete floor) placed on the Basement Level, the verification survey performed in January 2005 (refer to 22 February 2005 Memorandum entitled: *2004 Annual Survey and Verification Survey for Basement Floor*), and subsequent annual surveys. This report is organized in accordance with Section 6.2 of the SAP. The sampling and inspection results are discussed below.

PURPOSE

Date: 27 September -1 October 2010 and 20 -21 December 2010 **Purpose:** Conduct annual radiological survey - to ensure that exposure to employees, the public and the environment to levels of ionizing radiation are as low as reasonably achievable and demonstrate that levels of radioactivity at the facility remain within the criteria that support the basis for continued use as a museum.

LOCATION

This sampling and inspection effort focused on the BONUS Enclosed Domed Building (Dome). Surveys and inspections were performed on the (1) exterior of the entombment (concrete monolith where the entombed reactor vessel resides), (2) Main Level, and (3) Basement Level. A list of specific survey locations is provided in Table 1.

Table 1

			Total	Removable	
	Sample	Dose Rate	Contamination	Contamination	
Sampling Location	Number	(µR/hour)	(dpm/100 cm ²)	$(dpm/100 cm^2)$	Comments
		R	outine Sampling		
Pipe Chase Face	1	5 Dup=4	<mda< td=""><td><mda< td=""><td>Monolith Top</td></mda<></td></mda<>	<mda< td=""><td>Monolith Top</td></mda<>	Monolith Top
Pipe Chase Face	2	5	<mda< td=""><td><mda< td=""><td>Monolith Top</td></mda<></td></mda<>	<mda< td=""><td>Monolith Top</td></mda<>	Monolith Top
Pipe Chase Face	3	4	<mda< td=""><td><mda< td=""><td>Monolith Top</td></mda<></td></mda<>	<mda< td=""><td>Monolith Top</td></mda<>	Monolith Top
Pipe Chase Face	4	5	<mda< td=""><td><mda< td=""><td>Monolith Top</td></mda<></td></mda<>	<mda< td=""><td>Monolith Top</td></mda<>	Monolith Top
Top Plug Face #1	5	5	<mda< td=""><td><mda< td=""><td>Monolith Top</td></mda<></td></mda<>	<mda< td=""><td>Monolith Top</td></mda<>	Monolith Top
Top Plug Face #1	6	5	706	<mda Dup=<mda< td=""><td>Monolith Top</td></mda<></mda 	Monolith Top
Top Plug Face #1	7	6	<mda< td=""><td><mda< td=""><td>Monolith Top</td></mda<></td></mda<>	<mda< td=""><td>Monolith Top</td></mda<>	Monolith Top
Top Plug Face #2	8	6 Dup=5	706	<mda< td=""><td>Monolith Top</td></mda<>	Monolith Top
Top Plug Face #2	9	5	1,256 Dup=863	<mda< td=""><td>Monolith Top</td></mda<>	Monolith Top
Top Plug Face #2	10	6	785	<mda< td=""><td>Monolith Top</td></mda<>	Monolith Top
Top Plug Face #3	11	6	1,099	<mda< td=""><td>Monolith Top</td></mda<>	Monolith Top
Top Plug Face #3	12	4	706	<mda< td=""><td>Monolith Top</td></mda<>	Monolith Top
Top Plug Face #3	13	5	745	<mda< td=""><td>Monolith Top</td></mda<>	Monolith Top
Top Plug Face #4	14	4 Dup=5	745	<mda< td=""><td>Monolith Top</td></mda<>	Monolith Top
Top Plug Face #4	15	5	<mda< td=""><td><mda< td=""><td>Monolith Top</td></mda<></td></mda<>	<mda< td=""><td>Monolith Top</td></mda<>	Monolith Top
Top Plug Face #4	16	4	863	<mda< td=""><td>Monolith Top</td></mda<>	Monolith Top
Top Plug Top Surface	17	4	<mda< td=""><td><mda< td=""><td>Monolith Top</td></mda<></td></mda<>	<mda< td=""><td>Monolith Top</td></mda<>	Monolith Top
	10	Dup=4			
Top Plug Top Surface	18	4	<mda< td=""><td><mda< td=""><td>Monolith Top</td></mda<></td></mda<>	<mda< td=""><td>Monolith Top</td></mda<>	Monolith Top
Top Plug Top Surface	19	5	<mda< td=""><td><mda< td=""><td>Monolith Top</td></mda<></td></mda<>	<mda< td=""><td>Monolith Top</td></mda<>	Monolith Top
Main Floor Water Column	20	6 Dup=6	<mda< td=""><td><mda< td=""><td>Main Level-Controlled Area</td></mda<></td></mda<>	<mda< td=""><td>Main Level-Controlled Area</td></mda<>	Main Level-Controlled Area
Main Floor Water Column	21	3 Dup=3	<mda< td=""><td><mda< td=""><td>Main Level-Controlled Area</td></mda<></td></mda<>	<mda< td=""><td>Main Level-Controlled Area</td></mda<>	Main Level-Controlled Area
Instrument Thimble #1	22	4	<mda< td=""><td><mda< td=""><td>Main Level-Controlled Area</td></mda<></td></mda<>	<mda< td=""><td>Main Level-Controlled Area</td></mda<>	Main Level-Controlled Area
Instrument Thimble #2	23	4	<mda< td=""><td><mda< td=""><td>Main Level-Controlled Area</td></mda<></td></mda<>	<mda< td=""><td>Main Level-Controlled Area</td></mda<>	Main Level-Controlled Area
Instrument Thimble #3	24	5	<mda< td=""><td><mda< td=""><td>Main Level-Controlled Area</td></mda<></td></mda<>	<mda< td=""><td>Main Level-Controlled Area</td></mda<>	Main Level-Controlled Area
Pipe Chase Ext Hatch	25	4	<mda< td=""><td><mda< td=""><td>Main Level-Controlled Area</td></mda<></td></mda<>	<mda< td=""><td>Main Level-Controlled Area</td></mda<>	Main Level-Controlled Area
Instrument Thimble #4	26	6	<mda< td=""><td><mda< td=""><td>Main Level-Controlled Area</td></mda<></td></mda<>	<mda< td=""><td>Main Level-Controlled Area</td></mda<>	Main Level-Controlled Area
Fuel Pool Purif. Floor, area	27	18	18,754	<mda< td=""><td>Main Level-Controlled Area</td></mda<>	Main Level-Controlled Area
Fuel Pool Purif. Floor, area	27A	5	785	<mda< td=""><td>Main Level-Controlled Area. Taken to define elevated area associated with 27 and 28.</td></mda<>	Main Level-Controlled Area. Taken to define elevated area associated with 27 and 28.
Fuel Pool Purif Floor, area	27B	4	1,099	<mda< td=""><td>Main Level-Controlled Area. Taken to define elevated area associated with 27 and 28.</td></mda<>	Main Level-Controlled Area. Taken to define elevated area associated with 27 and 28.
Fuel Pool Purif. Floor (CM005)	28	15	76,470 Dup=79,059	<mda Dup=<mda< td=""><td>Main Level-Controlled Area</td></mda<></mda 	Main Level-Controlled Area

Table 1 (Continued)

	Sample	Dose Rate	Total Contamination	Removable Contamination	Commente
Sampling Location	Number	(µR/hour)	(dpm/100 cm ²) Sampling (continu	(dpm/100 cm ²)	Comments
Side of Liq. Waste Ret.	30	20	1,067	<mda< td=""><td>Basement Level, Att. A –</td></mda<>	Basement Level, Att. A –
Tank #1	50	20	1,007		Fig.s 4 and 6
Side of Liq. Waste Ret. Tank #2	31	17	1,844	<mda< td=""><td>Basement Level, Att. A – Fig.s 4, 5, and 6</td></mda<>	Basement Level, Att. A – Fig.s 4, 5, and 6
F.W. Heater Room (Wall)	40A	15	5,571 Dup=5,846	<mda Dup=<mda< td=""><td>Basement Level, Att. A – Fig. 9</td></mda<></mda 	Basement Level, Att. A – Fig. 9
F.W. Heater Room (Wall)	40B	15	1,138	<mda< td=""><td>Basement Level, Att. A – Fig. 9</td></mda<>	Basement Level, Att. A – Fig. 9
Vapor Sphere Room	42	4	<mda< td=""><td><mda< td=""><td>Basement Level</td></mda<></td></mda<>	<mda< td=""><td>Basement Level</td></mda<>	Basement Level
Vapor Sphere Room	43	4	<mda< td=""><td><mda< td=""><td>Basement Level</td></mda<></td></mda<>	<mda< td=""><td>Basement Level</td></mda<>	Basement Level
Condenser Room Entry Wall (Block)	50A	6	<mda< td=""><td><mda< td=""><td>Basement Level, Att. A – Fig. 11</td></mda<></td></mda<>	<mda< td=""><td>Basement Level, Att. A – Fig. 11</td></mda<>	Basement Level, Att. A – Fig. 11
Condenser Room Entry Wall (Concrete)	50B	5	<mda< td=""><td><mda< td=""><td>Basement Level, Att. A – Fig. 11</td></mda<></td></mda<>	<mda< td=""><td>Basement Level, Att. A – Fig. 11</td></mda<>	Basement Level, Att. A – Fig. 11
	I	Addition	al Sampling Locati	ions	
Main Floor-Zone 1	65	5	NA		Main Level-Public Access. Masslin Smear
Main Floor-Zone 2	66	6	NA	<1000dpm/100cm ²	Main Level-Public Access. Masslin Smear
Main Floor-Zone 3	67	4	NA	<1000dpm/100cm ²	Main Level-Public Access. Masslin Smear
Main Floor-Zone 4	68	5	NA	<1000dpm/100cm ²	Main Level-Public Access. Masslin Smear
Main Floor-Zone 5	69	5	NA	<1000dpm/100cm ²	Main Level-Public Access. Masslin Smear
Main Floor-Zone 6	72	5	NA	<1000dpm/100cm ²	Main Level-Public Access. Masslin Smear
Main Floor-Zone 7	73	5	NA	<1000dpm/100cm ²	Main Level-Public Access. Masslin Smear
Main Floor-Zone 8	74	6	NA	<1000dpm/100cm ²	Main Level-Public Access. Masslin Smear
Main Floor-Zone 9	75	5	NA	<1000dpm/100cm ²	Main Level-Public Access. Masslin Smear
Main Floor-Zone 10	76	5	NA	<1000dpm/100cm ²	Main Level-Public Access. Masslin Smear
Main Floor-Zone 11	77	6	NA	<1000dpm/100cm ²	Main Level-Public Access. Masslin Smear

