

Department of Energy

Washington, DC 20585

December 11, 2019

Mr. David Seely, Remedial Project Manager U.S. Environmental Protection Agency Region 5 (SR-6J) 77 W. Jackson Blvd. Chicago, IL 60604-3590

Mr. Brian Nickel, EPA Supervisor, DERR Ohio Environmental Protection Agency 401 E. 5th Street Dayton, OH 45402

Subject: Final Sitewide Groundwater Monitoring Report, Mound, Ohio, Site for Calendar Year 2018

Dear Mr. Seely and Mr. Nickel:

Enclosed is the Department of Energy Office of Legacy Management (LM) final *Sitewide Groundwater Monitoring Report, Mound, Ohio, Site for Calendar Year 2018* (LMSMND/S24210). This report, dated June 2019, was transmitted to the U.S. Environmental Protection Agency (EPA) and Ohio EPA for review on June 11.

On July 15, the Ohio EPA provided a letter with comments that did not require a revision to the report. LM responses to Ohio EPA comments are enclosed.

To date, EPA has not provided comments or approval of the 2018 sitewide groundwater report provided to the regulators in June 2019. Should EPA submit comments on the 2018 sitewide groundwater report that necessitate a revision to the enclosed final report, LM will issue a revised final 2018 sitewide groundwater report.

The enclosed report will be placed in the Comprehensive Environmental Response, Compensation and Liability Act Information Repository for the Mound, Ohio, Site, and will be posted to the U.S. Department of Energy Office of Legacy management Mound Website (<u>https://www.lm.doe.gov/Mound/Sites.aspx</u>) under "Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Administrative Record Database."

Please contact me at (513) 648-3333 or <u>Sue.Smiley@lm.doe.gov</u>, if you have any questions. Please send any correspondence to:

U.S. Department of Energy Office of Legacy Management 10995 Hamilton-Cleves Hwy. Harrison, OH 45030

Sincerely,

SUSAN SMILEY Susan L. Smiley Mound Site Manager

Enclosures

cc w/enclosures: G. Hooten, DOE-LM (e) B. Zimmerman, DOE-LM (e) B. Cato, Navarro (e) M. Lutz, Navarro (e) DOE Read File File: MND 3500-04

DOE Responses to Ohio EPA Comments on the Sitewide Groundwater Monitoring Report – Calendar Year 2018, LMS/MND/S24210 (Ohio EPA comments transmitted in letter dated July 15, 2019)

Comment	Response
Comment 1, Navarro-Data Review and Validation Report: Preservation and Holding Times, Page E-2 : The April 17, 2018 Data Review and Validation Report indicates that the tritium analysis for sample location 0346 could not be performed because the glass bottle for that aliquot was received broken; however, elsewhere in the 2018 report a result for tritium in 0346 is reported. Please clarify whether a first quarter tritium result was obtained from 0346.	Location 0346 was resampled on February 8, 2018 and is included in the referenced validation report.
Comment 2, Section 4.5 Page 35: Section 4.5 of the 2018 report provides final recommendations and states that tritium levels have only exceeded the tritium MCL at seep 0601 since MNA remedy monitoring was initiated in 2009. Seep 0601 has been below the tritium MCL for two consecutive years of semiannual sampling and a downward trend has been in place since 2007. Section 4.5 also states that in accordance with the O&M Plan, tow consecutive years of tritium levels below the MCL qualify for a recommendation to the core Team to discontinue sampling.	DOE is agreeable to obtaining 4 additional data points from seep 0601 to obtain data that can demonstrate that the levels of tritium in groundwater will remain below the MCL.
The U.S. EPA guidance document titles " <i>Recommended Approach for Evaluating Completion of Groundwater Restoration Remedial Actions at a Groundwater Monitoring Well, August 2014, OWER 9283.1-44</i> " recommends that a minimum of four data points be used for analysis of the remediation monitoring phase (phase of data collection used to demonstrate that groundwater has reached cleanup levels for all COCs). It also states that the attainment monitoring phase (which occurs after is it demonstrated that the remediation monitoring phase is complete) is intended to provide data that are evaluated to help support a defensible determination that: a) the groundwater in the well met the cleanup level for each COC and b) provides assurance that the groundwater will continue to meet the COC cleanup level in the future. This U.S. EPA guidance recommends a minimum of eight additional consecutive monitoring events for the attainment monitoring phase.	
Although it appears that tritium has been below its MCL for at least the last four monitoring events in all monitoring wells and seeps, it is recommended that at least an additional four consecutive data points, beginning with the first sampling event in 2019, be collected from seep 0601 for the attainment monitoring phase to ensure that groundwater will continue to meet the COC cleanup levels in the future.	

This page intentionally left blank

Abbı	eviatio	ons		iii	
1.0	.0 Introduction				
	1.1	Purpose		1	
	1.2	Project l	Description	1	
		1.2.1	Phase I	3	
		1.2.2	Parcels 6, 7, and 8	3	
	1.3	Geology	and Hydrology	3	
2.0	Moni	toring Pro	ograms	5	
	2.1	Phase I		5	
		2.1.1	Monitored Natural Attenuation of TCE	5	
		2.1.2	Triggers	7	
	2.2	Parcels	6, 7, and 8	7	
		2.2.1	Monitored Natural Attenuation of TCE and Tritium	8	
		2.2.2	Triggers		
	2.3	Monitor	ing Network	10	
	2.4	Deviatio	ons from the Sitewide Operations and Maintenance Plan	10	
	2.5	Trend A	nalysis Methodology		
3.0	Phase	e I MNA I	Remedy	13	
	3.1	Monitor	ing Results	13	
	3.2	Trend A	nalysis	17	
	3.3	Groundy	water Elevations		
	3.4	Recomm	nendations		
4.0	Parce	els 6, 7, an	d 8 MNA Remedy	21	
	4.1	Monitor	ing Results—VOCs	21	
		4.1.1	Seeps	21	
		4.1.2	Groundwater	23	
		4.1.3	Distribution of TCE		
	4.2	Monitor	ing Results—Tritium		
	4.3	Trend A	nalysis		
		4.3.1	VOCs		
		4.3.2	Tritium		
	4.4	Groundy	water Elevations		
	4.5	Recommendations			
5.0	Inspe	ction of th	he Monitoring System		
6.0	Data	Validatio	n		
7.0	Refe	ences		41	

Contents

Figures

Figure 1. Locations of Phase I and Parcels 6, 7, and 8	2
Figure 2. Generalized Cross Section Showing Flow from Bedrock to the BVA	4
Figure 3. Phase I MNA Remedy Monitoring Locations	6
Figure 4. Parcels 6, 7, and 8 Remedy Monitoring Locations	9
Figure 5. TCE Concentrations in Phase I, 1999–2018	14
Figure 6. cis-1,2-DCE Concentrations in Phase I, 1999–2018	15

Figure 7. 2018 Annual Averages for TCE and DCE in Phase I	. 16
Figure 8. 2018 Average Groundwater Elevations in Phase I (in ft MSL)	. 19
Figure 9. TCE Concentrations in Parcels 6, 7, and 8 Main Hill Seeps	. 22
Figure 10. PCE Concentrations in Parcels 6, 7, and 8 Seep 0601	. 23
Figure 11. TCE Concentrations in Parcels 6, 7, and 8 Groundwater	. 25
Figure 12. 2018 Annual Averages for TCE in Parcels 6, 7, and 8 Seeps and Groundwater	. 27
Figure 13. Tritium Activity in Parcels 6, 7, and 8 Main Hill Seeps	. 28
Figure 14. Tritium Activity in Parcels 6, 7, and 8 Wells 0138, 0346, 0347, and 0379	. 29
Figure 15. 2018 Annual Averages for Tritium in Parcels 6, 7, and 8 Seeps and Groundwater	. 30
Figure 16. 2018 Averages for Groundwater Elevations in Parcels 6, 7, and 8	. 36

Tables

Table 1. Remedy (MNA) Monitoring for Phase I	5
Table 2. Trigger Levels for Phase I MNA Remedy	7
Table 3. Monitoring for Parcels 6, 7, and 8 Area	8
Table 4. Trigger Levels for Parcels 6, 7, and 8 Monitoring Locations	10
Table 5. Summary of VOC Monitoring Results in Phase I for 2018	13
Table 6. Trend Analysis Results for TCE and DCE in Phase I	17
Table 7. Summary of Trend Analysis Results for Phase I	18
Table 8. Summary of VOC Results in the Main Hill Seeps for 2018	21
Table 9. Summary of VOC Results in Parcels 6, 7, and 8 Groundwater for 2018	24
Table 10. Summary of Tritium Results in the Main Hill Area for 2018	26
Table 11. Trend Analysis Results for VOCs in Parcels 6, 7, and 8 (2005–2018)	31
Table 12. Trend Analysis Results for TCE in Parcels 6, 7, and 8 (2012–2018)	32
Table 13. Summary of Trend Analysis Results for VOCs in Parcels 6, 7, and 8	33
Table 14. Summary of Trend Analysis Results for Tritium in the Main Hill Seeps and	
Downgradient Wells	34
Table 15. Summary of Trend Analysis Results for Tritium in Parcels 6, 7, and 8	34
Table 16. RINs for Mound Site Calendar Year 2018 Sampling	39

Appendixes

- Appendix A Well Construction Summary
- Appendix B Mann-Kendall Trending Summaries
- Appendix C 2018 Groundwater Elevations
- Appendix D 2018 Groundwater and Seep Data Tables
- Appendix E Data Assessment Reports

Abbreviations

BVA	Buried Valley Aquifer
DCE	dichloroethene
DOE	U.S. Department of Energy
EPA	U.S. Environmental Protection Agency
ft	feet
ft MSL	feet above mean sea level
MCL	maximum contaminant level
MK	Mann-Kendall
µg/L	micrograms per liter
MNA	monitored natural attenuation
nCi/L	nanocuries per liter
Ohio EPA	Ohio Environmental Protection Agency
PCE	tetrachloroethene (perchloroethene)
RAO	remedial action objective
RIN	report identification number
TCE	trichloroethene
VC	vinyl chloride
VOC	volatile organic compound
VSP	Visual Sample Plan

This page intentionally left blank

1.0 Introduction

1.1 Purpose

This report was prepared in support of the selected remedies for Phase I and Parcels 6, 7, and 8 of the Mound, Ohio, Site as outlined in the *Operations and Maintenance Plan for the U.S. Department of Energy Mound, Ohio, Site* (Sitewide Operations and Maintenance Plan) (DOE 2015). It summarizes the data collected in 2018 and documents the progress of the monitored natural attenuation (MNA) remedies for both areas of the Mound site. All sampling and data analyses were performed in accordance with the Sitewide Operations and Maintenance Plan, unless noted otherwise.

This report includes data collected during the groundwater sampling performed in 2018. Data are presented in both time-series and map-view plots. Trend analysis was performed on selected wells using the nonparametric Mann-Kendall (MK) test. This type of long-term trend analysis can be used to confirm trends in contaminant concentrations over time. The time-series plots will also be used to evaluate changes in data over time and interpret the effectiveness of the MNA remedy.

This report also documents operational changes that occurred during the reporting period and identifies maintenance activities associated with the monitoring wells being sampled.

1.2 Project Description

The Mound site¹ is in Miamisburg, Ohio, approximately 10 miles southwest of Dayton. In 1995, the U.S. Department of Energy (DOE) Mound Plant, named after the Miamisburg Indian Mound adjacent to the site, comprised 120 buildings on 306 acres. The Great Miami River, west of the site, flows from northeast to southwest through Miamisburg and dominates the geography of the region surrounding the site. Figure 1 shows the locations of Phase I (in green) and Parcels 6, 7, and 8 (in purple).

DOE remediated the Mound site to an "industrial/commercial use" standard consistent with the exposure assumptions provided in the *Mound 2000 Residual Risk Evaluation Methodology, Mound Plant* (DOE 1997) and endorsed by the U.S. Environmental Protection Agency (EPA) and Ohio Environmental Protection Agency (Ohio EPA). The remedies for groundwater at the site combine groundwater monitoring and institutional controls in the form of deed restrictions on future land and groundwater use. These combined remedies will prevent current and future exposure of workers, the public, and the environment to contaminated groundwater from the Mound site.

¹ The Mound site has also been called the Mound Laboratory, Mound Laboratories, the Mound Plant (EPA ID OH6890008984), the USDOE Mound Plant, the Mound Facility, the USDOE Mound Facility, the Miamisburg Environmental Management Project (MEMP), and the Miamisburg Closure Project (MCP). Currently, LM uses Mound, Ohio, Site as the formal name of the site.

Figure 1. Locations of Phase I and Parcels 6, 7, and 8

The long-term remedial action objective (RAO) for groundwater is to meet Safe Drinking Water Act maximum contaminant levels (MCLs) through MNA in the Phase I and Parcels 6, 7, and 8 areas. Until these goals are achieved, the near-term RAO is to prohibit the extraction and use of groundwater underlying the premises unless prior written approval is obtained from EPA, Ohio EPA, and the Ohio Department of Health.

1.2.1 Phase I

Phase I is an approximately 52-acre area made up of three distinct sections. It lies on the southern border of the former production area of the Mound site. This area contains monitoring wells that are screened in both the Buried Valley Aquifer (BVA) and the upgradient bedrock aquifer system. MNA is being used as the remedy for a small, discrete section of the bedrock groundwater system contaminated with trichloroethene (TCE) to ensure that concentrations of TCE within the bedrock groundwater are decreasing to levels below the Safe Drinking Water Act MCL and do not impact the downgradient BVA.

1.2.2 Parcels 6, 7, and 8

Parcels 6, 7, and 8 occupy approximately 101 acres of the northern portion of the Mound Plant site. The main production facilities were located within Parcels 6 and 8, an area called the Main Hill. A tributary valley runs between these two parcels and Parcel 7; it contains a narrow tongue of glacial deposits that is hydraulically connected with the BVA. Groundwater within the fractured bedrock beneath the Main Hill area, and in topographic highs within Parcel 7, flows along horizontal bedding planes and fractures and ultimately discharges to naturally occurring seeps or to the downgradient BVA.

Two monitoring wells on the western the edge of the BVA indicate volatile organic compound (VOC) impact, primarily TCE, which exceeds MCLs of the Safe Drinking Water Act. MNA is the remedy for the VOCs in groundwater associated with the Main Hill. Sampling is being performed to assess the contaminant concentrations and verify that the BVA offsite and downgradient of these wells is not being adversely impacted.

Five seeps are also associated with this area and are located along the Main Hill of the plant property. Two seeps are within the plant property boundary, and the remaining three are offsite to the north. Several seeps have elevated levels of tritium and VOCs. These seeps, as well as several downgradient wells, are being monitored to verify that source removal (buildings and soil) on the Main Hill will result in decreasing concentrations over time.

1.3 Geology and Hydrology

The aquifer system at the Mound site consists of two distinct hydrogeologic environments: groundwater flow through the Ordovician shale and limestone bedrock beneath the hills, and groundwater flow within the unconsolidated glacial deposits and alluvium associated with the BVA in the Great Miami River valley. A thin tributary valley, which is located along the southern edge of the Main Hill, divides the two main portions of the Mound site and contains a narrow tongue of glacial deposits that is hydraulically connected with the BVA.

The bedrock flow system is dominated by fracture flow and is not considered a highly productive aquifer. Groundwater flow in the bedrock typically mimics the topography, with groundwater discharging to the BVA or at seeps from the upper bedrock. The BVA is dominated by porous flow, with interbedded gravel deposits providing the major pathway for water movement. The unconsolidated deposits are Quaternary-age sediments that consist of both glacial and fluvial deposits. The BVA is a highly productive aquifer capable of yielding a significant quantity of water. It is designated a sole-source aquifer. Groundwater flow in the BVA flows south, following the downstream course of the Great Miami River. The general structure and flow characteristics for these two interconnected systems are depicted in Figure 2.

Figure 2. Generalized Cross Section Showing Flow from Bedrock to the BVA

For detailed descriptions of the geology, lithology, and groundwater flow regimes at the Mound site and specific hydrogeologic information for each area, refer to hydrogeologic investigation reports and work plans prepared for the site (DOE 1992, DOE 1994a, DOE 1994b, DOE 1995, and DOE 1999).

2.0 Monitoring Programs

2.1 Phase I

The Phase I groundwater monitoring program was established to verify that the BVA is not negatively affected by TCE-contaminated groundwater within the bedrock aquifer system. Groundwater in Phase I is monitored for TCE and its degradation products to verify that concentrations of TCE are decreasing by natural attenuation. The objective of this monitoring is to protect the BVA by verifying that the concentration of TCE near well 0411, well 0443, and seep 0617 is decreasing and confirm that TCE is not adversely affecting the BVA.

Well P064 was added to the Phase I MNA remedy monitoring program starting in 2018 to monitor groundwater discharge from the bedrock to the BVA and sampling at wells 0400, 0402, and P033 was discontinued. These changes to the monitoring program were approved by EPA and Ohio EPA during the August 17, 2017, Core Team meeting.

2.1.1 Monitored Natural Attenuation of TCE

Under the Phase I MNA monitoring program, samples are collected semiannually from selected wells and one seep (Figure 3) and analyzed as outlined in Table 1. Sampling was performed in the first and third quarters of 2018.

Monitoring Location	Area	Parameters		
Well 0411				
Well 0443				
Well 0353	Bedrock monitoring	TCE		
Well 0444		DCE		
Well 0445		VC		
Seep 0617				
Well P064	BVA monitoring			

Table 1. Remedy (MNA) Monitoring for Phase I

Note:

All locations are sampled semiannually.

Abbreviations:

DCE = dichloroethane VC = vinyl chloride

Figure 3. Phase I MNA Remedy Monitoring Locations

2.1.2 Triggers

The contaminant data are evaluated against previous data collected at each location to determine if MNA is adequately addressing groundwater impact and to monitor the geochemical conditions in the aquifer. Trigger levels and response actions have been established for each contaminant as presented in the Sitewide Operations and Maintenance Plan (DOE 2015). The triggers and MCLs for each contaminant are summarized in Table 2.

Location	TCE (μg/L)	DCE (µg/L)	Vinyl Chloride (μg/L)
Well 0353	5	70	2
Well 0411	30	70	2
Well 0443	18	70	2
Well 0444	5	70	2
Well 0445	5	70	2
WellP064	5	70	2
Seep 0617	16	70	2
MCL	5	70	2

Table 2. Trigger Levels for Phase I MNA Remedy

Abbreviations:

DCE = dichloroethene

μg/L = micrograms per liter

EPA and Ohio EPA must be notified if trigger levels are exceeded. After notification, the Core Team (EPA, Ohio EPA, and DOE) will determine an appropriate course of action.

2.2 Parcels 6, 7, and 8

Groundwater in the Parcels 6, 7, and 8 area is monitored for TCE and its degradation products to verify that the downgradient BVA is not affected and that concentrations are decreasing. In addition, groundwater discharging from seeps is monitored for tritium and TCE and its degradation products to verify that source removal has resulted in decreasing concentrations over time.

The sampling program focuses on the following areas:

- Well 0315/0347 Area: Wells at the edge of the BVA on the southwestern corner of Parcel 8 that have elevated concentrations of VOCs. The program consists of wells that have TCE concentrations greater than the MCL and downgradient wells to the west. Wells 0315 and 0347 (source wells) and other selected downgradient BVA wells are monitored for VOCs—namely, tetrachloroethene (also known as perchloroethene or PCE), dichloroethene (DCE) isomers, TCE, and vinyl chloride (VC).
- Main Hill Seeps: Seeps on the northern and southern sides of the Main Hill that have elevated concentrations of VOCs and tritium. The program consists of seeps and downgradient wells to the west. Water from seeps 0601, 0602, 0605, 0606, and 0607 is collected and analyzed for VOCs and tritium. Select wells within the BVA that are

downgradient of the bedrock groundwater discharge area of the Main Hill are also sampled to monitor VOCs and tritium.

2.2.1 Monitored Natural Attenuation of TCE and Tritium

Under the Parcels 6, 7, and 8 MNA monitoring program, samples are collected quarterly for VOCs and semiannually for tritium in selected wells and seeps (Figure 4). Table 3 provides a summary of the monitoring locations as specified in the Sitewide Operations and Maintenance Plan.

Monitoring Location	Area	VOC	Tritium
Well 0315		Х	
Well 0347	Source wens	Х	
Well 0118		Х	Х
Well 0124		Х	
Well 0126		Х	
Well 0138		Х	Х
Well 0346	Downgradiant DV/A manitoring	Х	Х
Well 0379	Downgradient BVA monitoring	Х	Х
Well 0386		Х	
Well 0387		Х	
Well 0389		Х	
Well 0392		Х	
Seep 0601		Х	Х
Seep 0602		Х	Х
Seep 0605	Main Hill seeps	Х	X
Seep 0606		Х	Х
Seep 0607		Х	X

Table 3. Monitoring for Parcels 6, 7, and 8 Area

Note:

VOCs monitored are PCE, TCE, *cis*-1,2-DCE, *trans*-1,2-DCE, and VC.

Figure 4. Parcels 6, 7, and 8 Remedy Monitoring Locations

2.2.2 Triggers

The contaminant data are evaluated against previous data collected at each location to determine if downward trends are occurring. Trigger levels and response actions have been established for each contaminant as presented in the Sitewide Operations and Maintenance Plan (DOE 2015). The triggers and MCLs for each contaminant are summarized in Table 4.

Location	TCE (μg/L)	PCE (μg/L)	Tritium (nCi/L)
Well 0315	30		
Well 0347	30		
Well 0124	5		
Well 0126	5		
Well 0386	5		
Well 0387	5		
Well 0389	5		
Well 0392	5		
Seep 0601		75	1500
Seep 0605	150		
MCL	5	70	2

Table 4. Trigger Levels for Parcels 6, 7, and 8 Monitoring Locations

Abbreviations:

µg/L = micrograms per liter

nCi/L = nanocuries per liter

EPA and Ohio EPA must be notified if these trigger levels are exceeded. After notification, the Mound Core Team (EPA, Ohio EPA, and DOE) will determine an appropriate course of action.

2.3 Monitoring Network

The monitoring well and seep locations sampled under these programs were selected to provide data of sufficient quality to meet the objectives of the groundwater remedies for either Phase I or Parcels 6, 7, and 8. These wells were initially installed to support various site characterization activities and were designed and constructed to provide high-quality groundwater data. Appendix A contains construction information for each well used to support these remedies.

2.4 Deviations from the Sitewide Operations and Maintenance Plan

Sampling was performed as outlined in the Sitewide Operations and Maintenance Plan (DOE 2015), which compiles the sampling requirements outlined in previous plans for each area. Modifications to these monitoring programs (e.g., reduction in sampling frequency or discontinuation of monitoring locations) are also incorporated into the Sitewide Operations and Maintenance Plan.

Sampling was performed as follows:

- All required locations in Phase I were sampled in 2018.
- All required locations in Parcels 6, 7, and 8 were sampled in 2018 with the exception of seep 0602, which was dry (no visible flow) during the third-quarter sampling event.
- Site-specific sampling methods for the Mound site were followed during these sampling events. These methods were approved by the Mound Core Team and are integrated into the Sitewide Operations and Maintenance Plan.

2.5 Trend Analysis Methodology

Groundwater data from select locations are evaluated for trends in contaminant concentrations over time. The computer program ProUCL (ProUCL, Version 5.1.002), developed by Lockheed Martin and EPA, was used to perform trend analysis; the method used was the Mann-Kendall test.

The Mann-Kendall test is a nonparametric statistical procedure that is appropriate for analyzing trends in data over time. There is no requirement that the data be normally distributed or that the trend, if present, be linear. The Mann-Kendall test can be used if there are missing values and values below the detection limit. The assumption of independence requires that the time between samples be sufficiently large so that there is no correlation between measurements collected at different times. All locations were previously evaluated for seasonality as part of the annual review in 2014 (DOE 2015). Those results indicated there are no seasonal trends in contaminant data collected from any of the monitoring locations.

The Mann-Kendall procedure tests whether to reject the null hypothesis (H_0) and accept the alternative hypothesis (H_α), where:

- The null hypothesis (H_0) is that there is no monotonic trend in the series.
- The alternate hypothesis (H_{α}) is that a monotonic trend exists.

The initial assumption of the Mann-Kendall test is that the null H_0 hypothesis is true and that the data must be convincing beyond a reasonable doubt before H_0 is rejected and H_{α} is accepted. One of three alternative hypotheses is chosen:

- 1. A monotonic downward trend exists.
- 2. Either a monotonic upward or monotonic downward trend exists.
- 3. A monotonic upward trend exists.

Results of the trend analyses for each monitoring program are presented in Section 3.0. A summary of the Mann-Kendall statistical approach used for this report, as well as the specified error rates and data assumptions, is presented in Appendix B. Data analysis reports for each well and parameter are also included in Appendix B.

This page intentionally left blank

3.0 Phase I MNA Remedy

3.1 Monitoring Results

Monitoring results for 2018 (Table 5) continue to show low-level detections of TCE and *cis*-1,2-DCE, a TCE degradation product, in source area wells 0411 and 0443 and seep 0617. All VOC concentrations were below the applicable trigger levels (Table 2). Concentrations of TCE at these locations continue to exceed the MCL of 5 micrograms per liter (μ g/L). No detectable concentrations of *trans*-1,2-DCE or VC were reported at the two source wells and the seep monitoring locations. Downgradient BVA monitoring well P064 had detectable concentrations of TCE and *cis*-1,2-DCE that were below the MCL but indicated slight impact attributable to VOCs originating from the Phase I area. No detectable concentrations of *trans*-1,2-DCE or VC were reported in the BVA or bedrock wells.

Well ID	Location	Parameter	First Semiannual Event	Second Semiannual Event		
Source Area Wells and Seep						
0444	0411 4 100	TCE (µg/L)	10.1	9.0		
0411	0411 Alea	<i>cis</i> -1,2-DCE (µg/L)	0.84 (J)	2.1		
0442	0411 4 100	TCE (µg/L)	8.9	6.4		
0443	0411 Alea	<i>cis</i> -1,2-DCE (µg/L)	0.39 (J)	0.36 (J)		
0617	Seep/	TCE (µg/L)	5.4	6.0		
0017	Bedrock	<i>cis</i> -1,2-DCE (µg/L)	1.4	1.4		
Bedrock/B	VA Monitoring	Wells				
0252	Bedrock	TCE (µg/L)	ND (<1)	ND (<1)		
0353		<i>cis</i> -1,2-DCE (µg/L)	ND (<1)	ND (<1)		
	Dedreek	TCE (µg/L)	ND (<1)	ND (<1)		
0444	Deurock	<i>cis</i> -1,2-DCE (µg/L)	ND (<1)	ND (<1)		
0445	Bedrock	TCE (µg/L)	ND (<1)	ND (<1)		
0445		<i>cis</i> -1,2-DCE (µg/L)	ND (<1)	ND (<1)		
DOG4	D\/A	TCE (µg/L)	1.1	1.1		
P004	BVA	<i>cis</i> -1,2-DCE (µg/L)	ND (<1)	0.36 (J)		

Table F Ourseau				1 5 0040
Table 5. Summar	y of VUC Monitoring	j Results in	Phase	1 for 2018

Note:

Values in **bold** exceed the MCL of 5 μ g/L for TCE.

Abbreviations:

J = estimated value less than the reporting limit

ND = not detected above reporting limit

TCE concentrations in well 0411 (Figure 5) have decreased since monitoring began in 1999; however, since 2002, the concentrations of TCE in this well have ranged between 9 and 15 μ g/L. Concentrations of TCE in well 0443 and seep 0617 have varied since monitoring of these locations started in 2002. Concentrations of TCE in well 0443 have been consistently greater than the MCL since 2010. The time–concentration plots for well 0443 and seep 0617 indicate that concentrations vary and are lower than those in well 0411.

Figure 5. TCE Concentrations in Phase I, 1999–2018

The concentrations of *cis*-1,2-DCE in groundwater (Figure 6) continue to be varied. Concentrations greater than the reporting limit of 1 μ g/L have consistently been reported in well 0411 and seep 0617. Historically, concentrations of *cis*-1,2-DCE in well 0411 were generally greater than those measured in seep 0617; however, over the past few years, the concentrations have been similar. Estimated detections lower than 1 μ g/L have been reported in well 0443 since 2009. None of the locations had concentrations of *cis*-1,2-DCE that exceeded the MCL of 70 μ g/L.

Figure 6. cis-1,2-DCE Concentrations in Phase I, 1999–2018

The average concentrations of TCE and *cis*-1,2-DCE in groundwater (Figure 7) indicate that impact is localized in the bedrock groundwater near wells 0411 and 0443 and seep 0617. Data from downgradient BVA monitoring well P064 indicate the concentrations of VOCs are low at the point where bedrock groundwater enters the BVA.

Figure 7. 2018 Annual Averages for TCE and DCE in Phase I

U.S. Department of Energy June 2019

3.2 Trend Analysis

Mann-Kendall trend analysis was performed using data collected since 1999 and indicates downward trends for TCE in well 0411 and for *cis*-1,2-DCE in well 0443 and seep 0617 (Table 6). Trend analysis was not performed for the remainder of the wells because results consistently showed nondetects or sporadic detections. There is not a sufficient number of data points from well P064 for trend analysis. Summary reports providing details for each statistical evaluation for each monitoring location are contained in Appendix B.

Location	Analyte	Trend
Well 0411		Down
Well 0443		None
Seep 0617		None
Well 0411		None
Well 0443		Down
Seep 0617		Down

Table 6. Trend Analysis Results for TCE and DCE in Phase I

Evaluation of the downward trend in TCE concentrations in well 0411 may indicate the time frame when concentrations may approach the MCL of 5 μ g/L. The nonparametric slope calculated from the data suggests that the MCL may be reached by 2044, which is similar to the estimated time frame from previous annual reports. The remainder of the locations were less than the MCL or no trend was present; therefore, no timeframes are estimated.

Table 7 summarizes the results from each annual trend analyses performed since 2007 in Phase I for source area monitoring wells 0411 and 0443 and seep 0617. Results show continued downward trends in TCE concentrations in well 0411 since the monitoring program was started. No trends in the data are observed in TCE concentrations in well 0443 and 0617. No trends in the *cis*-1,2-DCE data have been observed at well 0411 since 2016. Downward trends in *cis*-1,2-DCE have been observed at both well 0443 and seep 0617 since 2014 and 2012, respectively.

		Year											
Location	Analyte	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
Well 0411		D	D	D	D	D	D	D	D	D	D	D	D
Well 0443	TCE	Ν	U	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Seep 0617		N	N	Ν	N	Ν	Ν	N	N	Ν	N	N	Ν
Well 0411			Ν	Ν	Ν	Ν	Ν	Ν	U	U	Ν	Ν	Ν
Well 0443	cDCE		U	Ν	Ν	Ν	Ν	Ν	D	D	D	D	D
Seep 0617			Ν	Ν	Ν	Ν	D	D	D	D	D	D	D

Table 7. Summary of Trend Analysis Results for Phase I

Abbreviations:

D = downward trend

N = no trend (either upward or downward)

U = upward trend

3.3 Groundwater Elevations

A map of the average groundwater elevations measured in the Phase I area during 2018 (Figure 8) represents the two flow regimes present at the Mound site: bedrock and the unconsolidated materials of the BVA. The approximate location of contact of the BVA with the bedrock is indicated in this figure. Groundwater originating from the well 0411/0443 area flows southwest within the bedrock, following the bedrock topography. This groundwater enters the BVA along this contact. Flow within the BVA is generally to the south-southeast (parallel to the bedrock contact). Appendix C presents a summary of the groundwater elevations measured during 2018.

3.4 Recommendations

No samples in 2018 were above trigger levels, the concentrations of TCE and *cis*-1,2-DCE in BVA monitoring wells continue to remain below MCL's indicating no impacts to the BVA, and no upward trends demonstrate that analyte concentrations are not statistically increasing. No changes to the Phase I MNA monitoring program are recommended at this time and the monitoring frequency remain semiannual for 2019.

Figure 8. 2018 Average Groundwater Elevations in Phase I (in ft MSL)

This page intentionally left blank

4.0 Parcels 6, 7, and 8 MNA Remedy

4.1 Monitoring Results—VOCs

4.1.1 Seeps

Concentrations of TCE were reported in all of the Main Hill seeps; however, only seep 0602 exceeded the MCL of 5 μ g/L (Table 8) in 2018 during the Q1-2018 sampling event. The trigger level of 150 μ g/L for TCE in seep 0605 (Table 4) was not exceeded in 2018. Concentrations of PCE were above the MCL in seep 0601 for all sampling events. All PCE concentrations for seep 0601 were well below the trigger level of 75 ug/L in 2018. A low concentration of PCE (less than 1 μ g/L) was reported as an estimated value below the detection limit in seep 0605. *cis*-1,2-DCE was reported in all of the seeps; seep 0602 had the highest concentrations. Estimated detections of *trans*-1,2-DCE (less than 1 μ g/L) were reported in seep 0602. No VC was detected in the seeps.

Location	Aroo	VOC Concentrations									
Location	Area	VOC	Q1	Q2	Q3	Q4					
		PCE (µg/L)	10.5	12.9	9.7	6.2					
0004	Onaita	TCE (µg/L)	3.8	2.9	1.2	0.72 (J)					
0601	Onsite	<i>cis</i> -1,2-DCE (µg/L)	<i>cis</i> -1,2-DCE (µg/L) 0.65 (J)		044 (J)	ND (<1)					
		trans-1,2-DCE (μg/L)	trans-1,2-DCE (μg/L) ND (<1) ND (<1) ND (<1)		ND (<1)	ND (<1)					
		PCE (µg/L)	ND (<1)	ND (<1)		ND (<1)					
0602	Onaita	TCE (µg/L)	8.6	4.1		0.46 (J)					
0002	Onsite	<i>cis</i> -1,2-DCE (µg/L)	6.2	4.5	DKT	2.0					
		trans-1,2-DCE (μg/L)	0.31 (J)	0.31 (J)		ND (<1)					
	0445145	PCE (µg/L)	ND (<1)	0.34 (J)	ND (< 1)	ND (<1)					
0605		TCE (µg/L)	0.30 (J)	3.1	1.1	1.3					
0005	Olisite	<i>cis</i> -1,2-DCE (µg/L)	ND (<1)	1.1	0.96 (J)	3.1					
		trans-1,2-DCE (μg/L)	ND (<1)	ND (<1)	ND (<1)	ND (<1)					
	0606 Offeite	PCE (µg/L)	ND (<1)	ND (<1)	ND (<1)	ND (<1)					
0606		TCE (µg/L)	3.9	ND (<1) ND (<1)		ND (<1)					
0000	Olisite	<i>cis</i> -1,2-DCE (µg/L)	1.3	ND (<1)	ND (<1)	ND (<1)					
		trans-1,2-DCE (μg/L)	DCE (μg/L) ND (<1) ND (<1) ND (<1)		ND (<1)	ND (<1)					
		PCE (µg/L)	ND (<1)	ND (<1)	ND (<1)	ND (<1)					
0607	Offeite	TCE (µg/L)	0.85 (J)	1.3	1.1	0.51 (J)					
0007	Onsite	<i>cis</i> -1,2-DCE (µg/L)	ND (<1)	0.51 (J) 0.62 (J)		0.42 (J)					
		trans-1,2-DCE (µg/L)	ND (<1)	ND (<1) ND (<1)		ND (<1)					

Table 8. Summary of VOC Results in the Main Hill Seeps for 2018

Notes:

PCE trigger level at seep $0601 = 75 \mu g/L$.

