

Formerly Utilized Sites Remedial Action Program

PUBLIC MEETING

LINDE GROUNDWATER

PROPOSED PLAN

LTC. Timothy B. Touchette Buffalo District Commander

200.1e Linde_08.10_0013_a

LINDE FUSRAP SITE, TONAWANDA, NY

MEETING PURPOSE

- Describe the Proposed Plan for the Linde Groundwater Operable Unit
- Seek public input by June 30th for consideration in the Decision-Making Process

- Introduction and Ground Rules
- Proposed Plan Presentation
- Seek formal comments in writing
- Accept Statements and Comments
- Q & A's

GROUND RULES

- Individuals who wish to speak should indicate that on the sign-in card
- One person speaks at a time
- Speakers limited to five minutes to allow everyone an opportunity to speak
- Please use microphone when speaking

Linde Groundwater

Project Presentation Linde Groundwater Proposed Plan

Raymond L. Pilon Project Manager

Former Linde Site Currently PRAXAIR Technology Center

OUTLINE OF PRESENTATION

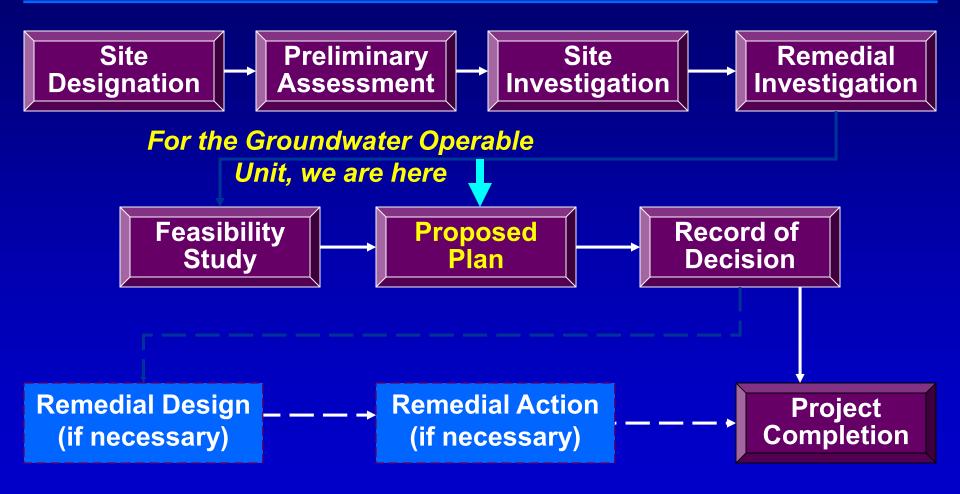
- Explain the study process
- Discuss History
- Explain our groundwater investigations
- Present the Preferred Alternative
- Accept Statements and Comments
- Q & A's

WHAT IS FUSRAP

Formerly Utilized Sites Remedial Action Program (FUSRAP)

• Established in 1974

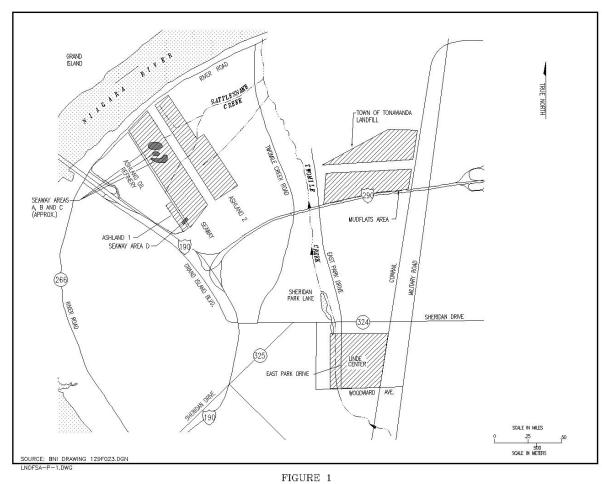
 Purpose is to investigate and, if necessary clean up residual contamination from our Nation's early atomic energy programs


FUSRAP MISSION STATEMENT

- Protect human health and the environment
- Execute the program in the most safe, effective, and efficient manner
- Follow CERCLA process