Sampling Location	Sample Number	Dose Rate (µR/hour)	Total Contamination (dpm/100 cm ²)	Removable Contamination (dpm/100 cm ²)	Comments
		dditional San	npling Locations (C	ontinued)	
Main Floor-Zone 12	78	6	NA	<1000dpm/100cm ²	Main Level-Public Access. Masslin Smear
Main Floor-Zone 14	79	6	NA	<1000dpm/100cm ²	Main Level-Public Access. Masslin Smear
Main Floor-Zone 13	80	6	NA	<1000dpm/100cm ²	Main Level-Public Access. Masslin Smear
Basement Floor-Zone 1	70	5	NA	<1000dpm/100cm ²	Basement Level Masslin Smear
Basement Floor-Zone 2	71	7	NA	_	Basement Level Masslin Smear
Basement Floor-Zone 3	81	7	NA	-	Basement Level Masslin Smear
Basement Floor-Zone 4	89	7	NA	-	Basement Level Masslin Smear
Basement Floor-Zone 5	90	3	NA		Basement Level Masslin Smear
Basement Floor-Zone 6	91	5	NA	_	Basement Level Masslin Smear
Basement Floor-Zone 7	92	5	NA	<1000dpm/100cm ²	Basement Level Masslin Smear
Basement Floor-Zone 8	93	5	NA	<1000dpm/100cm ²	Basement Level Masslin Smear
Basement Floor-Zone 9	94	5	NA	<1000dpm/100cm ²	Basement Level Masslin Smear
Basement Floor-Zone 10	95	5	NA	<1000dpm/100cm ²	Basement Level Masslin Smear
Basement Floor-Zone 11	96	6	NA	<1000dpm/100cm ²	Basement Level Masslin Smear
Basement Floor-Zone 12	97	7	NA	<1000dpm/100cm ²	Basement Level Masslin Smear
Basement Floor-Zone 13	98	6	NA	<1000dpm/100cm ²	Basement Level Masslin Smear
Basement Floor-Zone 14	99	4	NA	<1000dpm/100cm ² Dup<1000dpm/100cm ²	Basement Level Masslin Smear
Basement Floor-Zone 15	100	4	NA		Basement Level Masslin Smear
Basement Floor-Zone 16	101	5	NA	<1000dpm/100cm ² Dup<1000dpm/100cm ²	Basement Level Masslin Smear
Basement Floor-Zone 17	102	6	NA		Basement Level Masslin Smear
Basement Floor-Zone 18	103	6	NA	<1000dpm/100cm ²	Basement Level Masslin Smear

 $\begin{array}{ll} dpm/100\ cm^2 = \ disintegrations \ per \ minute \ per \ 100 \ centimeters \ squared \\ Dup = \ Duplicate \\ MDA = \ Minimum \ Detectable \ Activity \\ \mu R/hour = \ micro-Roentgen \ per \ hour \end{array}$

Attachment 3 provides a copy of the facility inspection checklist used during the annual survey. Findings and observations are provided below.

Site Surveillance Features: Asphalt of the access road and parking area is in fair and usable condition (Attachment 1, Figures 19, 21, and 22). The motor of the entrance gate was not operational at the time of the survey, but was manually operated by the attending guard (Attachment 1, Figures 19 and 20). The security guard controlled access into the gated facility and kept log of visitors. The security fence (Attachment 1, Figure 24) and Dome monolith plaques were in fair condition. Repair or replacement of the gate motor is recommended, but not critical in maintaining site security.

Dome-Entombed Concrete Monolith and Monolith Penetrations: Inspection of the Concrete Monolith area revealed superficial cracks throughout the surface of the structure (Attachment 1, Figure 1). Superficial cracks are also present along the base of the "top plug" of the concrete monolith top (Attachment 1, Figure 2). All dose rate measurements taken around the structure were not significantly different from background measurements taken. No immediate action is necessary.

Dome-External Piping Systems: Inspection of accessible external piping systems revealed no significant indications of deterioration. Some areas of flaking paint were noted. No immediate action is necessary.

Dome-Basement Level: Corrosion is evident on all metal surfaces within approximately 6 in. of the floor, including contaminated surfaces. However, the concrete floor cover (installed in late 2004) covers all floor areas where surface contamination was present, which is preventing contact with previously accessible contaminated and corroding surfaces. Only surface fissures/cracks were noted in the concrete floor covering (Attachment 1, Figure 8). Control measures (fixed with paint and thin concrete layer in some places), which were previously implemented, were inspected and do not require maintenance at this time. Ongoing and routine assessment of accessible surfaces in the basement is recommended to evaluate the continued effectiveness of the new flooring and control measures (e.g., paint) emplaced on previous contamination areas. Access to areas with historical removable contamination is being effectively controlled. No immediate action is necessary.

Dome-Basement Level Flooding: Inspection of this level revealed no standing water on the floors. Storm water drains appear to be functioning properly, but the sump is filling with silt/mud (Attachment 1, Figure 25). Sampling and removal of silt/mud should be planned within the next two to three years.

Rainwater infiltration into the Basement Level is occurring due to two sources:

- The rubber gasket around the exterior base of the Dome is deteriorated (Attachment 1, Figures 28 and 30). The infiltration into the Basement Level due to the deteriorated gasket is most evident by staining on the interior Basement Level walls (Attachment 1, Figures 26 and 27) near and within the Vapor Sphere Room, which is beneath the northern entrance.
- The metal frame of the Basement Level loading door is corroded and allowing rainfall to infiltrate. The paved and concrete entrance pathway outside the loading door diverts rainwater toward the door, which infiltrates the basement through the deteriorated metal frame under the door (Attachment 1, Figure 31).

It is recommended that the exterior rubber gasket surrounding the Dome structure be replaced. Also, it is recommended that the concrete berm be expanded into a concrete ramp covering the corroded frame at the Basement Level loading entrance door after a civil survey has determined that the height of the ramp will effectively divert rainfall away from the door.

Dome-Main Level: The Main Level (Controlled Area) is that portion of the Main Level that is not accessible to the public (Attachment 1, Figure 3). The two historical contamination sites remain covered with floor tiles; the tile work is in good condition and is effective in reducing the dose levels. One area adjacent to the north side of the Monolith is also covered with lead bricks (Attachment 1, Figure 18), which is effective in reducing elevated dose rate levels in this area. Ongoing and routine assessment of the floor tile and lead bricks in this area is recommended. There is also no discernable evidence of work and/or damage affecting the control measures (floor tiles) on the Main Level, Museum Area (Attachment 1, Figures 3, 12, and 14 through 17). No immediate action is necessary on the Main Level.

Dome-Mezzanine Level: Access to ladders and stairways leading to the mezzanine level are being effectively maintained. The structure appears sound and in good condition. No immediate action is necessary.

Dome-Exterior: Inspection of the Dome structure (Attachment 1, Figure 21) did not reveal any significant structural discrepancies, although the paint on the Dome shell has faded and is flaking in spots. Also, refer to the Basement Level flooding issues mentioned above. The metallic pass-through portal at the northern entrance also shows signs of significant corrosion (Attachment 1, Figure 29) and flaking paint. It is recommended that corrosion control coating and new paint be applied to the north entrance pass-through portal to prevent any structural or mechanical damage to the entrance door mechanism.

There is also a small water storage tank adjacent to an ancillary support building on the east side of the Dome (Attachment 1, Figure 32) that is malfunctioning. The float switch, which cuts off the flow of water into the tank, appears to be in need of repair/replacement and allowing the tank to overflow. Water is ponding on the ground surrounding the tank and may eventually flood the ancillary support building. It is recommended that the mechanical operation of the tank be evaluated and repair/replacement of malfunctioning parts/systems performed, as necessary.

Surrounding Land: Inspection the surrounding land within approximately 0.25 miles of the site revealed no significant changing features or activities that might affect site security. The beach immediately adjacent to the site continues to be a popular surfing location. The adjacent lighthouse and surrounding scenic overlook has reopened. No immediate action is necessary.

General Site Upkeep: The buildings and grounds appear well maintained (Attachment 1, Figures 22 and 24). No immediate action is necessary.

Site Security: A security guard was present at all times during the survey. No immediate action is necessary.

Erosion: Inspection of the surrounding property and slopes to the beach revealed no significant changes or signs of excessive erosion. Dense vegetation on the slopes from the

facility to the beach appears to be effectively controlling erosion (Attachment 1, Figure 23). No immediate action is necessary.

DIRECT RADIATION MONITORING

Table 1 presents direct radiation monitoring results for this survey. Attachment 2 provides survey records and sketches depicting survey locations for the direct radiation monitoring conducted during this annual comprehensive survey. Direct radiation measurements were taken with a Ludlum Micro-R Meter, Model 19, at 30 cm from the source or survey location. Table 2 summarizes these results.

	Dose Rate	e at 30 cm fro	om Source			Annua Lin	
		(µR/hour)		Expected Exp	oosure Rate ^a	(rem/	year)
				Max.			
	Min.	Ave.	Max.	Exposure	Rate	Rad	
Location	(µR/hour)	(µR/hour)	(µR/hour)	(hour/year)	(rem/year)	Worker	Visitor
Monolith Top	4	4.9	6	416	0.002	2	NA
Main Level	3	6.7	18	416	0.007	2	NA
(Controlled Area)							
Main Level	4	5.4	6	2,080	0.012	2	NA
(Public Access)				(employee)			
				832 (visitor)	0.003	NA	0.1
Basement Level	3	7.1	20	416	0.008	2	NA

Table 2	
---------	--

rem = roentgen equivalent in man

^aBased conservatively on the maximum-recorded dose rate at a conservative exposure scenario. For example, exposure level for the Monolith top would be 6 μ R/hour × (1 rem/1,000,000 μ R) × (8 hours/1 week) × (52 weeks/1 year) = 0.002 rem/year.

The results summarized in the Table 2 indicate that there are no Radiation Areas in the BONUS Facility as defined in Title 10 Part 835 of the Code of Federal Regulations (10 CFR 835), which is 0.005 rem/hour at 30 cm or 5,000 μ R/hour at 30 cm for the dose rate measurements conducted at BONUS). The highest dose rates recorded at 30 cm in the BONUS Facility are well below the limit defining a radiation area. The radiation levels exhibited throughout the facility do not approach annual dose limits for radiological workers or site visitors based on conservative exposure scenarios summarized in the table above.

Instrument calibrations and daily response check records are maintained at the BONUS facility. Attachment 4 provides a copy of instrument calibration sheets. Duplicate field measurements were also made at a rate of 5% of the routine measurements and are summarized in Table 3. All quality assurance (QA)/quality control (QC) checks performed within acceptable limits.

Table	3
-------	---

	Result (µR	/hour)		
Location	Initial	Duplicate	RPD (%)	Comments
1	5	4	22	Acceptable
8	6	5	18	Acceptable
14	4	5	22	Acceptable
17	4	4	0	Very good
20	6	6	0	Very good
21	3	3	0	Very good

 $RPD = Relative Percent Difference = [(Sample - Duplicate)/((Sample + Duplicate)/2)] \times 100$

CONTAMINATION LEVEL MONITORING

Table 1 presents contamination level monitoring results for this survey. Attachment 2 provides contamination survey records and sketches depicting survey locations for the surface contamination measurements conducted during this annual comprehensive survey. Measurements were taken with a Ludlum 44-9 probe coupled to a Ludlum 2221 Scaler/Ratemeter. Total surface and removable contamination surveys were conducted in accordance with Standard Operating Procedures (SOPs) PBR-11.3.1 and 11.4.1. Contamination level results are summarized below.