TCE trigger level at the seeps = $150 \ \mu g/L$.

Values in **bold** exceed the MCL.

Abbreviations:

J = estimated value that is less than the reporting limit ND = not detected Q = quarter

A graph of TCE concentrations measured in the seeps since the remediation of contaminated buildings and soil on the Main Hill (completed in mid-2006) (Figure 9) shows that the highest concentrations of TCE were measured in seeps 0602 and 0605. After the completion of site improvements and the closure of the tritium capture pits on the Main Hill in 2011, VOC concentrations have been less variable and decreasing. Data from the past few years show that elevated concentrations of TCE only occur in seep 0602, periodically.

Figure 9. TCE Concentrations in Parcels 6, 7, and 8 Main Hill Seeps

Seep 0601 is the only location where PCE was routinely reported, although an estimated value less than 1 μ g/L was reported in seep 0605 during 2018. PCE concentrations in this seep (Figure 10) are similar to those measured before remediation on the Main Hill.

Figure 10. PCE Concentrations in Parcels 6, 7, and 8 Seep 0601

4.1.2 Groundwater

Monitoring results for 2018 (Table 9) continue to show TCE in wells 0315, 0347, 0379, and 0386; the highest concentrations are detected in well 0347 (source area well), where concentrations exceeded the MCL. The MCL for TCE was exceeded only during the first quarter of 2018 in well 0315 (source area well). The concentrations of TCE reported in wells 0315 and 0347 were below the trigger level of 30 μ g/L established for these source area wells (Table 4). Wells 0379 and 0386 are within the tributary valley, where wells 0315 and 0347 are also located (Figure 4). An estimated detection of TCE was reported in well 0389, and no detectable concentrations of TCE were measured in the other wells.

Estimated detections of PCE less than 1 μ g/L were reported in wells 0126 and 0379. These wells are located where the tributary valley enters the BVA. No trigger levels for PCE have been set for these locations. No detectable concentrations of *cis*-1,2-DCE, *trans*-1,2-DCE, or VC were reported in any of the wells monitored as part of this program.

		VOC Concentrations								
Location	Area	VOC	Q1	Q2	Q3	Q4				
Onsite Wells	 S		<u> </u>	<u> </u>	· · ·					
0215		PCE (µg/L)	ND (<1)	ND (<1)	ND (<1)	ND (<1)				
0315		TCE (µg/L)	5.2	3.5	4.1	4.4				
0247	Source Area	PCE (µg/L)	ND (<1)	ND (<1)	ND (<1)	ND (<1)				
0347		TCE (µg/L)	20.7	11.7	21.8	16.1				
0246		PCE (µg/L)	ND (<1)	ND (<1)	ND (<1)	ND (<1)				
0340	Onaita	TCE (µg/L)	ND (<1)	ND (<1)	ND (<1)	ND (<1)				
0270	Unsite	PCE (µg/L)	0.44 (J)	ND (<1)	0.40 (J)	0.43 (J)				
03/9		TCE (µg/L)	1.4	1.2	1.6	1.3				
Downgradie	nt Wells-Near	r (offsite)								
0396		PCE (µg/L)	ND (<1)	ND (<1)	ND (<1)	ND (<1)				
0300		TCE (µg/L)	2.5	2.9	3.0	2.0				
0297		PCE (µg/L)	ND (<1)	ND (<1)	ND (<1)	ND (<1)				
0307	B)/A	TCE (µg/L)	ND (<1)	ND (<1) ND (<1)		ND (<1)				
0380	DVA	PCE (µg/L)	ND (<1)	ND (<1)	ND (<1)	ND (<1)				
0309		TCE (µg/L)	ND (<1)	ND (<1)	0.54 (J)	ND (<1)				
0202		PCE (µg/L)	PCE (μg/L) ND (<1) ND (<1)		ND (<1)	ND (<1)				
0392		TCE (µg/L)	ND (<1)	ND (<1)	ND (<1)	ND (<1)				
Downgradie	nt Wells—Far ((offsite)								
0118		PCE (µg/L)	ND (<1)	ND (<1)	ND (<1)	ND (<1)				
0110] I	TCE (µg/L)	ND (<1)	ND (<1)	ND (<1)	ND (<1)				
0124		PCE (µg/L)	ND (<1)	ND (<1)	ND (<1)	ND (<1)				
0124	P\/A	TCE (µg/L)	ND (<1)	ND (<1)	ND (<1)	ND (<1)				
0126	BVA	PCE (µg/L)	0.79 (J)	0.85 (J)	0.78 (J)	0.87 (J)				
0120]	TCE (µg/L)	ND (<1)	ND (<1)	ND (<1)	ND (<1)				
0129		PCE (µg/L)	ND (<1)	ND (<1)	ND (<1)	ND (<1)				
0138		TCE (µg/L)	ND (<1)	ND (<1)	ND (<1)	ND (<1)				

Table 9. Summary of VOC Results in Parcels 6, 7, and 8 Groundwater for 2018

Notes:

TCE trigger level for wells 0315 and 0347 = 30 μ g/L. TCE trigger level for other wells = 5 μ g/L.

Values in **bold** exceed the MCL.

Abbreviations:

J = estimated value that is less than the reporting limit ND = not detected Ω = quarter

Q = quarter

A graph of TCE concentrations measured in select wells shows that concentrations in wells 0315 and 0347 have consistently been greater than the MCL of 5 μ g/L (Figure 11), although TCE concentrations in well 0315 have periodically been lower than the MCL in the last 3 years. The concentrations of TCE in the downgradient wells have been below the MCL since 2000. The pattern in TCE concentrations in wells 0315 and 0347 has been similar since 2012. The concentrations in well 0347 are always higher and have greater changes (increases and

decreases) compared to those in well 0315. An overall decrease in TCE concentrations can be observed beginning at the same time. It is likely that surface water influences noted in previous reports (DOE 2014a; DOE 2014b) have been reduced or eliminated and more-recent data reflect concentrations of TCE in groundwater that are not influenced by infiltration of surface water through the exposed tritium capture pits.

Figure 11. TCE Concentrations in Parcels 6, 7, and 8 Groundwater

Data collected over the past several years indicate variable concentrations of VOCs, primarily TCE, in the groundwater in Parcels 6, 7, and 8 as exhibited from the data from seep 0602 (Figure 9) and wells 0315 and 0347 (Figure 11). Seep 0602 and the downgradient wells 0315 and 0347 are in the tributary valley, which is along the southern edge of the Main Hill. As discussed in Section 1.3, the tributary valley is a narrow tongue of glacial deposits connected to the BVA that overlies the fractured bedrock at the site. Water infiltrating on the Main Hill moves through the fractured bedrock and ultimately discharges into the unconsolidated materials. TCE-impacted groundwater that originated on the Main Hill discharges to seeps or the tributary valley (DOE 2017). Annual average TCE concentrations from wells within the tributary valley show that the deep wells that are screened directly above the bedrock (wells 0347, 0386, and 0387) have the highest TCE concentrations and monitor the TCE-impacted groundwater discharging from the bedrock.

4.1.3 Distribution of TCE

The average concentrations of TCE (Figure 12) in the Main Hill area indicates that the highest concentrations are were measured in groundwater in well 0347. Seeps 0601 and 0602 on the Main Hill had the highest TCE concentrations measured in the seeps. Historically, concentrations of TCE were higher in the seeps than in the groundwater monitoring wells. This year it was observed that the concentrations of TCE in wells 0315 and 0347 were higher than those measured in the upgradient seeps. TCE concentrations that were below the MCL were reported in near downgradient well pair 0386 and 0389 that are screened in the BVA.

4.2 Monitoring Results—Tritium

Tritium levels in the Main Hill seeps continued to be higher than those in the downgradient groundwater wells (Table 10). The highest tritium activity continued to be measured in seep 0601, which is onsite. No location exceeded the MCL of 20 nanocuries per liter (nCi/L) or the trigger level of 1500 nCi/L in 2018 (Table 4). The wells had tritium levels similar to background (0.77 nCi/L [DOE 1996]).

Location	Tritium Activity (nCi/L)								
	Semiannual Period 1	Semiannual Period 2							
Seeps									
0601	7.3	19.0							
0602	1.5	DRY							
0605	2.7	4.6							
0606	1.4	2.9							
0607	2.3	2.4							
Downgradient Wells									
0118	ND (<0.35)	ND (<0.31)							
0138	ND (<0.35)	0.35 (J)							
0346	0.38 (J)	ND (<0.4)							
0347	1.1	1.2							
0379	0.71 (J)	0.49 (J)							

Table :	10.	Summarv	of [·]	Tritium	Result	s in	the	Main	Hill	Area	for	201	18
rubic	10.	Garminary	01	maann	rtooun	5	110	mann	, ,,,,,	/	101	201	

Note:

Tritium trigger level at the seeps = 1500 nCi/L.

Abbreviations:

J = estimated value that is less than the reporting limit ND = not detected

Tritium levels in the seeps were highest during remediation activities on the Main Hill (2004–2006). Tritium data collected after building demolition and soil removal indicate decreasing levels in all of the seeps (Figure 13). The decrease in tritium levels in post-remediation data supports that the majority of the source was removed from the Main Hill area and that, with continued flushing, levels will continue to decline. Starting in 2009, the tritium levels in all seeps except seep 0601 were lower than the MCL of 20 nCi/L. The levels of tritium in seep 0601 have been below the MCL since 2017.

Figure 13. Tritium Activity in Parcels 6, 7, and 8 Main Hill Seeps

A graph of tritium levels in downgradient wells (Figure 14) illustrates that groundwater impact in the wells lagged behind impact expressed in the seeps. Groundwater impact increased near the end of remediation activities on the Main Hill, and impact in the seeps occurred as remediation activities were being performed and began to decrease as activities were completed. The tritium levels in the wells also responded quickly to remediation activities. Well 0347 has the highest levels of tritium, and tritium levels in wells 0138, 0346, and 0379 have leveled off and continue to be similar to background. All tritium levels in the monitoring wells were below the MCL of 20 nCi/L.

Figure 14. Tritium Activity in Parcels 6, 7, and 8 Wells 0138, 0346, 0347, and 0379

The distribution of tritium in groundwater (Figure 15) in the Main Hill area indicates that the greatest impact is still associated with the seeps, particularly seep 0601. Downgradient wells showed some levels of tritium similar to background. Figure 15 depicts the 2018 annual averages of tritium in the monitoring network.

4.3 Trend Analysis

Trend analysis was performed on VOCs and tritium data using the nonparametric MK test. Trend analysis is reported for data collected since 2005. This period was selected to represent data collected since the completion of remediation activities on the Main Hill.

Figure 15. 2018 Annual Averages for Tritium in Parcels 6, 7, and 8 Seeps and Groundwater

4.3.1 VOCs

Trend analysis of TCE data collected since 2005 indicates downward trends for seeps 0602, 0605, 0606, and 0607 and wells 0315, 0347, and 0389 (Table 11). Trend analysis was not performed on data from the remainder of the wells because results consistently showed nondetects or sporadic estimated detections. Summary reports providing details for each statistical evaluation for each monitoring location are in Appendix B.

Location	Trend					
ТСЕ						
Seep 0601	None					
Seep 0602	Down					
Seep 0605	Down					
Seep 0606	Down					
Seep 0607	Down					
Well 0315	Down					
Well 0347	Down					
Well 0386	None					
Well 0389	Down					
PCE						
Seep 0601	Down					
cis-1,2-DCE						
Seep 0602	Down					
Seep 0605	Down					

Table 11	Trend Analysis	Results for VOCs	in Parcels 6	7 and 8	(2005–2018)
	. 110110 Analysis			<i>i</i> , and 0	(2000 2010)

Concentrations of PCE in seep 0601 were evaluated for a trend in PCE concentrations (Table 11), and a downward trend was indicated. Data from seeps 0602 and 0605 were evaluated for trends in *cis*-1,2-DCE concentrations (Table 11), and downward trends were calculated for both seeps.

A separate trend analysis of TCE data collected since 2012 was performed (Table 12) to better evaluate more recent trends. As previously noted, the influences of surface water entering the subsurface appear to have been reduced or eliminated. Starting in 2012, similar patterns in concentration changes were observed in wells 0315 and 0347. Downward trends were calculated for seeps 0602, 0605, 0606, and 0607 and wells 0315 and 0347. The slope calculated for the well 0347 data suggests that the MCL may be reached by 2027.

Location	Trend
Seep 0601	None
Seep 0602	Down
Seep 0605	Down
Seep 0606	Down
Seep 0607	Down
Well 0315	Down
Well 0347	Down
Well 0386	None
Well 0389	None

Table 12. Trend Analysis Results for TCE in Parcels 6, 7, and 8 (2012–2018)

Table 13 summarizes the results from annual trend analyses of VOC data in Parcels 6, 7, and 8 since 2007. Results show that upward trends in TCE concentrations observed in the seeps (from 2007 to 2012) have reverted to either no trends or downward trends, starting in 2013. In 2017 and 2018, four out of five seeps showed downward trends in TCE concentrations. Source wells 0315 and 0347 showed upward trends between 2009 and 2014. Downward trends have been observed in both of these source wells starting this year (2018). TCE concentrations in seep 0601 and well 0386 vary enough to exhibit no trend in 2018. Downward trends in PCE and *cis*-1,2-DCE in seeps 0601 and 0605 started in 2011, and a downward trend in *cis*-1,2-DCE in seep 0602 started in 2016. These downward trends are attributable to source removal and efforts in 2011 to reduce the impact of surface water entering the subsurface on the Main Hill (DOE 2014a; DOE 2014b).

		Year											
Location	Analyte	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
Seep 0601		U	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Seep 0602		U	U	U	U	U	U	Ν	Ν	Ν	Ν	D	D
Seep 0605		D	D	D	D	D	D	D	D	D	D	D	D
Seep 0606					Ν	Ν	Ν	Ν	Ν	Ν	Ν	D	D
Seep 0607	TCE	Ν	Ν	Ν	N	Ν	Ν	Ν	Ν	Ν	Ν	D	D
Well 0315		Ν	Ν	U	N	Ν	Ν	Ν	Ν	Ν	Ν	D	D
Well 0347		N	Ν	N	N	Ν	U	U	U	N	N	Ν	D
Well 0386		N	D	D	D	D	D	Ν	D	D	D	D	Ν
Well 0389		N	Ν	Ν	N	Ν	Ν	D	D	D	D	D	D
Seep 0601	PCE			Ν	Ν	D	D	D	D	D	D	D	D
Seep 0602	cDCE					Ν	Ν	Ν	Ν	N	D	D	D
Seep 0605						D	D	D	D	D	D	D	D

Abbreviations:

D = downward trend

N = no trend (either upward or downward)

U = upward trend

4.3.2 Tritium

Trend analysis for tritium data collected since 2005 was performed for all seeps and wells where detectable levels have been consistently measured. The trend analysis showed that downward trends in activity were observed in all seeps and wells (Table 14). Summary reports providing details for each statistical evaluation for each monitoring location are in Appendix B.

Location	Trend
Se	eps
Seep 0601	Down
Seep 0602	Down
Seep 0605	Down
Seep 0606	Down
Seep 0607	Down
W	ells
Well 0138	Down
Well 0346	Down
Well 0347	Down
Well 0379	Down

Table 14. Summary of Trend Analysis Results for Tritium in the Main Hill Seeps and
Downgradient Wells

Table 15 summarizes the results from annual trend analysis of tritium data in Parcels 6, 7, and 8 since 2007. Results of the trend analysis of tritium data indicate downward trends for all of the seeps and wells starting in 2011, with the exception of well 0347, where no trends were observed from 2011 through 2013 and downward trends have been observed since 2014. The downward trends determined from post-remediation data support that the majority of the source of contamination was removed from the Main Hill area during remediation, and that flushing and radioactive decay have continued to lower the levels.

Table 15. Summary of Trend Analysis Results	for Tritium in Parcels 6, 7, and 8
---	------------------------------------

			Year											
Location	Analyte	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	
Seep 0601		D	D	D	D	D	D	D	D	D	D	D	D	
Seep 0602		Ν	Ν	Ν	Ν	D	D	D	D	D	D	D	D	
Seep 0605					D	D	D	D	D	D	D	D	D	
Seep 0606		D	D	D	D	D	D	D	D	D	D	D	D	
Seep 0607	Tritium	D	D	D	D	D	D	D	D	D	D	D	D	
Well 0138		D	D	D	D	D	D	D	D	D	D	D	D	
Well 0346		Ν	Ν	Ν	D	D	D	D	D	D	D	D	D	
Well 0347		Ν	Ν	Ν	D	Ν	Ν	Ν	D	D	D	D	D	
Well 0379		Ν	Ν	D	D	D	D	D	D	D	D	D	D	

Abbreviations:

D = downward trend

N = no trend (either upward or downward)

4.4 Groundwater Elevations

A map of the average groundwater elevations measured in the Parcels 6, 7, and 8 area during 2018 (Figure 16) represents the two flow regimes present at the Mound site: bedrock and the unconsolidated materials of the BVA. The approximate location of contact of the BVA with the bedrock is indicated on this figure. Groundwater originating from the well Main Hill area flows within the bedrock, following the bedrock topography. This groundwater enters the BVA along this contact, and flow within the BVA is parallel to the bedrock contact. Appendix C presents a summary of the groundwater elevations measured during 2018.

4.5 Recommendations

TCE concentrations greater than the MCL continued to be measured in seeps and in downgradient monitoring wells. The concentrations of VOCs continue to be variable at a few locations, although recent data (since 2012) indicate decreasing VOC concentrations at most locations. Quarterly sampling will continue at the seep and monitoring well locations in 2019 to determine if the system has stabilized since efforts were taken to reduce surface water infiltration into the subsurface (DOE 2014a; DOE 2014b) and VOCs continue to attenuate naturally. The evaluation of the 2018 data indicates that no changes to the VOC monitoring program should be made at this time.

All seeps and downgradient wells were below the MCL for tritium in 2018 and downward trends have been observed for all seeps and wells since 2011 and 2014, respectively. Historically, only seep 0601 has routinely shown levels of tritium that exceeded the MCL since MNA remedy monitoring was initiated in 2009. Tritium levels at this location have been below the MCL for two consecutive years of semiannual sampling and a downtrend has been in place since 2007. In accordance with the O&M plan, two consecutive years of tritium levels below the MCL qualify for a recommendation to the Core Team to discontinue sampling. Based on the downward trend for tritium in the seeps and groundwater monitoring wells and two consecutive years of tritium data below the MCL in seep 0601, it is recommended that the tritium monitoring program for Parcels 6, 7, and 8 be discontinued.

Figure 16. 2018 Averages for Groundwater Elevations in Parcels 6, 7, and 8

5.0 Inspection of the Monitoring System

A routine maintenance program has been established for the long-term groundwater monitoring locations at the Mound site. This program includes periodic inspections that focus on the integrity of each well and the condition of the protective casing and surface pad, the surrounding area, and the route of access. These inspections are usually performed during each sampling event.

Overall, the wells were in good condition. Two incidents involving wells in the monitoring program were noted:

- 1. Vandalism of well 0411 (Phase I).
- 2. Dedicated sampling pump missing from well 0138 (Parcels 6, 7, and 8).

It was discovered during the July 2018 (third quarter 2018) sampling event that well 0411 had been vandalized. When sampling personnel arrived at the location, they found the lid to the protective casing open and the lock missing. As part of their inspection, the samplers attempted to pull the pump, but it became lodged inside the well casing. Using a downhole camera, it was determined that a joint in the well casing had some corrosion and was preventing the well pump from passing through the casing. It was decided to pull the sample tubing from the pump and push the pump to the bottom of the well so that a new pump could be placed on top of the old pump. A temporary bladder pump was used to sample the well for the July 2018 sampling event and a new pump was installed.

During the October 2018 (fourth quarter 2018) sampling event, it was discovered that although well 0138 was locked when the samplers arrived at the location, the dedicated sampling pump had been removed. A downhole camera was used to determine that nothing had been dropped down into the well case and that the well was in good condition. A temporary bladder pump was used to sample the well for the October 2018 sampling event.

6.0 Data Validation

All data collected were validated in accordance with procedures specified in the Sitewide Operations and Maintenance Plan (DOE 2015). This procedure also fulfills the requirements of applicable procedures in the *Mound Methods Compendium* (MD 80045). Data validation was documented in reports prepared for each data package. All 2018 data, including data validation qualifiers, are summarized in Appendix D.

Laboratory performance is assessed by a review and evaluation of the following quality indicators:

- Sample shipping and receiving practices
- Chain of custody
- Laboratory blanks
- Preparation blanks
- Laboratory replicates
- Serial dilutions
- Detection limits
- Peak integrations
- Matrix spikes and matrix spike duplicates

- Holding times
- Instrument calibrations
- Interference check samples
- Radiochemical uncertainty
- Laboratory control samples
- Sample dilutions
- Surrogate recoveries
- Confirmation analyses
- Electronic data

A total of eight report identification numbers (RINs) were established for the 2018 environmental sampling efforts at the Mound site. A RIN is a set of samples that is relinquished to the laboratory using a Chain of Custody form. Data Assessment Reports are prepared for each RIN and are presented in Appendix E.

The laboratory prepares an analytical package for each RIN that includes a summary of results, a complete set of supporting analytical data for every analysis reported, and an electronic data deliverable that is used to upload analytical data into databases for validation and qualification before the data are released. Every RIN received from the laboratory is thoroughly reviewed and evaluated before the data package is finalized and released to the public. Table 16 lists the RINs associated with this report.

RIN	Area	Sampling Date(s)				
MND01-01.1801001		January 29–February 1, 2018				
MND01-01.1802002		February 5–8, 2018				
MND01-01.1804003	Parcels 6, 7, and 8	April 23–25, 2018				
MND01-01.1807004		July 30–August 2, 2018				
MND01-01.1810005		October 29–30, 2018				
MND01-02.1801001		January 29–30, 2018				
MND01-02.1807002	Phase I	July 30–31, 2018				
MND01-02.1808003		August 9, 2018				

Table 16. RINs for Mound Site Calendar Year 2018 Sampling

The Data Assessment Reports also summarize and assess the sampling quality control for each sampling event. The following items are included:

Sampling protocol • Trip blanks

- Equipment blanks •
- Outliers •

•

Field duplicates •

7.0 References

DOE (U.S. Department of Energy), 1992. *Remedial Investigation/Feasibility Study, Operable Unit 9, Site-Wide Work Plan, Mound Plant, Miamisburg, Ohio, April.*

DOE (U.S. Department of Energy), 1994a. *Operable Unit 9 Hydrogeologic Investigation: Bedrock Report, Mound Plant, Miamisburg, Ohio*, Technical Memorandum, January.

DOE (U.S. Department of Energy), 1994b. *Operable Unit 9 Hydrogeologic Investigation: Buried Valley Aquifer Report, Mound Plant, Miamisburg, Ohio*, Technical Memorandum (Revision 1), September.

DOE (U.S. Department of Energy), 1995. Operable Unit 1 Record of Decision, Mound Plant, Miamisburg, Ohio, June.

DOE (U.S. Department of Energy), 1996. *Operable Unit 9 Hydrogeologic Investigation: Groundwater Sweeps Report*, January.

DOE (U.S. Department of Energy), 1997. *Mound 2000 Residual Risk Evaluation Methodology*, *Mound Plant*, January 6.

DOE (U.S. Department of Energy), 1999. Work Plan for Environmental Restoration of the DOE Mound Site, The Mound 2000 Approach, February.

DOE (U.S. Department of Energy), 2014a. *Sitewide Groundwater Monitoring Report, Calendar Year 2012, Mound, Ohio*, LMS/MND/S10184, Office of Legacy Management, February.

DOE (U.S. Department of Energy), 2014b. *Sitewide Groundwater Monitoring Report, Mound, Ohio, Site, Calendar Year 2013*, LMS/MND/S11737, Office of Legacy Management, May.

DOE (U.S. Department of Energy), 2015. *Operations and Maintenance Plan for the* U.S. Department of Energy, Mound, Ohio, Site, LMS/MND/S08406, Office of Legacy Management, January.

DOE (U.S. Department of Energy), 2017. *Sitewide Groundwater Monitoring Report, Mound, Ohio, Site, Calendar Year 2016*, LMS/MND/S15892, Office of Legacy Management, June.

Mound Methods Compendium, Issue 2, MD-80045, prepared by BWXT of Ohio Inc.

Appendix A

Well Construction Summary

Location ID	Program	Northing	Easting	Ground Elevation (ft MSL)	TOC Elevation (ft MSL)	Well Depth (ft)	Top of Screen Elevation (ft MSL)	Bottom of Screen Elevation (ft MSL)	Screen Length (ft)	Well Material	Screened Formation
0118	Parcels 6, 7, 8	600464.95	1464737.80	705.36	704.86	40.1	674.73	664.73	10	4-inch SS	BVA
0124	Parcels 6, 7, 8	597789.14	1463654.10	704.18	705.12	55.9	659.18	649.18	10	4-inch SS	BVA
0126	Parcels 6, 7, 8	597603.58	1463643.30	704.61	705.54	54.8	660.78	650.78	10	4-inch SS	BVA
0138	Parcels 6, 7, 8	600124.02	1464263.30	698.59	697.76	40.2	667.59	657.59	10	4-inch SS	BVA
0315	Phase I	597786.28	1464020.40	722.57	723.99	54.8	679.17	669.17	10	4-inch SS	BVA
0346	Parcels 6, 7, 8	598070.11	1465048.90	743.50	742.97	45.5	702.50	697.50	5	4-inch SS	BVA
0347	Parcels 6, 7, 8	597819.31	1464034.10	723.76	725.20	68.4	666.76	656.76	10	4-inch SS	BVA
0353	Phase I	596686.11	1464609.40	744.04	745.33	19.3	731.04	726.04	5	4-inch SS	Bedrock
0379	Parcels 6, 7, 8	597624.41	1464095.90	715.24	716.11	40.9	685.24	675.24	10	4-inch SS	BVA
0386	Parcels 6, 7, 8	597789.23	1463896.00	725.16	724.79	86.6	648.16	638.16	10	4-inch SS	BVA
0387	Parcels 6, 7, 8	597654.63	1463839.50	721.26	720.89	81.6	644.26	639.26	5	4-inch SS	BVA
0389	Parcels 6, 7, 8	597781.29	1463891.90	724.96	724.65	51.7	682.96	672.96	10	4-inch SS	BVA
0392	Parcels 6, 7, 8	597648.77	1463838.30	721.18	720.84	44.7	681.18	676.18	5	4-inch SS	BVA
0411	Phase I	596808.81	1465077.10	834.83	836.57	39.7	806.89	796.89	10	2-inch SS	Bedrock
0443	Phase I	596886.22	1465177.11	856.89	858.78	39.6	829.20	819.20	10	2-inch PVC	Bedrock
0444	Phase I	596463.35	1465001.58	770.71	773.00	32.8	750.20	740.20	10	2-inch PVC	Bedrock
0445	Phase I	596448.12	1464738.54	741.29	743.43	42.5	710.93	700.93	10	2-inch PVC	Bedrock
P064	Phase I	596106.72	1464537.47	726.82	729.98	56.9	680.08	670.08	10	2-inch PVC	BVA
0601	Parcels 6, 7, 8	598743.22	1464280.80	817.52						Seep	Bedrock
0602	Parcels 6, 7, 8	598346.65	1465311.40	779.61						Seep	Bedrock
0605	Parcels 6, 7, 8	599824.63	1464935.40	817.70						Seep	Bedrock
0606	Parcels 6, 7, 8	599971.45	1464989.00	789.23						Seep	Bedrock
0607	Parcels 6, 7, 8	600015.30	1465105.70	797.00						Seep	Bedrock
0617	Phase I	596539.80	1464855.80	766.07						Seep	Bedrock

Table A-1. Well Construction Summary

Abbreviations: ft MSL = feet above mean sea level; PVC = polyvinyl chloride; SS = stainless steel; TOC = top of casing

Appendix B

Mann-Kendall Trending Summaries

Mann-Kendall Test for Monotonic Trend (from Battelle Memorial Institute, 2018)

The purpose of the Mann-Kendall (MK) test (Mann 1945, Kendall 1975, Gilbert 1987) is to statistically assess if there is a monotonic upward or downward trend of the variable of interest over time. A monotonic upward (downward) trend means that the variable consistently increases (decreases) through time, but the trend may or may not be linear.

Selected Statistical Testing Approach

The MK test can be used in place of a parametric linear regression analysis that is used to test if the slope of the estimated linear regression line is different from zero. The regression analysis requires that the residuals from the fitted regression line be normally distributed, an assumption not required by the MK test. Hence, the MK test is a nonparametric (distribution-free) test.

Calculations to Determine Whether a Trend Exists

The MK test is used to decide whether to reject the null hypothesis (H_0) that no monotonic trend exists in favor of the alternative hypothesis (H_a) that a monotonic trend exists.

One of three alternative hypotheses is chosen:

- 1. A monotonic downward trend exists.
- 2. Either a monotonic upward or monotonic downward trend exists.
- 3. A monotonic upward trend exists.

The data obtained over time must be convincing beyond a reasonable doubt before the MK test will reject the H_0 and accept the H_a hypothesis.

The MK test is conducted as follows (from Gilbert 1987, pp. 209–213):

- 1. List the data in the order in which they were collected over time, x_1 , x_2 , x_n , which denote the measurements obtained at times 1, 2, ..., *n*, respectively. The data are not necessarily (and need not be) collected at equally spaced time intervals, although equally spaced sampling over time is often preferred.
- 2. Determine the sign of all n(n-1)/2 possible differences $x_j x_k$, where j > k. These differences are

 $x_2 - x_1, x_3 - x_1, x_n - x_1, x_3 - x_2, x_4 - x_2, x_n - x_{n-2}, x_n - x_{n-1}$

3. Let $sgn(x_j - x_k)$ be an indicator function that takes on the values 1, 0, or -1 according to the sign of $x_j - x_k$, that is:

$$\operatorname{sgn}(x_j - x_k) = 1 \qquad \text{if } x_j - x_k > 0$$

 $sgn(x_j - x_k) = 0 \quad \text{if } x_j - x_k = 0,$ or if the sign of $x_j - x_k$ cannot be determined due to nondetects

 $\operatorname{sgn}(x_j - x_k) = -1 \quad \text{if } x_j - x_k < 0$

For example, if $x_j - x_k > 0$, then the observation at time *j*, denoted by x_j , is greater than the observation at time *k*, denoted by x_k .

4. Compute

$$S = \sum_{k=1}^{n-1} \sum_{j=k+1}^{n} \operatorname{sgn}(x_j - x_k)$$

which is the number of positive differences minus the number of negative differences. If *S* is a positive number, observations obtained later in time tend to be *larger* than observations made earlier. If *S* is a negative number, then observations made later in time tend to be *smaller* than observations made earlier.

5. If $n \le 10$, follow the procedure described in Gilbert (1987, page 209, Section 16.4.1) by looking up *S* in a table of probabilities (Gilbert 1987, Table A18, page 272). If this probability is less than α (the probability of concluding a trend exists when there is none), then reject the null hypothesis and conclude the trend exists. If *n* cannot be found in the table of probabilities (which can happen if there are tied data values), the next value farther from zero in the table is used. For example, if S = 12 and there is no value for S = 12 in the table, it is handled the same as S = 13.

If n > 10, continue with steps 6 through 8 to determine whether a trend exists. This follows the procedure described in Gilbert (1987, page 211, Section 16.4.2).

6. Compute the variance of *S* as follows:

$$VAR(S) = \frac{1}{18} \left[n(n-1)(2n+5) - \sum_{p=1}^{g} t_p(t_p-1)(2t_p+5) \right]$$

where *g* is the number of tied groups and t_p is the number of observations in the *p*th group. For example, in the sequence of measurements in time (23, 24, 29, 6, 29, 24, 24, 29, 23) we have g = 3 tied groups, for which $t_1 = 2$ for the tied value 23, $t_2 = 3$ for the tied value 24, and $t_3 = 3$ for the tied value 29.

7. Compute the MK test statistic, *Z*_{MK}, as follows:

$$Z_{MK} = \sqrt[S-1]{VAR(S)} \qquad \text{if} \qquad S > 0$$
$$Z_{MK} = 0 \qquad \text{if} \qquad S = 0$$
$$= \sqrt[S+1]{S+1} \qquad \text{if} \qquad S = 0$$

$$Z_{\rm MK} = \sqrt{VAR(S)}$$
 if $S < 0$

A positive value of Z_{MK} indicates that the data tend to increase with time; a negative value of Z_{MK} indicates that the data tend to decrease with time.

- 8. Finally, the hypothesis is tested. H_0 is rejected and H_a is accepted if $Z_{MK} \leq -Z_{1-\alpha}$ where:
 - *H*^o (null hypothesis): no monotonic trend exists
 - *H*_a (alternative hypothesis): a downward monotonic trend exists

Alpha (α) is the Type I error rate, which is the user-specified small probability that can be tolerated that the MK test will falsely reject the null hypothesis (i.e., will conclude a trend exists when there is none)

 $Z_{1-\alpha}$ is the $100(1-\alpha)^{\text{th}}$ percentile of the standard normal distribution. For example, if $\alpha = 0.05$, then $Z_{1-\alpha} = 1.64485$. Values of $Z_{1-\alpha}$ are provided in many statistics books (for example, Gilbert 1987, Table A1, page 254) and statistical software packages.