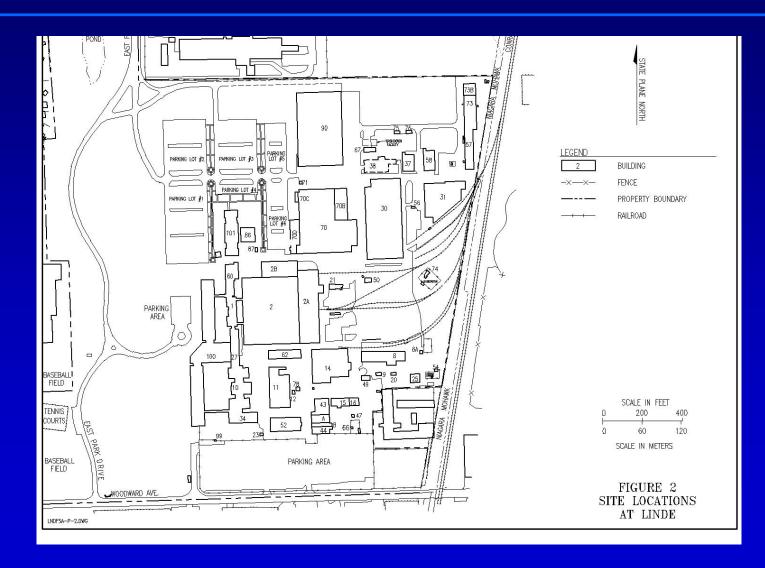
• CERCLA - Comprehensive Environmental Response, Compensation and Liability Act

Compensation and Liability Act (CERCLA) Process



MAIN POINTS

- U.S. Army Corps of Engineers continues to remediate soil and building contamination at the Linde Site
- Groundwater Investigations are complete
 - GW is the last Operable Unit being addressed
- GW Proposed Plan presentation
- Written comments required by June 30, 2006


The Former Linde Site LOCALITY MAP

LOCATIONS OF ASHLAND 1, ASHLAND 2, SEAWAY, LINDE AND THE TOWN OF TONAWANDA LANDFILL SITES

The Former Linde Site

- The former Linde site is 105 acres in size
- Site was used by the Government in the 1940s to process uranium ores for the Manhattan Engineering District
- Legacy results are residual low levels of radiological contamination at various locations
- Linde Site designated into FUSRAP in 1980

In 1993, the Department of Energy (DOE) issued a:

Remedial Investigation / Feasibility Study *
Proposed Plan for the Tonawanda Sites

* Concluded natural high levels of total dissolved solids, and salinity precluded use of groundwater for drinking purposes without extensive costly treatment, and that a completed exposure pathway does not exist because groundwater is not potable

- In 1994, decision-making for the Tonawanda Sites was suspended based on community concerns related to the Proposed Plan
- The DOE began to re-evaluate remedial alternatives

In 1997, responsibility for FUSRAP changed from the DOE to the U.S. Army Corps of Engineers (USACE)

1998

Building 30 Removal Action initiated

1999

Building 30 debris removal completed

Building 30 Removal Action

Removed 4,200 tons of contaminated material out of New York State to permitted /licensed facilities Safely worked over 25,000 man hours

29. GONDOLAS LOADED AND READY FOR SHIPMENT

1999

Linde Site Feasibility Study Addendum
Linde Site Proposed Plan

2000

Record of Decision (for soils)
excluded Building 14 and Groundwater Operable Units

Soils remediation initiated

Soil Remediation

Removed over 250,000 tons of contaminated material out of New York State to permitted / licensed facilities to date

Safely worked over 750,000 man hours to date

2000

Groundwater Operable Unit re-evaluation
Building 14 Operable Unit re-evaluation

2001 - Building 14 Feasibility Study
2002 - Building 14 Proposed Plan
2003 - Building 14 Record of Decision
2004 - Building 14 Dismantling completed

Building 14 Removal Action

Removed over 14,000 tons of contaminated material out of New York State to permitted / licensed facilities

Safely worked over 73,000 man hours

2001 - 2002 Groundwater Investigations

Roto-sonic Drilling Equipment

Well Installation Activities

2004 - Groundwater Feasibility Study (FS)