Concrete Monolith

There are no radioactive Contamination Areas (as defined in 10 CFR 835) associated with the exterior of the Concrete Monolith structure. Smear samples were collected from the surface of the Concrete Monolith to assess transferable or removable surface beta/gamma contamination. None of the smear samples exhibited removable contamination above the MDA. Nine survey locations exhibited total surface contamination levels above the MDA ranging from 706 to 1,256 dpm/100 cm². These values are well below the survey action level for total surface beta/gamma contamination (5,000 dpm/100 cm²). It is recommended that the Concrete Monolith Top be designated as a Controlled Area due to the presence of slightly elevated fixed surface beta/gamma contamination levels. Marking/posting of this area is not required; however, administrative procedures should be in place to ensure that no intrusive (disturbing the Concrete Monolith surface) work is performed on this level without review and approval by the RCM. Job-specific Radiological Work Permits (RWPs) may be required for any future intrusive work on the Concrete Monolith Top.

Main Level (Controlled Area)

There are no radioactive Contamination Areas associated with the controlled area (inside the railing and Plexiglas) of the Main Level. Smear samples were collected from the floor surface of the Main Level (controlled area) to assess transferable or removable surface beta/gamma contamination. None of the smear samples exhibited removable contamination above MDA. However, two planned survey locations, 27 and 28, had total surface beta/gamma contamination levels above the 5,000 dpm/100 cm² action level (18,754 and 76,470 dpm/100 cm², respectively). Two additional survey locations, 27A and 27B (785 and 1,099 dpm/100 cm², respectively), were added to the sampling locations in 2001 and assessed to determine the extent of the surface contamination (refer to survey sketch in Attachment 2). It is recommended that the Main Level (controlled area) remain designated as a Controlled Area due to the presence of elevated fixed surface beta/gamma contamination and be marked/posted in accordance with Section 6.7 of SOP PBR-11.1.4

(modify posting to avoid alarming visitors – current posting is acceptable). Administrative procedures should be in place to ensure that no intrusive (disturbing the floor surface) work is performed in this area without review and approval by the RCM. Job-specific RWPs may be required for any future intrusive work in this area.

Main Level (Public Access Area)

The Main Level (public access area) was evaluated for transferable/removable surface contamination only (i.e., only smear samples were performed). These results and previous surveys indicate that there are no radioactive Contamination Areas associated with the public access area (outside the railing and Plexiglas) of the Main Level. Masslin samples (survey locations 65-69 and 72-80) were collected from the floor surface of the Main Level (public access area) to assess transferable or removable surface beta/gamma contamination. Masslin smear samples exhibited no removable contamination above MDA or 1,000 dpm/100 cm². Historically, fixed surface contamination does exist on the concrete floor of the Main Level (public access area), but has been shielded by the placement of tiles in this area (Attachment 1, Figure 3). Despite the fact that fixed contamination has been shielded with floor tiles, it is recommended that this area remain a Controlled Area. Marking/posting of this area is not required; however, administrative procedures should be in place to ensure that no intrusive (disturbing the floor surface) work is performed on this level without review and approval by the RCM. Job-specific RWPs may be required for any future intrusive work in this area.

Basement Level

Since the Basement Level floor has been covered with approximately 4-in of concrete, all floor sampling locations on this level were evaluated for transferable/removable surface contamination only (i.e., only smear samples/masslin were performed). Masslin samples (survey locations 70, 71, 81, and 89-103) were collected from the floor surface of the Basement Level to assess transferable or removable surface beta/gamma contamination. Masslin smear samples exhibited no removable contamination above MDA or 1,000 $dpm/100 \text{ cm}^2$. In addition to the masslin samples performed on the floor throughout the level, total and removable contamination was assessed on other surfaces (other than floor) that have been covered with paint and/or concrete due to historical removable contamination (survey locations 30, 31,40A, 40B, 50A, and 50B). Attachment 1, Figures 4 through 7, 9 and 11 depict these six Basement Level survey locations. None of the smear samples from these locations exhibited removable contamination above MDA. However, one of these survey locations, 40A (Attachment 1, Figure 9), had total surface beta/gamma contamination levels above the 5,000 dpm/100 cm² action level (5,571 dpm/100 cm²). Three additional survey locations, 30, 31 and 40B, exhibited a total surface contamination level above MDA, but well below the 5,000 dpm/100 cm^2 action level. Based on these results, there are no radioactive Contamination Areas associated with the Basement Level.

Two additional survey locations (42 and 43) were evaluated in the Vapor Sphere Room where a tank (Attachment 1, Figure 10) was historically used for radioactive waste/material storage (a sign indicating radioactive material storage was also present on the door). These survey locations were taken from on top of the newer concrete floor. Both removable and total surface readings at these two locations were below MDA.

Recommendations for access control and posting of this area are provided below:

- Proposed public access area in Basement Level Despite the fact that fixed contamination has been shielded with the added concrete flooring in the basement, it is recommended that the proposed public access area in the Basement Level remain designated as a controlled area. Marking/posting of this area is not required; however, administrative procedures should be in place to ensure that no intrusive (disturbing the floor surface) work is performed on this level without review and approval by the RCM. Job-specific RWPs may be required for any future intrusive work in this area.
- Proposed non-public access area in the Basement Level Despite the fact that elevated removable surface contamination levels have been fixed through control measures (examples found in Attachment 1, Figures 4 through 7 and 9), it is recommended that the proposed non-public access areas in the Basement Level remain designated as a controlled area and be marked/posted in accordance with Section 6.7 of SOP PBR-11.1.4 (modify posting to avoid alarming visitors). The non-public access areas are those portions of the Liquid Waste Pump Room/F.W. Heater Room and Retention Tank Room that will be partitioned off as "no public access". Those portions of these rooms that will allow public access will be controlled as stated in the previous bullet. Administrative procedures should be in place to ensure that no intrusive (disturbing the floor or wall surfaces) work is performed on this level without review and approval by the RCM. Jobspecific RWPs may be required for any future intrusive work in this area.

Contamination Survey QA/QC

Instrument calibration records and daily response check records are maintained at the BONUS facility. Attachment 4 provides a copy of instrument calibration records. Duplicate field measurements were also made at a rate of 5% and are summarized in Table 4.

	Result (dpm/100 cm ²)		RPD	
Location	Initial	Duplicate	(%)	Comments
6 (Removable)	<mda< td=""><td><mda< td=""><td>NA</td><td>Good</td></mda<></td></mda<>	<mda< td=""><td>NA</td><td>Good</td></mda<>	NA	Good
9 (Total Surface)	1,256	863	37%	Measurement very near MDA,
				background fluctuation expected
28 (Total Surface &	76,470	79,059	3%	Good
Removable)	<mda< td=""><td><mda< td=""><td>NA</td><td>Good</td></mda<></td></mda<>	<mda< td=""><td>NA</td><td>Good</td></mda<>	NA	Good
40A (Total Surface	5,571	5,846	5%	Good
& Removable)	<mda< td=""><td><mda< td=""><td>NA</td><td>Good</td></mda<></td></mda<>	<mda< td=""><td>NA</td><td>Good</td></mda<>	NA	Good
99 (Removable)	<mda< td=""><td><mda< td=""><td>NA</td><td>Good</td></mda<></td></mda<>	<mda< td=""><td>NA</td><td>Good</td></mda<>	NA	Good
101 (Removable)	<mda< td=""><td><mda< td=""><td>NA</td><td>Good</td></mda<></td></mda<>	<mda< td=""><td>NA</td><td>Good</td></mda<>	NA	Good

Table 4

 $RPD = [(Sample - Duplicate)/[(Sample + Duplicate)/2)]] \times 100$

Contamination survey QA/QC checks are acceptable.

LABORATORY DATA

None.

SUMMARY OF RECOMMENDATIONS

Based on previous surveys and the 2009 Annual Survey results presented above, the following recommendations are provided:

- <u>No "general" RWPs</u> are required for non-intrusive, routine activities (surveys, tours, etc.) at the Facility. Activities that may disturb floors, walls, and/or other potentially contaminated surfaces should be written in a brief planning document and submitted to the RCM for review. As noted in the bullets below, job-specific RWPs may be required for any future intrusive work in the facility.
- Physical Condition:
 - The motor of the entrance gate was not operational at the time of the survey (same as last year), but was manually operated by the attending guard. Repair or replacement of the gate motor is recommended, but not critical in maintaining site security.
 - Storm water drains appear to be functioning properly in the Basement Level, but the sump is filling with silt/mud (Attachment 1, Figure 25). Sampling and removal of silt/mud should be planned within the next two to three years.
 - The rubber gasket around exterior base of the Dome is deteriorated (Attachment 1, Figures 28 and 30). It is recommended that the exterior rubber gasket surrounding the Dome structure be replaced.
 - The metal frame of the Basement Level loading door is corroded and allowing rainfall, which is diverted toward a concrete berm at the door entrance, to infiltrate (Attachment 1, Figure 31). It is recommended that the concrete berm be expanded into a concrete ramp covering the corroded frame at the Basement Level loading entrance door after a civil survey has determined that the height of the ramp will effectively divert rainfall away from the door.
 - The metallic pass-through portal at the northern entrance shows signs of significant corrosion (Attachment 1, Figure 29) and flaking paint. It is recommended that corrosion control coating and new paint be applied to the north entrance pass-through portal to prevent any structural or mechanical damage to the entrance door mechanism.
 - There is a small water storage tank adjacent to an ancillary support building on the east side of the Dome (Attachment 1, Figure 32) that is malfunctioning. It is recommended that the mechanical operation of the tank be evaluated and repair/replacement of malfunctioning parts/systems performed, as necessary.
- Concrete Monolith: It is recommended that the Concrete Monolith Top remain designated as a controlled area due to the presence of elevated fixed surface beta/gamma contamination levels. Marking/posting of this area is not required; however, administrative procedures should be in place to ensure that no intrusive (disturbing the Concrete Monolith surface) work is performed on this level without review and approval by the RCM. Job-specific RWPs may be required for any future intrusive work on the Concrete Monolith Top.
- Main Level (non-public access area): It is recommended that the Main Level (controlled area) remain designated as a controlled area due to the presence of elevated fixed surface beta/gamma contamination and exposure rates and be marked/posted in accordance with Section 6.7 of SOP PBR-11.1.4 (modify posting to avoid alarming visitors current posting is acceptable). Administrative procedures should be in place to ensure that no intrusive (disturbing the floor surface) work is performed on this level without review and approval by the RCM. Job-specific RWPs may be required for any future intrusive work in this area.

- Main Level (public access area): Despite the fact that fixed contamination has been shielded with floor tiles, it is recommended that the Main Level (public access area) remain a controlled area. Marking/posting of this area is not required; however, administrative procedures should be in place to ensure that no intrusive (disturbing the floor surface) work is performed on this level without review and approval by the RCM. Job-specific RWPs may be required for any future intrusive work in this area.
- Proposed public access area in Basement Level: Despite the fact that fixed contamination has been shielded with the added concrete flooring in the basement, it is recommended that the proposed public access area in the Basement Level remain designated as a controlled area. Marking/posting of this area is not required; however, administrative procedures should be in place to ensure that no intrusive (disturbing the floor surface) work is performed on this level without review and approval by the RCM. Job-specific RWPs may be required for any future intrusive work in this area.
- Proposed non-public access area in the Basement Level Despite the fact that elevated removable surface contamination levels have been fixed through control measures, it is recommended that the non-public access areas in the Basement Level remain designated as a controlled area and be marked/posted in accordance with Section 6.7 of SOP PBR-11.1.4 (modify posting to avoid alarming visitors). The non-public access areas are those portions of the Liquid Waste Pump Room/F.W. Heater Room and Retention Tank Room that will be partitioned off as "no public access". Those portions of these rooms that will allow public access will be controlled as stated in the previous bullet. Administrative procedures should be in place to ensure that no intrusive (disturbing the floor surface or control measures) work is performed on this level without review and approval by the RCM. Job-specific RWPs may be required for any future intrusive work in this area.
- Per SOP PBR-11.1.4, routine surveys are required to ensure removable contamination remains below action levels. For this purpose, it is recommended that the annual comprehensive survey and quarterly surveys continue to be repeated. Quarterly surveys should focus on public access areas in close proximity to historical removable contamination areas (F.W. Heater Room/Liquid Waste Pump Room and Retention Tank Room).