The following parameters were used:

alpha (α)	0.05 (5%)
beta (β)	0.1 (10%)
standard deviation of residuals from trend line	3%

Assumptions

The following assumptions underlie the MK test:

- 1. When no trend is present, the measurements (observations or data) obtained over time are independent and identically distributed. The assumption of independence means that the observations are not serially correlated over time.
- 2. The observations obtained over time are representative of the true conditions at sampling times.
- 3. The sample collection, handling, and measurement methods provide unbiased and representative observations of the underlying populations over time.

The MK test does not require that the measurements or the residuals about a trend line be normally distributed or that the trend, if present, be linear.

The MK test can be computed if there are missing values (no measurements for some sampling times), but the performance of the test will be adversely affected. The assumption of independence requires that the time between samples be sufficiently long so that there is no correlation between measurements collected at different times.

References

Battelle Memorial Institute, 2018. Visual Sampling Plan Users Guide.

Cleveland, W.S., 1979. "Robust Locally Weighted Regression and Smoothing Scatterplots," *Journal of the American Statistical Association* 74(368):829–836.

Gilbert, R.O., 1987. *Statistical Methods for Environmental Pollution Monitoring*, Wiley & Sons, New York.

Hirsch, R.M., J.R. Slack, and R.A. Smith, 1982. "Techniques of trend analysis for monthly water quality data," *Water Resources Research* 18(1):107–121.

Kendall, M.G., 1975. Rank Correlation Methods, 4th ed., Charles Griffin, London.

Mann, H.B., 1945. "Non-parametric tests against trend," *Econometrica* 13:163–171.

	A	В	С	D	E	F	G	Н	I	J	K	L		
1				Mann-Ker	ndall Trend T	est Analys	is							
2	Us	er Selecter	d Options	Well 01	38 Tritium									
3	Date/1	Time of Cor	nputation	ProUCL 5	.12/1/2019 9:	02:20 AM								
4		I	From File	WorkShee	et.xls									
5		Full	Precision	OFF										
6	Co	onfidence C	oefficient	0.95										
7	I	_evel of Sig	Inificance	0.05	05									
8				•										
9			C1											
10														
11		G	ieneral Sta	tistics										
12	Numb	per or Repo	rted Events	s Not Used	0									
13		Number	r of Genera	ated Events	45									
14		Numbe	r Values R	eported (n)	45									
15	Minimum 250													
16	Maximum 14630													
17		Mean 3639												
18			Geom	netric Mean	1838									
19				Median	1570									
20			Standard	d Deviation	4289									
21		C	Coefficient o	of Variation	1.179									
22														
23		М	ann-Kenda	all Test										
24			M-K Tes	st Value (S)	-746									
25			Critical V	/alue (0.05)	-1.645									
26		St	andard De	viation of S	102.2									
27		Sta	andardized	Value of S	-7.289									
28			Approxim	ate p-value	1.567E-13									
29														
30	Statistica	lly significa	ant evidend	ce of a deci	reasing									
31	trend at t	he specifie	d level of a	significance).									

	A	В	С	D	E	F	G	Н		J	K	L			
1				Mann-Ker	ndall Trend	Test Anal	ysis								
2	Use	er Selected	Options	Well 03	15 TCE (since 200)5)								
3	Date/T	ime of Con	nputation	ProUCL 5.	.11/31/2019	9 5:30:13 F	PM								
4		F	From File	WorkShee	et.xls										
5		Full F	Precision	OFF											
6	Cor	nfidence C	oefficient	0.95											
7	L	evel of Sig	nificance	0.05											
8															
9			C1												
10															
11		Ge	neral Statis	stics											
12	Number or Reported Events Not Used 0														
13	Number of Generated Events 5														
14	Number Values Reported (n) 55														
15	Minimum 3.5														
16	Maximum 17.2														
17	Mean 9.459														
18			Geom	etric Mean	8.736										
19				Median	9.65										
20			Standard	d Deviation	3.563										
21		С	coefficient o	of Variation	0.377										
22															
23		Mar	nn-Kendall	Test											
24			M-K Tes	st Value (S)	-546										
25			Critical V	alue (0.05)	-1.645										
26		Sta	andard Dev	viation of S	137.7										
27		Sta	andardized	Value of S	-3.957										
28			Approxima	ate p-value	3.7986E-5										
29															
30	Statistical	ly significa	ant evidenc	ce of a decr	reasing										
31	trend at th	ne specifie	d level of s	significance).										

	A	В	С	D	E	F	G	Н	J	K	L
1				Mann-Ker	ndall Trend	Test Anal	ysis				
2	Use	er Selecteo	Options	Well 03	15 TCE (s	since $2\overline{01}$	2)				
3	Date/T	ime of Con	nputation	ProUCL 5	12/1/2019	8:36:09 AI	N		 		
4		F	From File	WorkShee	et.xls						
5		Full F	Precision	OFF							
6	Cor	nfidence C	oefficient	0.95							
7	L	evel of Sig	nificance	0.05							
8											
9			C1								
10											
11		Ge	neral Statis	stics							
12	Numbe	er or Repo	rted Events	s Not Used	0						
13		Number	of Genera	ted Events	28						
14		Number	r Values Re	eported (n)	28						
15	Minimum 3.5										
16				Maximum	16.6						
17				Mean	8.079						
18			Geom	etric Mean	7.437						
19				Median	7.38						
20			Standard	d Deviation	3.307						
21		C	coefficient o	of Variation	0.409						
22											
23		Mar	nn-Kendall	Test							
24			M-K Tes	t Value (S)	-234						
25			Critical V	alue (0.05)	-1.645						
26	Standard Deviation of S 50.62										
27	Standardized Value of S -4.603										
28	Approximate p-value 2.0796E-										
29	29										
30	30 Statistically significant evidence of a decreasing										
31	trend at th	ne specifie	d level of s	significance).						

	A	В	С	D	E	F	G	Н	J	K	L
1				Mann-Ker	ndall Trend	Test Ana	lysis				
2	Use	er Selecteo	d Options	Well 034	46 Tritiur	n					
3	Date/T	ime of Con	nputation	ProUCL 5.	12/1/2019	9:04:37 Al	Μ				
4		F	From File	WorkShee	et.xls						
5		Full I	Precision	OFF							
6	Cor	nfidence C	oefficient	0.95							
7	L	evel of Sig	nificance	0.05							
8											
9			C1								
10											
11		Ge	neral Stati	stics							
12	Numbe	er or Repo	rted Events	s Not Used	0						
13		Number	of Genera	ted Events	45						
14		Numbe	r Values Ro	eported (n)	45						
15				Minimum	18.6						
16				Maximum	14900						
17				Mean	2098						
18			Geom	etric Mean	1221						
19				Median	1730						
20			Standard	d Deviation	2484						
21		C	Coefficient o	of Variation	1.184						
22											
23		Mar	nn-Kendall	Test							
24			M-K Tes	t Value (S)	-793						
25			Critical V	alue (0.05)	-1.645						
26		Sta	andard Dev	viation of S	102.2						
27		Sta	andardized	Value of S	-7.749						
28			Approxima	ate p-value	4.633E-15						
29											
30	30 Statistically significant evidence of a decreasing										
31	trend at th	ne specifie	d level of s	significance).						

	A	В	С	D	E	F	G	Н	J	K	L
1				Mann-Ken	dall Trend	Test Anal	ysis				
2	Use	er Selecteo	dOptions	Well 034	47 TCE (since $2\overline{00}$	5)				
3	Date/T	ime of Con	nputation	ProUCL 5.	11/31/2019	9 5:37:43 F	PM		 		
4		F	From File	WorkShee	t.xls						
5		Full I	Precision	OFF							
6	Cor	nfidence C	oefficient	0.95							
7	L	evel of Sig	nificance	0.05							
8											
9			C1								
10											
11		Ge	neral Statis	stics							
12	Numbe	er or Repo	rted Events	s Not Used	0						
13		Number	of Genera	ted Events	52						
14		Numbe	r Values Re	eported (n)							
15	Minimum 0.431										
16				Maximum	33.2						
17				Mean	22.11						
18			Geom	etric Mean	20.39						
19				Median	22.6						
20			Standard	d Deviation	5.673						
21		C	Coefficient o	of Variation	0.257						
22											
23		Mar	nn-Kendall	Test							
24			M-K Tes	t Value (S)	-238						
25			Critical V	alue (0.05)	-1.645						
26	Standard Deviation of S 126.7										
27	Standardized Value of S -1.871										
28	Approximate p-value 0.030										
29	29										
30	30 Statistically significant evidence of a decreasing										
31	trend at th	ne specifie	d level of s	significance	•						

	A	В	С	D	E	F	G	Н	J	K	L
1				Mann-Ker	ndall Trend	Test Anal	ysis				
2	Use	er Selected	Options	Well 03	47 TCE (since $2\overline{01}$	2)				
3	Date/T	ime of Con	nputation	ProUCL 5	12/1/2019	8:40:03 AI	N		 		
4		F	From File	WorkShee	et.xls						
5		Full F	Precision	OFF							
6	Cor	nfidence C	oefficient	0.95							
7	L	evel of Sig	nificance	0.05							
8											
9			C1								
10											
11		Ge	neral Statis	stics							
12	Numbe	er or Repo	rted Events	s Not Used	0						
13		Number	of Genera	ted Events	30						
14		Number	r Values Re	eported (n)	30						
15	Minimum 11.7										
16				Maximum	31.2						
17				Mean	21.65						
18			Geom	etric Mean	21.18						
19				Median	21.55						
20			Standard	d Deviation	4.445						
21		C	coefficient o	of Variation	0.205						
22											
23		Mar	nn-Kendall	Test							
24			M-K Tes	t Value (S)	-177						
25			Critical V	alue (0.05)	-1.645						
26	Standard Deviation of S 56.03										
27	Standardized Value of S -3.141										
28			Approxima	ate p-value	8.4180E-4						
29	9										
30	Statistical	ly significa	int evidenc	e of a decr	reasing						
31	trend at th	ne specifie	d level of s	significance).						

	A	В	С	D	E	F	G	Н	J	K	L
1				Mann-Ker	dall Trend	Test Anal	lysis		 		
2	Use	er Selecteo	d Options	Well 034	47 Tritiur	n					
3	Date/T	ime of Con	nputation	ProUCL 5.	12/1/2019	9:05:53 Al	Μ				
4		F	From File	WorkShee	et.xls						
5		Full I	Precision	OFF							
6	Cor	nfidence C	oefficient	0.95							
7	L	evel of Sig	nificance	0.05							
8				*							
9			C1								
10											
11		Ge	neral Stati	stics							
12	Numbe	er or Repo	rted Events	s Not Used	0						
13		Number	of Genera	ted Events	44						
14		Numbe	r Values Ro	eported (n)	44						
15				Minimum	157						
16				Maximum	16800						
17				Mean	5182						
18			Geom	etric Mean	3600						
19				Median	4125						
20			Standard	d Deviation	4273						
21		С	Coefficient o	of Variation	0.825						
22											
23		Mar	nn-Kendall	Test							
24			M-K Tes	t Value (S)	-522						
25			Critical V	alue (0.05)	-1.645						
26		Sta	andard Dev	viation of S	98.87						
27		Sta	andardized	Value of S	-5.27						
28			Approxima	ate p-value	6.8387E-8						
29											
30	30 Statistically significant evidence of a decreasing										
31	trend at th	ne specifie	d level of s	significance).						

	A	В	С	D	E	F	G	Н	J	K	L
1				Mann-Ker	ndall Trend	Test Ana	ysis				
2	Use	er Selecteo	d Options	Well 037	79 Tritiur	n					
3	Date/Ti	ime of Con	nputation	ProUCL 5.	12/1/2019	9:07:18 AI	N				
4		F	From File	WorkShee	et.xls						
5		Full	Precision	OFF							
6	Cor	nfidence C	oefficient	0.95							
7	Le	evel of Sig	nificance	0.05							
8				•							
9			C1								
10											
11		Ge	neral Statis	stics							
12	Numbe	er or Repo	rted Events	s Not Used	0						
13		Number	of Genera	ted Events	38						
14		Numbe	r Values Re	eported (n)	38						
15				Minimum	479						
16				Maximum	3890						
17				Mean	1442						
18			Geom	etric Mean	1324						
19				Median	1515						
20			Standard	d Deviation	605.2						
21		C	Coefficient o	of Variation	0.42						
22											
23		Mar	nn-Kendall	Test							
24			M-K Tes	t Value (S)	-420						
25			Critical V	alue (0.05)	-1.645						
26		St	andard Dev	viation of S	79.51						
27		Sta	andardized	Value of S	-5.27						
28			Approxima	ate p-value	6.8319E-8						
29											
30	Statistical	ly significa	ant evidenc	ce of a decr	easing						
31	trend at th	e specifie	d level of s	significance).						

	A	В	С	D	E	F	G	Н	J	K	L
1				Mann-Ken	dall Trend	Test Ana	lysis				
2	Use	er Selecteo	d Options	Well 038	36 TCE (since $2\overline{00}$	5)				
3	Date/Ti	ime of Con	nputation	ProUCL 5.	11/31/201	9 5:35:08 F	PM				
4		F	From File	WorkShee	t.xls						
5		Full I	Precision	OFF							
6	Cor	nfidence C	oefficient	0.95							
7	L	evel of Sig	nificance	0.05							
8											
9			C1								
10											
11		Ge	neral Stati	stics							
12	Numbe	er or Repo	rted Events	s Not Used	0						
13		Number	of Genera	ited Events	47						
14		Numbe	r Values R	eported (n)							
15	Minimum 0.1										
16				Maximum	3.96						
17				Mean	2.15						
18			Geom	netric Mean	1.727						
19				Median	2.35						
20			Standard	d Deviation	0.893						
21		C	Coefficient of	of Variation	0.415						
22											
23		Mar	nn-Kendall	Test							
24			M-K Tes	st Value (S)	46						
25			Critical V	alue (0.05)	1.645						
26		Sta	andard Dev	viation of S	109						
27	Standardized Value of S 0.413										
28	Approximate p-value 0.34										
29	29										
30	30 Insufficient evidence to identify a significant										
31	trend at t	he specifie	ed level of	significance	€.						

	A	В	С	D	E	F	G	Н	J	K	L
1				Mann-Ken	dall Trend	Test Anal	lysis				
2	Use	er Selecteo	d Options	Well 038	36 TCE (since $2\overline{01}$	2)				
3	Date/T	ime of Con	nputation	ProUCL 5.	12/1/2019	8:41:59 AI	M		 		
4		F	From File	WorkShee	t.xls						
5		Full I	Precision	OFF							
6	Cor	nfidence C	oefficient	0.95							
7	L	evel of Sig	nificance	0.05							
8											
9			C1								
10											
11		Ge	neral Stati	stics							
12	Numbe	er or Repo	rted Events	s Not Used	0						
13		Number	of Genera	ted Events	28						
14		Numbe	r Values R	eported (n)							
15	Minimum 0.97										
16				Maximum	3.04						
17				Mean	2.383						
18			Geom	netric Mean	2.332						
19				Median	2.4						
20			Standard	d Deviation	0.448						
21		C	coefficient o	of Variation	0.188						
22											
23		Mar	nn-Kendall	Test							
24			M-K Tes	st Value (S)	-65						
25			Critical V	alue (0.05)	-1.645						
26		Sta	andard Dev	viation of S	50.54						
27	Standardized Value of S -1.266										
28			Approxima	ate p-value	0.103						
29											
30	30 Insufficient evidence to identify a significant										
31	trend at t	he specifie	ed level of	significance).						

	A	В	С	D	E	F	G	Н	J	K	L
1				Mann-Ker	ndall Trend	Test Anal	ysis				
2	Use	er Selecteo	Options	Well 03	89 TCE (since $2\overline{00}$	5)				
3	Date/T	ime of Con	nputation	ProUCL 5	11/31/2019	9 5:40:13 F	PM		 		
4		F	From File	WorkShee	et.xls						
5		Full F	Precision	OFF							
6	Cor	nfidence C	oefficient	0.95							
7	L	evel of Sig	nificance	0.05							
8											
9			C1								
10											
11		Ge	neral Statis	stics							
12	Numbe	er or Repo	rted Events	s Not Used	0						
13		Number	of Genera	ted Events	47						
14		Number	r Values Re	eported (n)	47						
15				Minimum	0.16						
16				Maximum	1.48						
17				Mean	0.53						
18			Geom	etric Mean	0.406						
19				Median	0.408						
20			Standard	d Deviation	0.383						
21		C	coefficient o	of Variation	0.722						
22											
23		Mar	nn-Kendall	Test							
24			M-K Tes	t Value (S)	-433						
25			Critical V	alue (0.05)	-1.645						
26	Standard Deviation of S 108.1										
27	Standardized Value of S -3.998										
28	Approximate p-value 3.1955E-										
29	29										
30	30 Statistically significant evidence of a decreasing										
31	trend at th	ne specifie	d level of s	significance).						
	A	В	С	D	E	F	G	Н	J	K	L
----	-------------	-------------	---------------	---------------	------------	------------------------	-------	---	------	---	---
1				Mann-Ken	dall Trend	Test Anal	lysis				
2	Use	er Selecteo	d Options	Well 038	39 TCE (since $2\overline{01}$	2)				
3	Date/T	ime of Con	nputation	ProUCL 5.	12/1/2019	8:44:27 Al	M		 		
4		F	From File	WorkShee	t.xls						
5		Full I	Precision	OFF							
6	Cor	nfidence C	oefficient	0.95							
7	L	evel of Sig	nificance	0.05							
8											
9			C1								
10											
11		Ge	neral Stati	stics							
12	Numbe	er or Repo	rted Events	s Not Used	0						
13		Number	of Genera	ted Events	28						
14		Numbe	r Values R	eported (n)	28						
15				Minimum	0.16						
16				Maximum	0.9						
17				Mean	0.344						
18			Geom	netric Mean	0.281						
19				Median	0.21						
20			Standard	d Deviation	0.235						
21		C	coefficient o	of Variation	0.683						
22											
23		Mar	nn-Kendall	Test							
24			M-K Tes	t Value (S)	-38						
25			Critical V	alue (0.05)	-1.645						
26		Sta	andard Dev	viation of S	48.47						
27		Sta	andardized	Value of S	-0.763						
28			Approxima	ate p-value	0.223						
29											
30	Insufficier	nt evidence	e to identify	y a significa	int						
31	trend at t	he specifie	ed level of	significance	€.						

	A	В	С	D	E	F	G	Н	J	K	L
1				Mann-Ken	dall Trend	Test Anal	lysis				
2	Use	er Selecteo	I Options	Well 041	1 cis-1,2	2-DCE					
3	Date/T	ime of Con	nputation	ProUCL 5.	11/30/201	9 3:56:35 F	PM				
4		F	-rom File	WorkShee	t.xls						
5		Full I	Precision	OFF							
6	Cor	nfidence C	oefficient	0.95							
7	L	evel of Sig	nificance	0.05							
8											
9			C1								
10											
11		Ge	neral Statis	stics							
12	Numbe	er or Repo	rted Events	s Not Used	0						
13		Number	of Genera	ted Events	58						
14		Numbe	r Values Re	eported (n)	58						
15				Minimum	0.65						
16				Maximum	4.8						
17				Mean	2.206						
18			Geom	etric Mean	2.025						
19				Median	2.055						
20			Standard	d Deviation	0.915						
21		C	oefficient c	of Variation	0.415						
22											
23		Mar	n-Kendall	Test							
24			M-K Tes	t Value (S)	-35						
25			Critical V	alue (0.05)	-1.645						
26		Sta	andard Dev	viation of S	149						
27		Sta	andardized	Value of S	-0.228						
28			Approxima	ate p-value	0.41						
29											
30	Insufficier	nt evidence	e to identify	y a significa	nt						
31	trend at t	he specifie	d level of	significance	Э.						

	A	В	С	D	E	F	G	Н	J	K	L
1				Mann-Ker	ndall Trend	Test Anal	ysis		 		
2	Use	er Selecteo	Options	Well 04	11 TCE						
3	Date/Ti	ime of Con	nputation	ProUCL 5	.11/30/2019	9 3:45:52 F	PM				
4		F	From File	WorkShee	et.xls						
5		Full I	Precision	OFF							
6	Cor	nfidence C	oefficient	0.95							
7	Le	evel of Sig	nificance	0.05							
8											
9			C1								
10											
11		Ge	neral Stati	stics							
12	Numbe	er or Repo	rted Events	s Not Used	0						
13		Number	of Genera	ted Events	55						
14		Numbe	r Values Ro	eported (n)	55						
15				Minimum	8.4						
16				Maximum	22						
17				Mean	12.16						
18			Geom	etric Mean	11.93						
19				Median	12						
20			Standard	d Deviation	2.557						
21		C	Coefficient of	of Variation	0.21						
22											
23		Mar	nn-Kendall	Test							
24			M-K Tes	t Value (S)	-432						
25			Critical V	alue (0.05)	-1.645						
26		Sta	andard Dev	viation of S	137.5						
27		Sta	andardized	Value of S	-3.134						
28			Approxima	ate p-value	8.6152E-4						
29											
30	Statistical	ly significa	ant evidenc	ce of a deci	reasing						
31	trend at th	e specifie	d level of s	significance	Э.						

	A	В	С	D	E	F	G	Н	J	K	L
1				Mann-Ker	ndall Trend	Test Ana	ysis		 		
2	Use	er Selecteo	d Options	0443 cis	-1,2-DCH	3					
3	Date/Ti	ime of Con	nputation	ProUCL 5.	.11/30/201	9 3:53:20 F	PM				
4		F	From File	WorkShee	et.xls						
5		Full I	Precision	OFF							
6	Cor	nfidence C	oefficient	0.95							
7	Le	evel of Sig	nificance	0.05							
8				1							
9			C1								
10											
11		Ge	neral Statis	stics							
12	Numbe	er or Repo	rted Events	s Not Used	0						
13		Number	of Genera	ted Events	43						
14		Numbe	r Values Re	eported (n)	43						
15				Minimum	0.22						
16				Maximum	5						
17				Mean	0.801						
18			Geom	etric Mean	0.639						
19				Median	0.75						
20			Standard	d Deviation	0.747						
21		C	Coefficient o	of Variation	0.933						
22											
23		Mar	nn-Kendall	Test							
24			M-K Tes	t Value (S)	-447						
25			Critical V	alue (0.05)	-1.645						
26		Sta	andard Dev	viation of S	94.67						
27		Sta	andardized	Value of S	-4.711						
28			Approxima	ate p-value	1.2318E-6						
29											
30	Statistical	ly significa	ant evidenc	ce of a decr	reasing						
31	trend at th	e specifie	d level of s	significance).						

	A	В	С	D	E	F	G	Н	J	K	L
1				Mann-Ken	dall Trend	Test Anal	ysis				
2	Use	er Selected	d Options	Well 044	3 TCE						
3	Date/T	ime of Con	nputation	ProUCL 5.	11/30/201	9 3:50:01 F	PM		 		
4		F	From File	WorkShee	t.xls						
5		Full	Precision	OFF							
6	Cor	nfidence C	oefficient	0.95							
7	L	evel of Sig	nificance	0.05							
8				·							
9			C1								
10											
11		Ge	neral Stati	stics							
12	Numbe	er or Repo	rted Events	s Not Used	0						
13		Number	of Genera	ted Events	44						
14		Numbe	r Values R	eported (n)	44						
15				Minimum	2.2						
16				Maximum	14						
17				Mean	7.492						
18			Geom	netric Mean	6.928						
19				Median	7.26						
20			Standard	d Deviation	2.816						
21		C	Coefficient o	of Variation	0.376						
22											
23		Mar	nn-Kendall	Test							
24			M-K Tes	st Value (S)	68						
25			Critical V	'alue (0.05)	1.645						
26		St	andard De	viation of S	98.85						
27		Sta	andardized	Value of S	0.678						
28			Approxim	ate p-value	0.249						
29											
30	Insufficier	nt evidence	e to identif	y a significa	nt						
31	trend at t	he specifie	ed level of	significance).						

	A	В	С	D	E	F	G	Н	J	К	L
1				Mann-Ken	dall Trend	Test Anal	ysis				
2	Use	er Selecteo	Options	Seep 060	D1 PCE						
3	Date/Ti	ime of Con	nputation	ProUCL 5.	11/31/2019	9 6:03:42 F	PM				
4		F	From File	WorkShee	t.xls						
5		Full I	Precision	OFF							
6	Cor	nfidence C	oefficient	0.95							
7	Le	evel of Sig	nificance	0.05							
8											
9			C1								
10											
11		Ge	neral Stati	stics							
12	Numbe	er or Repo	rted Events	s Not Used	0						
13		Number	of Genera	ted Events	57						
14		Numbe	r Values Ro	eported (n)	57						
15				Minimum	0.1						
16				Maximum	52						
17				Mean	11.97						
18			Geom	etric Mean	8.078						
19				Median	11						
20			Standard	d Deviation	8.657						
21		C	Coefficient of	of Variation	0.723						
22											
23		Mar	nn-Kendall	Test							
24			M-K Tes	t Value (S)	-389						
25			Critical V	alue (0.05)	-1.645						
26		Sta	andard Dev	viation of S	145.2						
27		Sta	andardized	Value of S	-2.671						
28			Approxima	ate p-value	0.00378						
29											
30	Statistical	ly significa	ant evidenc	ce of a decr	easing						
31	trend at th	e specifie	d level of s	significance	•						

	A	В	С	D	E	F	G	Н	J	K	L
1				Mann-Ken	dall Trend	Test Ana	ysis				
2	Use	er Selected	Options	Seep 060	01 TCE (since 200)5)				
3	Date/T	ime of Con	nputation	ProUCL 5.	11/31/201	9 5:14:28 F	PM				
4		F	From File	WorkShee	t.xls						
5		Full F	Precision	OFF							
6	Cor	nfidence C	oefficient	0.95							
7	L	evel of Sig	nificance	0.05							
8											
9			C1								
10											
11		Ge	neral Stati	stics							
12	Numbe	er or Repo	rted Events	s Not Used	0						
13		Number	of Genera	ted Events	56						
14		Number	r Values R	eported (n)	56						
15				Minimum	0.11						
16				Maximum	10.3						
17				Mean	4.931						
18			Geom	etric Mean	3.893						
19				Median	5.165						
20			Standard	d Deviation	2.23						
21		C	oefficient o	of Variation	0.452						
22											
23		Mar	nn-Kendall	Test							
24			M-K Tes	t Value (S)	-15						
25			Critical V	alue (0.05)	-1.645						
26		Sta	andard Dev	viation of S	141.5						
27		Sta	andardized	Value of S	-0.099						
28			Approxima	ate p-value	0.461						
29											
30	Insufficier	nt evidence	e to identify	y a significa	Int						
31	trend at t	he specifie	ed level of	significance	€.						

	A	В	С	D	E	F	G	Н	J	K	L
1				Mann-Ken	dall Trend	Test Anal	ysis				
2	Use	er Selecteo	I Options	Seep 060)1 TCE (since 201	2)				
3	Date/T	ime of Con	nputation	ProUCL 5.	12/1/2019	8:26:10 AI	N				
4		F	From File	WorkSheet	t.xls						
5		Full I	Precision	OFF							
6	Cor	nfidence C	oefficient	0.95							
7	L	evel of Sig	nificance	0.05							
8											
9			C1								
10											
11		Ge	neral Statis	stics							
12	Numbe	er or Repo	rted Events	s Not Used	0						
13		Number	of Genera	ted Events	28						
14		Numbe	r Values Re	eported (n)	28						
15				Minimum	0.16						
16				Maximum	10.3						
17				Mean	4.843						
18			Geom	netric Mean	3.469						
19				Median	5.69						
20			Standard	d Deviation	2.715						
21		С	oefficient c	of Variation	0.561						
22											
23		Mar	n-Kendall	Test							
24			M-K Tes	t Value (S)	-40						
25			Critical V	alue (0.05)	-1.645						
26		Sta	andard Dev	viation of S	50.6						
27		Sta	andardized	Value of S	-0.771						
28			Approxima	ate p-value	0.22						
29											
30	Insufficier	nt evidence	e to identify	y a significa	nt						
31	trend at t	he specifie	ed level of	significance).						

	A	В	С	D	E	F	G	Н	J	K	L
1				Mann-Ker	ndall Trend	Test Anal	lysis		 		
2	Use	er Selecteo	d Options	Seep 060	01 Tritiur	n					
3	Date/T	ime of Con	nputation	ProUCL 5.	12/1/2019	8:55:05 Al	M				
4		F	From File	WorkShee	et.xls						
5		Full I	Precision	OFF							
6	Cor	nfidence C	oefficient	0.95							
7	L	evel of Sig	nificance	0.05							
8				*							
9			C1								
10											
11		Ge	neral Stati	stics							
12	Numbe	er or Repo	rted Events	s Not Used	0						
13		Number	of Genera	ted Events	44						
14		Numbe	r Values Ro	eported (n)	44						
15				Minimum	89.3						
16				Maximum	789040						
17				Mean	116197						
18			Geom	etric Mean	56359						
19				Median	57600						
20			Standard	d Deviation	160703						
21		C	Coefficient o	of Variation	1.383						
22											
23		Mar	nn-Kendall	Test							
24			M-K Tes	t Value (S)	-689						
25			Critical V	alue (0.05)	-1.645						
26		Sta	andard Dev	viation of S	98.87						
27		Sta	andardized	Value of S	-6.959						
28			Approxima	ate p-value	1.714E-12						
29											
30	Statistical	ly significa	ant evidend	ce of a decr	reasing						
31	trend at th	ne specifie	d level of s	significance).						

	A	В	С	D	E	F	G	Н	J	K	L
1				Mann-Ker	ndall Trend	Test Anal	ysis				
2	Use	er Selecteo	Options	Seep 06	$02 \operatorname{cis-1},2$	2-DCE					
3	Date/T	ime of Con	nputation	ProUCL 5	11/31/2019	9 6:01:47 F	PM		 		
4		F	From File	WorkShee	et.xls						
5		Full F	Precision	OFF							
6	Cor	nfidence C	oefficient	0.95							
7	L	evel of Sig	nificance	0.05							
8				-							
9			C1								
10											
11		Ge	neral Statis	stics							
12	Numbe	er or Repo	rted Events	s Not Used	0						
13		Number	of Genera	ted Events	39						
14		Number	r Values Re	eported (n)	39						
15				Minimum	1.95						
16				Maximum	42.3						
17				Mean	15.87						
18			Geom	etric Mean	12.74						
19				Median	15.2						
20			Standard	d Deviation	9.903						
21		C	oefficient o	of Variation	0.624						
22											
23		Mar	nn-Kendall	Test							
24			M-K Tes	t Value (S)	-286						
25			Critical V	alue (0.05)	-1.645						
26		Sta	andard Dev	viation of S	82.63						
27		Sta	andardized	Value of S	-3.449						
28			Approxima	ate p-value	2.8129E-4						
29											
30	Statistical	ly significa	int evidenc	e of a decr	reasing						
31	trend at th	ne specifie	d level of s	significance							

	A	В	С	D	E	F	G	Н		J	K	L
1				Mann-Ker	dall Trend	Test Anal	ysis					
2	Use	er Selecteo	l Options	Seep 060	02 TCE (s	since 200	5)					
3	Date/T	ime of Con	nputation	ProUCL 5.	11/31/2019	9 5:18:17 F	PM					
4		F	From File	WorkShee	et.xls							
5		Full F	Precision	OFF								
6	Cor	nfidence C	oefficient	0.95								
7	L	evel of Sig	nificance	0.05								
8												
9			C1									
10												
11		Ge	neral Stati	stics								
12	Numbe	er or Repo	rted Events	s Not Used	0							
13		Number	of Genera	ted Events	35							
14		Number	r Values Re	eported (n)	35							
15				Minimum	0.46							
16				Maximum	139							
17				Mean	28.94							
18			Geom	etric Mean	18.59							
19				Median	22.2							
20			Standard	d Deviation	27.14							
21		С	coefficient o	of Variation	0.938							
22												
23		Mar	nn-Kendall	Test								
24			M-K Tes	t Value (S)	-324							
25			Critical V	alue (0.05)	-1.645							
26		Sta	andard Dev	viation of S	70.41							
27		Sta	ndardized	Value of S	-4.588							
28			Approxima	ate p-value	2.2427E-6							
29												
30	Statistical	ly significa	int evidenc	ce of a decr	reasing							
31	trend at th	ne specifie	d level of s	significance).							

	A	В	С	D	E	F	G	Н	J	K	L
1				Mann-Ker	ndall Trend	Test Anal	ysis		 		
2	Use	er Selecteo	d Options	Seep 060	02 TCE (s	since 201	2)				
3	Date/T	ime of Con	nputation	ProUCL 5.	.12/1/2019	8:27:44 AM	N				
4		F	From File	WorkShee	et.xls						
5		Full I	Precision	OFF							
6	Cor	nfidence C	oefficient	0.95							
7	L	evel of Sig	nificance	0.05							
8				•							
9			C1								
10											
11		Ge	neral Stati	stics							
12	Numb	er or Repo	rted Events	s Not Used	0						
13		Number	of Genera	ted Events	18						
14		Numbe	r Values Ro	eported (n)	18						
15				Minimum	0.46						
16				Maximum	32.6						
17				Mean	13.2						
18			Geom	etric Mean	9.393						
19				Median	12.65						
20			Standard	d Deviation	8.922						
21		C	coefficient o	of Variation	0.676						
22											
23		Mar	nn-Kendall	Test							
24			M-K Tes	t Value (S)	-96						
25			Tabulat	ted p-value	0						
26		Sta	andard Dev	viation of S	26.38						
27		Sta	andardized	Value of S	-3.601						
28			Approxima	ate p-value	1.5852E-4						
29											
30	Statistical	ly significa	ant evidenc	ce of a decr	reasing						
31	trend at th	ne specifie	d level of s	significance).						