2005 - Groundwater FS Addendum

 assessment of potential exposure pathways to address comments on original FS

2006

Groundwater Proposed Plan issued

1940's Ore Processing Activities

Linde Site Groundwater Ore Processing Activities

During the 1940's Uranium ore processing generated two types of wastes

- Liquid Wastes
- Solid (sludge-like) material

Process wastes contained Radium-226, Thorium-230, and total Uranium

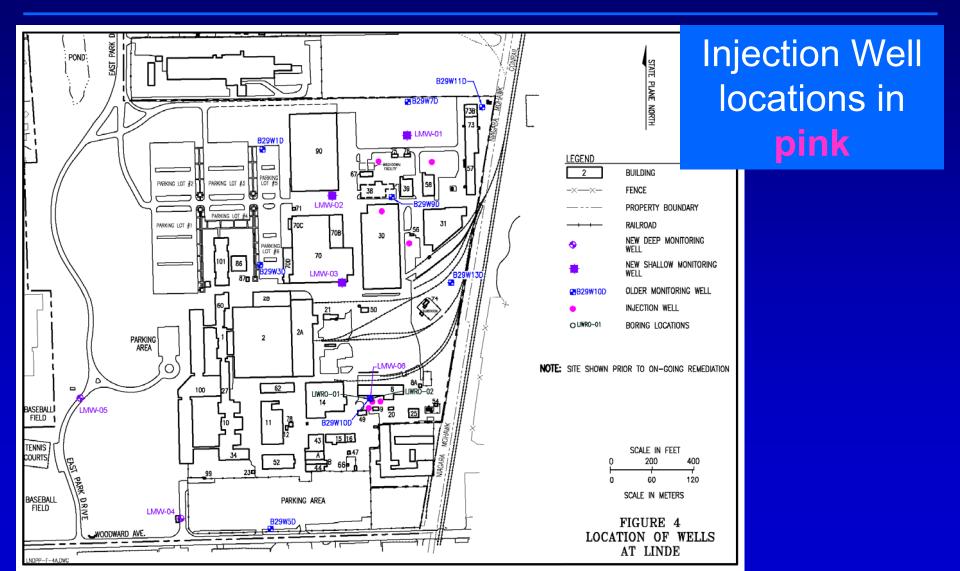
Linde Site Groundwater Ore Processing Activities

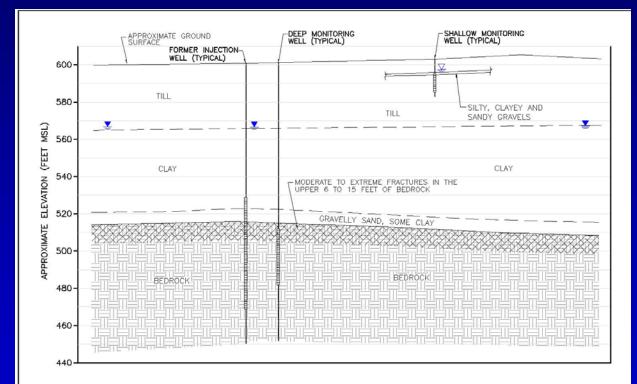
During the 1940's, approximately 130 million gallons of liquid process wastes were generated. The liquid wastes:

- Were high temperature and had a high pH
- Contained radium, uranium oxide, sodium sulfate, sodium carbonate, sodium hydroxide and elements such as vanadium, nickel and cobalt

- During the 1940's, initial discharges were made to sanitary sewers
- Process changes in 1944 increased pH levels
- Increased pH levels no longer allowed discharges to the sanitary sewers

In 1944 through 1946, the Government disposed of the liquid waste by discharging it into seven on-site wells that ranged in depths of 90 to150 feet deep


Approximately 55 million gallons were discharged in this manner


- Liquid wastes were injected:
- Below the thick clay layer that underlies the site
- Into the strata referred to as the contact zone aquifer
 - consists of sand and gravel overlying fractured weathered bedrock

Linde Site Groundwater Well Locations

Typical profile of Injection Wells used in 1940's

and USACE Monitoring wells

NOTE:

ADAPTED FROM USACE FEASIBILITY STUDY FIGURE 6. DETAILS NOT SHOWN. FIGURE 4 FORMER INJECTION WELLS AND CURRENT MONITORING WELLS AT LINDE - SCHEMATIC

USACE ACTIONS GROUNDWATER ASSESSMENT

- Agency coordination with USEPA and NYS
- Agreements reached on:
 - Characterization of Geology at Site
 - The need for additional information on groundwater quality
 - Sampling and analysis plan

USACE ACTIONS GROUNDWATER ASSESSMENT

2001

- Six new monitoring wells installed and eight existing monitoring wells verified
- Sampling & Analysis conducted*

2002

- Sampling & analysis conducted*
- * analyzed for radiological constituents, metals and general chemistry

- Analysis found concentrations of naturally occurring constituents consistent with USGS groundwater quality data in area
 - High concentrations of Sulfates, Chlorides and Total Dissolved Solids

Results support previous findings:

- Deep groundwater is NOT usable without costly treatment due to natural sulfates, chlorides, and solids.
- Treatment would be required to use groundwater for drinking, irrigation, etc.

Geochemical computer modeling and analysis of uranium in deep groundwater

- Results indicate the uranium that was soluble in the injected waste dropped out of solution when encountering natural conditions in deep groundwater
- Analysis confirms transport of material off site is unlikely

- Performed aggressive leaching tests to determine potential for soils to leach uranium
- Shallow groundwater sampling results obtained before remediation of the soils do not show elevated uranium concentrations.
- Radiologically contaminated soils are being removed from site, thus reducing any leaching potential.

- A complete exposure pathway requires 4 elements
- 1) a source and mechanism of contaminant release
- 2) an environmental transport medium
- 3) a point of contact, i.e., a receptor
- 4) a route of exposure, i.e., ingestion

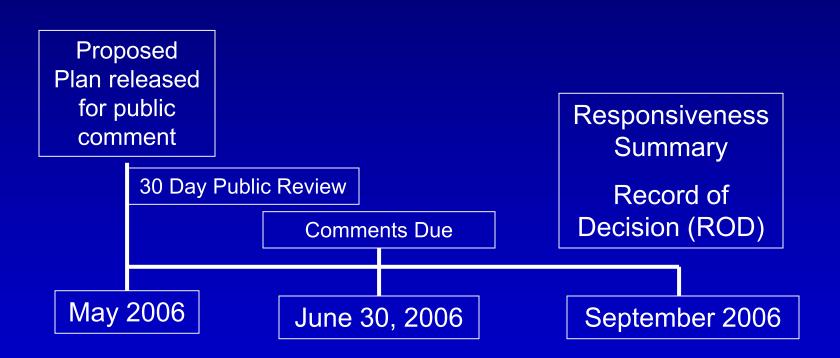
There is no complete exposure pathway:

- 1) Uranium has precipitated out of solution and is in the solid phase within the aquifer (minimal release mechanism)
- Groundwater moves extremely slow and the uranium migration is even slower because it will form solid minerals (minimal transport)

There is no complete exposure pathway:

- 3) There is no current or anticipated future use of groundwater (no receptors)
- 4) There is no direct exposure to deep groundwater (no drinking, breathing, or skin contact)

- No evidence that any contamination has moved off site
- Analysis confirms transport of material off site unlikely
- Groundwater quality from natural conditions precludes any reasonable, foreseeable use, without costly treatment


- The area is served with municipal water supply
- Municipal water supply is located near the Great Lakes which is the world's largest source of fresh water
- There is no reasonable, foreseeable future use of the groundwater

- There is no point of contact and no route of exposure to the GW contaminants of concern
- The Linde GW OU poses no current or future threat to human health or the environment
- No CERCLA action is warranted

Decision-Making Schedule

Administrative Record

Administrative Record Files are located at:

Tonawanda Public Library 333 Main Street Tonawanda, New York 14150

US Army Corps of Engineers 1776 Niagara Street Buffalo, New York 14207

Written Comments

Written public comments are welcome

Comments must be postmarked by June 30, 2006 and mailed to:

U.S. Army Corps of Engineers 1776 Niagara Street Buffalo, New York 14207

Thank you for your participation