Attachment 1 Photos

Figure 1. Entombment Top (North Side) – Surface Cracks (Typical)

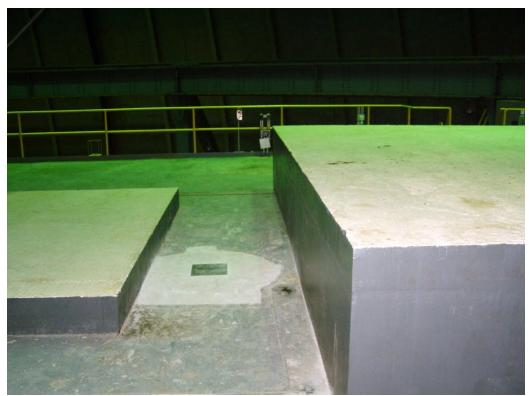


Figure 2. Entombment Top (Top Plug)

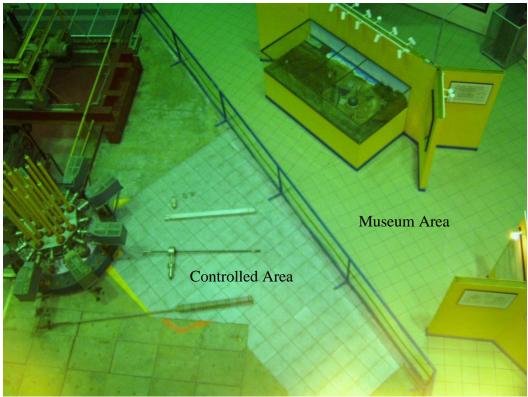


Figure 3. Main Level View from Entombment Top

Figure 4. Basement Level – Retention Tanks 1 and 2

Figure 5. Basement Level – Retention Tanks 2 and 3

Figure 6. Basement Level – Survey Location 30 on Retention Tank 1

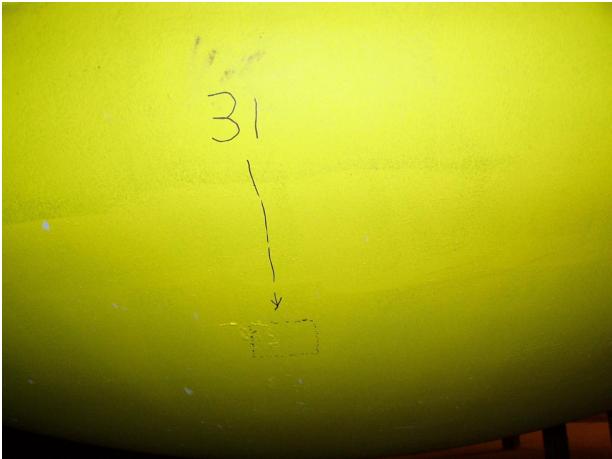


Figure 7. Basement Level – Survey Location 31 on Retention Tank 2

Figure 8a and 8b. Basement Level – Surface Cracks in Concrete Cover (Typical)

Figure 9. Basement Level – Survey Locations 40A and 40B

Figure 10. Basement Level – Tank Formerly Labeled as Radioactive Material/Waste Storage Tank

Figures 11a and 11b. Basement Level – Survey Locations 50A and 50B

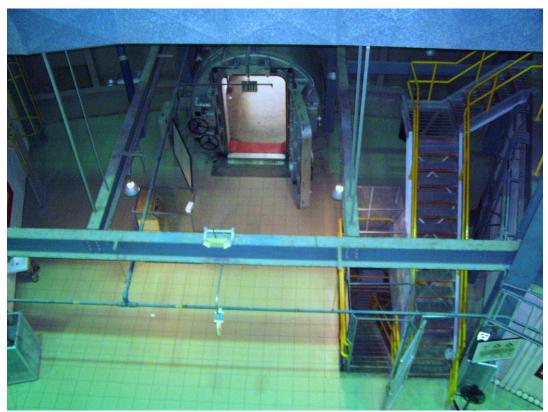


Figure 12. View from Crane Catwalk – South Side/Entrance, Main Level

Figure 13. Interior View of Dome "Shell" and Crane Catwalk

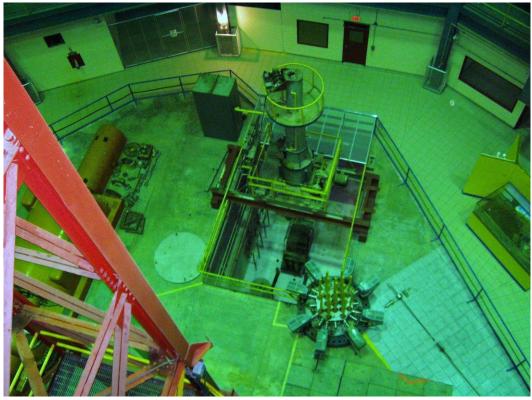


Figure 14. View from Crane Catwalk – East Side, Main Level

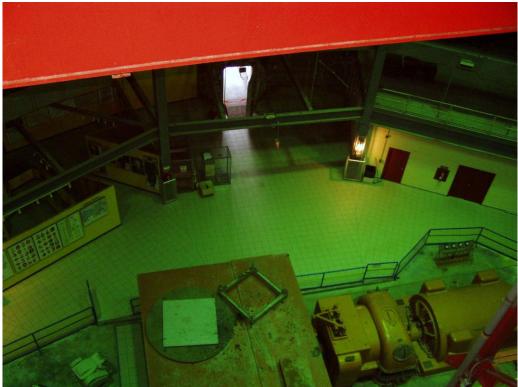


Figure 15. View from Crane Catwalk – North Side/Entrance, Main Level

Figure 16. View from Crane Catwalk – North/Northwest Side, Main Level

Figure 17. View from Catwalk – West/Northwest Side, Main Level (Survey Technician on Entombment Top Below)

Figures 18a and 18b. Main Level – Tile, Concrete, and Lead Bricks Covering "Hot Spot" on North Side (Adjacent to Sample Locations 27 and 28)

Figure 19. Site Security – Main Gate (Motor is Not Operational)

Figure 20. Site Security – Gate Security Building and Main Gate (Motor is Not Operational)

Figure 21. Dome Exterior

Figure 22. Support Facilities (Theatre Building on Left)

Figure 23. General Site – View from Back Deck of Theatre Building (Vegetation on Slope)

Figure 24. General Site – Grounds Maintained Along Southern Fence Line

Figure 25. Basement Level – Lowest Point in Basement Shows No Recent Signs of Flooding (Dry, Cracked Silt/Mud is Visible)

Figure 26a and 26b. Basement Level – Staining Due to Water Infiltration beneath Northern Entrance

Figure 27. Basement Level – Additional View of Staining Due to Water Infiltration beneath the Northern Entrance

Figure 28. Gasket Seal at Northern Entrance Exterior Deteriorated

Figure 29. North Entrance – Pass-Through Chamber (Significant Corrosion)

Figure 30a and 30b. Gasket Seal around Domed Metal Structure and Dome Base is Damaged and Diverts Rainwater into the Basement Level

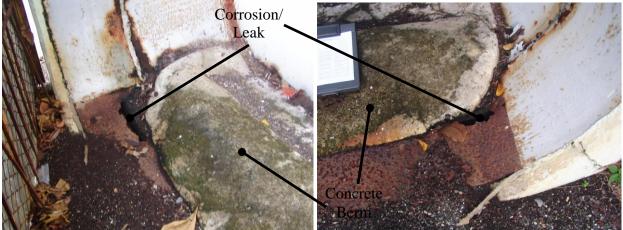


Figure 31a, 31b, and 31c. Basement Level – East Side Basement Loading Access. 31a (Top) Shows the Pave Access Pad Drains Rainwater Toward the Loading Door. 31b and 31c (Left and Right) Show a Concrete Berm Across the Loading Door to Prevent Rainwater from being Diverted into the Basement Level. However, Corrosion of the Metal Frame in Front of the Berm Allows Rainwater to Leak into the Basement.

Figure 32a and 32b. Water Storage Tank with Malfunctioning Float Switch (32b) – Resulting in Overflow and Pooling Water on Ground (32a)

Attachment 2 Annual Survey Contamination Survey Forms and Sketches

TECHNOLOGICAL MUSEUM DR. MODESTO IRIARTE BEAUCHAMP (former BONUS REACTOR FACILITY)

Rincón, Puerto Rico

CONTAMINATION SURVEY FORM

Project: <u>BONUS - M</u>	WG		Date/Time <u>9</u>	129/10	~082∂Task	Number			74
Specific Area of Survey	y: Entombed	Building-North Si	de	ME	DA=((2.71/Tbkg +	3.3sqrt(Bkg/	Tbkg+Bkg/Ts))/E x CF	
D (D V	0040.0					05			
Purpose of Survey: Ye	ear 2010 Con	prenensive Surve	ey	A=	(Sample-Bkg)/E	X CF			
Inst. type	Serial #	Cal. due date	Probe type	Serial #	Cal. due date	Efficiency	Ct. Time Tbkg/Ts (minutes)	Bkgd Reading (cpm)	MDA [*] dpm/100cm ²
Ludlum 2221	149991	3/11/11	44-9	154535	3/11/11	17%	512	40	706
		1 1			1 1	%	1		

SURVE	Y DATA	Survey Map Attached 🗆 Yes 🗅 No							
		Gross Cou	nts in CPM	Contamination in dpm/100 cm ²					
No.	Description/Location	βγ Removable	βγ Total	βγ Removable	βγ Total				
1	North Side	(38	1	LMPA				
2	North Side	See	49						
3	North Side	Gmen	45		CMDA CMDA				
4	North Side	daith	46		EMDA				
24	North Side		37	5	cm DA				
26	North Side	1	32	1	EMDA				
-									
~									
Survey 1 Reviewe	Technician: X AAM 7 MM								

*MDA is total in dpm/100 cm²

 $mDA = \frac{2.71}{5} + 3.3\sqrt{\frac{40}{5} + \frac{90}{2}} \times 6.67$ = 706 dp% ocmz : 58 cpm

SITE: Entombed Reactor Building	Timor	0820	Data: Vr / Q	Mo <u>9</u> Dy 29
	1 ime:	RWP:	_ Date: <u>IF</u> NA	M0 <u>(</u> D <u>y</u> <u></u>
Task: Comprehensive Survey		-		
Map key: $^{\circ}$ = Sample Location \square = Air Sample	er Location _	_= Core Sample	e	
Dose Rate Abbreviations: CT/WB/GA, where CT	$\Gamma = Contract, W$	/B = Whole Boo	dy, GA = General Ar	ea
Building: Entombed Reactor Building	<u></u>	Location: 1		
Sketch:	F	Entombment	System - North	View
			1 = Si	ample Locations
				Floor Elevation
				68'- 6'
	1			
1	2	3	4	
				Approximate Scale: 6' - 0"
)	
24	6	24		
				Floor Elevation:
				37 4