	A	В	С	D	E	F	G	Н	J	K	L
1				Mann-Ker	ndall Trend	Test Ana	lysis				
2	Use	er Selecteo	d Options	Seep 060	02 Tritiur	n					
3	Date/T	ime of Con	nputation	ProUCL 5.	12/1/2019	8:56:26 AI	Μ				
4		F	From File	WorkShee	et.xls						
5		Full I	Precision	OFF							
6	Cor	nfidence C	oefficient	0.95							
7	L	evel of Sig	nificance	0.05							
8				*							
9			C1								
10											
11		Ge	neral Statis	stics							
12	Numbe	er or Repo	rted Events	s Not Used	0						
13		Number	of Genera	ted Events	27						
14		Numbe	r Values Re	eported (n)	27						
15				Minimum	1490						
16				Maximum	82700						
17				Mean	19133						
18			Geom	etric Mean	13350						
19				Median	14500						
20			Standard	d Deviation	17673						
21		C	Coefficient o	of Variation	0.924						
22											
23		Mar	nn-Kendall	Test							
24			M-K Tes	t Value (S)	-253						
25			Critical V	alue (0.05)	-1.645						
26		Sta	andard Dev	viation of S	47.97						
27		Sta	andardized	Value of S	-5.253						
28			Approxima	ate p-value	7.4650E-8						
29											
30	Statistical	ly significa	ant evidenc	ce of a decr	easing						
31	trend at th	ne specifie	d level of s	significance).						

	A	В	С	D	E	F	G	Н	J	K	L
1				Mann-Ker	dall Trend	Test Anal	ysis		 		
2	Use	er Selecteo	l Options	Seep 06	05 cis-1,2	-DCE					
3	Date/T	ime of Con	nputation	ProUCL 5.	11/31/2019	9 6:05:27 F	PM				
4		F	From File	WorkShee	et.xls						
5		Full F	Precision	OFF							
6	Cor	nfidence C	oefficient	0.95							
7	L	evel of Sig	nificance	0.05							
8											
9			C1								
10											
11		Ge	neral Stati	stics							
12	Numb	er or Repo	rted Events	s Not Used	0						
13		Number	of Genera	ted Events	49						
14		Number	r Values R	eported (n)	49						
15				Minimum	0.16						
16				Maximum	32.2						
17				Mean	5.26						
18			Geom	etric Mean	3.194						
19				Median	2.9						
20			Standard	d Deviation	6.694						
21		C	oefficient o	of Variation	1.273						
22											
23		Mar	nn-Kendall	Test							
24			M-K Tes	t Value (S)	-631						
25			Critical V	alue (0.05)	-1.645						
26		Sta	andard Dev	viation of S	116						
27		Sta	andardized	Value of S	-5.431						
28			Approxima	ate p-value	2.8067E-8						
29											
30	Statistical	ly significa	int evidenc	ce of a decr	reasing						
31	trend at th	ne specifie	d level of s	significance							

	A	В	С	D	E	F	G	Н	I	J	K	L
1				Mann-Ker	ndall Trend	Fest Analy	/sis	 				
2	Us	er Selecteo	d Options	Seep 06	05 TCE (si	ince 2005	5)					
3	Date/T	ime of Con	nputation	ProUCL 5.	.11/31/2019	5:20:11 P	М					
4		F	From File	WorkShee	et.xls							
5		Full	Precision	OFF								
6	Co	nfidence C	oefficient	0.95								
7	L	evel of Sig	nificance	0.05								
8												
9			C1									
10												
11		G	eneral Stat	tistics								
12	Numb	er or Repo	rted Events	s Not Used	0							
13		Number	[·] of Genera	ted Events	53							
14		Numbe	r Values Re	eported (n)	53							
15				Minimum	0.3							
16				Maximum	97							
17				Mean	13.78							
18			Geom	netric Mean	10.59							
19				Median	12.2							
20			Standard	d Deviation	13.01							
21		С	coefficient c	of Variation	0.944							
22												
23		Ма	inn-Kendal	ll Test								
24			M-K Tes	st Value (S)	-647							
25			Critical V	'alue (0.05)	-1.645							
26		St	andard Dev	viation of S	130.4							
27		Sta	andardized	Value of S	-4.955							
28			Approxima	ate p-value	3.6087E-7							
29												
30	Statistica	lly significa	ant evidenc	ce of a decr	reasing							
31	trend at t	he specifie	d level of s	significance).							

	A	В	С	D	E	F	G	Н	I	J	K	L
1				Mann-Ker	ndall Trend	Test Ana	ysis					
2	Us	er Selecteo	d Options	Seep 060	05 TCE (s	since 201	2)					
3	Date/T	ime of Con	nputation	ProUCL 5	12/1/2019	8:29:12 A	N					
4		F	From File	WorkShee	et.xls							
5		Full I	Precision	OFF								
6	Co	nfidence C	oefficient	0.95								
7	L	evel of Sig	nificance	0.05								
8												
9			C1									
10												
11		Ge	neral Statis	stics								
12	Numb	er or Repo	rted Events	s Not Used	0							
13		Number	of Genera	ted Events	27							
14		Numbe	r Values Re	eported (n)	27							
15				Minimum	0.3							
16				Maximum	19.8							
17				Mean	9.723							
18			Geom	etric Mean	7.55							
19				Median	9.88							
20			Standard	d Deviation	4.783							
21		C	Coefficient o	of Variation	0.492							
22												
23		Mar	nn-Kendall	Test								
24			M-K Tes	t Value (S)	-201							
25			Critical V	alue (0.05)	-1.645							
26		Sta	andard Dev	viation of S	47.97							
27		Sta	andardized	Value of S	-4.169							
28			Approxima	ate p-value	1.5271E-5							
29												
30	Statistica	lly significa	ant evidenc	ce of a decr	reasing							
31	trend at t	he specifie	d level of s	significance).							

	A	В	С	D	E	F	G	Н	J	K	L
1				Mann-Ker	ndall Trend	Test Ana	lysis				
2	Use	er Selecteo	d Options	Seep 06	05 Tritiur	n					
3	Date/Ti	ime of Con	nputation	ProUCL 5.	12/1/2019	8:57:45 Al	M				
4		F	From File	WorkShee	et.xls						
5		Full I	Precision	OFF							
6	Cor	nfidence C	oefficient	0.95							
7	L	evel of Sig	nificance	0.05							
8				•							
9			C1								
10											
11		Ge	neral Stati	stics							
12	Numbe	er or Repo	rted Events	s Not Used	0						
13		Number	of Genera	ted Events	42						
14		Numbe	r Values Ro	eported (n)	42						
15				Minimum	2690						
16				Maximum	269300						
17				Mean	32502						
18			Geom	etric Mean	17239						
19				Median	15450						
20			Standard	d Deviation	52936						
21		C	Coefficient o	of Variation	1.629						
22											
23		Mar	nn-Kendall	Test							
24			M-K Tes	t Value (S)	-695						
25			Critical V	alue (0.05)	-1.645						
26		Sta	andard Dev	viation of S	92.27						
27		Sta	andardized	Value of S	-7.521						
28			Approxima	ate p-value	2.715E-14						
29											
30	Statistical	ly significa	ant evidenc	ce of a decr	easing						
31	trend at th	ne specifie	d level of s	significance).						

	A	В	С	D	E	F	G	Н	J	K	L
1				Mann-Ken	dall Trend	Test Ana	lysis				
2	Use	er Selecteo	d Options	Seep 060	6 TCE (since 200	5)				
3	Date/T	ime of Con	nputation	ProUCL 5.	11/31/201	9 5:22:09 F	PM				
4		F	From File	WorkShee	t.xls						
5		Full I	Precision	OFF							
6	Cor	nfidence C	oefficient	0.95							
7	L	evel of Sig	nificance	0.05							
8											
9			C1								
10											
11		Ge	neral Stati	stics							
12	Numb	er or Repo	rted Events	s Not Used	0						
13		Number	of Genera	ted Events	37						
14		Numbe	r Values R	eported (n)	37						
15				Minimum	0.15						
16				Maximum	9.01						
17				Mean	3.039						
18			Geom	netric Mean	1.731						
19				Median	1.88						
20			Standard	d Deviation	2.669						
21		C	coefficient o	of Variation	0.878						
22											
23		Mar	nn-Kendall	Test							
24			M-K Tes	t Value (S)	-179						
25			Critical V	alue (0.05)	-1.645						
26		Sta	andard Dev	viation of S	76.4						
27		Sta	andardized	Value of S	-2.33						
28			Approxima	ate p-value	0.0099						
29											
30	Statistical	ly significa	ant evidenc	ce of a decr	easing						
31	trend at th	ne specifie	d level of s	significance	•						

	A	В	С	D	E	F	G	Н	J	K	L
1				Mann-Ker	ndall Trend	Test Anal	ysis				
2	Use	er Selected	d Options	Seep 06	06 TCE (since 201	2)				
3	Date/T	ime of Con	nputation	ProUCL 5.	12/1/2019	8:30:54 Al	N		 		
4		F	From File	WorkShee	et.xls						
5		Full F	Precision	OFF							
6	Cor	nfidence C	oefficient	0.95							
7	L	evel of Sig	nificance	0.05							
8											
9			C1								
10											
11		Ge	neral Stati	stics							
12	Numbe	er or Repo	rted Events	s Not Used	0						
13		Number	of Genera	ted Events	28						
14		Number	r Values R	eported (n)	28						
15				Minimum	0.16						
16				Maximum	9.01						
17				Mean	3.017						
18			Geom	etric Mean	1.641						
19				Median	1.845						
20			Standard	d Deviation	2.749						
21		C	coefficient o	of Variation	0.911						
22											
23		Mar	nn-Kendall	Test							
24			M-K Tes	t Value (S)	-160						
25			Critical V	alue (0.05)	-1.645						
26		Sta	andard Dev	viation of S	50.53						
27		Sta	andardized	Value of S	-3.147						
28			Approxima	ate p-value	8.2587E-4						
29											
30	Statistical	ly significa	ant evidenc	ce of a decr	reasing						
31	trend at th	ne specifie	d level of s	significance).						

	A	В	С	D	E	F	G	Н	J	K	L
1				Mann-Ker	ndall Trend	Test Anal	lysis				
2	Use	er Selecteo	Options	Seep 060	06 Tritiur	n					
3	Date/Ti	ime of Con	nputation	ProUCL 5.	12/1/2019	8:59:03 AI	Μ				
4		F	From File	WorkShee	et.xls						
5		Full I	Precision	OFF							
6	Cor	nfidence C	oefficient	0.95							
7	L	evel of Sig	nificance	0.05							
8											
9			C1								
10											
11		Ge	neral Stati	stics							
12	Numbe	er or Repo	rted Events	s Not Used	0						
13		Number	of Genera	ted Events	26						
14		Numbe	r Values Ro	eported (n)	26						
15				Minimum	1360						
16				Maximum	159930						
17				Mean	16253						
18			Geom	etric Mean	7307						
19				Median	5670						
20			Standard	d Deviation	32914						
21		C	Coefficient of	of Variation	2.025						
22											
23		Mar	nn-Kendall	Test							
24			M-K Tes	t Value (S)	-240						
25			Critical V	alue (0.05)	-1.645						
26		Sta	andard Dev	viation of S	45.36						
27		Sta	andardized	Value of S	-5.269						
28			Approxima	ate p-value	6.8506E-8						
29											
30	Statistical	ly significa	ant evidenc	ce of a decr	easing						
31	trend at th	e specifie	d level of s	significance).						

	A	В	С	D	E	F	G	Н	J	K	L
1				Mann-Ker	ndall Trend	Test Ana	ysis				
2	Use	er Selecteo	d Options	Seep 06	07 TCE (since 200)5)				
3	Date/Ti	ime of Con	nputation	ProUCL 5.	11/31/2019	9 5:24:00 F	PM				
4		F	From File	WorkShee	et.xls						
5		Full	Precision	OFF							
6	Cor	nfidence C	oefficient	0.95							
7	L	evel of Sig	nificance	0.05							
8				•							
9			C1								
10											
11		Ge	neral Stati	stics							
12	Numbe	er or Repo	rted Events	s Not Used	0						
13		Number	r of Genera	ted Events	52						
14		Numbe	r Values Ro	eported (n)	52						
15				Minimum	0.51						
16				Maximum	13						
17				Mean	5.727						
18			Geom	etric Mean	4.851						
19				Median	5.085						
20			Standard	d Deviation	2.879						
21		C	Coefficient o	of Variation	0.503						
22											
23		Mar	nn-Kendall	Test							
24			M-K Tes	t Value (S)	-401						
25			Critical V	alue (0.05)	-1.645						
26		St	andard Dev	viation of S	126.7						
27		Sta	andardized	Value of S	-3.157						
28			Approxima	ate p-value	7.9830E-4						
29											
30	Statistical	ly significa	ant evidend	ce of a decr	reasing						
31	trend at th	e specifie	d level of s	significance).						

	A	В	С	D	E	F	G	Н	J	K	L
1				Mann-Ker	ndall Trend	Test Anal	ysis				
2	Us	er Selecteo	d Options	Seep 060	07 TCE (since 201	2)				
3	Date/T	ime of Con	nputation	ProUCL 5.	.12/1/2019	8:32:44 Al	N				
4		F	From File	WorkShee	et.xls						
5		Full I	Precision	OFF							
6	Co	nfidence C	oefficient	0.95							
7	L	_evel of Sig	nificance	0.05							
8											
9			C1								
10											
11		Ge	neral Statis	stics							
12	Numb	er or Repo	rted Events	s Not Used	0						
13		Number	of Genera	ted Events	28						
14		Numbe	r Values Re	eported (n)	28						
15				Minimum	0.51						
16				Maximum	9.95						
17				Mean	4.948						
18			Geom	etric Mean	4.033						
19				Median	4.865						
20			Standard	d Deviation	2.546						
21		C	Coefficient o	of Variation	0.515						
22											
23		Mar	nn-Kendall	Test							
24			M-K Tes	t Value (S)	-178						
25			Critical V	alue (0.05)	-1.645						
26		Sta	andard Dev	viation of S	50.62						
27		Sta	andardized	Value of S	-3.497						
28			Approxima	ate p-value	2.3535E-4						
29											
30	Statistica	lly significa	ant evidenc	e of a decr	reasing						
31	trend at t	he specifie	d level of s	significance).						

	A	В	С	D	E	F	G	Н	J	К	L
1				Mann-Ker	ndall Trend	Test Ana	ysis		 		
2	Use	er Selected	d Options	Seep 060	07 Tritiur	n					
3	Date/T	ime of Con	nputation	ProUCL 5.	.12/1/2019	9:00:26 Al	N				
4		F	From File	WorkShee	et.xls						
5		Full F	Precision	OFF							
6	Cor	nfidence C	oefficient	0.95							
7	L	evel of Sig	nificance	0.05							
8											
9			C1								
10											
11		Ge	neral Stati	stics							
12	Numbe	er or Repo	rted Events	s Not Used	0						
13		Number	of Genera	ted Events	41						
14		Number	r Values R	eported (n)	41						
15				Minimum	2080						
16				Maximum	133130						
17				Mean	12240						
18			Geom	etric Mean	6872						
19				Median	5750						
20			Standard	d Deviation	22595						
21		C	coefficient o	of Variation	1.846						
22											
23		Mar	nn-Kendall	Test							
24			M-K Tes	t Value (S)	-599						
25			Critical V	alue (0.05)	-1.645						
26		Sta	andard Dev	viation of S	89.03						
27		Sta	andardized	Value of S	-6.717						
28			Approxima	ate p-value	9.267E-12						
29											
30	Statistical	ly significa	ant evidenc	ce of a decr	reasing						
31	trend at th	ne specifie	d level of s	significance).						

	A	В	С	D	E	F	G	Н	J	К	L
1				Mann-Ken	dall Trend	Test Anal	ysis				
2	Use	er Selecteo	d Options	Seep 061	7 cis-1,2	-DCE					
3	Date/T	ime of Con	nputation	ProUCL 5.	11/30/2019	9 4:07:03 F	PM				
4		F	From File	WorkShee	t.xls						
5		Full I	Precision	OFF							
6	Cor	nfidence C	oefficient	0.95							
7	L	evel of Sig	nificance	0.05							
8											
9			C1								
10											
11		Ge	neral Stati	stics							
12	Numbe	er or Repo	rted Events	s Not Used	0						
13		Number	of Genera	ted Events	43						
14		Numbe	r Values R	eported (n)	43						
15				Minimum	0.59						
16				Maximum	4.7						
17				Mean	1.97						
18			Geom	netric Mean	1.82						
19				Median	2						
20			Standard	d Deviation	0.755						
21		C	coefficient o	of Variation	0.383						
22											
23		Mar	nn-Kendall	Test							
24			M-K Tes	t Value (S)	-246						
25			Critical V	alue (0.05)	-1.645						
26		Sta	andard Dev	viation of S	95.52						
27		Sta	andardized	Value of S	-2.565						
28			Approxima	ate p-value	0.00516						
29											
30	Statistical	ly significa	ant evidenc	ce of a decr	easing						
31	trend at th	ne specifie	d level of s	significance	•						

	A	В	С	D	E	F	G	Н		J	K	L		
1			Mann-Kendall Trend Test Analysis											
2	Use	er Selected	d Options	Seep 061	Seep 0617 TCE									
3	3 Date/Time of Computation			ProUCL 5.11/30/2019 4:02:49 PM										
4		F	From File	WorkShee	WorkSheet.xls									
5		Full F	Precision	OFF	OFF									
6	Cor	nfidence C	oefficient	0.95	0.95									
7	L	evel of Sig	nificance	0.05										
8														
9			C1											
10														
11		Ge	neral Stati	stics										
12	Number or Reported Events Not Used 0			0										
13	Number of Generated Events			41										
14	Number Values Reported (n)			41										
15	Minimum 1.			1.84										
16	Maximum			10.4										
17	Mean			7										
18			Geom	etric Mean	6.56									
19				Median	7.76									
20			Standard	d Deviation	2.189									
21		С	Coefficient of	of Variation	0.313									
22														
23		Mar	nn-Kendall	Test										
24			M-K Tes	t Value (S)	-74									
25	Critical Value (0.05)			-1.645										
26	Standard Deviation of S 89			89.01										
27		Standardized Value of S -0.82		-0.82										
28	Approximate p-value 0.206													
29														
30	Insufficier	nt evidence	e to identif	y a significa	nt									
31	31 trend at the specified level of significance.													

Appendix C

2018 Groundwater Elevations

This page intentionally left blank

Well ID	Date/Time	Elevation of Top of Casing (ft AMSL)	Depth from Top of Casing (ft)	Groundwater Elevation (ft AMSL)	
0050	2018-01-29 09:33:00	745.00	1.58	743.75	
0353	2018-07-30 09:34:00	745.33	4.88	740.45	
	2018-01-10 00:00:00		25.55	679.56	
	2018-02-13 00:00:00	-	23.98	681.13	
	2018-03-15 00:00:00		21.86	683.25	
	2018-04-11 00:00:00		19.44	685.67	
	2018-05-29 00:00:00		24.50	680.61	
0400	2018-06-13 00:00:00	705.11	24.76	680.35	
	2018-07-10 00:00:00		24.77	680.34	
	2018-08-02 00:00:00		25.59	679.52	
	2018-09-13 00:00:00		23.78	681.33	
	2018-09-19 00:00:00		24.00	681.11	
	2018-10-16 00:00:00		25.06	680.05	
	2018-01-10 00:00:00		24.34	679.68	
	2018-02-06 12:15:00		24.55	679.47	
	2018-02-13 00:00:00		22.81	681.21	
	2018-03-15 00:00:00		20.76	683.26	
	2018-04-11 00:00:00		18.43	685.59	
	2018-05-01 10:20:00		21.62	682.40	
	2018-05-29 00:00:00		23.32	680.70	
0402	2018-06-13 00:00:00	704.02	23.53	680.49	
	2018-07-10 00:00:00		23.60	680.42	
	2018-08-02 00:00:00		24.39	679.63	
	2018-08-08 13:10:00		24.75	679.27	
	2018-09-13 00:00:00		22.56	681.46	
	2018-09-19 00:00:00		22.83	681.19	
	2018-10-16 00:00:00		23.87	680.15	
	2018-11-07 10:00:00		20.90	683.12	
0/11	2018-01-30 11:00:00	836 57	15.58	820.99	
0411	2018-08-09 12:15:00	050.57	29.11	807.46	
0443	2018-01-30 10:30:00	959 79	25.71	833.07	
0443	2018-07-30 10:35:00	000.70	water level was below the top of the pump		
0444	2018-01-30 09:05:00	773.00	20.10	752.90	
0444	2018-07-30 12:40:00	113.00	24.80	748.20	
0445	2018-01-29 13:00:00	7/2 /2	14.50	728.93	
0440	2018-07-30 13:31:00	140.40	15.70	727.73	

Abbreviation:

ft AMSL = feet above mean sea level

Well ID	Date/Time	Elevation of Top of Casing (ft AMSL)	Depth from Top of Casing (ft)	Groundwater Elevation (ft AMSL)	
	2018-01-31 12:09:00		22.02	682.84	
0110	2018-04-23 09:52:00	704.00	20.88	683.98	
0118	2018-07-31 13:00:00	704.86	24.12	680.74	
	2018-10-29 13:47:00		24.12	680.74	
	2018-01-30 13:46:00		23.33	681.79	
0404	2018-04-23 11:56:00	705 40	21.56	683.56	
0124	2018-07-30 12:55:00	705.12	25.14	679.98	
	2018-10-30 10:18:00		25.28	679.84	
	2018-01-10 00:00:00		25.56	679.98	
	2018-01-31 13:06:00		23.71	681.83	
	2018-02-13 00:00:00		24.11	681.43	
	2018-03-15 00:00:00		22.31	683.23	
	2018-04-11 00:00:00		20.13	685.41	
	2018-04-23 11:28:00		21.98	683.56	
	2018-05-29 00:00:00		24.59	680.95	
0126	2018-06-13 00:00:00	705.54	24.81	680.73	
	2018-07-10 00:00:00		24.86	680.68	
	2018-07-30 12:25:00		25.61	679.93	
	2018-08-02 00:00:00		25.62	679.92	
	2018-09-13 00:00:00		23.76	681.78	
	2018-09-19 00:00:00		24.11	681.43	
	2018-10-16 00:00:00		25.11	680.43	
	2018-10-30 09:50:00		25.71	679.83	
	2018-01-31 12:35:00	No top of opping	25.27		
0400	2018-04-23 09:15:00	elevation;	24.15	No groundwater	
0136	2018-07-30 13:31:00	temporary	27.20	elevations calculated	
	2018-10-30 13:53:00	completion	27.28		
	2018-02-01 10:19:00		42.22	681.77	
0215	2018-04-24 12:40:00	702.00	40.55	683.44	
0315	2018-08-02 09:00:00	725.99	44.10	679.89	
	2018-10-29 11:25:00		44.15	679.84	
	2018-01-30 13:20:00		13.80	729.17	
	2018-02-08 09:05:00		13.89	729.08	
0346	2018-04-25 10:20:00	742.97	12.20	730.77	
	2018-08-01 13:03:00		14.66	728.31	
	2018-10-29 09:58:00		15.18	727.79	
	2018-02-01 09:40:00		43.43	681.77	
0247	2018-04-24 13:11:00	705 00	41.75	683.45	
0347	2018-08-02 09:53:00	120.20	45.35	679.85	
	2018-10-29 12:31:00		45.37	679.83	

Table C-2. Parcels 6, 7, and 8 Groundwater Elevations

Well ID	Date/Time	Elevation of Top of Casing (ft AMSL)	Depth from Top of Casing (ft)	Groundwater Elevation (ft AMSL)
	2018-01-10 00:00:00	, , ,	36.16	679.95
	2018-01-30 12:50:00		34.36	681.75
	2018-02-08 09:50:00		34.62	681.49
	2018-02-13 00:00:00		34.75	681.36
	2018-03-15 00:00:00		32.85	683.26
	2018-04-11 00:00:00		30.62	685.49
	2018-04-25 11:50:00		32.80	683.31
	2018-05-02 13:34:00		33.70	682.41
	2018-05-29 00:00:00		35.16	680.95
0379	2018-06-13 00:00:00	716.11	35.38	680.73
	2018-07-10 00:00:00		35.42	680.69
	2018-07-31 13:28:00		36.25	679.86
	2018-08-02 00:00:00		36.20	679.91
	2018-08-07 13:13:00		36.37	679.74
	2018-09-13 00:00:00		34.33	681.78
	2018-09-19 00:00:00		34.64	681.47
	2018-10-16 00:00:00		35.69	680.42
	2018-10-29 14:20:00		36.27	679.84
	2018-11-07 09:28:00		32.56	683.55
	2018-01-31 10:05:00		42.87	681.92
0000	2018-04-24 10:48:00	704 70	41.28	683.51
0366	2018-08-01 10:32:00	724.79	44.90	679.89
	2018-10-30 12:11:00		44.98	679.81
	2018-01-31 09:13:00		39.16	681.73
0207	2018-04-24 09:53:00	720.80	37.50	683.39
0307	2018-08-01 09:45:00	720.09	41.10	679.79
	2018-10-30 12:53:00		41.12	679.77
	2018-01-31 09:44:00		42.88	681.77
0290	2018-04-24 10:23:00	704.65	41.20	683.45
0389	2018-08-01 10:05:00	724.00	44.75	679.90
	2018-10-30 12:30:00		44.65	680.00
	2018-01-31 08:55:00		38.97	681.87
0202	2018-04-24 09:21:00	700.04	37.30	683.54
0392	2018-08-01 09:25:00	/ 20.84	40.85	679.99
	2018-10-30 13:22:00		40.93	679.91

Abbreviation:

ft AMSL = feet above mean sea level

This page intentionally left blank

Appendix D

2018 Groundwater and Seep Data Tables

This page intentionally left blank

Location	Analyte	Sample Date	Value	Detection Limit	Laboratory Qualifiers	Validation Qualifiers	Units	Sample Type
0252	aia 1.2 Diablaraathana	1/29/2018	0.16	0.16	U		µg/L	F
0355	CIS-1,2-Dichloroethene	7/30/2018	0.16	0.16	U		µg/L	F
0050	Disselying any gam	1/29/2018	4.5				mg/L	F
0353	Dissolved oxygen	7/30/2018	0.59				mg/L	F
0252	Ovidation reduction potential	1/29/2018	139.8				mV	F
0303	Oxidation-reduction potential	7/30/2018	38.7				mV	F
0252		1/29/2018	7.28				s.u.	F
0353	рп	7/30/2018	7.08				s.u.	F
0252	Creatin conductores	1/29/2018	1330				µmho/cm	F
0303		7/30/2018	1230				µmho/cm	F
0252	Temperature	1/29/2018	9				°C	F
0353		7/30/2018	16.6				°C	F
0252	Tetrachloroethene	1/29/2018	0.16	0.16	U		µg/L	F
0355		7/30/2018	0.16	0.16	U		µg/L	F
0252	trans-1,2-Dichloroethene	1/29/2018	0.16	0.16	U		μg/L	F
0303		7/30/2018	0.16	0.16	U		μg/L	F
0252	Trichloroethene	1/29/2018	0.16	0.16	U		µg/L	F
0355		7/30/2018	0.16	0.16	U		µg/L	F
0252	Turbidity	1/29/2018	19.3				NTU	F
0303		7/30/2018	8.71				NTU	F
0252	Vinyl chlorida	1/29/2018	0.16	0.16	U		µg/L	F
0355		7/30/2018	0.16	0.16	U		µg/L	F
		1/30/2018	0.84	0.16	J		μg/L	F
0411	cis-1,2-Dichloroethene	8/9/2018	2.11	0.16			μg/L	D
		8/9/2018	2.08	0.16			µg/L	F
0414	Dissolved exugen	1/30/2018	1.62				mg/L	F
0411		8/9/2018	1.44				mg/L	F

Table D-1. Phase I Groundwater Data

Location	Analyte	Sample Date	Value	Detection Limit	Laboratory Qualifiers	Validation Qualifiers	Units	Sample Type
0414	Ovidation reduction potential	1/30/2018	106.7				mV	F
0411	Oxidation-reduction potential	8/9/2018	150.6				mV	F
0414		1/30/2018	7.08				s.u.	F
0411	рн	8/9/2018	7.08				s.u.	F
0444		1/30/2018	1310				µmho/cm	F
0411	Specific conductance	8/9/2018	6950				µmho/cm	F
0444	Tamaanatuma	1/30/2018	10.7				°C	F
0411	remperature	8/9/2018	14.8				°C	F
		1/30/2018	0.16	0.16	U		µg/L	F
0411	Tetrachloroethene	8/9/2018	0.16	0.16	U		µg/L	D
		8/9/2018	0.16	0.16	U		µg/L	F
	trans-1,2-Dichloroethene	1/30/2018	0.16	0.16	U		µg/L	F
0411		8/9/2018	0.16	0.16	U		µg/L	D
		8/9/2018	0.16	0.16	U		µg/L	F
	Trichloroethene	1/30/2018	10.1	0.16			µg/L	F
0411		8/9/2018	8.87	0.16			µg/L	D
		8/9/2018	9.01	0.16			µg/L	F
0444	Turbidity	1/30/2018	25.4				NTU	F
0411		8/9/2018	7.51				NTU	F
		1/30/2018	0.16	0.16	U		µg/L	F
0411	Vinyl chloride	8/9/2018	0.16	0.16	U		µg/L	D
		8/9/2018	0.16	0.16	U		µg/L	F
0440	ais 1.2 Disklarsethers	1/30/2018	0.39	0.16	J		µg/L	F
0443	CIS-1,2-Dichloroethene	7/30/2018	0.36	0.16	J		µg/L	F
0440	Disashadaanaa	1/30/2018	3.18				mg/L	F
0443	Dissolved oxygen	7/30/2018	6.61				mg/L	F
0.440		1/30/2018	78.7				mV	F
0443	Oxidation-reduction potential	7/30/2018	37.4				mV	F
0440		1/30/2018	7.07				s.u.	F
0443	рн	7/30/2018	7.07				s.u.	F

Table D-1. Phase I Groundwater Data (continued)

Location	Analyte	Sample Date	Value	Detection Limit	Laboratory Qualifiers	Validation Qualifiers	Units	Sample Type
0442	Specific conductors	1/30/2018	1230				µmho/cm	F
0443	Specific conductance	7/30/2018	1370				µmho/cm	F
0442	Tomporatura	1/30/2018	11.5				°C	F
0443	remperature	7/30/2018	15.4				°C	F
0442	Tatraphlaraathana	1/30/2018	0.16	0.16	U		µg/L	F
0443	retrachioroethene	7/30/2018	0.16	0.16	U		µg/L	F
0440	(mana 4 2 Disklamathana	1/30/2018	0.16	0.16	U		µg/L	F
0443	trans-1,2-Dichloroethene	7/30/2018	0.16	0.16	U		µg/L	F
0442	Tricklereethees	1/30/2018	8.93	0.16			µg/L	F
0443	l richioroethene	7/30/2018	6.38	0.16			µg/L	F
0442	T	1/30/2018	3.13				NTU	F
0443	lurbidity	7/30/2018	49.9				NTU	F
0442	Vinyl chloride	1/30/2018	0.16	0.16	U		µg/L	F
0443		7/30/2018	0.16	0.16	U		µg/L	F
0444	cis-1,2-Dichloroethene	1/30/2018	0.16	0.16	U		µg/L	F
0444		7/30/2018	0.16	0.16	U		µg/L	F
0444	Dissolved oxygen	1/30/2018	2.13				mg/L	F
0444		7/30/2018	4.69				mg/L	F
0444	Oxidation-reduction potential	1/30/2018	182.7				mV	F
0444		7/30/2018	31				mV	F
0444		1/30/2018	7.05				s.u.	F
0444	рН	7/30/2018	7.1				s.u.	F
0444		1/30/2018	1250				µmho/cm	F
0444	Specific conductance	7/30/2018	1230				µmho/cm	F
0444	Tama and ma	1/30/2018	10.9				°C	F
0444	Temperature	7/30/2018	15.4				°C	F
0444	Total able as a the sec	1/30/2018	0.16	0.16	U		μg/L	F
0444	i etrachioroethene	7/30/2018	0.16	0.16	U		μg/L	F
0444		1/30/2018	0.16	0.16	U		μg/L	F
0444	traris-1,2-Dicnioroetnene	7/30/2018	0.16	0.16	U		μg/L	F

Table D-1. Phase I Groundwater Data (continued)
Location	Analyte	Sample Date	Value	Detection Limit	Laboratory Qualifiers	Validation Qualifiers	Units	Sample Type
0444	Trichlereethere	1/30/2018	0.16	0.16	U		µg/L	F
0444	Inchioroethene	7/30/2018	0.16	0.16	U		µg/L	F
0444	Turkidia	1/30/2018	32.6				NTU	F
0444	Turblaity	7/30/2018	4.57				NTU	F
0444		1/30/2018	0.16	0.16	U		µg/L	F
0444	Vinyi chionde	7/30/2018	0.16	0.16	U		µg/L	F
0445	aia 1.2 Diablaraathana	1/29/2018	0.16	0.16	U		µg/L	F
0445	<i>cis</i> -1,2-Dichloroethene	7/30/2018	0.16	0.16	U		µg/L	F
0445	Disastradious	1/29/2018	1.67				mg/L	F
0445	Dissolved oxygen	7/30/2018	0.21				mg/L	F
0445		1/29/2018	-26.4				mV	F
0445	Oxidation-reduction potential	7/30/2018	-116.3				mV	F
0445		1/29/2018	7.19				s.u.	F
0445	рн	7/30/2018	7.17				s.u.	F
0445		1/29/2018	1511				µmho/cm	F
0445	Specific conductance	7/30/2018	18140				µmho/cm	F
0445	T	1/29/2018	10.5				°C	F
0445	Temperature	7/30/2018	16.2				°C	F
0445	To the oblight of the set	1/29/2018	0.16	0.16	U		µg/L	F
0445	l'etrachioroethene	7/30/2018	0.16	0.16	U		µg/L	F
0445		1/29/2018	0.16	0.16	U		µg/L	F
0445	trans-1,2-Dichloroethene	7/30/2018	0.16	0.16	U		µg/L	F
0445	Tricklereethere	1/29/2018	0.16	0.16	U		µg/L	F
0445	l richioroethene	7/30/2018	0.16	0.16	U		µg/L	F
0445	Turkida .	1/29/2018	5				NTU	F
0445	l urbiaity	7/30/2018	9.93				NTU	F
0445	Minud alt la sida	1/29/2018	0.16	0.16	U		µg/L	F
0445		7/30/2018	0.16	0.16	U		µg/L	F

Table D-1. Phase I Groundwater Data (continued)