Page 2 of 2

TECHNOLOGICAL MUSEUM DR. MODESTO IRIARTE BEAUCHAMP (former BONUS REACTOR FACILITY) CONTAMINATION SURVEY FORM Rincón, Puerto Rico

Project: BONUS - MMG Date/Time 9/29/10 0840 Task Number

Specific Area of Survey: Entombed Building-NoruthWest Side MDA=((2.71/Tbkg + 3.3sqrt(Bkg/Tbkg+Bkg/Ts))/E x CF

Purpose of Survey: Year 2010 Comprehensive Survey

A=(Sample-Bkg)/E x CF

Inst. type	Serial #	Cal. due date	Probe type	Serial #	Cal. due date	Efficiency	Ct. Time Tbkg/Ts (minutes)	Bkgd Reading (cpm)	MDA [*] dpm/100cm ²
Ludlum 2221	149991	3/4/11	44-9	154535	3/11/11	17%	512	40	706
		1 1			1 1	%	1		

SURVEY DATA		Survey Map Attached 🖬 Yes 🗆 No						
		Gross Cou	ints in CPM	Contamination in dpm/100 cm ²				
No.	Description/Location	βγ Removable	βγ Total	βγ Removable	βγ Total			
5	Top Plug Face	(42	1	LMDA			
6	Top Plug Face	\rangle	58		706			
7	Top Plug Face	See	53		LMDA			
8	Top Plug Face	See Smear Data	58		706			
9	Top Plug Face	Data	72		1,256			
10	Top Plug Face	1	60		785			
11	Top Plug Face		68		1,099			
12	Top Plug Face		58		706			
13	Top Plug Face		59		745			
14	Top Plug Face		59		745			
15	Top Plug Face		49		ZMDA			
16	Top Plug Face		62		863			
17	Top Plug – Top Surface		50					
18	Top Plug – Top Surface		50		CMDA			
19	Top Plug – Top Surface		50		CMDA CMDA CMDA			
Pup	Duplitate Han		62	1	863			

*MDA is total in dpm/100 cm²

SITE: Entombed Reactor Building		Time:	0840	Date: Yr <u>10</u> Mo <u>9</u> Dy 29			
Fask: Co	omprehensive Su				RWP:	Nn	
Building	Entombed Rea	nctor Buildir	lg		Location: I	Entombment System – Top (Pla	n View)
Sketch:		1				1	
					4		
		1	4	i			
	F		•				
	16 →	17			← 8		
	15			18	4 9		
			19			-	
	14 ->		10		< 10 _		
/	L						
	/	13	12 T	11			
	/					Approximate	
						Scale: 8' - 0"	

Page <u>2</u> of <u>2</u>

TECHNOLOGICAL MUSEUM DR. MODESTO IRIARTE BEAUCHAMP (former BONUS REACTOR FACILITY)

Rincón, Puerto Rico

CONTAMINATION SURVEY FORM

Project: BONUS - MMG			Date/Time 9/29/10 - 1015 Task Number							
Specific Area of Surv Purpose of Survey:					DA=((2.71/Tbkg + =(Sample-Bkg)/E		Tbkg+Bkg/Ts))/E x CF		
Fulpose of Sulvey.			з у	/						
Inst. type	Serial #	Cal. due date	Probe type	Serial #	Cal. due date	Efficiency	Ct. Time Tbkg/Ts (minutes)	Bkgd Reading (cpm)	MDA [*] dpm/100cm [*]	
and the second second second		R/u/u	44-9	154535	3/4/11	17 %	512	40	706	
Ludlum 2221	149991	2/11/11	44-5	101000						

SURVEY DATA		Survey Map Attached 🗹 Yes 🗆 No						
		Gross Coun	ts in CPM	Contamination in dpm/100 cm ²				
No.	Description/Location	βγ Removable	βγ Total	βγ Removable	βγ Total			
22	South Side	see snear Data	36	>	CMDA			
<	21 21							
Survey T Reviewe	echnician: X 144 V 7 PM							

*MDA is total in dpm/100 cm²

RADIC	DLOGICAL SU	JRVEYRE	PORT	<u>)</u>	
ITE: Entombed Reactor Building	Time:	1015	Date: Yr	<u>/0 Mo 9 Dy</u>	29
Fask: Comprehensive Survey		RWP:	NA		4
Map key: $^{\circ}$ = Sample Location \Box = Air Samo Dose Rate Abbreviations: CT/WB/GA, where Building: <u>Entombed Reactor Building</u>	CT = Contract, V	VB = Whole B		eral Area	
Sketch:		1	Entombment Sys	tem - South View	
				1 = Sample Lo	cations
		Floc 68'	rr Elevation - O*		
	22		or Elevation	Approximate Scale: 6' - 0'	
	<i ≺i</i 	37	-4	I	
Instruments (Model and Serial Numbers):	NA				

Page 2 of 2

TECHNOLOGICAL MUSEUM DR. MODESTO IRIARTE BEAUCHAMP (former BONUS REACTOR FACILITY)

Rincón, Puerto Rico

CONTAMINATION SURVEY FORM

Project: <u>BONUS - N</u>	IMG	Date	/Time <u>9/29/10-</u>	- <u>/020</u> Task I	Number	444	-		
Specific Area of Surve	ey: Entombed B	uilding-SouthWest S	ide M	MDA=((2.71/Tbkg + 3.3sqrt(Bkg/Tbkg+Bkg/Ts))/E x CF					
Purpose of Survey: Y	ear 2010 Comp	rehensive Survey	A	=(Sample-Bkg)/E	x CF				

Inst. type	Serial #	Cal. due date	Probe type	Serial #	Cal. due date	Efficiency	Ct. Time Tbkg/Ts (minutes)	Bkgd Reading (cpm)	MDA [*] dpm/100cm ²
Ludlum 2221	149991	3/11/11	44-9	154535	3/11/11	(7%)	512	40	706
		1 1			1 1	%	1		

SURVEY	Y DATA	Survey Map Attached 🗹 Yes 🗆 No							
		Gross Count	ts in CPM	Contamination in dpm/100 cm ²					
No.	Description/Location	βγ Removable	βγ Total	βγ Removable	βγ Total				
23	SouthWest Side	s-ce smear Data	36	\$	LMDA				
Survey 1 Reviewe	rechnician: * ALA V7 PA7 d By:	lu							

*MDA is total in dpm/100 cm²

KA	ADIOLO	GICAL SU	RVEY REPO	JRT (MAP)		4
BITE: <u>Entombed Reactor Building</u>		_ Time:	1020	Date: Yr 10 Mo 9 Dy 29		
Task: Comprehensive Survey			RWP:	NA		
Map key: $^{\circ}$ = Sample Location \Box = A	ir Sample	Location	= Core Sample			
Dose Rate Abbreviations: CT/WB/GA,	where CT	= Contract, W	B = Whole Bod	y, GA = Genera	l Area	
Building: Entombed Reactor Building				outhWest Side		Sec. 2
Sketch:		F	ntombment	System - Sout	hwest Vie	w
				1	= Sample I	_ocations
- -			T			[]
					_	
					Floor Ek 68' - 0'	vation
						Approximate Scale: 6' - 0"
			2	3	Floor	
			~~ r		Elevation	<u> </u>
		-	22' - 0*	>		

Page 2 of 2

Г

TECHNOLOGICAL MUSEUM DR. MODESTO IRIARTE BEAUCHAMP (former BONUS REACTOR FACILITY)

Rincón, Puerto Rico

CONTAMINATION SURVEY FORM

				-	a she yati ta a			and the second	
Project: <u>BONUS - N</u>	MG	*	Date/Time <u>%/</u>	129/10-	1025 Task M	Number		2	
Specific Area of Surve	ey: Entombed	Building-NoruthV	Vest Side	MI	DA=((2.71/Tbkg +	3.3sqrt(Bkg/	Tbkg+Bkg/Ts))/E x CF	
Purpose of Survey: Y	/ear 2010 Con	prehensive Surve	ey	A=	(Sample-Bkg)/E	x CF			
Inst. type	Serial #	Cal. due date	Probe type	Serial #	Cal. due date	Efficiency	Ct. Time Tbkg/Ts (minutes)	Bkgd Reading (cpm)	MDA [*] dpm/100cm ²
Ludlum 2221	149991	3/11/11	44-9	154535	3/11/11	17%	512	40	706
		1 1			1 1	%	1		

SURVEY	/ DATA	Survey Map Attached I Yes D No							
		Gross Coun	ts in CPM	Contamination in dpm/100 cm ²					
No.	Description/Location	βγ Removable	βγ Total	βγ Removable	βγ Total				
25	NorthWest Side	See snear Data	45	5	CMDA				
Survey T Reviewe	echnician: * Ab 7 Ann d By:								

*MDA is total in dpm/100 cm²

SITE: Entombed Reactor Building	Time:	10 25	Date: Yr_	10 Mo 9 E	y 29
Task: Comprehensive Survey		RWP:	NA		
Map key: $^{\circ}$ = Sample Location \Box = Air Sat	mpler Location	_= Core Sample			
Dose Rate Abbreviations: CT/WB/GA, where	e CT = Contract, W	/B = Whole Body	, GA = Gener	al Area	
Building: Entombed Reactor Building		Location: No	orthWest Side		
Sketch:		Entombme	nt System - N	orthwest View	
				1 = Sample I	ocations
1					
			<u> </u>	, Floor Elevation	
				68' - 0*	
	TH	1			
					Approximate
					Scale: 6' - 0*
	25				
				Floor Elevation 37 - 4	Į
	4	19' - 0*			

Page 2 of 2

TECHNOLOGICAL MUSEUM DR. MODESTO IRIARTE BEAUCHAMP (former BONUS REACTOR FACILITY)

Rincón, Puerto Rico

CONTAMINATION SURVEY FORM

	4	1/29/10		
Project: BONUS - MMG	Date/Time	0945	Task Number _	
Specific Area of Survey: Entombed Building-M	ain Floor	MDA=((2	2.71/Tbkg + 3.3sqrt(E	3kg/Tbkg+Bkg/Ts))/E x CF
Purpose of Survey: Year 2010 Comprehensive	Survey	A=(Sam	ole-Bkg)/E x CF	
		1 1		

Inst. Type	Serial #	Cal. due date	Probe type	Serial #	Cal. due date	Efficiency	Ct. Time Tbkg/Ts (minutes)	Bkgd Reading (cpm)	MDA [*] dpm/100cm ²
Ludlum 2221	149991	3/11/11	44-9	154535	3/11/11	17%	SIZ	40	706
		1 1			1 1	%	1		

SURVEY	DATA	Survey N	lap Attached 🗹 Yes 🗆 I	No	
		Gross Co	unts in CPM	Contamination	n in dpm/100 cm ²
No.	Description/Location	βγ Removable	βγ Total	βγ Removable	βγ Total
20	Main Floor	5	55	1	ZMPA
21	Main Floor	Sel	57		CMDA
27	Main Floor	Smear	518		смр4 18,754 76,470
28	Main Floor	Data	1,989		76,470
27A	Main Floor		60		785
27B	Main Floor			5	1,099
28 Dup	Main Floor		68 2,055		79,059
-			-		1
	11 12 Ph				
Survey Te Reviewed	By Constant				

'MDA is total in dpm/100 cm²

Project: BONUS - MMG Date/Time 9/30/10 - 0 9/15 Task Number

Specific Area of Survey: Entombed Building-Main Floor MDA=((2.71/Tbkg + 3.3sqrt(Bkg/Tbkg+Bkg/Ts))/E x CF

Purpose of Survey: Year 2010 Comprehensive Survey A=(Sample-Bkg)/E x CF

Inst. Type	Serial #	Cal. due date	Probe type	Serial #	Cal. due date	Efficiency	Ct. Time Tbkg/Ts (minutes)	Bkgd Reading (cpm)	MDA
Ludlum 2221	149991	3/11/11	44-9	154535	3/11/11	17%	1011	45	~140-160
		1 1			1 1	%	1		

SURVE	(DATA	Survey Map Attached 🗹 Yes 🗆 No							
		Gross Count	s in CPM	Contamination in dpm/100 cm ²					
No.	Description/Location	βγ Removable	βγ Total	βγ Removable	βγ Total				
65	Main Floor-Maslim (Zone 1)	46	1	-MDA	1				
66	Main Floor-Maslim (Zone 2)	42		EMDA	(
67	Main Floor-Maslim (Zone 3)	48		CMDA	1				
68	Main Floor-Maslim (Zone 4)	51		EMDA					
69	Main Floor-Maslim (Zone 5)	41		LMDA)				
72	Main Floor-Maslim (Zone 6)	54		LMDA	1				
73	Main Floor-Maslim (Zone 7)	54		LMDA					
74	Main Floor-Maslim (Zone 8)	47)	LMDA	1				
75	Main Floor-Maslim Zone 9)	59		LMDA	1				
76	Main Floor-Maslim (Zone 10)	38		LMDA)				
77	Main Floor-Maslim (Zone 11)	59		LMDA	(
78	Main Floor-Maslim (Zone 12)	51	/	LMDA	/				
79	Main Floor-Maslim (Zone 14)	40	5	CMDA)				
80	Main Floor-Maslim (Zone 13)	45	1	EmDA	1				

*MDA < 200 dpm/100cm² (cannot be quantified due to large are survey).

TECHNOLOGICAL MUSEUM DR. MODESTO IRIARTE BEAUCHAMP (former BONUS REACTOR FACILITY) Rincón, Puerto Rico **RADIOLOGICAL SURVEY REPORT (MAP)** 9/29/10-0945 29 10 SITE: Time: 9/30/10-0915 Date: Yr 10 Mo 9 Dy 30 Entombed Reactor Building VA Task: Comprehensive Survey RWP: Map key: $^{\circ}$ = Sample Location \square = Air Sampler Location = Core Sample Dose Rate Abbreviations: CT/WB/GA, where CT = Contract, WB = Whole Body, GA = General Area Building: Entombed Reactor Building Location: Main Floor Sketch: No. µR/hr 10 Zone 1= 65 Zone 2= 66 100 Zone 3= 67 Zone 4= 68 Zone 5= 69 Zone 6= 72 14 12 10 Zone 7= 73 9 Zone 8= 74 Zone 9= 75 13 21 28 (sime 8 Zone 10= 76 20 Zone 11=77 22 Zone 12=78 Zone 13= 80 27 17.16-0 Zone 14=79 11 ų, Zone = Zone = Enformer All Lace 27Å 27B 20 21 2 R through summer 27 annual and 28 27A 27B 3 4 5 0 Ø 3 OD No. 0 NA Instruments (Model and Serial Numbers): _____ Survey Technician(s): ____ Webb

Page 3 of 3

Rev 2 (2/07)

Project:	BONUS - MMG	Date/Time	9/28/10 - 1315 Task Number	((b)
Specific /	Area of Survey: Entombed Bui	Iding-Basement Floor	MDA=((2.71/Tbkg + 3.3sqrt(Bkg/Tbkg+Bkg/Ts))/E x CF	J
Purpose	of Survey: Year 2010 Compre	hensive Survey	A=(Sample-Bkg)/E x CF	

Inst. Type	Serial #	Cal. due date	Probe type	Serial #	Cal. due date	Efficiency	Ct. Time Tbkg/Ts (minutes)	Bkgd Reading (cpm)	MDA [*] dpm/100cm ²
Ludlum 2221	149991	3/11/11	44-9	154535	3/11/11	17%	512	36	671
		1 1			1 1	%	1		

SURVEY	DATA	Survey M	ap Attached 🗹 Yes 🛛	No	
		Gross Co	unts in CPM	Contaminatio	n in dpm/100 cm ²
No.	Description/Location	βγ Removable	βγ Total	βγ Removable	βγ Total
30	Basement Floor-Side of Tank #1	(7.7	1	1,607
31	Basement Floor-Side of Tank #2	>	83		1,844
40A	Basement Floor-Wall (4" from floor)	Su	178		5,571
40B	Basement Floor-Wall (4" from floor)	Sul	65		1,138
42	Basement Floor	data	42		< MDA
43	Basement Floor	1	44		< MDA
50A	Basement Floor-Wall (block)		47		< MDA
50B	Basement Floor-Wall (concrete)	5	40		CMDA
40ADup	Basement Floor-Wall (4" from floor)	(185		5,846
		_			
/	1				
	Allarto				
Survey Te Reviewed					

'MDA is total in dpm/100 cm²

 $MDA = \frac{2.71}{5} + 3.3\sqrt{\frac{36}{5} + \frac{36}{2}} \times 6.67 = 671$

Page 1 of 4

Rev 2 (2/07)

Project: BONUS - MMG Date/Time 9/30/10 - 1035 Task Number

 Specific Area of Survey:
 Entombed Building-Basement Floor
 MDA=((2.71/Tbkg + 3.3sqrt(Bkg/Tbkg+Bkg/Ts))/E x CF

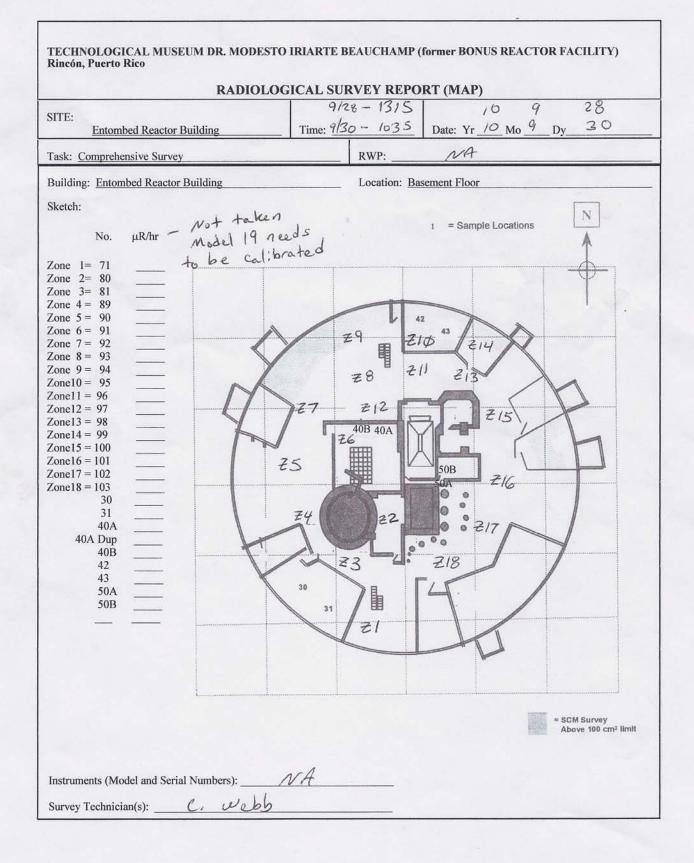
 Purpose of Survey:
 Year 2010 Comprehensive Survey
 A=(Sample-Bkg)/E x CF

Inst. Type	Serial #	Cal. due date	Probe type	Serial #	Cal. due date	Efficiency	Ct. Time Tbkg/Ts (minutes)	Bkgd Reading (cpm)	MDA
Ludlum 2221	149991	3/11/11	44-9	154535	3/11/11	17%	1011	45	~140-160
		1 1			1 1	%	1		

SURVE	Y DATA	Survey Map	Attached DY Yes	□ No			
		Gross Count	s in CPM	Contan	nination i	n dpm/100 cm	2
No.	Description/Location	βγ Removable	βγ Total	βγ Removable	βγ Total	α Removable	α Tota
70	Maslim - Zone 1	37		LMDA		1	1
71	Maslim - Zone 2	41		LANDA			
81	Maslim - Zone 3	38		EMDA			\Box
89	Maslim - Zone 4	36		LMDA			1
90	Maslim – Zone 5	49		LMDA			1
91	Maslim – Zone 6	47		LMDA			1
92	Maslim – Zone 7	48	*	LMDA			1
93	Maslim – Zone 8	48		LMDA			1
94	Maslim – Zone 9	43		LM QA.			\square
95	Maslim – Zone 10	44.		Enor			(
96	Maslim – Zone 11	50		EMDA			
97	Maslim – Zone 12	55		emor			(
98	Maslim – Zone 13	40		CMPA		/	1

MDA < 200 dpm/100 cm² (cannot be quantified due to large area survey).

Project: BONUS - MMG _____ Date/Time 9/30/10 - 1130 Task Number _____


Specific Area of Survey: Entombed Building-Basement Floor MDA=((2.71/Tbkg + 3.3sqrt(Bkg/Tbkg+Bkg/Ts))/E x CF

Purpose of Survey: Year 2010 Comprehensive Survey A=(Sample-Bkg)/E x CF

Inst. Type	Serial #	Cal. due date	Probe type	Serial #	Cal. due date	Efficiency	Ct. Time Tbkg/Ts (minutes)	Bkgd Reading (cpm)	MDA
Ludlum 2221	149991	3/11/11	44-9	154535	3/11/11	17%	1011	45	~140-160
		1 1			1 1	%	1		

SURVEY	DATA	Survey Map	Attached Yes [] No	
		Gross Coun	ts in CPM	Contamination i	n dpm/100 cm ²
No.	Description/Location	βγ Removable	βγ Total	βγ Removable	βγ Total
99	Maslim – Zone 14	36		CMDA	
100	Maslim – Zone 15	40		LMDA	
101	Maslim – Zone 16	41		cm DA	
102	Maslim – Zone 17	46		cm DA 2mDA	
103	Maslim – Zone 18	46		CMDA CMDA CMDA	
101 Dup	Maslim-Zone/b Duplicate	48		CMDA	
99 Dup	Maslim-Zone 16 Duplicate Maslim-Zone 14 Duplicate	42		LMDA	
	NI M				
Survey Te Reviewed	By:				

*MDA < 200 dpm/100 cm² (cannot be quantified due to large area survey).