Location	Analyte	Sample Date	Value	Detection Limit	Laboratory Qualifiers	Validation Qualifiers	Units	Sample Type
		1/30/2018	0.16	0.16	U		µg/L	F
DOG4	ais 1.2 Disbloresthere	1/30/2018	0.16	0.16	U		µg/L	D
F004	CIS-1,2-DICHIOIOEthene	7/31/2018	0.36	0.16	J		µg/L	F
		7/31/2018	0.36	0.16	J		µg/L	D
DOG4	Dissolved ovugen	1/30/2018	2.85				mg/L	F
F004	Dissolved oxygen	7/31/2018	2.43				mg/L	F
DOG4	Ovidation raduction potential	1/30/2018	184.7				mV	F
F004	Oxidation-reduction potential	7/31/2018	71				mV	F
DOC 4		1/30/2018	6.96				s.u.	F
P004	рп	7/31/2018	6.79				s.u.	F
DOC 4	Charifia conductorios	1/30/2018	1400				µmho/cm	F
P004	Specific conductance	7/31/2018	1240				µmho/cm	F
DOC 4	Tomoreneture	1/30/2018	11.7				°C	F
P064	Temperature	7/31/2018	14.2				°C	F
		1/30/2018	0.73	0.16	J		µg/L	D
DOC 4	Tatracklaracthana	1/30/2018	0.72	0.16	J		µg/L	F
P064	l'etrachioroethene	7/31/2018	0.8	0.16	J		µg/L	F
		7/31/2018	0.67	0.16	J		µg/L	D
		1/30/2018	0.16	0.16	U		µg/L	D
DOC 4	trans 1.2 Disblarasthana	1/30/2018	0.16	0.16	U		µg/L	F
P004	trans-1,2-Dichloroethene	7/31/2018	0.16	0.16	U		µg/L	F
		7/31/2018	0.16	0.16	U		µg/L	D
		1/30/2018	1.12	0.16			µg/L	D
DOC 4	Trichloroothopo	1/30/2018	1.14	0.16			µg/L	F
P064		7/31/2018	1.12	0.16			µg/L	F
		7/31/2018	1.1	0.16			µg/L	D
Doc 4	Touch in the c	1/30/2018	17.8				NTU	F
P064		7/31/2018	2.29				NTU	F

Table D-1. Phase I Groundwater Data (continued)

Location	Analyte	Sample Date	Value	Detection Limit	Laboratory Qualifiers	Validation Qualifiers	Units	Sample Type
		1/30/2018	0.16	0.16	U		µg/L	D
DOC 4	Vinyl chloride	1/30/2018	0.16	0.16	U		µg/L	F
P064		7/31/2018	0.16	0.16	U		µg/L	F
		7/31/2018	0.16	0.16	U		µg/L	D

Abbreviations:

D = analyte determined in diluted sampleF = low flow sampling method usedJ = estimated value

 $\mu g/L =$ micrograms per liter $\mu mho/cm =$ micromhos per centimeter mg/L = milligrams per liter mV = millivolts

pCi/L = picocuries per literQ = quantitative result due to sampling technique s.u. = standard unit

U = analytical result below detection limit

Location	Analyte	Sample Date	Value	Detection Limit	Laboratory Qualifiers	Validation Qualifiers	Units	Sample Type
		1/31/2018	0.16	0.16	U		µg/L	F
0118	cis-1,2-Dichloroethene	4/23/2018	0.16	0.16	U		µg/L	F
		7/31/2018	0.16	0.16	U		µg/L	F
		10/29/2018	0.16	0.16	U		µg/L	F
		1/31/2018	5.8				mg/L	F
0110	Disselved overgan	4/23/2018	7.41				mg/L	F
0110	Dissolved oxygen	7/31/2018	6.61				mg/L	F
		10/29/2018	6.69				mg/L	F
		1/31/2018	255.5				mV	F
0110		4/23/2018	59.9				mV	F
0118	Oxidation-reduction potential	7/31/2018	63.3				mV	F
		10/29/2018	157.7				mV	F
		1/31/2018	7.22				s.u.	F
0110		4/23/2018	7.17				s.u.	F
0118	рн	7/31/2018	7.01				s.u.	F
		10/29/2018	7.26				s.u.	F
		1/31/2018	1100				µmho/cm	F
0440		4/23/2018	1120				µmho/cm	F
0118	Specific conductance	7/31/2018	1090				µmho/cm	F
		10/29/2018	1120				µmho/cm	F
		1/31/2018	13.8				°C	F
0440	- .	4/23/2018	13.8				°C	F
0118	l'emperature	7/31/2018	14.5				°C	F
		10/29/2018	14.3				°C	F
		1/31/2018	0.16	0.16	U		µg/L	F
0140		4/23/2018	0.16	0.16	U		µg/L	F
0118	i etrachioroethene	7/31/2018	0.16	0.16	U		μg/L	F
0118 0118 0118 0118 0118		10/29/2018	0.16	0.16	U		µg/L	F

Table D-2. Parcels 6, 7, and 8 Groundwater Data

Location	Analyte	Sample Date	Value	Detection Limit	Laboratory Qualifiers	Validation Qualifiers	Units	Sample Type
		1/31/2018	0.16	0.16	U		µg/L	F
0110	trans 4.2 Disklars other s	4/23/2018	0.16	0.16	U		µg/L	F
0116	trans-1,2-Dichloroethene	7/31/2018	0.16	0.16	U		µg/L	F
		10/29/2018	0.16	0.16	U		µg/L	F
		1/31/2018	0.16	0.16	U		µg/L	F
0110	Trichloroothono	4/23/2018	0.16	0.16	U		µg/L	F
0118	Inchloroethene	7/31/2018	0.16	0.16	U		µg/L	F
		10/29/2018	0.16	0.16	U		µg/L	F
0140	Triticura	1/31/2018	92.6	278	U		pCi/L	F
0118	i ritium	7/31/2018	-43.9	325	U		pCi/L	F
		1/31/2018	5.43				NTU	F
0140	To ask follow	4/23/2018	3.98				NTU	F
0118	Turbidity	7/31/2018	11.8				NTU	F
		10/29/2018	37.9				NTU	F
		1/31/2018	0.16	0.16	U		µg/L	F
0140) (in distant	4/23/2018	0.16	0.16	U		µg/L	F
0118	vinyi chloride	7/31/2018	0.16	0.16	U		µg/L	F
		10/29/2018	0.16	0.16	U		µg/L	F
		1/30/2018	0.16	0.16	U		µg/L	F
0404		4/23/2018	0.16	0.16	U		µg/L	F
0124	<i>cis</i> -1,2-Dichloroethene	7/30/2018	0.16	0.16	U		µg/L	F
		10/30/2018	0.16	0.16	U		µg/L	F
		1/30/2018	2.51				mg/L	F
0404		4/23/2018	3.19				mg/L	F
0124	Dissolved oxygen	7/30/2018	2.84				mg/L	F
		10/30/2018	5.76				mg/L	F
		1/30/2018	163.6				mV	F
0404		4/23/2018	64.1				mV	F
0124	Oxidation-reduction potential	7/30/2018	109.7				mV	F
		10/30/2018	166.2				mV	F

Location	Analyte	Sample Date	Value	Detection Limit	Laboratory Qualifiers	Validation Qualifiers	Units	Sample Type
		1/30/2018	6.96				s.u.	F
0124		4/23/2018	6.88				s.u.	F
0124	рп	7/30/2018	6.95				s.u.	F
		10/30/2018	6.94				s.u.	F
		1/30/2018	1160				µmho/cm	F
0124	Specific conductorse	4/23/2018	1190				µmho/cm	F
0124	Specific conductance	7/30/2018	1250				µmho/cm	F
		10/30/2018	1250				µmho/cm	F
		1/30/2018	13.2				°C	F
0104	Tammanatura	4/23/2018	13.6				°C	F
0124	remperature	7/30/2018	14.4				°C	F
		10/30/2018	13.8				°C	F
	Tetrachloroethene	1/30/2018	0.16	0.16	U		µg/L	F
0104		4/23/2018	0.16	0.16	U		µg/L	F
0124	retrachioroethene	7/30/2018	0.16	0.16	U		µg/L	F
		10/30/2018	0.16	0.16	U		µg/L	F
		1/30/2018	0.16	0.16	U		µg/L	F
0104	trans 1.2 Disklars other s	4/23/2018	0.16	0.16	U		µg/L	F
0124	trans-1,2-Dichloroethene	7/30/2018	0.16	0.16	U		µg/L	F
		10/30/2018	0.16	0.16	U		µg/L	F
		1/30/2018	0.16	0.16	U		µg/L	F
0404	Trickless at as a	4/23/2018	0.16	0.16	U		µg/L	F
0124	Irichloroethene	7/30/2018	0.16	0.16	U		µg/L	F
		10/30/2018	0.16	0.16	U		µg/L	F
		1/30/2018	6.86				NTU	F
0404	To ask follow	4/23/2018	1.44				NTU	F
0124	Iurbidity	7/30/2018	1.49				NTU	F
		10/30/2018	1.89				°С °С µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	F

Location	Analyte	Sample Date	Value	Detection Limit	Laboratory Qualifiers	Validation Qualifiers	Units	Sample Type
		1/30/2018	0.16	0.16	U		µg/L	F
0124	Vinut chlorida	4/23/2018	0.16	0.16	U		µg/L	F
		7/30/2018	0.16	0.16	U		µg/L	F
		10/30/2018	0.16	0.16	U		µg/L	F
		1/31/2018	0.16	0.16	U		µg/L	F
0106	ais 1.2 Dichlereathans	4/23/2018	0.16	0.16	U		µg/L	F
0120	Cis-1,2-Dichloroethene	7/30/2018	0.16	0.16	U		µg/L	F
		10/30/2018	0.16	0.16	U		µg/L	F
		1/31/2018	2.39				mg/L	F
0100	Disashuad any gan	4/23/2018	0.39				mg/L	F
0126	Dissolved oxygen	7/30/2018	2.74				mg/L	F
		10/30/2018	2.67				mg/L	F
		1/31/2018	247.1				mV	F
0400		4/23/2018	54.9				mV	F
0126	Oxidation-reduction potential	7/30/2018	115.7				mV	F
		10/30/2018	198				mV	F
		1/31/2018	6.99				s.u.	F
0400	-11	4/23/2018	6.99				s.u.	F
0126	рн	7/30/2018	7.04				s.u.	F
		10/30/2018	6.91				s.u.	F
		1/31/2018	1210				µmho/cm	F
0400		4/23/2018	1250				µmho/cm	F
0126	Specific conductance	7/30/2018	1300				µmho/cm	F
		10/30/2018	1310				µmho/cm	F
		1/31/2018	13.5				°C	F
0400	T	4/23/2018	13.7				°C	F
0126	remperature	7/30/2018	14.8				°C	F
		10/30/2018	13.6				°C	F

Location	Analyte	Sample Date	Value	Detection Limit	Laboratory Qualifiers	Validation Qualifiers	Units	Sample Type
		1/31/2018	0.79	0.16	J		µg/L	F
0126	Totrachloroothono	4/23/2018	0.85	0.16	J		µg/L	F
	retrachioroethene	7/30/2018	0.78	0.16	J		µg/L	F
		10/30/2018	0.87	0.16	J		µg/L	F
		1/31/2018	0.16	0.16	U		µg/L	F
0106	trans 1.2 Disblarasthans	4/23/2018	0.16	0.16	U		µg/L	F
0126	trans-1,2-Dichloroethene	7/30/2018	0.16	0.16	U		µg/L	F
		10/30/2018	0.16	0.16	U		µg/L	F
		1/31/2018	0.16	0.16	U		µg/L	F
0106	Trichloroothono	4/23/2018	0.16	0.16	U		µg/L	F
0126	Inchloroethene	7/30/2018	0.16	0.16	U		µg/L	F
		10/30/2018	0.16	0.16	U		µg/L	F
	Turbidity	1/31/2018	2.27				NTU	F
0100		4/23/2018	0.43				NTU	F
0126	lurbidity	7/30/2018	0.32				NTU	F
		10/30/2018	0.43				NTU	F
		1/31/2018	0.16	0.16	U		µg/L	F
0400	Marcal all la stata	4/23/2018	0.16	0.16	U		µg/L	F
0126	vinyi chioride	7/30/2018	0.16	0.16	U		µg/L	F
		10/30/2018	0.16	0.16	U		µg/L	F
		1/31/2018	0.16	0.16	U		µg/L	F
0100	sis 4.2 Disklass of hans	4/23/2018	0.16	0.16	U		µg/L	F
0138	CIS-1,2-Dichloroethene	7/30/2018	0.16	0.16	U		µg/L	F
		10/30/2018	0.16	0.16	U		µg/L	F
		1/31/2018	3.61				mg/L	F
0100	Disashuad awaran	4/23/2018	7.97				mg/L	F
0138	Dissolved oxygen	7/30/2018	5.81				mg/L	F
		10/30/2018	2.95				mg/L	F

Location	Analyte	Sample Date	Value	Detection Limit	Laboratory Qualifiers	Validation Qualifiers	Units	Sample Type
		1/31/2018	247.6				mV	F
0138	Ovidation reduction potential	4/23/2018	63.4				mV	F
0136	Oxidation-reduction potential	7/30/2018	125.9				mV	F
		10/30/2018	139.1				mV	F
		1/31/2018	7.1				s.u.	F
0138		4/23/2018	7.08				s.u.	F
0136	рн	7/30/2018	7.18				s.u.	F
		10/30/2018	7.21				s.u.	F
		1/31/2018	1160				µmho/cm	F
0100		4/23/2018	1200				µmho/cm	F
0138	Specific conductance	7/30/2018	1210				µmho/cm	F
		10/30/2018	1210				µmho/cm	F
	Temperature	1/31/2018	12.6				°C	F
0400		4/23/2018	13.2				°C	F
0138		7/30/2018	14.9				°C	F
		10/30/2018	16.1				°C	F
		1/31/2018	0.16	0.16	U		µg/L	F
0120	Tatrachlargethang	4/23/2018	0.16	0.16	U		µg/L	F
0138	letrachioroethene	7/30/2018	0.16	0.16	U		µg/L	F
		10/30/2018	0.16	0.16	U		µg/L	F
		1/31/2018	0.16	0.16	U		µg/L	F
0400		4/23/2018	0.16	0.16	U		µg/L	F
0138	trans-1,2-Dichloroethene	7/30/2018	0.16	0.16	U		µg/L	F
		10/30/2018	0.16	0.16	U		µg/L	F
		1/31/2018	0.16	0.16	U		µg/L	F
0400	Trickland the set	4/23/2018	0.16	0.16	U		µg/L	F
0138	Irichloroethene	7/30/2018	0.16	0.16	U		µg/L	F
		10/30/2018	0.16	0.16	U		µg/L	F
0400		1/31/2018	250	280	U		pCi/L	F
0138	i ritium	7/30/2018	350	312		J	pCi/L	F

Location	Analyte	Sample Date	Value	Detection Limit	Laboratory Qualifiers	Validation Qualifiers	Units	Sample Type
		1/31/2018	4.24				NTU	F
0138	Turkiditu	4/23/2018	1.66				NTU	F
	Turblany	7/30/2018	10.2				NTU	F
		10/30/2018	3.8				NTU	F
		1/31/2018	0.16	0.16	U		µg/L	F
0100		4/23/2018	0.16	0.16	U		µg/L	F
0138	Vinyi chionde	7/30/2018	0.16	0.16	U		µg/L	F
		10/30/2018	0.16	0.16	U		µg/L	F
		2/1/2018	0.16	0.16	U		µg/L	F
0045	ais 1.2 Disblars others	4/24/2018	0.16	0.16	U		µg/L	F
0315	<i>cis</i> -1,2-Dichloroethene	8/2/2018	0.16	0.16	U		µg/L	F
		10/29/2018	0.16	0.16	U		µg/L	F
	Dissolved oxygen	2/1/2018	1.22				mg/L	F
0045		4/24/2018	0.39				mg/L	F
0315		8/2/2018	2.04				mg/L	F
		10/29/2018	3.69				mg/L	F
		2/1/2018	4.7				mV	F
0045		4/24/2018	-53.2				mV	F
0315	Oxidation-reduction potential	8/2/2018	-43.8				mV	F
		10/29/2018	-60.6				mV	F
		2/1/2018	7.08				s.u.	F
0045		4/24/2018	7.12				s.u.	F
0315	рн	8/2/2018	7.15				s.u.	F
		10/29/2018	7.24				s.u.	F
		2/1/2018	1650				µmho/cm	F
0045		4/24/2018	1710				µmho/cm	F
0315	Specific conductance	8/2/2018	1760				µmho/cm	F
		10/29/2018	1750				µmho/cm	F

Location	Analyte	Sample Date	Value	Detection Limit	Laboratory Qualifiers	Validation Qualifiers	Units	Sample Type
		2/1/2018	13.5				С	F
0315	Tomporatura	4/24/2018	13.9				С	F
	remperature	8/2/2018	15.4				С	F
		10/29/2018	15				С	F
		2/1/2018	0.16	0.16	U		µg/L	F
0215	Tatrachlaracthana	4/24/2018	0.16	0.16	U		µg/L	F
0315	retrachioroethene	8/2/2018	0.16	0.16	U		µg/L	F
		10/29/2018	0.16	0.16	U		µg/L	F
		2/1/2018	0.16	0.16	U		µg/L	F
0045	(mana 4.2) Disklama ath an a	4/24/2018	0.16	0.16	U		µg/L	F
0315	trans-1,2-Dichloroethene	8/2/2018	0.16	0.16	U		µg/L	F
		10/29/2018	0.16	0.16	U		µg/L	F
	Trichloroethene	2/1/2018	5.21	0.16			µg/L	F
0045		4/24/2018	3.5	0.16			µg/L	F
0315		8/2/2018	4.12	0.16			µg/L	F
		10/29/2018	4.36	0.16			µg/L	F
		2/1/2018	101				NTU	F
0045	To ach i alte a	4/24/2018	611				NTU	F
0315	Turbidity	8/2/2018	42.5				NTU	F
		10/29/2018	132				NTU	F
		2/1/2018	0.16	0.16	U		µg/L	F
0045	Marid alderida	4/24/2018	0.16	0.16	U		µg/L	F
0315	Vinyi chioride	8/2/2018	0.16	0.16	U		µg/L	F
		10/29/2018	0.16	0.16	U		µg/L	F
		1/30/2018	0.16	0.16	U		µg/L	F
0240	ais 1.2 Disklass officers	4/25/2018	0.16	0.16	U		µg/L	F
0346	<i>cis</i> -1,2-Dicnioroetnene	8/1/2018	0.16	0.16	U		µg/L	F
		10/29/2018	0.16	0.16	U		µg/L	F

Location	Analyte	Sample Date	Value	Detection Limit	Laboratory Qualifiers	Validation Qualifiers	Units	Sample Type
		1/30/2018	9.25				mg/L	F
		2/8/2018	2.2				mg/L	F
0346	Dissolved oxygen	4/25/2018	3.22				mg/L	F
		8/1/2018	3.67				mg/L	F
		10/29/2018	4.49				mg/L	F
		1/30/2018	141.2				mV	F
		2/8/2018	24.6				mV	F
0346	Oxidation-reduction potential	4/25/2018	40.2				mV	F
		8/1/2018	58.3				mV	F
		10/29/2018	227.8				mV	F
		1/30/2018	7.64				s.u.	F
		2/8/2018	7.25				s.u.	F
0346	рН	4/25/2018	7.22				s.u.	F
		8/1/2018	7.1				s.u.	F
	pH Specific conductance	10/29/2018	7.08				s.u.	F
		1/30/2018	710				µmho/cm	F
		2/8/2018	1580				µmho/cm	F
0346	Specific conductance	4/25/2018	910				µmho/cm	F
		8/1/2018	400				µmho/cm	F
		10/29/2018	1110				µmho/cm	F
		1/30/2018	13.6				°C	F
		2/8/2018	13				°C	F
0346	Temperature	4/25/2018	13.1				°C	F
		8/1/2018	14.8				°C	F
		10/29/2018	14.4				°C	F
		1/30/2018	0.16	0.16	U		µg/L	F
0246	Tatraphlaraathana	4/25/2018	0.16	0.16	U		μg/L	F
0346	retrachioroethene	8/1/2018	0.16	0.16	U		µg/L	F
		10/29/2018	0.16	0.16	U		μg/L	F

Location	Analyte	Sample Date	Value	Detection Limit	Laboratory Qualifiers	Validation Qualifiers	Units	Sample Type
		1/30/2018	0.16	0.16	U		µg/L	F
0346	trans 1.2 Dichloroothono	4/25/2018	0.16	0.16	U		µg/L	F
0340		8/1/2018	0.16	0.16	U		µg/L	F
		10/29/2018	0.16	0.16	U		µg/L	F
		1/30/2018	0.16	0.16	U		µg/L	F
0246	Trichloroothono	4/25/2018	0.16	0.16	U		µg/L	F
0340	Inchordenene	8/1/2018	0.16	0.16	U		µg/L	F
		10/29/2018	0.16	0.16	U		µg/L	F
0246	Tritium	2/8/2018	377	255		J	pCi/L	F
0340	Indum	8/1/2018	93.5	328	U		pCi/L	F
		1/30/2018	33				NTU	F
		2/8/2018	46.2				NTU	F
0346	Turbidity	4/25/2018	31.9				NTU	F
		8/1/2018	41.8				NTU	F
		10/29/2018	37.6				NTU	F
		1/30/2018	0.16	0.16	U		µg/L	F
0246		4/25/2018	0.16	0.16	U		µg/L	F
0340		8/1/2018	0.16	0.16	U		µg/L	F
		10/29/2018	0.16	0.16	U		µg/L	F
		2/1/2018	0.16	0.16	U		µg/L	F
		2/1/2018	0.16	0.16	U		µg/L	D
0247	ais 4.2 Disklars of hans	4/24/2018	0.16	0.16	U		µg/L	F
0347	<i>cis</i> -1,2-Dichloroethene	8/2/2018	0.16	0.16	U		µg/L	D
		8/2/2018	0.16	0.16	U		µg/L	F
		10/29/2018	0.16	0.16	U		µg/L	F
		2/1/2018	1.27				mg/L	F
00.47	Disashuad survey	4/24/2018	0.45				mg/L	F
0347	Dissolved oxygen	8/2/2018	1.77				mg/L	F
		10/29/2018	7.59				mg/L	F

Location	Analyte	Sample Date	Value	Detection Limit	Laboratory Qualifiers	Validation Qualifiers	Units	Sample Type
		2/1/2018	-21.6				mV	F
0247	Ovidation reduction potential	4/24/2018	-42.1				mV	F
0347	Oxidation-reduction potential	8/2/2018	-31.8				mV	F
		10/29/2018	-38.1				mV	F
		2/1/2018	6.85				s.u.	F
0347		4/24/2018	7.05				s.u.	F
	рп	8/2/2018	6.78				s.u.	F
		10/29/2018	6.85				s.u.	F
		2/1/2018	1610				µmho/cm	F
0247	Specific conductors	4/24/2018	1730				µmho/cm	F
0347	Specific conductance	8/2/2018	1810				µmho/cm	F
		10/29/2018	1780				µmho/cm	F
		2/1/2018	13.5				°C	F
0247	Temperatura	4/24/2018	13.7				°C	F
0347	remperature	8/2/2018	15				°C	F
		10/29/2018	14.6				°C	F
		2/1/2018	0.16	0.16	U		µg/L	F
		2/1/2018	0.16	0.16	U		µg/L	D
0247	Totrachlaraethana	4/24/2018	0.16	0.16	U		µg/L	F
0347	retractionoethene	8/2/2018	0.16	0.16	U		µg/L	D
		8/2/2018	0.16	0.16	U		µg/L	F
		10/29/2018	0.16	0.16	U		µg/L	F
		2/1/2018	0.16	0.16	U		µg/L	D
		2/1/2018	0.16	0.16	U		µg/L	F
0247	trans 1.2 Disblarasthans	4/24/2018	0.16	0.16	U		µg/L	F
0347		8/2/2018	0.16	0.16	U		µg/L	D
		8/2/2018	0.16	0.16	U		µg/L	F
		10/29/2018	0.16	0.16	U		µg/L	F

Location	Analyte	Sample Date	Value	Detection Limit	Laboratory Qualifiers	Validation Qualifiers	Units	Sample Type
		2/1/2018	19.7	0.16			µg/L	D
		2/1/2018	20.7	0.16			µg/L	F
0247	Trichloroothono	4/24/2018	11.7	0.16			µg/L	F
0347	Thenloroethene	8/2/2018	21.8	0.16			µg/L	D
		8/2/2018	21.3	0.16			µg/L	F
		10/29/2018	16.1	0.16			µg/L	F
		2/1/2018	1140	262			pCi/L	D
0247	Tritium	2/1/2018	1070	259			pCi/L	F
0347	Inddri	8/2/2018	1230	313			pCi/L	D
		8/2/2018	1080	314			pCi/L	F
		2/1/2018	25.3				NTU	F
0247	Turkidity	4/24/2018	30.3				NTU	F
0347	Turblatty	8/2/2018	17.2				NTU	F
		10/29/2018	26.2				NTU	F
		2/1/2018	0.16	0.16	U		µg/L	F
		2/1/2018	0.16	0.16	U		µg/L	D
0247	Vinul ablarida	4/24/2018	0.16	0.16	U		µg/L	F
0347		8/2/2018	0.16	0.16	U		µg/L	D
		8/2/2018	0.16	0.16	U		µg/L	F
		10/29/2018	0.16	0.16	U		µg/L	F
		1/30/2018	0.16	0.16	U		µg/L	F
		2/8/2018	0.333	0.333	U		µg/L	F
		4/25/2018	0.16	0.16	U		µg/L	F
		5/2/2018	0.333	0.333	U		µg/L	F
0379	cis-1,2-Dichloroethene	7/31/2018	0.16	0.16	U		µg/L	F
		8/7/2018	0.333	0.333	U		µg/L	F
		10/29/2018	0.16	0.16	U		µg/L	F
		10/29/2018	0.16	0.16	U		μg/L	D
		11/7/2018	0.333	0.333	U		μg/L	F

Location	Analyte	Sample Date	Value	Detection Limit	Laboratory Qualifiers	Validation Qualifiers	Units	Sample Type
		1/30/2018	3.35				mg/L	F
		2/8/2018	1.35			F	mg/L	F
		4/25/2018	3.21				mg/L	F
0270	Dissolved evygen	5/2/2018	2.79				mg/L	F
0379		7/31/2018	5.42				mg/L	F
		8/7/2018	2.87				mg/L	F
		10/29/2018	2.2				mg/L	F
		11/7/2018	2.7				mg/L	F
		1/30/2018	67.4				mV	F
		2/8/2018	53.4			F	mV	F
		4/25/2018	1211.1				mV	F
0270	Ovidation, reduction potential	5/2/2018	-5				mV	F
0379	Oxidation-reduction potential	7/31/2018	17.7				mV	F
		8/7/2018	123.4				mV	F
		10/29/2018	107.4				mV	F
		11/7/2018	-36.1				mV	F
		1/30/2018	7.1				s.u.	F
		2/8/2018	7.19			F	s.u.	F
		4/25/2018	7.18				s.u.	F
0270		5/2/2018	7.21				s.u.	F
0379		7/31/2018	7.01				s.u.	F
		8/7/2018	7.14				s.u.	F
		10/29/2018	7.23				s.u.	F
		11/7/2018	6.99				s.u.	F

Location	Analyte	Sample Date	Value	Detection Limit	Laboratory Qualifiers	Validation Qualifiers	Units	Sample Type
		1/30/2018	1640				µmho/cm	F
		2/8/2018	1710			F	µmho/cm	F
		4/25/2018	1500				µmho/cm	F
0379	Chapifia conductorias	5/2/2018	1490				µmho/cm	F
	Specific conductance	7/31/2018	1580				µmho/cm	F
		8/7/2018	1700				µmho/cm	F
		10/29/2018	1660				µmho/cm	F
		11/7/2018	1870				µmho/cm	F
		1/30/2018	13.8				°C	F
		2/8/2018	12.1			F	°C	F
		4/25/2018	14.1				°C	F
0270	Tomporphire	5/2/2018	16.2				°C	F
0379	Temperature	7/31/2018	15.8				°C	F
		8/7/2018	16.9				°C	F
		10/29/2018	15				°C	F
		11/7/2018	13.9				°C	F
		1/30/2018	0.44	0.16	J		µg/L	F
		2/8/2018	0.44	0.333	J		µg/L	F
		4/25/2018	0.16	0.16	U		µg/L	F
		5/2/2018	0.333	0.333	U		µg/L	F
0379	Tetrachloroethene	7/31/2018	0.4	0.16	J		µg/L	F
		8/7/2018	0.57	0.333	J		µg/L	F
		10/29/2018	0.4	0.16	J		μg/L	F
		10/29/2018	0.43	0.16	J		µg/L	D
		11/7/2018	0.45	0.333	J	J	µg/L	F

Location	Analyte	Sample Date	Value	Detection Limit	Laboratory Qualifiers	Validation Qualifiers	Units	Sample Type
		1/30/2018	0.16	0.16	U		µg/L	F
		2/8/2018	0.333	0.333	U		µg/L	F
		4/25/2018	0.16	0.16	U		µg/L	F
		5/2/2018	0.333	0.333	U		µg/L	F
0379	trans-1,2-Dichloroethene	7/31/2018	0.16	0.16	U		µg/L	F
		8/7/2018	0.333	0.333	U		µg/L	F
		10/29/2018	0.16	0.16	U		µg/L	F
		10/29/2018	0.16	0.16	U		µg/L	D
		11/7/2018	0.333	0.333	U		µg/L	F
		1/30/2018	1.45	0.16			µg/L	F
		2/8/2018	1.53	0.333			µg/L	F
		4/25/2018	1.21	0.16			µg/L	F
		5/2/2018	1.38	0.333			µg/L	F
0379	Trichloroethene	7/31/2018	1.57	0.16			µg/L	F
		8/7/2018	1.47	0.333			µg/L	F
		10/29/2018	1.3	0.16			µg/L	D
		10/29/2018	1.34	0.16			µg/L	F
		11/7/2018	1.55	0.333			µg/L	F
0070	Tritican	1/30/2018	707	263		J	pCi/L	F
0379	Intum	7/31/2018	488	326		J	pCi/L	F
		1/30/2018	18.1				NTU	D F F F F F F D F F F F F
		2/8/2018	28			F	NTU	F
		4/25/2018	11.8				NTU	F
0070	T	5/2/2018	8.23				NTU	F
0379	lurbiaity	7/31/2018	143				NTU	F
		8/7/2018	6.78				NTU	F
		10/29/2018	2.74				NTU	F
		11/7/2018	8.76				NTU	F

Location	Analyte	Sample Date	Value	Detection Limit	Laboratory Qualifiers	Validation Qualifiers	Units	Sample Type
		1/30/2018	0.16	0.16	U		µg/L	F
		2/8/2018	0.333	0.333	U		µg/L	F
		4/25/2018	0.16	0.16	U		µg/L	F
		5/2/2018	0.333	0.333	U		µg/L	F
0379	Vinyl chloride	7/31/2018	0.16	0.16	U		µg/L	F
		8/7/2018	0.333	0.333	U		µg/L	F
		10/29/2018	0.16	0.16	U		µg/L	F
		10/29/2018	0.16	0.16	U		µg/L	D
		11/7/2018	0.333	0.333	U		µg/L	F
		1/31/2018	0.16	0.16	U		µg/L	F
0296	aia 1.2 Disbloraathana	4/24/2018	0.16	0.16	U		µg/L	F
0360		8/1/2018	0.16	0.16	U		µg/L	F
		10/30/2018	0.16	0.16	U		µg/L	F
		1/31/2018	2.29				mg/L	F
0296	Disselved overgen	4/24/2018	3.48				mg/L	F
0366	Dissolved oxygen	8/1/2018	2.09				mg/L	F
0386		10/30/2018	2.86				mg/L	F
		1/31/2018	273.1				mV	F
0296	Ovidation reduction notantial	4/24/2018	84.3				mV	F
0366	Oxidation-reduction potential	8/1/2018	69.7				mV	F
		10/30/2018	173.7				mV	F
		1/31/2018	6.86				s.u.	F
0296		4/24/2018	6.95				s.u.	F
0366	pri	8/1/2018	6.69				s.u.	F
		10/30/2018	6.93				s.u.	F
		1/31/2018	1370				µmho/cm	F
0000		4/24/2018	1390				µmho/cm	F
0386	Specific conductance	8/1/2018	1430				µmho/cm	F
		10/30/2018	1420				µmho/cm	F

Location	Analyte	Sample Date	Value	Detection Limit	Laboratory Qualifiers	Validation Qualifiers	Units	Sample Type
		1/31/2018	12				°C	F
0296	Tomporatura	4/24/2018	13.7				°C	F
0300	remperature	8/1/2018	13.8				°C	F
		10/30/2018	13.4				°C	F
		1/31/2018	0.16	0.16	U		µg/L	F
0296	Totrachlaraethana	4/24/2018	0.16	0.16	U		µg/L	F
0360	retrachioroethene	8/1/2018	0.16	0.16	U		µg/L	F
		10/30/2018	0.16	0.16	U		µg/L	F
		1/31/2018	0.16	0.16	U		µg/L	F
0200	trans 1.2 Disklars of hans	4/24/2018	0.16	0.16	U		µg/L	F
0386	trans-1,2-Dichloroethene	8/1/2018	0.16	0.16	U		µg/L	F
		10/30/2018	0.16	0.16	U		µg/L	F
		1/31/2018	2.51	0.16			µg/L	F
0200	Tricklereethere	4/24/2018	2.89	0.16			µg/L	F
0386	Inchloroethene	8/1/2018	3.02	0.16			µg/L	F
		10/30/2018	2.03	0.16			µg/L	F
		1/31/2018	16.3				NTU	F
0200	Trankislar	4/24/2018	7.4				NTU	F
0386	lurbidity	8/1/2018	2.13				NTU	F
		10/30/2018	1.37				NTU	F
		1/31/2018	0.16	0.16	U		µg/L	F
0000	V first di alcha et dia	4/24/2018	0.16	0.16	U		µg/L	F
0386	vinyi chioride	8/1/2018	0.16	0.16	U		µg/L	F
		10/30/2018	0.16	0.16	U		µg/L	F
		1/31/2018	0.16	0.16	U		μg/L	F
0207	ais 4.2 Disklars of hans	4/24/2018	0.16	0.16	U		µg/L	F
0387	<i>cis</i> -1,2-Dicnioroetnene	8/1/2018	0.16	0.16	U		µg/L	F
		10/30/2018	0.16	0.16	U		µg/L	F