Page 4 of 4

2

Project: BONUS - MMG Date/Time 9/28//0-1415 Task Number

Specific Area of Survey: Smears

____ MDA=((2.71/Tbkg + 3.3sqrt(Bkg/Tbkg+Bkg/Ts))/E

Purpose of Survey: Year 2010 Comprehensive Survey

A=(Sample-Bkg)/E

Inst. type	Serial #	Cal. due date	Probe type	Serial #	Cal. due date	Efficiency	Ct. Time Tbkg/Ts (minutes)	Bkgd Reading	MDA
Ludlum 2221	149991	3/11/11	44-9	154535	3/11/11	17 %	105/1	56	154
		1 1			1 1	%	1		

SURVEY D	АТА	Survey Map Attached D Yes D No							
		Gross Count	s in CPM	Contamination in	dpm/100 cm ²				
No.	Description/Location	βγ Removable	βγ Total	βγ Removable	βγ Total				
30	Smear	40	/	CMDA	(
31	1	41		CMDA					
YOA	7	44		CMDA					
10A Dup	Duplicate	55 46		CMDA CMDA CMDA					
40B	Duplicate Sneor			LMDA					
42	(45		LMDA					
43	\rangle	48		LMDA	(
50A	>	45	/	LMDA)				
SOB)	41	5	LMDA	1				
-									
	19 								
4									

[•]MDA is removable in dpm/100 cm²

MDA = 82cpm

1

Project: BONUS - MMG	Date/Time	9/29/10-1100 Task Number	
Specific Area of Survey: Smears		MDA=((2.71/Tbkg + 3.3sqrt	Bkg/Tbkg+Bkg/Ts))/E

Purpose of Survey: Year 2010 Comprehensive Survey

Inst. type	Serial #	Cal. due date	Probe type	Serial #	Cal. due date	Efficiency	Ct. Time Tbkg/Ts (minutes)	Bkgd Reading	MDA
Ludlum 2221	149991	3/11/11	44-9	154535	3/11/11	17%	1011	56	154
		1 1			1 1	%	1	1.5	

A=(Sample-Bkg)/E

SURVEY DATA	Survey Map A	ttached 🗆 Yes	10 No	
	Gross Counts	in CPM	Contamination in	dpm/100 cm ²
No. Description/Location	βγ Removable	βγ Total	βγ Removable	βγ Total
27A Smear	43	1	= MDA	1
27B 1	51		-MDA	(
26	62		EmDA	
20	58 57		CMDA CMDA	
21	57		LMDA	
23	49		LMDA	
8)	53		CMD4	
10 /	33			/
14	43		LMDA LMDA	
22	51		CMDA	
2	61		LMDA	
1	46		LMDA	
4	38		LMDA	
3	48		LMDA	/
5	49	(CMDA	
6	55		2MDA	
Survey Technician: At V7 PM Reviewed By:	31 th w		emor	1

*MDA is removable in dpm/100 cm²

Project: BONUS - MMG Date/Time 9/29/10 - 1315 Task Number _____

Specific Area of Survey: Smears

MDA=((2.71/Tbkg + 3.3sqrt(Bkg/Tbkg+Bkg/Ts))/E

Purpose of Survey: Year 2010 Comprehensive Survey A=(Sample-Bkg)/E

Inst. type	Serial #	Cal. due date	Probe type	Serial #	Cal. due date	Efficiency	Ct. Time Tbkg/Ts (minutes)	Bkgd Reading	MDA
Ludlum 2221	149991	3/11/11	44-9	154535	3/11/11	17%	1011	56	154
		1 1			1 1	%	1		

SURVEY DATA	Survey Map	Attached Yes	No	100 L
	Gross Count	ts in CPM	Contamination in	dpm/100 cm ²
No. Description/Location	βγ Removable	βγ Total	βγ Removable	βγ Total
7 Smear	34	1	LMDA	1
11 1	48		LMDA	
9	49		LMDA	
12	51		CMDA ZMDA	/
13	42	1	2 MDA	
15	40		EMDA	
16	36		CMDA CMDA CMDA	/
17	53		CMDA	
18 /	56		CMDA	
19	61		CMDA	
24	50		EMDA	
25	36		LMDA	
27 /	45		EMDA	
28 /	44)	EMDA	(
28Rue Duplicate	57	1	LMDA)
			-	

^{*}MDA is removable in dpm/100 cm²

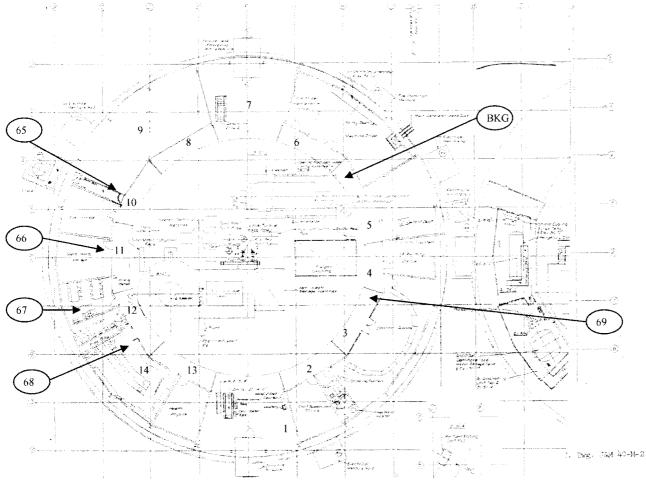
Micro-R Meter Dose Rate Measurements Taken By PREPA 20 – 21 December 2010

Collected By: Jimmy Reyes, Anthony Vega, and Alan Lucca

Reviewed By: Chad Webb, MMG

	CONTAMINATION SURVEY FORM								
Project: Museum Survey Date/Time Date/C-2010 Task Number Specific Area of Survey: Main Floor MDA=((2.71/Tbkg + 3.3sqrt(Bkg/Tbkg+Bkg/Ts))/E x CF Purpose of Survey: Year 2010 Quarterly Survey A=(Sample-Bkg)/E x CF									
Inst. type	Serial #	Cal. due date	Probe type	Serial #	Cal. due date	Efficiency	Ct. Time Tbkg/Ts (minutes)	Bkgd Reading	MDA
Ludlum 2221 149991 44-9 154535 % 10/2							,		
Ludlum 19	148190				1 1	%	1		

1 × · ·


SURVEY	DATA		S	urvey Ma	pAttached 🗆	Yes DI	lo		•	•
			Gross Counts in CPM				Contamination in dpm/100 cm ²			
No.	Description/Location	µR/hr	βγ Removable (smears)	βγ Total (counts)	α Removable	α Total	βγ Removable (smears)	βγ Total (counts)	α Removabl e	α Total
BKG	Main Floor-Hallway in front Machine Shop near 480 VAC Spandle Metal	7			NA	NA			100	MA
65	Main Floor- Corner hallway Exhibition and Fuel Storage Room	5								
66	Main Floor- Entrance inside Spare Parts Storage Room	Ģ								
67	Main Floor-At Cafeteria near sink	5				1. 1 A			1 y	
68	Main Floor-Inside Lab Room near exit close to Cafeteria	5				1000 Contractor				
69	Main Floor-Hallway in front Control Room near 480 VAC Spandle Metal	5								
28		15								
27		B								
27 A		5								
278		4								
27C		14								
	echnician: I By: <u>Ing. Agustin Garcia</u>		•							

Г

27.E -5 20 17 J BASEMENT

```
21-DIC.2010 = 8:20 AM.
1= 5, 4, 5, 5, 4,6 =
2° S
3=4
4 = 5
5 = 5
6=5
7:6
8=4,5,5,6,5,5=
 9=5
 10=6
 11:6
 12:4
 13:5
14:4,5,4,6,5,5=
  15:5
  16=4
  17 = 4 + 5, 4, 4, 5, 5 =
  18=4
   19:5
   20:6,6,5,6,5,5=
   21=3,3,3,4,3,3=
   22:4,
   23: 4
```

1

Zone	µR/hr
1	5
1 2 3 4 5 6 7 8 9	りょうり
3	4
4	5
5	5
6	5
7	5
8	5
9	Ś
10	5
11	Ý
12	6
13	424
14	6

4

Survey Technician Review by

•

TECHNOLOGICAL MUSEUM DR. MODESTO IRIARTE BEAUCHAMP (former BONUS REACTOR FACILITY)

17

CONTAMINATION SURVEY FORM

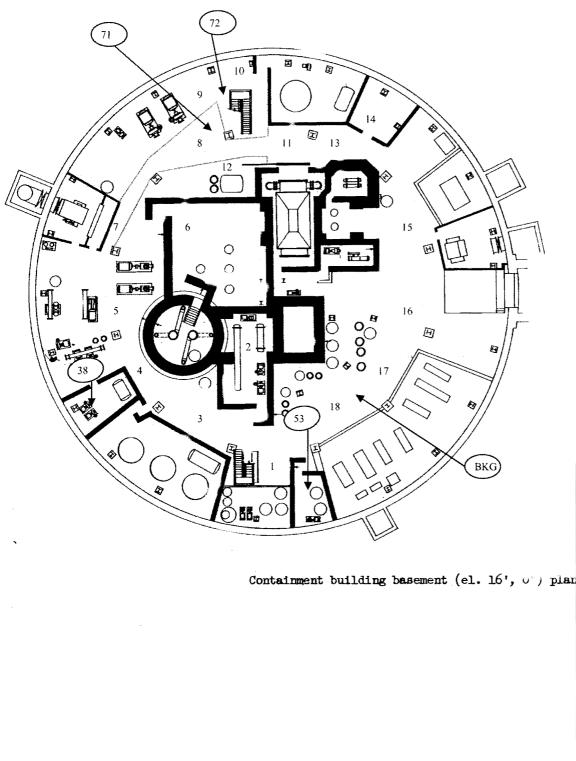
Rincón, Puerto Rico

Specific Area of Survey: Basement

Project: <u>Museum Survey</u> Date/Time 20-36-2010 Task Number _____

MDA=((2.71/Tbkg + 3.3sqrt(Bkg/Tbkg+Bkg/Ts))/E x CF

Purpose of Survey: Year 2010 Quarterly Survey


A=(Sample-Bkg)/E x CF

Inst. type	Serial #	Cal. due date	Probe type	Seriał #	Cal. due date	Efficiency	Ct. Time Tbkg/Ts (minutes)	Bkgd Reading	MDA
Ludlum 2221	149991		44-9	154535		%	5/1		\$
Ludlum 19	148190				1 1	%	1		

SURVEY	DATA		S	urvey Ma	p Attached 🛛	Yes D M	10		•	·
		Gross Counts in CPM				Contamination in dpm/100 cm ²				
No.	Description/Location	µR/hr	βγ Removable (smears)	βγ Total (counts)	α Removable	α Total	βγ Removable (smears)	βγ Total (counts)	α Removabl e	α Total
BKG	Basement Floor- Hallway in front Switchgear	S			MA				NA	NA.
38	Basement Floor-Inside Liquid Waste Pump Room	7								
53	Basement Floor-Inside Resin regeneration Room	8				anita sing . Transfer and				
71	Basement Floor-Hallway near stairs Sphere Room	5								
72	Basement Floor-Hallway near stairs Sphere Room	3								
400	·	15								
50 A		4								
508		5								
40 B		15								
42		4								
43		4								
7 0		20								
Survey Te Reviewed	L echnician: By: Ing. Agustin Garcia	L	l	L	_	I		L	I	1