Location	Analyte	Sample Date	Value	Detection Limit	Laboratory Qualifiers	Validation Qualifiers	Units	Sample Type
		1/31/2018	2.22				mg/L	F
0207	Dissolved evygen	4/24/2018	0.84				mg/L	F
0307	Dissolved oxygen	8/1/2018	8.03				mg/L	F
		10/30/2018	2.45				mg/L	F
		1/31/2018	277.8				mV	F
0207	Ovidation reduction potential	4/24/2018	88.3				mV	F
0307	Oxidation-reduction potential	8/1/2018	69				mV	F
		10/30/2018	46.5				mV	F
		1/31/2018	6.95				s.u.	F
0387		4/24/2018	6.99				s.u.	F
0387	рн	8/1/2018	6.79				s.u.	F
		10/30/2018	7.07				s.u.	F
		1/31/2018	1310				µmho/cm	F
0007		4/24/2018	1410				µmho/cm	F
0387	Specific conductance	8/1/2018	1300				µmho/cm	F
		10/30/2018	1390				µmho/cm	F
		1/31/2018	11.6				С	F
0007	Tananatan	4/24/2018	13				С	F
0387	Temperature	8/1/2018	13.8				С	F
		10/30/2018	13.9				С	F
		1/31/2018	0.16	0.16	U		µg/L	F
0007	To the oblight of the set	4/24/2018	0.16	0.16	U		µg/L	F
0387	letrachioroethene	8/1/2018	0.16	0.16	U		µg/L	F
		10/30/2018	0.16	0.16	U		µg/L	F
		1/31/2018	0.16	0.16	U		μg/L	F
0207		4/24/2018	0.16	0.16	U		µg/L	F
0387	traris-1,2-Dicnioroetnene	8/1/2018	0.16	0.16	U		µg/L	F
		10/30/2018	0.16	0.16	U		µg/L	F

Location	Analyte	Sample Date	Value	Detection Limit	Laboratory Qualifiers	Validation Qualifiers	Units	Sample Type
		1/31/2018	0.16	0.16	U		µg/L	F
0207	Trichloroothono	4/24/2018	0.16	0.16	U		µg/L	F
0367	Inchloroethene	8/1/2018	0.16	0.16	U		µg/L	F
		10/30/2018	0.16	0.16	U		µg/L	F
		1/31/2018	2.6				NTU	F
0207	Turkidity	4/24/2018	1.02				NTU	F
0367	Turbidity	8/1/2018	2.06				NTU	F
		10/30/2018	0.7				NTU	F
		1/31/2018	0.16	0.16	U		µg/L	F
0207) (in distant	4/24/2018	0.16	0.16	U		µg/L	F
0387		8/1/2018	0.16	0.16	U		µg/L	F
		10/30/2018	0.16	0.16	U		µg/L	F
		1/31/2018	0.16	0.16	U		µg/L	F
0200		4/24/2018	0.16	0.16	U		µg/L	F
0389	CIS-1,2-Dichloroethene	8/1/2018	0.16	0.16	U		µg/L	F
0387 T 0387 V 0389 C 0389 C		10/30/2018	0.16	0.16	U		µg/L	F
		1/31/2018	2.45				mg/L	F
0200	Disastruction	4/24/2018	2.15				mg/L	F
0389	Dissolved oxygen	8/1/2018	0.42				mg/L	F
		10/30/2018	2.09				mg/L	F
		1/31/2018	278.7				mV	F
0200		4/24/2018	86.5				mV	F
0389	Oxidation-reduction potential	8/1/2018	69.1				mV	F
		10/30/2018	169				mV	F
		1/31/2018	6.82				s.u.	F
0280		4/24/2018	6.85				s.u.	F
0389	pn	8/1/2018	6.79				s.u.	F
		10/30/2018	7.02				s.u.	F

Location	Analyte	Sample Date	Value	Detection Limit	Laboratory Qualifiers	Validation Qualifiers	Units	Sample Type
		1/31/2018	1340				µmho/cm	F
0290	Specific conductorses	4/24/2018	1410				µmho/cm	F
0369	Specific conductance	8/1/2018	1440				µmho/cm	F
		10/30/2018	1490				µmho/cm	F
		1/31/2018	11.4				°C	F
0290	Tomporatura	4/24/2018	12.9				°C	F
0389	Temperature	8/1/2018	14.1				°C	F
		10/30/2018	14				°C	F
		1/31/2018	0.16	0.16	U		µg/L	F
0389		4/24/2018	0.16	0.16	U		µg/L	F
0389	l'etrachioroethene	8/1/2018	0.16	0.16	U		µg/L	F
		10/30/2018	0.16	0.16	U		µg/L	F
		1/31/2018	0.16	0.16	U		µg/L	F
0000	trans 4.2 Disblars athen a	4/24/2018	0.16	0.16	U		µg/L	F
0389	trans-1,2-Dichloroethene	8/1/2018	0.16	0.16	U		µg/L	F
	trans-1,2-Dichloroethene	10/30/2018	0.16	0.16	U		µg/L	F
		1/31/2018	0.16	0.16	U		µg/L	F
0000	Trickleyeethere	4/24/2018	0.16	0.16	U		µg/L	F
0389	Inchioroethene	8/1/2018	0.54	0.16	J		µg/L	F
		10/30/2018	0.16	0.16	U		µg/L	F
		1/31/2018	29.6				NTU	F
0000	To ask follow	4/24/2018	32.7				NTU	F
0389	lurbidity	8/1/2018	32.9				NTU	F
		10/30/2018	29				NTU	F
		1/31/2018	0.16	0.16	U		µg/L	F
0000		4/24/2018	0.16	0.16	U		µg/L	F
0389		8/1/2018	0.16	0.16	U		µg/L	F
		10/30/2018	0.16	0.16	U		µg/L	F

Location	Analyte	Sample Date	Value	Detection Limit	Laboratory Qualifiers	Validation Qualifiers	Units	Sample Type
		1/31/2018	0.16	0.16	U		µg/L	F
0392		4/24/2018	0.16	0.16	U		µg/L	D
	cis-1,2-Dichloroethene	4/24/2018	0.16	0.16	U		µg/L	F
		8/1/2018	0.16	0.16	U		µg/L	F
		10/30/2018	0.16	0.16	U		µg/L	F
		1/31/2018	4.97				mg/L	F
0202	Disselved everyon	4/24/2018	3.64				mg/L	F
0392	Dissolved oxygen	8/1/2018	5.01				mg/L	F
		10/30/2018	4.2				mg/L	F
		1/31/2018	294.8				mV	F
0202		4/24/2018	126.5				mV	F
0392	Oxidation-reduction potential	8/1/2018	78.8				mV	F
		10/30/2018	163.5				mV	F
		1/31/2018	6.72				s.u.	F
0000		4/24/2018	6.78				s.u.	F
0392	рн	8/1/2018	6.6				s.u.	F
		10/30/2018	6.92				s.u.	F
		1/31/2018	1290				µmho/cm	F
0000		4/24/2018	1450				µmho/cm	F
0392	Specific conductance	8/1/2018	1250				µmho/cm	F
		10/30/2018	1310				µmho/cm	F
		1/31/2018	11.2				°C	F
0000	Tana and ma	4/24/2018	13.3				°C	F
0392	Temperature	8/1/2018	14.6				°C	F
		10/30/2018	15				°C	F
		1/31/2018	0.16	0.16	U		µg/L	F
		4/24/2018	0.16	0.16	U		μg/L	D
0392	Tetrachloroethene	4/24/2018	0.16	0.16	U		µg/L	F
		8/1/2018	0.16	0.16	U		μg/L	F
		10/30/2018	0.16	0.16	U		μg/L	F

Location	Analyte	Sample Date	Value	Detection Limit	Laboratory Qualifiers	Validation Qualifiers	Units	Sample Type
		1/31/2018	0.16	0.16	U		µg/L	F
		4/24/2018	0.16	0.16	U		µg/L	D
0392	trans-1,2-Dichloroethene	4/24/2018	0.16	0.16	U		µg/L	F
		8/1/2018	0.16	0.16	U		µg/L	F
		10/30/2018	0.16	0.16	U		µg/L	F
		1/31/2018	0.16	0.16	U		µg/L	F
		4/24/2018	0.16	0.16	U		µg/L	D
0392	Trichloroethene	4/24/2018	0.16	0.16	U		µg/L	F
		8/1/2018	0.16	0.16	U		µg/L	F
		10/30/2018	0.16	0.16	U		µg/L	F
		1/31/2018	1.43				NTU	F
0202	The selected in the se	4/24/2018	0.87				NTU	F
0392	lurbidity	8/1/2018	3.98				NTU	F
		10/30/2018	1.23				NTU	F
		1/31/2018	0.16	0.16	U		µg/L	F
0392		4/24/2018	0.16	0.16	U		µg/L	D
	Vinyl chloride	4/24/2018	0.16	0.16	U		µg/L	F
		8/1/2018	0.16	0.16	U		µg/L	F
		10/30/2018	0.16	0.16	U		µg/L	F

Abbreviations:

D = analyte determined in diluted sample F = low flow sampling method used J = estimated value

 $\mu g/L =$ micrograms per liter $\mu mho/cm =$ micromhos per centimeter mg/L = milligrams per liter mV = millivolts

pCi/L = picocuries per literQ = quantitative result due to sampling technique

s.u. = standard unit

U = analytical result below detection limit

Table D-3. Seep Data

Location	Analyte	Sample Date	Value	Detection Limit	Laboratory Qualifiers	Validation Qualifiers	Units	Sample Type
		1/29/2018	0.65	0.16	J		µg/L	F
0601	ain 1.2 Dishlaraathana	4/23/2018	0.48	0.16	J		µg/L	F
0001	CIS-1,2-DICHIOIOEthene	7/30/2018	0.44	0.16	J		µg/L	F
		10/29/2018	0.16	0.16	U		µg/L	F
		1/29/2018	3.8				mg/L	F
0601	Dissolved ovvgon	4/23/2018	5.28				mg/L	F
0001	Dissolved oxygen	7/30/2018	5.97				mg/L	F
		10/29/2018	8.35				mg/L	F
		1/29/2018	53.9				mV	F
0601	Ovidation, reduction natantial	4/23/2018	174.3				mV	F
0601	Oxidation-reduction potential	7/30/2018	148.8				mV	F
		10/29/2018	62.7				mV	F
		1/29/2018	7.15				s.u.	F
0004		4/23/2018	7.08				s.u.	F
0601	pn	7/30/2018	7.83				s.u.	F
		10/29/2018	7.65				s.u.	F
		1/29/2018	900				µmho/cm	F
0601	Chapitia conductores	4/23/2018	1270				µmho/cm	F
0601	Specific conductance	7/30/2018	1450				µmho/cm	F
		10/29/2018	1370				µmho/cm	F
		1/29/2018	13.6				°C	F
0601	Tomporphire	4/23/2018	12.7				°C	F
0601	Temperature	7/30/2018	14.6				°C	F
		10/29/2018	14.6				°C	F
		1/29/2018	10.5	0.16			μg/L	F
0604	Tatrachlaraethana	4/23/2018	12.9	0.16			μg/L	F
0601	l etrachioroethene	7/30/2018	9.69	0.16			µg/L	F
		10/29/2018	6.18	0.16			µg/L	F

Location	Analyte	Sample Date	Value	Detection Limit	Laboratory Qualifiers	Validation Qualifiers	Units	Sample Type
		1/29/2018	0.16	0.16	U		µg/L	F
0601	trans 1.2 Disblaraathana	4/23/2018	0.16	0.16	U		µg/L	F
0001		7/30/2018	0.16	0.16	U		µg/L	F
		10/29/2018	0.16	0.16	U		µg/L	F
		1/29/2018	3.85	0.16			µg/L	F
0601	Trichloroothono	4/23/2018	2.91	0.16			µg/L	F
0001	Inchioroethene	7/30/2018	1.2	0.16			µg/L	F
		10/29/2018	0.72	0.16	J		µg/L	F
0601	Tritium	1/29/2018	7340	248			pCi/L	F
0601	Intium	7/30/2018	19000	316			pCi/L	F
		1/29/2018	10.6				NTU	F
0004	To ask islike	4/23/2018	44.1				NTU	F
0601	Turbidity	7/30/2018	484				NTU	F
		10/29/2018	999			>	NTU	F
		1/29/2018	0.16	0.16	U		µg/L	F
0004) (in dishlarida	4/23/2018	0.16	0.16	U		µg/L	F
0601	Vinyi chionde	7/30/2018	0.16	0.16	U		µg/L	F
		10/29/2018	0.16	0.16	U		µg/L	F
		1/29/2018	6.16	0.16			µg/L	F
0602	cis-1,2-Dichloroethene	4/23/2018	4.51	0.16			µg/L	F
		10/29/2018	1.95	0.16			µg/L	F
		1/29/2018	6.6				mg/L	F
0602	Dissolved oxygen	4/23/2018	6.46				mg/L	F
		10/29/2018	3.94				mg/L	F
		1/29/2018	71.6				mV	F
0602	Oxidation-reduction potential	4/23/2018	80.3				mV	F
		10/29/2018	-48.3				mV	F
		1/29/2018	7.24				s.u.	F
0602	рН	4/23/2018	7.3				s.u.	F
		10/29/2018	7.91				s.u.	F

Location	Analyte	Sample Date	Value	Detection Limit	Laboratory Qualifiers	Validation Qualifiers	Units	Sample Type
		1/29/2018	1220				µmho/cm	F
0602	Specific conductance	4/23/2018	1120				µmho/cm	F
		10/29/2018	1450				µmho/cm	F
		1/29/2018	6.7				°C	F
0602	Temperature	4/23/2018	12.5				°C	F
		10/29/2018	13.7				°C	F
		1/29/2018	0.16	0.16	U		µg/L	F
0602	Tetrachloroethene	4/23/2018	0.16	0.16	U		µg/L	F
		10/29/2018	0.16	0.16	U		µg/L	F
		1/29/2018	0.38	0.16	J		µg/L	F
0602	trans-1,2-Dichloroethene	4/23/2018	0.31	0.16	J		µg/L	F
		10/29/2018	0.16	0.16	U		µg/L	F
		1/29/2018	8.56	0.16			µg/L	F
0602	Trichloroethene	4/23/2018	4.06	0.16			µg/L	F
		10/29/2018	0.46	0.16	J		µg/L	F
0602	Tritium	1/29/2018	1490	254			pCi/L	F
		1/29/2018	25.9				NTU	F
0602	Turbidity	4/23/2018	83.1				NTU	F
		10/29/2018	154				NTU	F
		1/29/2018	0.16	0.16	U		µg/L	F
0602	Vinyl chloride	4/23/2018	0.16	0.16	U		µg/L	F
		10/29/2018	0.16	0.16	U		µg/L	F
		1/29/2018	0.16	0.16	U		µg/L	F
0005	sis 4.2 Disblare athens	4/23/2018	1.09	0.16			µg/L	F
0605	CIS-1,2-Dichloroethene	7/30/2018	0.96	0.16	J		µg/L	F
		10/29/2018	3.06	0.16			μg/L	F
		1/29/2018	2.03				mg/L	F
0005	Disselying surgers	4/23/2018	7.76				mg/L	F
0605	Uissoivea oxygen	7/30/2018	7.13				mg/L	F
		10/29/2018	2.27				mg/L	F

Location	Analyte	Sample Date	Value	Detection Limit	Laboratory Qualifiers	Validation Qualifiers	Units	Sample Type
		1/29/2018	-11.2				mV	F
0605	Ovidation reduction potential	4/23/2018	54				mV	F
0005		7/30/2018	-39.2				mV	F
		10/29/2018	-61.2				mV	F
		1/29/2018	7.4				s.u.	F
0605		4/23/2018	7.34				s.u.	F
0005	рн	7/30/2018	7.38				s.u.	F
		10/29/2018	7.45				s.u.	F
		1/29/2018	2590				µmho/cm	F
0005		4/23/2018	1850				µmho/cm	F
0605	Specific conductance	7/30/2018	1880				µmho/cm	F
		10/29/2018	1620				µmho/cm	F
		1/29/2018	9				°C	F
0005	Tamaanatura	4/23/2018	9.8				°C	F
0605	Temperature	7/30/2018	16.6				°C	F
		10/29/2018	11.8				°C	F
		1/29/2018	0.16	0.16	U		µg/L	F
0005		4/23/2018	0.34	0.16	J		µg/L	F
0605	letrachioroethene	7/30/2018	0.16	0.16	U		µg/L	F
		10/29/2018	0.16	0.16	U		µg/L	F
		1/29/2018	0.16	0.16	U		µg/L	F
0005		4/23/2018	0.16	0.16	U		µg/L	F
0605	trans-1,2-Dichloroethene	7/30/2018	0.16	0.16	U		µg/L	F
		10/29/2018	0.16	0.16	U		µg/L	F
		1/29/2018	0.3	0.16	J		μg/L	F
0005	Trickless at a set	4/23/2018	3.1	0.16			μg/L	F
0605	Irichloroethene	7/30/2018	1.08	0.16			μg/L	F
		10/29/2018	1.31	0.16			µg/L	F
0005	T	1/29/2018	2690	252			pCi/L	F
0605	i ritium	7/30/2018	4620	338			pCi/L	F

Location	Analyte	Sample Date	Value	Detection Limit	Laboratory Qualifiers	Validation Qualifiers	Units	Sample Type
		1/29/2018	999			>	NTU	F
0605	Turkidity	4/23/2018	505				NTU	F
0005	Turblany	7/30/2018	212				NTU	F
		10/29/2018	999			>	NTU	F
		1/29/2018	0.16	0.16	U		µg/L	F
0605	Vipul chlorida	4/23/2018	0.16	0.16	U		µg/L	F
0005		7/30/2018	0.16	0.16	U		µg/L	F
		10/29/2018	0.16	0.16	U		µg/L	F
		1/29/2018	1.32	0.16			µg/L	F
0000		4/23/2018	0.16	0.16	U		µg/L	F
0606	<i>cis</i> -1,2-Dichloroethene	7/30/2018	0.16	0.16	U		µg/L	F
		10/29/2018	0.16	0.16	U		µg/L	F
		1/29/2018	10.73				mg/L	F
0000	Disashuad aurusan	4/23/2018	8.86				mg/L	F
0606	Dissolved oxygen	7/30/2018	7.26				mg/L	F
		10/29/2018	9.52				mg/L	F
		1/29/2018	18.8				mV	F
0000		4/23/2018	257.3				mV	F
0606	Oxidation-reduction potential	7/30/2018	116				mV	F
		10/29/2018	114.2				mV	F
		1/29/2018	7.52				s.u.	F
0000		4/23/2018	7.43				s.u.	F
0606	рн	7/30/2018	7.49				s.u.	F
		10/29/2018	7.5				s.u.	F
		1/29/2018	1130				µmho/cm	F
0000		4/23/2018	1490				µmho/cm	F
0606	Specific conductance	7/30/2018	1910				µmho/cm	F
		10/29/2018	1500				µmho/cm	F

Location	Analyte	Sample Date	Value	Detection Limit	Laboratory Qualifiers	Validation Qualifiers	Units	Sample Type
		1/29/2018	5				°C	F
0606	Tomporatura	4/23/2018	8.7				°C	F
0000	remperature	7/30/2018	19.1				°C	F
		10/29/2018	10.8				°C	F
		1/29/2018	0.16	0.16	U		µg/L	F
0606	Tatrachlaraothana	4/23/2018	0.16	0.16	U		µg/L	F
0000	retrachioroethene	7/30/2018	0.16	0.16	U		µg/L	F
		10/29/2018	0.16	0.16	U		µg/L	F
		1/29/2018	0.16	0.16	U		µg/L	F
0606	trans 1.2 Disblorgethene	4/23/2018	0.16	0.16	U		µg/L	F
0000	trans-1,2-Dichloroethene	7/30/2018	0.16	0.16	U		µg/L	F
		10/29/2018	0.16	0.16	U		µg/L	F
		1/29/2018	3.86	0.16			µg/L	F
0606	Trichloroothono	4/23/2018	0.16	0.16	U		µg/L	F
0000	Theme	7/30/2018	0.16	0.16	U		µg/L	F
		10/29/2018	0.16	0.16	U		µg/L	F
0606	Tritium	1/29/2018	1360	252			pCi/L	F
0000	Indun	7/30/2018	2870	333			pCi/L	F
		1/29/2018	999			>	NTU	F
0606	Turkidity	4/23/2018	882				NTU	F
0000	Turblany	7/30/2018	1000			>	NTU	F
		10/29/2018	999			>	NTU	F
		1/29/2018	0.16	0.16	U		µg/L	F
0606		4/23/2018	0.16	0.16	U		µg/L	F
0000		7/30/2018	0.16	0.16	U		µg/L	F
		10/29/2018	0.16	0.16	U		μg/L	F
		1/29/2018	0.16	0.16	U		μg/L	F
0607	ais 1.2 Dichlereethere	4/23/2018	0.51	0.16	J		µg/L	F
0607	<i>cis</i> -1,2-Dichloroethene	7/30/2018	0.62	0.16	J		µg/L	F
		10/29/2018	0.42	0.16	J		μg/L	F

Location	Analyte	Sample Date	Value	Detection Limit	Laboratory Qualifiers	Validation Qualifiers	Units	Sample Type
		1/29/2018	8.05				mg/L	F
0607	Disselved everyop	4/23/2018	8.54				mg/L	F
0007	Dissolved oxygen	7/30/2018	9.06				mg/L	F
		10/29/2018	8.76				mg/L	F
		1/29/2018	113.3				mV	F
0607	Ovidation reduction potential	4/23/2018	265.4				mV	F
0607	Oxidation-reduction potential	7/30/2018	88.1				mV	F
		10/29/2018	199.6				mV	F
		1/29/2018	7.31				s.u.	F
0007	-11	4/23/2018	7.14				s.u.	F
0607	рн	7/30/2018	7.44				s.u.	F
		10/29/2018	7.05				s.u.	F
		1/29/2018	2460				µmho/cm	F
0007		4/23/2018	1520				µmho/cm	F
0607	Specific conductance	7/30/2018	1550				µmho/cm	F
		10/29/2018	1450				µmho/cm	F
		1/29/2018	13				°C	F
0007	Tanan ana tana	4/23/2018	11.5				°C	F
0607	remperature	7/30/2018	14.7				°C	F
		10/29/2018	15.3				°C	F
		1/29/2018	0.16	0.16	U		µg/L	F
0007	To the oblight of the sec	4/23/2018	0.16	0.16	U		µg/L	F
0607	letrachioroethene	7/30/2018	0.16	0.16	U		µg/L	F
		10/29/2018	0.16	0.16	U		µg/L	F
		1/29/2018	0.16	0.16	U		µg/L	F
0007	trans 1.2 Disklars sthans	4/23/2018	0.16	0.16	U		µg/L	F
0607	trans-1,2-Dicnioroetnene	7/30/2018	0.16	0.16	U		µg/L	F
		10/29/2018	0.16	0.16	U		µg/L	F

Location	Analyte	Sample Date	Value	Detection Limit	Laboratory Qualifiers	Validation Qualifiers	Units	Sample Type
		1/29/2018	0.85	0.16	J		µg/L	F
0607	Trichloroothopo	4/23/2018	1.3	0.16			µg/L	F
0007	Themere	7/30/2018	1.14	0.16			µg/L	F
		10/29/2018	0.51	0.16	J		µg/L	F
0607	Tritium	2/5/2018	2270	257			pCi/L	F
0007	muum	7/30/2018	2370	326			pCi/L	F
		1/29/2018	24.5				NTU	F
0607	Turbidity	4/23/2018	23.7				NTU	F
0007	Turblatty	7/30/2018	25.1				NTU	F
		10/29/2018	34.6				NTU	F
		1/29/2018	0.16	0.16	U		µg/L	F
0007) (in a planida	4/23/2018	0.16	0.16	U		µg/L	F
0607	Vinyi chionde	7/30/2018	0.16	0.16	U		µg/L	F
		10/29/2018	0.16	0.16	U		µg/L	F
0617	aia 1 2 Diablara athana	1/29/2018	1.43	0.16			µg/L	F
0617	CIS-1,2-Dichloroethene	7/30/2018	1.41	0.16			µg/L	F
0017	Disselved overes	1/29/2018	1.29				mg/L	F
0617	Dissolved oxygen	7/30/2018	6.71				mg/L	F
0617	Ovidation raduation potential	1/29/2018	-24				mV	F
0617	Oxidation-reduction potential	7/30/2018	47.8				mV	F
0047		1/29/2018	7.28				s.u.	F
0617	рн	7/30/2018	6.88				s.u.	F
0017		1/29/2018	1350				µmho/cm	F
0617	Specific conductance	7/30/2018	1650				µmho/cm	F
0017		1/29/2018	9				°C	F
0617	Temperature	7/30/2018	18.7				°C	F
0047	Tatas aklass atkas a	1/29/2018	0.16	0.16	U		µg/L	F
0617	i etrachioroethene	7/30/2018	0.16	0.16	U		μg/L	F
0017	(mar 4.0 Disklas - th	1/29/2018	0.16	0.16	U		μg/L	F
0617	trans-1,2-DicniorOethene	7/30/2018	0.16	0.16	U		μg/L	F

Location	Analyte	Sample Date	Value	Detection Limit	Laboratory Qualifiers	Validation Qualifiers	Units	Sample Type
0617	Trichloroothono	1/29/2018	5.4	0.16			µg/L	F
0017	Themoretheme	7/30/2018	5.99	0.16			µg/L	F
0617	Turbidity	1/29/2018	33.1				NTU	F
0017	Turblatty	7/30/2018	49.2				NTU	F
0617	View ablarida	1/29/2018	0.16	0.16	U		µg/L	F
0017		7/30/2018	0.16	0.16	U		μg/L	F

Abbreviations:

J = estimated value

 $\mu g/L$ = micrograms per liter $\mu mho/cm$ = micromhos per centimeter mg/L = milligrams per liter mV = millivolts

pCi/L = picocuries per literQ = quantitative result due to sampling technique s.u. = standard unit

U = analytical result below detection limit

This page intentionally left blank

Appendix E

Data Assessment Reports
This page intentionally left blank

Contractor to the U.S. Department of Energy Office of Legacy Management

Data Review and Validation Report

General Information

Task ID:	MND01-01.1801001
Sample Event:	January 29-February 1, 2018
Site(s):	Mound LTS&M Groundwater (Parcel 6-7-8)
Laboratory:	GEL Laboratories, Charleston, South Carolina
Work Order No.:	442977
Analysis:	Organics and Radiochemistry
Validator:	Peter Steves
Review Date:	April 17, 2018

This validation was performed according to the "Standard Practice for Validation of Environmental Data" found in Appendix A of *Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites* (LMS/PRO/S04351, continually updated, <u>http://energy.gov/lm/downloads/sampling-and-analysis-plan-us-department-energy-office-legacy-management-sites</u>). The procedure was applied at Level 3, Data Validation.

All analyses were successfully completed. The samples were prepared and analyzed using accepted procedures based on methods specified by line item code, which are listed in Table 1.

Analyte	Line Item Code	Prep Method	Analytical Method
Volatile Organics, VOA	VOA-A-007	SW-846 5030B	SW-846 8260 LL
Tritium	LSC-A-001	EPA 906.0 Modified	EPA 906.0 Modified

Table 1. Analytes and Methods

Data Qualifier Summary

Analytical results were qualified as listed in Table 2. Refer to the attached validation worksheets and the sections below for an explanation of the data qualifiers applied.

Table 2. Data Qualifiers	
--------------------------	--

Sample Number	Location	Analyte	Flag	Reason
MND01-01.1801001-015	0605	Acetone	U	Less than 10 times the trip blank
MND01-01.1801001-007	0347	Hexachlorobutadiene	J	MS less than lower acceptance limit

Sample Number	Analyte	Flag	Reason	
MND01-01.1801001-008	0379	Tritium	J	Less than the determination limit

Sample Shipping/Receiving

GEL Laboratories in Charleston, South Carolina, received 21 water samples on February 02, 2018, accompanied by a Chain of Custody (COC) form. The air waybill number was listed on the Sample Receipt and Review Form. The COC form was checked to confirm that all of the samples were listed with sample collection dates and times, and that signatures and dates were present indicating sample relinquishment and receipt. The COC forms were complete with no errors or omissions with the following exception:

• The original COC listed the wrong collection date for locations 0124, 0346, 0379, and 0999. The COC was hand corrected and re-submitted with all date times and signatures present and correct, with the exception of the received by signature was missing.

Preservation and Holding Times

The sample shipments were received intact with the temperature inside the iced cooler at 4 °C, which complies with requirements. All samples were analyzed within the applicable holding times. All samples were received in the correct container types and had been preserved correctly for the requested analyses with these exceptions:

- The tritium analysis for sample location 0346 could not be performed because the glass bottle for that aliquot was received broken.
- Headspace was noted in all containers for sample location 9347.

Detection and Quantitation Limits

The method detection limit (MDL) was reported for all organic analytes as required. The MDL, as defined in 40 CFR 136, is the minimum concentration of an analyte that can be measured and reported with 99 percent confidence that the analyte concentration is greater than zero. The practical quantitation limit (PQL) for these analytes is the lowest concentration that can be reliably measured, and is defined as 5 times the MDL.

For radiochemical analytes (those measured by radiometric counting) the MDL and PQL are not applicable, and these results are evaluated using the minimum detectable concentration (MDC), the decision level concentration (DLC), and the determination limit (DL). The DLC is the minimum concentration of an analyte that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is estimated as 3 times the 1-sigma total propagated uncertainty. Results that are greater than the MDC but less than the DLC are qualified with a U flag as not detected. The DL for radiochemical results is the lowest concentration that can be reliably measured and is defined as 3 times the MDC. Results that were not previously U qualified and are less than the DL are qualified with a J flag as estimated values.

The reported MDLs and MDCs demonstrate compliance with contractual requirements.

Laboratory Instrument Calibration

Method requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing acceptable qualitative and quantitative data for the analytes of interest. Initial calibration verification demonstrates that the instrument is capable of acceptable performance at the beginning of the analytical run. Continuing calibration verification demonstrates that the initial calibration is still valid by checking the performance of the instrument on a continuing basis. Initial and continuing calibration standards must be prepared from independent sources to ensure the validity of the calibration. All laboratory instrument calibrations and calibration verifications were performed correctly in accordance with the cited methods.

Method SW-846 8260 LL Volatile Organics, VOA

Initial calibration of instrument VOA2 was performed on January 8, 2018 using nine calibration standards. Calibration curves are established using linear regression, quadratic regression, or the average response factor approach. Calibrations using average response factors had relative standard deviations of less than 15 percent. Linear or higher order regression calibrations had correlation coefficient values greater than 0.99 and intercepts less than 3 times the MDL. Initial and continuing calibration verification checks were made at the required frequency. Some target compounds had percent drift values greater than 20 percent but were not detected at concentrations greater than the MDL. The mass spectrometer calibration and resolution was checked at the beginning of each analytical run in accordance with the procedure.

Radiochemical Analysis

Method EPA 906.0 Modified Tritium

Liquid scintillation calibrations for instrument MOCHA and SILVER were performed on June 11, 2017 and June 10, 2017. Calibrations resulted in quench curves covering a quench number range of 127 – 345 and 126 - 346. The sample quench values were all within the calibration range. Daily calibration checks were performed February 12–13, 2018 with acceptable results.

Volatiles Internal Standards and Surrogates

The volatile internal standard recoveries and surrogate recoveries were within the acceptance ranges for all samples.

Method Blanks

Method blanks are analyzed to assess any contamination that may have occurred during sample preparation. All method blank results associated with the samples were below the PQL for all analytes. In cases where a blank concentration exceeds or equals the MDL, the associated sample results are qualified with a U flag (not detected) when the sample result is greater than the MDL but less than 5 times the blank concentration.

<u>Trip Blank</u>

Trip blanks were prepared and analyzed to document contamination attributable to shipping and field handling procedures. This type of blank is useful in documenting contamination of volatile organic samples. Three trip blanks were submitted with these samples. Acetone was detected in the trip blanks. Associated sample acetone results that are less than ten times the blank concentration are qualified with a U flag as not detected.

Matrix Spike Analysis

Matrix spikes are aliquots of environmental samples to which a known concentration of analyte has been added before analysis. Matrix spike and matrix-spike duplicate (MS/MSD) analysis is used to assess the performance of the method by measuring the effects of interferences caused by the sample matrix and reflects the bias of the method for the particular matrix in question. The MS/MSD data are not evaluated when the concentration of the unspiked sample is greater than 4 times the spike. The spikes met the recovery and precision criteria for all analytes evaluated with the exception of hexachlorobutadiene. The associated result is qualified with a J flag as an estimated value.

Laboratory Replicate Analysis

Laboratory replicate analyses are used to determine laboratory precision for each sample matrix. The relative percent difference for non-radiochemical replicate results that are greater than 5 times the PQL should be less than 20 percent. For results that are less than 5 times the PQL, the range should be no greater than the PQL. For the radiochemistry analyses, a laboratory control sample duplicate was analyzed in lieu of a sample duplicate, which is acceptable. The relative error ratio for radiochemical replicate results (calculated using the one-sigma total propagated uncertainty) should be less than 3, indicating acceptable precision. The replicate results met these criteria.

Laboratory Control Sample

Laboratory control samples were analyzed at the correct frequency to provide information on the accuracy of the analytical method and the overall laboratory performance, including sample preparation. All control sample results were acceptable.

Field Duplicate

Field duplicate samples are collected and analyzed as an indication of overall precision of the measurement process. The precision observed includes both field and laboratory precision and has more variability than laboratory duplicates, which measure only laboratory performance. A duplicate sample was collected from location 0347. The relative percent difference for duplicate results that are greater than 5 times the PQL should be less than 20 percent. For results that are less than 5 times the PQL, the range should be no greater than the PQL. For radiochemical measurements, the relative error ratio (the ratio of the absolute difference between the sample

and duplicate results and the sum of the 1-sigma uncertainties) is used to evaluate duplicate results and should be less than 3. The duplicate results met the criteria.

Completeness

Results were reported in the correct units for all analytes requested using contract-required laboratory qualifiers. The analytical report included the MDL (MDC for radiochemistry) and PQL for all analytes and all required supporting documentation.

Electronic Data Deliverable (EDD) File

The EDD file arrived on March 1, 2018. The Sample Management System EDD validation module was used to verify that the EDD file was complete and in compliance with requirements. The module compares the contents of the file to the requested analyses to ensure all and only the requested data are delivered. The contents of the EDD were manually examined to verify that the sample results accurately reflect the data contained in the sample data package.

Potential Outliers

Potential outliers are results that lie outside the historical range, possibly due to transcription errors, data calculation errors, or measurement system problems. However, outliers can also represent true values outside the historical range. Potential outliers are identified by generating the Data Validation Outliers Report from data in the environmental database. The new data are compared to historical values and data that fall outside the historical data range are listed on the report along with the historical minimum and maximum values. The potential outliers are further reviewed and may be subject to statistical evaluation using the ProUCL application developed by the EPA (<u>https://www.epa.gov/land-research/proucl-software</u>). The review also includes an evaluation of any notable trends in the data that may indicate the outliers represent true extreme values.

There were no outliers identified and the data for this task are acceptable as qualified.

Report Prepared By: _

Leslie P. Steves 2018.05.07 10:15:50 -06'00'

Peter Steves Data Validator

Data Validation Outliers Report - No Field Parameters Report Date: 04/18/2018

Comparison to Historical Data Since: 4/18/2007 12:00:00 AM Fraction: Any

Task: MND01-01.1801001

Analyte	Location	Analysis Location	Units	Fraction	Result	Lab Qualifier(s)	Туре	HistMIN	HistMAX	HistSetSize	Outlier?
Tritium	0602	LB	pCi/L	Ν	1490		< HistMIN	4110	45100	19	No
Tritium	0605	LB	pCi/L	Ν	2690		< HistMIN	4410	33400	30	No
Trichloroethene	0605	LB	ug/L	Ν	0.300	J	< HistMIN	6.22	24.7	42	No
Tritium	0606	LB	pCi/L	Ν	1360		< HistMIN	2480	14600	20	No
Trichloroethene	0607	LB	ug/L	N	0.850	J	< HistMIN	2.74	13	43	No

FRACTION: D = Dissolved N = NA T = Total

-			Page 1 of 1
G	eneral Data	Validation Repo	ort
Task Code: MND01-01.1801001	Lab Code: GEN	Validator: Peter Steves	Validation Date: 04-18-2018
Project: LTS&M (Parcel 6-7-8)			# Samples: 21
Analysis Type: General Ch	emistry Metals	X Organics X Radioch	nemistry
Chain of Custody		Sample	
Present: <u>OK</u> Signed: <u>O</u>	K Dated: OK	Integrity: <u>OK</u> Preservatio	on <u>OK</u> Temperature: <u>OK</u>
Check		Summary	
Holding Times:	All analyses were con	npleted within the applicable ho	olding times.
Detection Limits:	The reported detectio	n limits are equal to or below th	ne contract required limits.
Field Blanks:	There were 3 field bla	anks associated with this task.	
Field Duplicates:	There was 1 duplicate	e evaluated.	

Blank Type	Sample Code	Location		Method	Analyt	e	Result	Lab Qualifiers
ТВ	MND01-01.1801001.019	0999	SW	/-846 8260	Aceton	e	5.39	J
As	ssociated Samples:							1
	Sam ple Code	Location	Result	Dilution	Lab Qualifiers	Validation Qu	alifier	
	MND01-01.1801001-013	0601	0.500	1	U			
	MND01-01.1801001-014	0602	0.500	1	U			
	MND01-01.1801001-015	0605	2.72	1	J	U		
	MND01-01.1801001-016	0606	0.500	1	U			
	MND01-01.1801001-017	0607	0.500	1	U			
								1

ect: L	TS&M (Parcel 6-7-8)	Validation Re	eport: Fie Code: MND	Id Blanks	Lab Cod	e: GEN		Page 2 of 3 18-Apr-2018
ΤВ	MND01-01.1801001.020	0999	SW	846 8260	Aceton	e	5.88	J
A	ssociated Samples:							
	Sample Code	Location	Result	Dilution	Lab Qualifiers	Validation	Qualifier	
	MND01-01.1801001-002	0124	0.500	1	U			
	MND01-01.1801001-006	0346	0.500	1	U			
	MND01-01.1801001-008	0379	0.500	1	U			

t: LTS&M (Parcel 6-7-8)	Validation R	code: MNE	eld Blanks	Lab Cod	le: GEN		Page 3 of 3 18-Apr-2018
TB MND01-01.1801001.021	0999	SW	-846 8260	Aceton	e	5.12	J
Associated Samples:							7
Sam ple Code	Location	Result	Dilution	Lab Qualifiers	Validation	Qualifier	
MND01-01.1801001.018	0347	0.500	1	U	U		
MND01-01.1801001-001	0118	0.500	1	U			
MND01-01.1801001-003	0126	0.500	1	U			
MND01-01.1801001-004	0138	0.500	1	U			
MND01-01.1801001-005	0315	0.500	1	U			
MND01-01.1801001-007	0347	0.500	1	U			
MND01-01.1801001-009	0386	0.500	1	U			
MND01-01.1801001-010	0387	0.500	1	U			
MND01-01.1801001-011	0389	0.500	1	U			
MND01-01.1801001-012	0392	0.500	1	U			

Page 1 of 4 18-Apr-2018

Project: LTS&M (Parcel 6-7-8) Task Code: MND01-01.1801001 Lab Code: GEN

	Duplic	Duplicate: MND01-01.1801001.018 Sample: MND01-01.1801001-007 0347						01-007			
Analyte	Result	Qualifiers	Uncert.	Dilution	Result	Qualifiers	Uncert.	Dilution	RPD	RER	Units
1,1,1,2-Tetrachloroethane	0.160	U		1	0.160	U		1			ug/L
1,1,1-Trichloroethane	0.160	U		1	0.160	U		1			ug/L
1,1,2,2-Tetrachloroethane	0.160	U		1	0.160	U		1			ug/L
1,1,2-Trichloro-1,2,2-trifluoroethane	1.50	U		1	1.50	U		1			ug/L
1,1,2-Trichloroethane	0.160	U		1	0.160	U		1			ug/L
1,1-Dichloroethane	0.160	U		1	0.160	U		1			ug/L
1,1-Dichloroethene	0.160	U		1	0.160	U		1			ug/L
1,1-Dichloropropene	0.160	U		1	0.160	U		1			ug/L
1,2,3-Trichlorobenzene	0.200	U		1	0.200	U		1			ug/L
1,2,3-Trichloropropane	0.160	U		1	0.160	U		1			ug/L
1,2,4-Trichlorobenzene	0.160	U		1	0.160	U		1			ug/L
1,2,4-Trimethylbenzene	0.160	U		1	0.160	U		1			ug/L
1,2-Dibromo-3-chloropropane	0.160	U		1	0.160	U		1			ug/L
1,2-Dibromoethane	0.160	U		1	0.160	U		1			ug/L
1,2-Dichlorobenzene	0.160	U		1	0.160	U		1			ug/L
1,2-Dichloroethane	0.160	U		1	0.160	U		1			ug/L
1,2-Dichloropropane	0.160	U		1	0.160	U		1			ug/L
1,3,5-Trimethylbenzene	0.160	U		1	0.160	U		1			ug/L

Project: LTS&M (Parcel 6-7-8)	Task C	ode: MN	ID01-01.1	801001	Lab Co	de: GEN				18-A	pr-2018
	Duplic	ate: MND0 [,]	1-01.1801	001.018	Samp	le: MND01- 034	-01.18010 17	01-007			
Analyte	Result	Qualifiers	Uncert.	Dilution	Result	Qualifiers	Uncert.	Dilution	RPD	RER	Units
1,3-Dichlorobenzene	0.160	U		1	0.160	U		1			ug/L
1,3-Dichloropropane	0.160	U		1	0.160	U		1			ug/L
1,4-Dichlorobenzene	0.160	U		1	0.160	U		1			ug/L
2,2-Dichloropropane	0.160	U		1	0.160	U		1			ug/L
2-Butanone	0.500	U		1	0.500	U		1			ug/L
2-Chlorotoluene	0.160	U		1	0.160	U		1			ug/L
2-Hexanone	0.500	U		1	0.500	U		1			ug/L
4-Chlorotoluene	0.160	U		1	0.160	U		1			ug/L
4-Methyl-2-Pentanone	0.500	U		1	0.500	U		1			ug/L
Acetone	0.500	U		1	0.500	U		1			ug/L
Benzene	0.160	U		1	0.160	U		1			ug/L
Bromobenzene	0.160	U		1	0.160	U		1			ug/L
Bromochloromethane	0.160	U		1	0.160	U		1			ug/L
Bromodichloromethane	0.160	U		1	0.160	U		1			ug/L
Bromoform	0.160	U		1	0.160	U		1			ug/L
Bromomethane	0.160	U		1	0.160	U		1			ug/L
Carbon Disulfide	0.500	U		1	0.500	U		1			ug/L
Carbon tetrachloride	1.47			1	1.54			1	4.7		ug/L
Chlorobenzene	0.160	U		1	0.160	U		1			ug/L
Chlorodibromomethane	0.160	U		1	0.160	U		1			ug/L

Page 2 of 4

Organics	Data Validation Summary	Page 1 of 1 19-Apr-2018
Project: LTS&M (Parcel 6-7-8)		
Task Code: MND01- 01.1801001		
Lab Code: GEN		
Surrogate Recovery:	All surrogate recoveries were within the laboratory acceptance limits.	
LCS/LCSD Performance:	All LCS/LCSD results were within the laboratory acceptance limits.	
MS/MSD Performance:	There was 1 MS/MSD result outside the laboratory acceptance limits.	
Method Blank Performance:	All method blanks were below the MDL.	

	N	oncompl	iance Report:	MS/MS	D Per	form	ance	2		Page 1 of 1
iect: ITS&M	(Parcel 6-7-8)	oncomp		801001		Code	GEN			19-Apr-2018
ect. LI Saw	(Faicel 0-7-0)		Task Code. MiNDOT-OT.	1001001	Lap	coue.	GEN			
ample ID	Data	Mothod	Apolito	Me	MeD	Louior	Unnor	BBD		Commont
ample ID	Analyzed	Method	Analyte	Recovery	Recovery	Limit	Limit	RPD	Limit	Comment
	02-06-2018	SW-846 8260	Hexachlorobutadiene	60		65	123			MS recovery out of acceptance range

		Radio	cne	mist	ry Da		van	auon	VUIN						19-Apr-2018
ect: LT	S&M (Parcel 6-7-8)			Task Co	ode: MN	D01-0	01.1801	001		Lab C	ode: G	BEN			
Sample ID	Analyte	Analysis Date	QC Type	Result Type	Result	Flag	TPU	Spike Recovery	Spike Dup Recovery	Lower Limit	Upper Limit	RPD	RPD Limit	RER	Comments
	Tritium	02-12-2018	MS	SC	5980		1270	94.8		75	125				
	Tritium	02-13-2018	R	TRG	1190		303					10.2	100		
QC Types:	LCS: Laboratory Control	Sample LC:	SD: Labor	atory Contr	ol Sample Di	uplicate	e MB:	Method Blank	MS: Matrix S	Spike N	ISD: Matri	ix Spike Du	uplicate F	R: Replicate	3

Contractor to the U.S. Department of Energy Office of Legacy Management

Data Review and Validation Report

General Information

Task ID:	MND01-01.1802002
Sample Event:	February 5 and 8, 2018
Site(s):	LTS&M (Parcel 6-7-8)
Laboratory:	GEL Laboratories, Charleston, South Carolina
Work Order No.:	443140
Analysis:	Radiochemistry
Validator:	Peter Steves
Review Date:	April 20, 2018

This validation was performed according to the "Standard Practice for Validation of Environmental Data" found in Appendix A of *Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites* (LMS/PRO/S04351, continually updated, <u>http://energy.gov/lm/downloads/sampling-and-analysis-plan-us-department-energy-office-legacy-management-sites</u>). The procedure was applied at Level 3, Data Validation.

This validation includes the evaluation of data quality indicators (DQIs) associated with the data. DQIs are the quantitative and qualitative descriptors that are used to interpret the degree of acceptability or utility of data. Indicators of data quality include the analysis of laboratory control samples to assess accuracy; duplicates and replicates to assess precision; and interference check samples to assess bias (see attached Data Validation Worksheets). The comparability, completeness, and sensitivity of the data are also evaluated in the sections to follow.

All analyses were successfully completed. The samples were prepared and analyzed using accepted procedures based on methods specified by line item code, which are listed in Table 1.

Table 1. Analytes and Methods

Analyte	Line Item Code	Prep Method	Analytical Method
Tritium	LSC-A-001	EPA 906.0 Modified	EPA 906.0 Modified

Data Qualifier Summary

Analytical results were qualified as listed in Table 2. Refer to the attached validation worksheets and the sections below for an explanation of the data qualifiers applied.

Table 2. Data Qualifiers

Sample Number	Location	Analyte	Flag	Reason
MND01-01.1802002-006	346	Tritium	J	Less than 3 times MDC

Sample Shipping/Receiving

GEL Laboratories in Charleston, South Carolina, received 2 water samples on February 06 and 09, 2018, accompanied by Chain of Custody (COC) forms. The air waybill numbers were listed on the Sample Receipt and Review Form. The COC forms were checked to confirm that all of the samples were listed with sample collection dates and times, and that signatures and dates were present indicating sample relinquishment and receipt. The COC forms were complete with no errors or omissions.

Preservation and Holding Times

The sample shipments were received intact with the temperature inside the iced coolers between 1 and 4 °C, which complies with requirements. All samples were analyzed within the applicable holding times. All samples were received in the correct container types and had been preserved correctly for the requested analyses.

Detection and Quantitation Limits

For radiochemical analytes (those measured by radiometric counting) the MDL and PQL are not applicable, and these results are evaluated using the minimum detectable concentration (MDC), the decision level concentration (DLC), and the determination limit (DL). The DLC is the minimum concentration of an analyte that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is estimated as 3 times the 1-sigma total propagated uncertainty. Results that are greater than the MDC but less than the DLC are qualified with a U flag as not detected. The DL for radiochemical results is the lowest concentration that can be reliably measured and is defined as 3 times the MDC. Results that were not previously U qualified and are less than the DL are qualified with a J flag as estimated values.

The reported MDLs and MDCs demonstrate compliance with contractual requirements.

Laboratory Instrument Calibration

Method requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing acceptable qualitative and quantitative data for the analytes of interest. Initial calibration verification demonstrates that the instrument is capable of acceptable performance at the beginning of the analytical run. Continuing calibration verification demonstrates that the initial calibration is still valid by checking the performance of the instrument on a continuing basis. Initial and continuing calibration standards must be prepared from independent sources to ensure the validity of the calibration. All laboratory instrument

calibrations and calibration verifications were performed correctly in accordance with the cited methods.

Radiochemical Analysis

Method EPA 906.0 Modified Tritium

Liquid scintillation calibrations for instrument MOCHA and SILVER were performed on June 11, 2017 and June 10, 2017. Calibrations resulted in quench curves covering a quench number range of 127 - 345 and 126 - 346. The sample quench values were all within the calibration range. Daily calibration checks were performed February 12, 13 and 24, 2018 with acceptable results.

Matrix Spike Analysis

Matrix spikes are aliquots of environmental samples to which a known concentration of analyte has been added before analysis. Matrix spike and matrix-spike duplicate (MS/MSD) analysis is used to assess the performance of the method by measuring the effects of interferences caused by the sample matrix and reflects the bias of the method for the particular matrix in question. The MS/MSD data are not evaluated when the concentration of the unspiked sample is greater than 4 times the spike. The spikes met the recovery and precision criteria for all analytes evaluated.

Laboratory Replicate Analysis

Laboratory replicate analyses are used to determine laboratory precision for each sample matrix. The relative percent difference for non-radiochemical replicate results that are greater than 5 times the PQL should be less than 20 percent. For results that are less than 5 times the PQL, the range should be no greater than the PQL. For the radiochemistry analyses, a laboratory control sample duplicate was analyzed in lieu of a sample duplicate, which is acceptable. The relative error ratio for radiochemical replicate results (calculated using the one-sigma total propagated uncertainty) should be less than 3, indicating acceptable precision. The replicate results met these criteria.

Laboratory Control Sample

Laboratory control samples were analyzed at the correct frequency to provide information on the accuracy of the analytical method and the overall laboratory performance, including sample preparation. All control sample results were acceptable.

Completeness

Results were reported in the correct units for all analytes requested using contract-required laboratory qualifiers. The analytical report included the MDL (MDC for radiochemistry) and PQL for all analytes and all required supporting documentation.

Electronic Data Deliverable (EDD) File

The EDD file arrived on March 21, 2018. The Sample Management System EDD validation module was used to verify that the EDD file was complete and in compliance with requirements. The module compares the contents of the file to the requested analyses to ensure all and only the requested data are delivered. The contents of the EDD were manually examined to verify that the sample results accurately reflect the data contained in the sample data package.

Potential Outliers

Potential outliers are results that lie outside the historical range, possibly due to transcription errors, data calculation errors, or measurement system problems. However, outliers can also represent true values outside the historical range. Potential outliers are identified by generating the Data Validation Outliers Report from data in the environmental database. The new data are compared to historical values and data that fall outside the historical data range are listed on the report along with the historical minimum and maximum values. The potential outliers are further reviewed and may be subject to statistical evaluation using the ProUCL application developed by the EPA (<u>https://www.epa.gov/land-research/proucl-software</u>). The review also includes an evaluation of any notable trends in the data that may indicate the outliers represent true extreme values.

There were no outliers identified and the data for this Task are acceptable as qualified.

Report Prepared By: ____

Peter Steves Data Validator

G	eneral Data	Validation Rep	Page 1 of 1							
Task Code: MND01-01.1802002	Lab Code: GEN	Validator: Peter Steves	Validation Date: 04-20-2018							
Project: LTS&M (Parcel 6-7-8)			# Samples: 2							
Analysis Type: General Ch	emistry Metals	Organics X Radio	ochemistry							
Chain of Custody		Sample								
Present: OK Signed: O	K Dated: OK	Integrity: <u>OK</u> Preserva	tion <u>OK</u> Temperature: <u>OK</u>							
Check	<u>Check</u> <u>Summary</u>									
Holding Times:	All analyses were cor	npleted within the applicable	holding times.							
Detection Limits:	The reported detectio	n limits are equal to or below	the contract required limits.							
Field Duplicates:	There are no duplicat	es associated with this task.								

oject: LTS&M (Parcel 6-7-8)				Task Code: MND01-01.1802002						Lab Code: GEN					
Sample ID	Analyte	Analysis Date	QC Type	Result Type	Result	Flag	TPU	Spike Recovery	Spike Dup Recovery	Lower Limit	Upper Limit	RPD	RPD Limit	RER	Comments
	Tritium	02-12-2018	LCS	SC	2610		566	101		75	125				
	Tritium	02-12-2018	MB	TRG	72.6	U	165								
	Tritium	02-24-2018	LCS	SC	2570		673	99.9		75	125				
	Tritium	02-24-2018	MB	TRG	-112	U	136								
	Tritium	02-24-2018	MS	SC	2550		663	84		75	125				
	Tritium	02-24-2018	R	TRG	452	-	187					17.9	100		

QC Checks: RPD: Relative Percent Difference RER: Relative Error Ratio TPU: Total Propagated Uncertainty

Data Review and Validation Report

General Information

MND01 01 1804002
WIND01-01.1004003
April 23-25, 2018
Mound LTS&M Groundwater (Parcel 6-7-8)
GEL Laboratories, Charleston, South Carolina
448883
Organics
Steve Donivan
July 23, 2018

This validation was performed according to the *Environmental Data Validation Procedure* (LMS/PRO/S15870). The procedure was applied at Level 3, Data Validation.

All analyses were successfully completed. The samples were prepared and analyzed using accepted procedures based on methods specified by line item code, which are listed in Table 1.

Table 1. Analytes and Methods

Analyte	Line Item Code	Prep Method	Analytical Method
Volatile Organics, VOA	VOA-A-007	SW-846 5030B	SW-846 8260 LL

Data Qualifier Summary

Analytical results were qualified as listed in Table 2. Refer to the attached validation worksheets and the sections below for an explanation of the data qualifiers applied.

Table 2. Data Qualifiers

Sample Number	Location	Analyte	Flag	Reason	
MND01-01.1804003-012	0392	Bromochloromethane	J	Matrix spike recovery	
MND01-01.1804003-014	0602	Acetone	U	Less than 10 times the trip blank	
MND01-01.1804003-021	Trip blank	Acetone	J	Calibration drift	

Sample Shipping/Receiving

GEL Laboratories in Charleston, South Carolina, received 21 water samples on April 26, 2018, accompanied by a Chain of Custody (COC) form. The air waybill number was listed on the Sample Receipt and Review Form. The COC form was checked to confirm that all of the samples were listed with sample collection dates and times, and that signatures and dates were present indicating sample relinquishment and receipt. The COC forms were complete with no errors or omissions .

Preservation and Holding Times

The sample shipments were received intact with the temperature inside the iced cooler at 4 °C, which complies with requirements. All samples were analyzed within the applicable holding times. All samples were received in the correct container types and had been preserved correctly for the requested analyses.

Detection and Quantitation Limits

The method detection limit (MDL) was reported for all organic analytes as required. The MDL, as defined in 40 CFR 136, is the minimum concentration of an analyte that can be measured and reported with 99 percent confidence that the analyte concentration is greater than zero. The practical quantitation limit (PQL) for these analytes is the lowest concentration that can be reliably measured, and is defined as 5 times the MDL. The reported MDLs demonstrate compliance with contractual requirements.

Laboratory Instrument Calibration

Method requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing acceptable qualitative and quantitative data for the analytes of interest. Initial calibration verification demonstrates that the instrument is capable of acceptable performance at the beginning of the analytical run. Continuing calibration verification demonstrates that the initial calibration is still valid by checking the performance of the instrument on a continuing basis. Initial and continuing calibration standards must be prepared from independent sources to ensure the validity of the calibration. All laboratory instrument calibrations and calibration verifications were performed correctly in accordance with the cited methods.

Method SW-846 8260 LL Volatile Organics, VOA

Initial calibration of instrument VOA2 was performed on April 26, 2018 using nine calibration standards. Calibration curves are established using linear regression, quadratic regression, or the average response factor approach. Calibrations using average response factors had relative standard deviations of less than 15 percent. Linear or higher order regression calibrations had correlation coefficient values greater than 0.99 and intercepts less than 3 times the MDL. Initial and continuing calibration verification checks were made at the required frequency. Some target compounds had percent drift values greater than 20 percent. Associated sample results that are greater than the MDL are qualified with a "J" flag as estimated values. The mass spectrometer

calibration and resolution was checked at the beginning of each analytical run in accordance with the procedure.

Volatiles Internal Standards and Surrogates

The volatile internal standard recoveries and surrogate recoveries were within the acceptance ranges for all samples.

Method Blanks

Method blanks are analyzed to assess any contamination that may have occurred during sample preparation. All method blank results associated with the samples were below the PQL for all analytes. In cases where a blank concentration exceeds or equals the MDL, the associated sample results are qualified with a U flag (not detected) when the sample result is greater than the MDL but less than 5 times the blank concentration.

<u>Trip Blank</u>

Trip blanks were prepared and analyzed to document contamination attributable to shipping and field handling procedures. This type of blank is useful in documenting contamination of volatile organic samples. Three trip blanks were submitted with these samples. Acetone was detected in the trip blanks. Associated sample acetone results that are less than ten times the blank concentration are qualified with a U flag as not detected.

Matrix Spike Analysis

Matrix spikes are aliquots of environmental samples to which a known concentration of analyte has been added before analysis. Matrix spike and matrix-spike duplicate (MS/MSD) analysis is used to assess the performance of the method by measuring the effects of interferences caused by the sample matrix and reflects the bias of the method for the particular matrix in question. The MS/MSD data are not evaluated when the concentration of the unspiked sample is greater than 4 times the spike. The spikes met the recovery and precision criteria for all analytes evaluated with the exception of bromochloromethane. The associated result is qualified with a J flag as an estimated value.

Laboratory Replicate Analysis

Laboratory replicate analyses are used to determine laboratory precision for each sample matrix. The relative percent difference for non-radiochemical replicate results that are greater than 5 times the PQL should be less than 20 percent. For results that are less than 5 times the PQL, the range should be no greater than the PQL. For the radiochemistry analyses, a laboratory control sample duplicate was analyzed in lieu of a sample duplicate, which is acceptable. The relative error ratio for radiochemical replicate results (calculated using the one-sigma total propagated uncertainty) should be less than 3, indicating acceptable precision. The replicate results met these criteria.

Laboratory Control Sample

Laboratory control samples were analyzed at the correct frequency to provide information on the accuracy of the analytical method and the overall laboratory performance, including sample preparation. All control sample results were acceptable.

Field Duplicate

Field duplicate samples are collected and analyzed as an indication of overall precision of the measurement process. The precision observed includes both field and laboratory precision and has more variability than laboratory duplicates, which measure only laboratory performance. A duplicate sample was collected from location 0392. The relative percent difference for duplicate results that are greater than 5 times the PQL should be less than 20 percent. For results that are less than 5 times the PQL, the range should be no greater than the PQL. The duplicate results met the criteria.

Completeness

Results were reported in the correct units for all analytes requested using contract-required laboratory qualifiers. The analytical report included the MDL (MDC for radiochemistry) and PQL for all analytes and all required supporting documentation.

Electronic Data Deliverable (EDD) File

The EDD file arrived on May 23, 2018. The EDD was examined to verify that the file was complete and in compliance with requirements. The contents of the files were compared to the requested analyses to ensure all and only the requested data are delivered. The contents of the EDDs were manually examined to verify that the sample results accurately reflect the data contained in the sample data package.

Potential Outliers

Potential outliers are results that lie outside the historical range, possibly due to transcription errors, data calculation errors, or measurement system problems. However, outliers can also represent true values outside the historical range. Potential outliers are identified by generating the Data Validation Outliers Report from data in the environmental database. The new data are compared to historical values and data that fall outside the historical data range are listed on the report along with the historical minimum and maximum values. The potential outliers are further reviewed and may be subject to statistical evaluation using the ProUCL application developed by the EPA (<u>https://www.epa.gov/land-research/proucl-software</u>). The review also includes an evaluation of any notable trends in the data that may indicate the outliers represent true extreme values.

There were no outliers identified and the data for this task are acceptable as qualified.

Stoppon Donie

Report Prepared By: _____

STEPHEN DONIVAN (Affiliate) 2018.07.23 12:03:31 -06'00'

Stephen Donivan Laboratory Coordinator

Gener	al Data	Validation Repor	t Page 1 of 1
Task Code: MND01-01.1804003 Lab C	ode: GEN	Validator: Stephen Donivan	Validation Date: 07-23-2018
Project: LTS&M (Parcel 6-7-8)			# Samples: 21
Analysis Type: General Chemistry	Metals	X Organics Radiocher	mistry
Chain of Custody		Sample	
Present: <u>OK</u> Signed: <u>OK</u> Dat	ed: <u>OK</u>	Integrity: <u>OK</u> Preservation	<u>OK</u> Temperature: <u>OK</u>
<u>Check</u>		Summary	
Holding Times: All analy	/ses were con	npleted within the applicable hold	ing times.
Detection Limits: The rep		n limits are equal to or below the	contract required limits.
Field Blanks: There w		nks associated with this task.	
Field Duplicates: There w	as i duplicate	e evaluated.	

lank Type	Sample Code	Location		Method	Analyt	e	Result	Lab Qualifiers
ТВ	MND01-01.1804003.019	0999	SM	/-846 8260	Aceton	e	3.01	J
As	ssociated Samples:							1
	Sam ple Code	Location	Result	Dilution	Lab Qualifiers	Validation Qua	alifier	
	MND01-01.1804003-001	0118	0.500	1	U			
	MND01-01.1804003-002	0124	0.500	1	U			
	MND01-01.1804003-003	0126	0.500	1	U			
	MND01-01.1804003-004	0138	0.500	1	U			
	MND01-01.1804003-013	0601	0.500	1	U			
	MND01-01.1804003-014	0602	3.07	1	J	U		
	MND01-01.1804003-015	0605	0.500	1	U			
	MND01-01.1804003-016	0606	0.500	1	U			
	MND01-01.1804003-017	0607	0.500	1	U			

		Validation Rep	oort: Fie	ld Blanks			P	age 2 of 3	
ject: LT	S&M (Parcel 6-7-8)	Task Co	ode: MNDO	01-01.1804003	Lab Cod	e: GEN	23	3-Jul-2018	
ТВ	MND01-01.1804003.020	0999	SW-	846 8260	Acetone	e	2.60	J	
As	ssociated Samples:								
	Sam ple Code	Location	Result	Dilution	Lab Qualifiers	Validation	Qualifier		
	MND01-01.1804003.018	0392	0.500	1	U	U			
	MND01-01.1804003-005	0315	0.500	1	U				
	MND01-01.1804003-007	0347	0.500	1	U				
	MND01-01.1804003-009	0386	0.500	1	U				
	MND01-01.1804003-010	0387	0.500	1	U				
	MND01-01.1804003-011	0389	0.500	1	U				
	MND01-01.1804003-012	0392	0.500	1	U				
L									
									J.

		Validation I	Report: Fie	eld Blanks			F	age 3 of 3
ect: LT	S&M (Parcel 6-7-8)	Tas	k Code: MND	01-01.1804003	Lab Cod	e: GEN	2	3-Jul-2018
ТВ	MND01-01.1804003.021	0999	SW	-846 8260	Aceton	e	2.89	J
As	sociated Samples:							
	Sam ple Code	Location	Result	Dilution	Lab Qualifiers	Validation	Qualifier	
	MND01-01.1804003-006	0346	0.500	1	U			
	MND01-01.1804003-008	0379	0.500	1	U			

Page 1 of 4 23-Jul-2018

Project: LTS&M (Parcel 6-7-8)

Task Code: MND01-01.1804003 Lab Code: GEN

	Duplic	ate: MND0 ⁻	1-01.1804	003.018	Samp	le: MND01 039	-01.18040 92	03-012			
Analyte	Result	Qualifiers	Uncert.	Dilution	Result	Qualifiers	Uncert.	Dilution	RPD	RER	Units
1,1,1,2-Tetrachloroethane	0.160	U		1	0.160	U		1			ug/L
1,1,1-Trichloroethane	0.160	U		1	0.160	U		1			ug/L
1,1,2,2-Tetrachloroethane	0.160	U		1	0.160	U		1			ug/L
1,1,2-Trichloro-1,2,2-trifluoroethane	1.50	U		1	1.50	U		1			ug/L
1,1,2-Trichloroethane	0.160	U		1	0.160	U		1			ug/L
1,1-Dichloroethane	0.160	U		1	0.160	U		1			ug/L
1,1-Dichloroethene	0.160	U		1	0.160	U		1			ug/L
1,1-Dichloropropene	0.160	U		1	0.160	U		1			ug/L
1,2,3-Trichlorobenzene	0.200	U		1	0.200	U		1			ug/L
1,2,3-Trichloropropane	0.160	U		1	0.160	U		1			ug/L
1,2,4-Trichlorobenzene	0.160	U		1	0.160	U		1			ug/L
1,2,4-Trimethylbenzene	0.160	U		1	0.160	U		1			ug/L
1,2-Dibromo-3-chloropropane	0.160	U		1	0.160	U		1			ug/L
1,2-Dibromoethane	0.160	U		1	0.160	U		1			ug/L
1,2-Dichlorobenzene	0.160	U		1	0.160	U		1			ug/L
1,2-Dichloroethane	0.160	U		1	0.160	U		1			ug/L
1,2-Dichloropropane	0.160	U		1	0.160	U		1			ug/L
1,3,5-Trimethylbenzene	0.160	U		1	0.160	U		1			ug/L

	Duplic	ate: MND0	1-01.1804	003.018	Samp	le: MND01	-01.18040	03-012			
A	Desult	0	11	Dilution	Desuth	Overlifierer	92	Dilution		DED	Units
Analyte	Result	Quaimers	Uncert.	Dilution	Result	Quaimers	Uncert.	Dilution	RPD	RER	Units
1,3-Dichlorobenzene	0.160	U		1	0.160	U		1			ug/L
1,3-Dichloropropane	0.160	U		1	0.160	U		1			ug/L
1,4-Dichlorobenzene	0.160	U		1	0.160	U		1			ug/L
2,2-Dichloropropane	0.160	U		1	0.160	U		1			ug/L
2-Butanone	0.500	U		1	0.500	U		1			ug/L
2-Chlorotoluene	0.160	U		1	0.160	U		1			ug/L
2-Hexanone	0.500	U		1	0.500	U		1			ug/L
4-Chlorotoluene	0.160	U		1	0.160	U		1			ug/L
4-Methyl-2-Pentanone	0.500	U		1	0.500	U		1			ug/L
Acetone	0.500	U		1	0.500	U		1			ug/L
Benzene	0.160	U		1	0.160	U		1			ug/L
Bromobenzene	0.160	U		1	0.160	U		1			ug/L
Bromochloromethane	0.160	U		1	0.160	U		1			ug/L
Bromodichloromethane	0.160	U		1	0.160	U		1			ug/L
Bromoform	0.160	U		1	0.160	U		1			ug/L
Bromomethane	0.160	U		1	0.160	U		1			ug/L
Carbon Disulfide	0.500	U		1	0.500	U		1			ug/L
Carbon tetrachloride	0.160	U		1	0.160	U		1			ug/L
Chlorobenzene	0.160	U		1	0.160	U		1			ug/L
Chlorodibromomethane	0.160	U		1	0.160	U		1			ug/L

Page 2 of 4 23-Jul-2018

	Duplic	ate: MND0	1-01.1804	003.018	Samp	le: MND01 039	-01.18040 92	03-012			
Analyte	Result	Qualifiers	Uncert.	Dilution	Result	Qualifiers	Uncert.	Dilution	RPD	RER	Units
Chloroethane	0.160	U		1	0.160	U		1			ug/L
Chloroform	0.160	U		1	0.160	U		1			ug/L
Chloromethane	0.160	U		1	0.160	U		1			ug/L
cis-1,2-Dichloroethene	0.160	U		1	0.160	U		1			ug/L
cis-1,3-Dichloropropene	0.160	U		1	0.160	U		1			ug/L
Dibromomethane	0.160	U		1	0.160	U		1			ug/L
Dichlorodifluoromethane	0.160	U		1	0.160	U		1			ug/L
Ethylbenzene	0.160	U		1	0.160	U		1			ug/L
Hexachlorobutadiene	0.160	U		1	0.160	U		1			ug/L
Isopropylbenzene	0.160	U		1	0.160	U		1			ug/L
Methylene chloride	0.160	U		1	0.160	U		1			ug/L
n-Butylbenzene	0.160	U		1	0.160	U		1			ug/L
n-Propylbenzene	0.160	U		1	0.160	U		1			ug/L
Naphthalene	0.160	U		1	0.160	U		1			ug/L
p-IsopropyItoluene	0.160	U		1	0.160	U		1			ug/L
sec-Butylbenzene	0.160	U		1	0.160	U		1			ug/L
Styrene	0.160	U		1	0.160	U		1			ug/L
tert-Butylbenzene	0.160	U		1	0.160	U		1			ug/L
Tetrachloroethene	0.160	U		1	0.160	U		1			ug/L
Toluene	0.160	U		1	0.160	U		1			ug/L

Page 3 of 4 23-Jul-2018

	Duplic	ate: MND0 ⁻	1-01.1804	003.018	Samp	le: MND01 039	-01.18040 92	03-012			
Analyte	Result	Qualifiers	Uncert.	Dilution	Result	Qualifiers	Uncert.	Dilution	RPD	RER	Units
otal Xylenes	0.160	U		1	0.160	U		1			ug/L
ans-1,2-Dichloroethene	0.160	U		1	0.160	U		1			ug/L
ans-1,3-dichloropropene	0.160	U		1	0.160	U		1			ug/L
richloroethene	0.160	U		1	0.160	U		1			ug/L
richlorofluoromethane	0.160	U		1	0.160	U		1			ug/L
inyl chloride	0.160	U		1	0.160	U		1			ug/L

Organics	Data Validation Summary	Page 1 of 1 23-Jul-2018								
Project: LTS&M (Parcel 6-7-8)										
Task Code: MND01- 01.1804003										
Lab Code: GEN										
Surrogate Recovery:	All surrogate recoveries were within the laboratory acceptance limits.									
LCS/LCSD Performance:	All LCS/LCSD results were within the laboratory acceptance limits.									
MS/MSD Performance:	There was 1 MS/MSD result outside the laboratory acceptance limits.									
Method Blank Performance:	All method blanks were below the MDL.									
ect: LTS&M	(Parcel 6-7-8)		Task Code: MND01-01.1	804003	Lab (Code:	GEN			
------------	------------------	-------------	-----------------------	----------------	-----------------	----------------	----------------	-----	--------------	---------
	(
Sample ID	Date Analyzed	Method	Analyte	MS Recovery	MSD Recovery	Lower Limit	Upper Limit	RPD	RPD Limit	Comment
	05-02-2018	SW-846 8260	Bromochloromethane	78		79	120			

Data Review and Validation Report

General Information

Task ID:	MND01-01.1807004
Sample Event:	July 30-August 2, 2018
Site(s):	Mound LTS&M (Parcel 6-7-8)
Laboratory:	GEL Laboratories, Charleston, South Carolina
Work Order No.:	455819
Analysis:	Organics and Radiochemistry
Validator:	Samantha Tigar
Review Date:	October 22, 2018

This validation was performed according to *Environmental Data Validation Procedure* (LMS/PRO/S15870), which is available at<u>http://sp.lm.doe.gov/Contractor/ControlledDocuments/Controlled%20Documents/S15870_Env_DV_Procedure.pdf</u>. The procedure was applied at Level 3, Data Validation.