31 -

41

m

<text>

1

÷

	Zone	$\mu R/hr$
	1	ร
	2	7
	Zone 1 2 3 4 5 ·6 7 8 9	7
	4	7
	5	3
11	` 6	5
	7	୬ ଏ ଦ ସ ସ ଦ ଓ ସ
	8	5
	9	5
	10	5
	11	Ģ
	12	7
	13	6
	14 15	4
	15	4
	16	5
	17	7 9 4 7 5 9 9
	18	6

Survey Technician Review by :

Attachment 3 Physical Condition - Inspection Checklist Inspection Checklist BONUS Decommissioned Facility, Rincón, Puerto Rico

Date of This Inspection/Revision:

Last Inspection:

Inspectors:

Next Inspection (Planned):

9/30/2010

8 December 2009 C. Webb and A. Reyes

Summer 2011

No.	Item	Issue	Action	
1	Specific site surveillance features	See attached table.	Inspect.	
2	Dome—entombed concrete monolith and monolith penetrations	Structural defects or degradation can result in loss of containment of radioactive materials.	Inspect for possible indications of structural problems, such as cracking, staining, and spalling. Some cracks Ph surface	
3	Dome— external piping systems	Systems were flushed during decommissioning. Incidental contamination remains, which may be released if systems corrode or otherwise fail.	Inspect for possible indications of deterioration, such as peeling and blistering paint, staining, and flaking. some flaking of faint	
4	Dome—Basement Level	Some areas contain radiological contamination in excess of DOE standards; the general public is not allowed access to contaminated areas.	Note condition of access control barricades. Basement steps locked. Ropes + Si 275 used.	
5	Dome—Basement Level flooding	Water accumulating in Basement Level may mobilize and redistribute surface contamination.	Inspect for gasket and storm water drains. Current water stains in Vapor Sphere Roem. Gaskat around done	
6	Dome—Main Level	Some areas contain radiological contamination in excess of DOE standards; the general public is not allowed access to contaminated areas.	Note condition of access control is deficion barricades, ceramic floor tile, and lead blocks; note general housekeeping. Good.	ale
7	Dome—Mezzanine Level	Some areas contain radiological contamination in excess of DOE standards; the general public is not allowed access to contaminated areas.	Note condition of access control to mezzazine; note general housekeeping. styps accuss-locked. Good.	
8	Dome— exterior	Building should appear well maintained	Visually inspect. I some flaking paint - minor. Also some corosion Good. on back entronce.	,
9	Surrounding land	New or changing features or activities adjacent to the site may affect site security.	Note changes within 0.25 mile (400 m) of site. None, Lighthouse Park open.	
10	General site upkeep	Building should appear well maintained.	Observe and evaluate changes in site conditions.	
11	Site security	Security guard should be stationed at site at all times.	Ensure security guard is present.	

00

12	Erosion	Ensure that hill slopes and beach adjacent to site are not actively eroding in a way that could adversely affect the Facility.	Evaluate erosional features on adjacent slopes and beach. V Gend Condition.
----	---------	--	---

Checklist Of Site Specific Surveillance Features BONUS Decommissioned Facility, Rincón, Puerto Rico

Feature	Comment				
Access road and parking area	Asphalt				
Entrance gate	Motor-operated Not operable, Manually open/close.				
Access through security gate	Note security of site; sign-in required on log sheet				
Security fence	Chain-link, topped with three strands of barbed wire 🗸				
Dome-monolith plaques	Visually inspect				

Attachment 4 Calibration Sheets

	Designer and M				UDLUA	A MEASUREME	NTS INC	
	Scientific and Instrume	Industrial	CERTIFICATE OF CALIBRATION			UDLUM MEASUREMENTS, INC. DST OFFICE BOX 810 PH. 325-235-5494 501 OAK STREET FAX NO. 325-235-4672 SWEETWATER, TEXAS 79556, U.S.A.		
CUSTO	MER PUERTO RI	CO ELECTRIC PWR A	JTHORITY		O		0.5.A. 0162613/355573	
			Model	19	Serial N			
			Model					
			Due Date					
			or detector IAW mfg. sp					
			Within Toler. +-10%				<u>708.8</u> mm Hg	
	chanical ck.	Meter Zer			-			
	Resp. ck	Reset ck.			ubtract ation	Geotropism	inearity	
AU		Alarm Set	ting ck.	Batt. ck. (Min.	Volt)VDC			
		ce with LMI SOP 14.8		ealibrated in a	ccordance with LMI S	OP 14.9 rev 02/07/	97.	
Instrumer	nt Volt Set 525	V Input Sens	33 mV Det. Op	er	V at mV	Dial Ratio	=mv	
	HV Readout (2 poin	its) Ref./Inst	500 /	V	Ref./Inst10	00/	V	
CS-137	≈ l µCi check	source SN Z	<u>008</u> reads ≈	270 yR	//- when placed	l flat against	dimple on	
front	of can with de	scription facin	g out.	on 5001	Range)			
					J - J			
- H i								
Gamma Calibr	ation: GM detectors positioned	اشبارها الدواد بيتلد الدواد وتحتي بالمواد بالمواد أراد الشر	t for M 44-9 in which the front of prob				<u> </u>	
			EFERENCE		AENT REC'D	INSTRUMENT	10*	
	RANGE/MULTI		AL. POINT	AS FOU	"AS FOUND READING" METER READING*			
	<u> </u>		uR/hr uR/hr	<i>N</i>				
010						400		
	500	100	JR/hr			100		
	250 $200 uR/hr = 3600 Cm$					200		
	<u> 250 </u>	110	com					
	50	1780				10		
	25				<u></u>	20		
	·25	900	cpm	-		5	······	
-	*Uncertainty within ± 10	0% C.F. within ± 20%			50, 25	Range(s) Calibrate	d Electronically	
	REFERENCE	INSTRUMENT	INSTRUMENT	REFER			ISTRUMENT	
	CAL. POINT	RECEIVED	METER READING*	CAL. F	POINT RECE	IVED M	ETER READING*	
Digital Readout				Log Scale				
					1999 - 19			
Ludium Measu	irements, Inc. certifies that	the above instrument has b	een colibroted by standards tra	ceable to the Nation	ol Institute of Standards and 1	echnology, or to the cal	bration facilities of	
other Internatio	onal Standards Organizatio	on members, or have been	derived from accepted values of 540-1-1994 and ANSI N323-1978	of natural physical co	nstants or have been derived	by the ratio type of colit of Texas Calibration Li	pration techniques.	
Referenc	e Instruments and	/or Sources: 7	3410 1131	781 059	280 60646	70897		
				E552 E551	720 734 161	6 Neutron A	m-241 Be S/N T-304	
	na S/N	C	Beta S/N		C Other			
1	00 S/N125] Oscilloscope S/N					
Calibrate	d By:	[/	(leghra	col_	Date	+10		
Reviewed	d By:	and Hain	2		Date 10 D(tio		
	te shall not be reproduced 03/11/2010 Page		vritten approval of Ludium Meo	surements, Inc.	AC Inst. Passed Only Failed:	Dielectric (Hi-Pot) and	Continuity Test	

	Designer and Manu	facturer			LUDLUM MEASU	REMENTS, INC.	
	Scientific and Industrial Instruments CERTIFICATE OF CA			CALIBRATION	POST OFFICE BOX 810 PH. 325-235-5494 501 OAK STREET FAX NO. 325-235-467 SWEETWATER, TEXAS 79556, U.S.A.		
CUSTO	MER PUERTO RIC	O ELECTRIC POWER	AUTHORITY		ORDER NO.	20149583/347599	
Mfor	Ludium Measur	Ludium Measurements, Inc. Model		2221	Serial No	199]	
Mfg.	Ludlum Measur	n Measurements, Inc. Model		44-9	Serial No. PR	154535	
Cal. Dat			Date	11-Mar-11 Cal.	Interval 1 Year Mete	rface 202-159	
Check ma	rk Japplies to applic	able instr. and/or detect		T. 71 °F		Alt 690.8 mm Hg	
			/		Requiring Repair O		
Mec F/S	chanical ck. Resp. ck io ck.	Meter Zeroed Reset ck. Alarm Setting th LMI SOP 14.8 rev 12	i 🗌 🖓	Background Subtract Window Operation Batt. ck. (Min. Volt)		ns. Linearity ism	
		V Input Sens.			Threshold 50 mV Dial Ratio	100 = 10 ^{mV}	
	HV Readout (2 points)					2003_v	
Co60:sr Ni63:sr Cs-137 Cs-137 All Eff	0:sn 4016 act-5: n 0886 act=10,3: n 4017 act=283,3 (gamma):sn 0754 (beťa): 158-112 ficiencies are 5	13dpm, background 324dpm, background act=180, 254dpm, act=6, 451dpm, ba In 4pi. and 1/4 itioned perpendicular to so REF	l=40cpm, source c d=40cpm, source background=40cpm, inch from surfa urce except for M 44-9 in w ERENCE POINT pm	source count= 14 ce using inhouse hich the front of probe faces s INSTRUMENT "AS FOUND RI - 4(つつ) (のつ)	$= 13\%$ = 0.14% 409cpm, Eff= 0.22% 25cpm Eff= 22% 180-2 $Fi \land n \lor a$ ource. REC'D INSTRUM EADING" METER R $= \frac{40}{6}$	EADING* DJ DD	
	X 100	40 Kcpm 10 Kcpm 4 Kcpm 1 Kcpm		400		a	
	X 100					20	
	X 10 X 10			403		(<u>w</u>	
	X 1	400 c		- 400	{	(j)	
	X 1	100 cpm		100		20	
	*Uncertainty within ± 10%			DEFEDENCE		brated Electronically	
	CAL. POINT	INSTRUMENT RECEIVED	INSTRUMENT METER READING*	REFERENCE CAL. POINT	INSTRUMENT RECEIVED	INSTRUMENT METER READING*	
	400 K cpm 40 K cpm 4 K cpm 400 cpm 40 cpm	400100 4001 400 400 400 400	42010 (3 4001 400 40 40	Log Scale <u>500 K cpn</u> <u>50 K cpn</u> <u>5 K cpn</u> <u>500 cpn</u> <u>500 cpn</u>	1 Sorgan	500 k 50 x 5 500 con 54 x	
other Internation	nal Standards Organization me	bove instrument has been calib mbers, or have been derived fr ments of ANSI/NCSL Z540-1-1	om accepted values of natural	o the National Institute of Standard physical constants or have been d	is and Technology, or to the calibration lerived by the ratio type of calibration tec State of Texas Calibratic	chniques.	
Reference Cs-137 Gam	e Instruments and/ ma S/N 1162 🗹 G		4/1122	781 □ 059 □ 280]E552 ☑ E551 □ 720	☐ 60646 ☐ 734	tron Am-241 Be S/N T-304	
Alpha	a S/N	🗆	Beta S/N		Other		
Km 50	00 S/N	06	Oscilloscope S/N		Multimeter S/N	93870637	
Calibrated	ву:)	light Adle	son	Date	11-MAA-10		
Reviewed	By: Rhank	H	anno -	Date	11 mario		
This certificate FORM C22A		pt in full, without the written ap	proval of Ludium Measurement	s, Inc. AC In Onl		and Continuity Test	