All analyses were successfully completed. The samples were prepared and analyzed using accepted procedures based on methods specified by line item code, which are listed in Table 1.

Analyte	Line Item Code	Prep Method	Analytical Method
Tritium	LSC-A-001	EPA 906.0 Modified	EPA 906.0 Modified
Volatile Organics, VOA	VOA-A-007	SW-846 5030B	SW-846 8260 LL

Table 1. Analytes and Methods

Data Qualifier Summary

Analytical results were qualified as listed in Table 2. Refer to the attached validation worksheets and the sections below for an explanation of the data qualifiers applied.

Sample Number	Location	Analyte	Flag	Reason
MND01-01.1807004-004	0138	Tritium	J	Less than the determination limit
MND01-01.1807004-008	0379	Tritium	J	Less than the determination limit

Table 2. Data Qualifiers

Sample Shipping/Receiving

GEL Laboratories in Charleston, South Carolina, received 21 water samples Between July 31 and August 3, 2018, accompanied by a Chain of Custody (COC) form. The air waybill number was listed on the Sample Receipt and Review Form. The COC form was checked to confirm that all of the samples were listed with sample collection dates and times, and that signatures and dates were present indicating sample relinquishment and receipt. The COC forms were complete with no errors or omissions.

A VOA vial for location 0138 was received broken. A trip blank vial was received with headspace. Sufficient volume remained in the remaining vials for analysis.

Preservation and Holding Times

The sample shipments were received intact with the temperature inside the iced cooler between 2 °C and 4 °C, which complies with requirements. All samples were received in the correct container types and had been preserved correctly for the requested analyses. All samples were analyzed within the applicable holding times.

Detection and Quantitation Limits

The method detection limit (MDL) was reported for all organic analytes as required. The MDL, as defined in 40 CFR 136, is the minimum concentration of an analyte that can be measured and reported with 99 percent confidence that the analyte concentration is greater than zero. The practical quantitation limit (PQL) for these analytes is the lowest concentration that can be reliably measured, and is defined as 5 times the MDL.

For radiochemical analytes (those measured by radiometric counting) the MDL and PQL are not applicable, and these results are evaluated using the minimum detectable concentration (MDC), the decision level concentration (DLC), and the determination limit (DL). The DLC is the minimum concentration of an analyte that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is estimated as 3 times the 1-sigma total propagated uncertainty. Results that are greater than the MDC but less than the DLC are qualified with a U flag as not detected. The DL for radiochemical results is the lowest concentration that can be reliably measured and is defined as 3 times the MDC. Results that were not previously U qualified and are less than the DL are qualified with a J flag as estimated values.

The reported MDLs and MDCs demonstrate compliance with contractual requirements.

Laboratory Instrument Calibration

Method requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing acceptable qualitative and quantitative data for the analytes of interest. Initial calibration verification demonstrates that the instrument is capable of acceptable performance at the beginning of the analytical run. Continuing calibration verification

demonstrates that the initial calibration is still valid by checking the performance of the instrument on a continuing basis. Initial and continuing calibration standards must be prepared from independent sources to ensure the validity of the calibration. All laboratory instrument calibrations and calibration verifications were performed correctly in accordance with the cited methods.

Method SW-846 8260 LL Volatile Organics, VOA

Initial calibration of instrument VOA2 was performed on July 17, 2018 using nine calibration standards. Calibration curves are established using linear regression, quadratic regression, or the average response factor approach. Calibrations using average response factors had relative standard deviations of less than 15 percent. Linear or higher order regression calibrations had correlation coefficient values greater than 0.99 and intercepts less than 3 times the MDL. Initial and continuing calibration verification checks were made at the required frequency. Some target compounds had percent drift values greater than 20 percent but were not detected at concentrations greater than the MDL. The mass spectrometer calibration and resolution was checked at the beginning of each analytical run in accordance with the procedure.

Method EPA 906.0 Modified Tritium

Liquid scintillation calibrations for instrument BROWN were performed on July 1, 2018. Calibrations resulted in quench curves covering a quench number range of 137 - 332. The sample quench values were all within the calibration range. Daily calibration checks were performed August 9 and 10, 2018 with acceptable results.

Volatiles Internal Standards and Surrogates

The volatile internal standard recoveries and surrogate recoveries were within the acceptance ranges for all samples.

Method Blanks

Method blanks are analyzed to assess any contamination that may have occurred during sample preparation. All method blank results associated with the samples were below the PQL for all analytes. In cases where a blank concentration exceeds or equals the MDL, the associated sample results are qualified with a U flag (not detected) when the sample result is greater than the MDL but less than 5 times the blank concentration.

<u>Trip Blank</u>

Trip blanks were prepared and analyzed to document contamination attributable to shipping and field handling procedures. This type of blank is useful in documenting contamination of volatile organic samples. Three trip blanks were submitted with these samples. Acetone and chlorobenzene were detected in the trip blanks but were not detected above the MDL in the associated samples.

Matrix Spike Analysis

Matrix spikes are aliquots of environmental samples to which a known concentration of analyte has been added before analysis. Matrix spike and matrix-spike duplicate (MS/MSD) analysis is used to assess the performance of the method by measuring the effects of interferences caused by the sample matrix and reflects the bias of the method for the particular matrix in question. The MS/MSD data are not evaluated when the concentration of the unspiked sample is greater than 4 times the spike. The spikes met the recovery and precision criteria for all analytes evaluated.

Laboratory Replicate Analysis

Laboratory replicate analyses are used to determine laboratory precision for each sample matrix. The relative percent difference for non-radiochemical replicate results that are greater than 5 times the PQL should be less than 20 percent. For results that are less than 5 times the PQL, the range should be no greater than the PQL. For the radiochemistry analyses, a laboratory control sample duplicate was analyzed in lieu of a sample duplicate, which is acceptable. The relative error ratio for radiochemical replicate results (calculated using the one-sigma total propagated uncertainty) should be less than 3, indicating acceptable precision. The replicate results met these criteria.

Laboratory Control Sample

Laboratory control samples were analyzed at the correct frequency to provide information on the accuracy of the analytical method and the overall laboratory performance, including sample preparation. All control sample results were acceptable.

Field Duplicate

Field duplicate samples are collected and analyzed as an indication of overall precision of the measurement process. The precision observed includes both field and laboratory precision and has more variability than laboratory duplicates, which measure only laboratory performance. The relative percent difference for duplicate results that are greater than 5 times the PQL should be less than 20 percent. For results that are less than 5 times the PQL, the range should be no greater than the PQL. For radiochemical measurements, the relative error ratio (the ratio of the absolute difference between the sample and duplicate results and the sum of the 1-sigma uncertainties) is used to evaluate duplicate results and should be less than 3. A duplicate sample was collected from location 0347. The duplicate results met the criteria.

Completeness

Results were reported in the correct units for all analytes requested using contract-required laboratory qualifiers. The analytical report included the MDL (MDC for radiochemistry) and PQL for all analytes and all required supporting documentation.

Electronic Data Deliverable (EDD) File

A revised EDD file arrived on October 26, 2018. The EDD was examined to verify that the file was complete and in compliance with requirements. The contents of the file were compared to the requested analyses to ensure all and only the requested data are delivered. The contents of the EDD were manually examined to verify that the sample results accurately reflect the data contained in the sample data package.

Field Measurements

The pre-sampling purge criteria were met for all wells. A turbidity less than 50NTU could not be achieved at monitoring well 0379.

Potential Outliers

Potential outliers are results that lie outside the historical range, possibly due to transcription errors, data calculation errors, or measurement system problems. However, outliers can also represent true values outside the historical range. Potential outliers are identified by generating the Data Validation Outliers Report from data in the environmental database. The new data are compared to historical values and data that fall outside the historical data range are listed on the report along with the historical minimum and maximum values. The potential outliers are further reviewed and may be subject to statistical evaluation using the ProUCL application developed by the EPA (<u>https://www.epa.gov/land-research/proucl-software</u>). The review also includes an evaluation of any notable trends in the data that may indicate the outliers represent true extreme values. There were no outliers identified and the data for this task are acceptable as qualified.

famanthe Tiga

Report Prepared By:

Digitally signed by SAMANTHA TIGAR (Affiliate) Date: 2018.10.29 15:26:50 -06'00'

Samantha Tigar Data Validator

sk Code: MND01-01.1807004 oject: LTS&M (Parcel 6-7-8)	Lab Code: GEN Validator: Samantha Tigar Validation Date: 10-7 #Samples: 22
ain of Custody	Sample
Present: OK Signed: C	K Dated: OK Integrity: OK Preservation OK Temperature: OK
Check	Summary
Holding Times	All analyses were completed within the applicable holding times.
Detection Limits	The reported detection limits are equal to or below the contract required limits.
Field Blanks	There were 4 field blanks associated with this task.
Field Duplicates	There was 1 duplicate evaluated.

Blank Type Sample Code Location Method Analyte Result Loc Qualifie TB MIND01-01.1807004-019 0989 SW-846.8260 Acetone 22.0 Associated Samples: Sample Code Location Result Dilution Lab Qualifiers Validation Qualifier MIND01-01.1807004-002 0124 5.00 1 U U MIND01-01.1807004-003 0128 5.00 1 U MIND01-01.1807004-003 0133 5.00 1 U MIND01-01.1807004-015 0601 5.00 1 U MIND01-01.1807004-015 0605 5.00 1 U MIND01-01.1807004-015 0605 5.00 1 U MIND01-01.1807004-015 0605 5.00 1 U MIND01-01.1807004-015 0607 5.00 1 U MIND01-01.1807004-017 0607 5.00 1 U MIND01-01.1807004-017 0607 5.00 1 U MIND01-01.1807004-017 0 MIND01-01.1807004-017 0607 5.00 1 U MIN	ct: LT:	S&M (Parcel 6-7-8)	Ta	sk Code: MNE	001-01.1807004	Lab Cod	le: GEN		10-Oct-2018
TB MND01-01.1807004-019 0999 SW-846.6260 Acetone 22.0 Associated Samples: Sample Code Location Result Dilution Lab Qualifiers Validation Qualifier. MMD01-011807004-002 0124 5.00 1 U U MMD01-011807004-003 0128 5.00 1 U U MMD01-011807004-003 0128 5.00 1 U U MMD01-011807004-003 0691 5.00 1 U U MMD01-011807004-015 0605 5.00 1 U U MMD01-011807004-017 0607 5.00 1 <t< th=""><th>lank Type</th><th>Sample Code</th><th>Location</th><th>1,</th><th colspan="2">Method</th><th colspan="2">Analyte</th><th>Lab Qualifiers</th></t<>	lank Type	Sample Code	Location	1,	Method		Analyte		Lab Qualifiers
Associated Samples: Location Result Dilution Lab Qualifiers Validation Qualifier. MND01-01.1807004-002 0124 5.00 1 U MND01-01.1807004-003 0125 5.00 1 U MND01-01.1807004-004 0135 5.00 1 U MND01-01.1807004-004 0135 5.00 1 U MND01-01.1807004-015 0605 5.00 1 U MND01-01.1807004-015 0606 5.00 1 U MND01-01.1807004-015 0606 5.00 1 U MND01-01.1807004-015 0606 5.00 1 U MND01-01.1807004-017 0807 5.00 1 U	TB	MND01-01.1807004-019	0999	SW	-846 8260	Aceton	e	22.0	
Sample Code Location Result Dilution Lab Qualifiers Validation Qualifier MNID01-01.1807004-002 0124 5.00 1 U MNID01-01.1807004-003 0128 5.00 1 U MNID01-01.1807004-004 0139 5.00 1 U MNID01-01.1807004-013 0601 5.00 1 U MNID01-01.1807004-015 0605 5.00 1 U MNID01-01.1807004-016 0606 5.00 1 U MNID01-01.1807004-017 0807 5.00 1 U MNID01-01.1807004-017 0807 5.00 1 U	As	sociated Samples:	-	-	_			_	1
MND01-01:1807004-003 0124 5.00 1 U MND01-01:1607004-003 0128 5.00 1 U MND01-01:1607004-003 0138 5.00 1 U MND01-01:1607004-003 0601 5.00 1 U MND01-01:1607004-013 0601 5.00 1 U MND01-01:1607004-015 0605 5.00 1 U MND01-01:1607004-016 0606 5.00 1 U MND01-01:1807004-017 0607 5.00 1 U		Sample Code	Location	Result	Dilution	Lab Qualifiers	Validation	Qualifier	
MND01-01.1607004-003 0128 5.00 1 U MND01-01.1607004-004 0138 5.00 1 U MND01-01.1607004-015 0601 5.00 7 U MND01-01.1607004-015 0605 5.00 1 U MND01-01.1607004-015 0606 5.00 7 U MND01-01.1807004-015 0607 5.00 1 U		MND01-01 1807004-002	0124	5,00	1	u			
MND01-01.1807004-004 0138 5.00 1 U MND01-01.1807004-013 0601 5.00 7 U MND01-01.1807004-015 0605 5.00 1 U MND01-01.1807004-015 0606 5.00 1 U MND01-01.1807004-016 0606 5.00 1 U MND01-01.1807004-017 0807 5.00 1 U		MND01-01.1607004-003	0125	5.00	a	U.			
MND01-01-1807004-013 0601 5.00 1 U MND01-01-1807004-015 0606 5.00 1 U MND01-01-1807004-016 0606 5.00 1 U MND01-01-1807004-017 0807 5.00 1 U		MND01-01 1807004-004	0138	5,00	1	U.			
MND01-01.1807004-015 0605 5.00 1 U MND01-01.1807004-016 0606 5.00 1 U MND01-01.1807004-017 0607 5.00 1 U		MND01-01 1807004-013	0601	5.00	7	U.			
MND01-01.1807004-016 0606 5.00 Y U MND01-01.1807004-017 0807 5.00 t U		MND01-01.1807004-015	0605	5.00	à	U.			
MND01-01-1807004-017 0807 5.00 1 U		MND01-01.1807004-016	0606	5.00	3	U			
		MND01-01-1807004-017	0607	5.00	. i	-tu			

U U	Result Dilution Lab Qualifiers Validation Qua 5.00 7 U 5.00 1 U
5.00 1	

ect: LT	S&M (Parcel 6-7-8)	Tasi	k Code: MNI	001-01.1807004	Lab Cod	e: GEN		10-Oci-2018
TB	MND01-01 1807004-021	0999	SV	-846 8260	Aceton	e	3,90	3
As	sociated Samples:		1				_	1
	Sample Code MND01-01 1807004-006	Location 0346	Result	Dilution	Lab Qualifiers U	Validation Qu	alifier	
	MND01-01.1807004-009	0386	5.00	Ŷ	u			
	MND01-01 1807004-010	0387	5.00	1	U.			
	MND01-01.1807004-011	0389	5.00	4	ų			
	MND01-01.1807004-012	0392	5.00	1	U.			

TB MND01-01 1807004-021 0999 SW4-846 8260 Chlorobenzene 0.420 J Associated Samples: Sample Code Location Result Dilution Lab Qualifiers Validation Qualifier MND01-01 1807004-008 0346 1.00 1 U	TB MND01-01 1807004-021 0999 SW-846 6260 Chlorobenzene 0.420 J Associated Samples: Sample Code Location Result Dilution Lab Qualifiers Validation Qualifier MND01-01.1807004-008 0346 1.00 1 U U Mildation Qualifier MND01-01.1807004-008 0346 1.00 1 U U U MND01-01.1807004-009 0385 1.00 1 U U U MND01-01.1807004-010 0387 1.00 1 U U U U U MND01-01.1807004-012 0382 1.00 1 U U U U U	TB MND01-011807004-021 0999 SW-846.8260 Chlorobenzene 0.420 J Associated Samples:	et: LT	S&M (Parcel 6-7-8)	Tas	k Code: MNI	D01-01.1807004	Lab Cod	le: GEN		10-Ocl-2018
Sample Code Location Result Dilution Lab Qualifiers Validation Qualifier MND01-01.1807004-009 0346 1.00 1 U MND01-01.1807004-009 0388 1.00 1 U MND01-01.1807004-010 0387 1.00 1 U MND01-01.1807004-011 0387 1.00 1 U MND01-01.1807004-011 0389 1.00 1 U MND01-01.1807004-012 0392 1.00 1 U	Sample Code Location Result Dilution Lab Qualifiers Validation Qualifier MND01-01.1807004-005 0346 1.00 1 U U MND01-01.1807004-005 0385 1.00 1 U MND01-01.1807004-010 0387 1.00 1 U MND01-01.1807004-011 0389 1.00 1 U MND01-01.1807004-012 0332 1.00 1 U	Sample Code Location Result Dilution Lab Qualifiers Validation Qualifier MND01-01.1807004-008 0346 1.00 1 U U MND01-01.1807004-010 0386 1.00 1 U U MND01-01.1807004-010 0387 1.00 1 U U MND01-01.1807004-011 0389 1.00 1 U U MND01-01.1807004-011 0389 1.00 1 U U MND01-01.1807004-012 0382 1.00 1 U U	TB	MND01-01 1807004-021	0999	SV	V-846 8260	Chloroben	zene	0 420	J
Sample Code Location Result Dilution Lab Qualifiers Validation Qualifier MND01-01 1807004-006 0346 1.00 1 U U MND01-01 1807004-009 0386 1.00 1 U U MND01-01 1807004-010 0387 1.00 1 U U MND01-01.1807004-011 0387 1.00 1 U U MND01-01.1807004-011 0388 1.00 1 U U MND01-01.1807004-011 0382 1.00 1 U U	Sample Code Location Result Dilution Lab Qualifiers Validation Qualifier MND01-01.1807004-006 0346 1.00 1 U U MND01-01.1807004-009 0385 1.00 1 U U MND01-01.1807004-010 0387 1.00 1 U U MND01-01.1807004-011 0389 1.00 1 U U MND01-01.1807004-011 0389 1.00 1 U U MND01-01.1807004-012 0392 1.00 1 U U	Sample Code Location Result Dilution Lab Qualifiers Validation Qualifier MND01-011807004-008 0346 1.00 1 U U MND01-011807004-009 0385 1.00 1 U MND01-011807004-009 0385 1.00 1 U MND01-011807004-010 0387 1.00 1 U MND01-01.1607004-011 0389 1.00 1 U MND01-01.1607004-012 0382 1.00 1 U	As	sociated Samples:		-	_		-	_	1
MND01-01.1807004-009 0388 1.00 1 Li MND01-01.1807004-010 0387 1.00 1 U MND01-01.1807004-011 0389 1.00 1 U MND01-01.1807004-012 0392 1.00 1 U	MND01-01 1807004-009 0388 1.00 T Li MND01-01 1807004-010 0387 1.00 T U MND01-01 1807004-011 0389 1.00 T U MND01-01 1807004-012 0392 1.00 T U	MND01-01 1807004-009 0388 1.00 T JJ MND01-01 1807004-010 0387 1.00 T JJ MND01-01 1807004-011 0389 1.00 T JJ MND01-01 1807004-012 0392 1.00 T JJ		Sample Code MND01-01 1807004-006	Location 0346	Result	Dilution	Lab Qualifiers U	Validation 0	Qualifier	
MND01-01 1807004-010 0387 1.00 1 U MND01-01.1807004-011 0389 1.00 1 U MND01-01.1807004-012 0382 1.00 1 U	MND01-01 1807004-010 0387 1.00 1 U MND01-01.1807004-012 0382 1.00 1 U MND01-01.1807004-012 0382 1.00 1 U	MND01-011807004-010 0387 1.00 1 U MND01-01.1807004-012 0382 1.00 1 U MND01-01.1807004-012 0382 1.00 1 U		MND01-01.1807004-009	0386	1.00	Ŧ	u			
MND01-01.1607004-011 0389 1.00 1 U MND01-01.1807004-012 0382 1.00 1 U	MND01-01.1807004-011 0388 1.00 1 U MND01-01.1807004-012 0382 1.00 1 U	MND01-01.1607004-011 0369 1.00 1 U MND01-01.1807004-012 0362 1.00 1 U		MND01+01 1807004-010	0387	1.00		U.			
MND01-01.1807004-012 0362 1.00 1 U	MND01-01.1807004-012 0392 1.00 1 U	MND01-01.1807004-012 0392 1.00 1 U		MND01-01.1807004-011	0389	1.00	4				
				MND01-01.1807004-012	0392	1.00	1	U.			
			-								-
											-1
											-
											_
											_
											_

ject: L1	TS&M (Parcel 6-7-8)	Tas	k Code: MN	D01-01 1807004	Lab Cod	le: GEN	1	0-04-2018
TB	MND01-01 1807004-022	0999	SV	V-846 8260	Aceton	e	8,96	3
A	ssociated Samples:		1	-	_	-	_	
	Sample Code MND01-01-1807004-005	Location 0315	Result	Dilution	Lab Qualifiers U	Validation Q	ualifier	
	MND01-01.1807004-007	0347	5.00	7	U.			
	MND01-01 1807004-018	0347	5.00		a.	U.		

Page 1 of 4 10-Oct-2018

Project: LTS&M (Parcel 6-7-8) Task Code: MND01-01 1807004 Lab Code; GEN

	Duplic	ate: MND0	1-01.1807	004-018	Samp	ole: MND01	-01.18070 17	004-007			
Analyte	Result	Qualifiers	Uncert	Dilution	Result	Qualifiers	Uncert.	Dilution	RPD	RER	Units
1,1,1,2-Tetrachloroethane	1.00	U	1	1	1.00	U	-	1	-		ug/L
1,1,1-Trichloroethane	1.00	Ņ		1	1,00	U		1			ug/L
1,1,2,2-Tetrachloroethane	1.00	U	1.000	1	1.00	U		1			ug/L
1,1,2-Trichloro-1,2,2-trifluoroethane	5.00	U		1	5.00	U		1		· · · · ·	ug/L
1,1,2-Trichloroethane	1.00	U		1	1.00	U		1		1	ug/L
1,1-Dichloroethane	1.00	U		1	1.00	U					ug/L
1,1-Dichloroethene	1.00	U	1000	1	1.00	U		1			ug/L
1,1-Dichlarapropene	1.00	U	1	1	1.00	U		1			ug/L
1.2,3-Trichlorobenzene	1.00	U		1	1.00	U		1	1000		ug/L
1.2,3-Trichloropropane	1.00	U	12-31	1	1.00	U	-	1	1		ug/L
1,2,4-Trichlorobenzene	1 00	U	10 (b)	1	1.00	U		1	10.000 (1	ug/L
1,2,4-Trimethylbenzene	1.00	0		1	1.00	U		1		1.1	ug/L
1,2-Dibromo-3-chloropropane	1.00	U		1	1.00	U.		1			ug/L
1,2-Dibromoethane	1.00	U	1	1.	1.00	U		1	1.00	1.000	ug/L
1,2-Dichlorobenzene	1.00	υ	10.01	1	1.00	U		1	1		ug/L
1,2-Dichloroethane	1.00	U		1	1.00	υ		1	1		ug/L
1,2-Dichloropropane	1.00	U	12.21	1	1.00	U		1			ug/L
1,3,5-Trimethylbenzene	1.00	U	1	1	1.00	U		+		1.1	ug/L

QC Checks: RPD: Relative Percent Difference RER Relative Error Ratio

	Duplic	ate: MND0	1-01.1807	004-018	Samp	le: MND01 03	-01.18070 47	04-007			
Analyte	Result	Qualifiers	Uncert	Dilution	Result	Qualifiers	Uncert.	Dilution	RPD	RER	Units
1,3-Dichlorobenzene	1.00	U		1	1.00	U	1	1			ug/L
1,3-Dichloropropane	1.00	U		1	1,00	U		1	1 1	1.00	ug/L
1,4-Dichlorobenzene	1.00	U U	10.14	1	1,00	U	1	1	11.00	1	ug/L
2,2-Dichloropropane	1 00	Ų	1000	1	1.00	U		1	1.0.0	1	ug/L
2-Butanone	5,00	U	1000	1	5.00	U		1.1	1		ug/L
2-Chlorotoluene	1.00	U		1	1.00	U		1		100	ug/L
2-Hexanone	5.00	U	1000	1	5,00	U	-	1			ug/L
4-Chlorotoluene	1.00	U .	ice di	1	1.00	υ		1	iter i	1.1	ug/L
4-Methyl-2-Pentanone	5.00	U		1	5.00	0		1		100	ug/L
Acetone	5.00	U	1	1	5.00	U		1		100	ug/L
Benzene	1.00	U	1000	1	1.00	U	-	1	1000	1	ug/L
Bromobenzene	1.00	U	1	1	1.00	U	1	1		1	ug/L
Bromochloromethane	1 00	U	1	1	1.00	U		1			ug/L
Bromodichloromethane	1.00	U	12.11	1	1,00	Ų		1		T	ug/L
Bromotorm	1.00	Ų		1	1.00	U		1			ug/L
Bromomethane	1.00	Ū		1	1.00	U	1.000	1		1000	ug/L
Carbon Disulfide	5.00	U		1	5.00	U		1.1			ug/L
Carbon tetrachloride	1.10		1	1	111	υ	1	1	0.9	1	ug/L
Chlorobenzene	1.00	U		1	1.00	U		1			ug/L
Chlorodibromomethane	1.00	10	1.000	1401	1.00	10	1	1	1	-	U0/1

Validati Deport Field Dupli -

	Duplic	ate: MND0	1-01.1807	004-018	Samp	le: MND01 034	-01.18070 47	004-007			
Analyte	Result	Qualifiers	Uncert	Dilution	Result	Qualifiers	Uncert.	Dilution	RPD	RER	Units
Chloroethane	1.00	U		1	1.00	U	1	1			ug/L
Chloroform	0.370	J		1	0,340	U		1		1000	ug/L
Chloromethane	1.00	Ú.	10.14	1	1,00	U		1	1.1.41	1	ug/L
cis-1,2-Dichloraethene	1 00	Ų	17.04	1	1,00	U		1	1.0.0	1	ug/L
cis-1,3-Dichloropropene	1.00	U	1000	1	1.00	U		- 1 - I		-	ug/L
Dibromomethane	1.00	U		1	1.00	U		1		1	ug/L
Dichlorodifluoromethane	1.00	U	1000	1	1 00	U		1			ug/L
Ethylbenzene	1.00	U U		1	1.00	U		1	den i		ug/L
Hexachlorobutadiene	1.00	U		1	1.00	U U		1			ug/L
Isopropylbenzene	1.00	U	-	1	1.00	U		1			ug/L
Methylene chloride	5,00	U	1000	1	5.00	U	-	1	1000		ug/L
n-Butylbenzene	1.00	U	1	1	1.00	U		1			ug/L
n-Propylbenzene	1 00	U	1	1	1.00	U		1			ug/L
Naphthalene	1.00	U	1	1	1,00	Ų		1		· · · · · ·	ug/L
p-isopropyitoluene	1.00	U		1	1.00	U		1			ug/L
sec-Butylbenzene	1.00	U		1	1.00	U		1			ug/L
Styrene	1.00	U		1	1 00	U		1.1			ug/L
tert-Butylbenzene	1.00	U	1	1	1,00	υ	-	1		· · · · · ·	ug/L
Tetrachloroethene	1.00	U		1	1.00	U		1	li mi li		ug/L
Toluene	1.00	U	1000	1	1.00	U	1	1		1	ug/L

Page 3 of 4

Project: LTS&M (Parcel 6-7-8) Task Code: MND01-01 1807004 Lab Code: GEN

	Duplicate: MND01-01.1807004-018 Sample:						le: MND01-01.1807004-007 0347				2.
Analyte	Result	Qualifiers	Uncert	Dilution	Result	Qualifiers	Uncert.	Dilution	RPD	RER	Units
Total Xylenes	3.00	U		1	3.00	U	1	1			ug/L
trans-1,2-Dichloroethene	1.00	U	1.11	1	1.00	U	6	1		1	ug/L
trans-1,3-dichloropropene	1.00	U	10.14	1	1.00	U	1	1	6 I. I.	1	ug/L
Trichloroethene	21.8		1000	1	21.3	to the second of		1	2.3	5 million	ug/L
Trichlorofluoromethane	1.00	U	1000	1.1	1.00	U	1.2221	1	110.000	1.00	ug/L
Tritium	1230		333	1	1080	herti	308	1	1.1	0.6	pCI/L
Vinyl chloride	1 00	U.	1	1	1.00	U	11.1	1	11.1	1	ug/L

QC Checks: RPD: Relative Percent Difference RER Relative Error Ratio

Page E-51

Page 4 of 4 10-Oct-2018

ject: LT:	S&M (Parcel 6-7-8)	\		Task C	ode: MN	ID01-	01.180	/004	_	Lab C	ode: C	DEN.	_		_
Sample ID	Analyte	Analysis Date	QC Type	Result Type	Result	Flag	TPU	Spike Recovery	Spike Dup Recovery	Lower	Upper	RPD	RPD	RER	Comments
	Tritium	08-10-2018	LCS	SC	2340		533	93.3		75	125				
	Tritium	08-10-2018	MB	TRG	-131	U.	177		1		12.21		1000		
	Tritium	08-10-2018	MS	SC	5940		1290	96 7	122.1	75	125		1		
	Tritium	08-10-2018	R	TRG	1090		310					1.04	100		RER=0.0

Data Review and Validation Report

General Information

Task ID:	MND01-01.1810005
Sample Event:	October 29 and 30, 2018
Site(s):	Mound, Ohio: LTS&M (Parcel 6-7-8)
Laboratory:	GEL Laboratories, Charleston, South Carolina
Work Order No.:	462986
Analysis:	Organics
Validator:	Samantha Tigar
Review Date:	January 23, 2019

This validation was performed according to *Environmental Data Validation Procedure* (LMS/PRO/S15870), which is available at<u>http://sp.lm.doe.gov/Contractor/ControlledDocuments/Controlled%20Documents/S15870_Env_DV_Procedure.pdf. The procedure was applied at Level 3, Data Validation.</u>

All analyses were successfully completed. The samples were prepared and analyzed using accepted procedures based on methods specified by line item code, which are listed in Table 1.

Table 1. Analytes and Method	ds
------------------------------	----

Analyte	Line Item Code	Prep Method	Analytical Method
Volatile Organics, VOA	VOA-A-007	SW-846 5030B	SW-846 8260 LL

Data Qualifier Summary

Analytical results were qualified as listed in Table 2. Refer to the attached validation worksheets and the sections below for an explanation of the data qualifiers applied.

Sample Number	Location	Analyte	Flag	Reason
MND01-01.1810005-014	0602	2-Butanone	U	Less than 10 times the trip blank
MND01-01.1810005-015	0605	2-Butanone	U	Less than 10 times the trip blank
MND01-01.1810005-001	0118	Acetone	U	Less than 10 times the trip blank
MND01-01.1810005-002	0124	Acetone	U	Less than 10 times the trip blank
MND01-01.1810005-003	0126	Acetone	U	Less than 10 times the trip blank

Table 2. Data Qualifiers

Sample Number	Location	Analyte	Flag	Reason
MND01-01.1810005-004	0138	Acetone	U	Less than 10 times the trip blank
MND01-01.1810005-005	0315	Acetone	U	Less than 10 times the trip blank
MND01-01.1810005-008	0379	Acetone	U	Less than 10 times the trip blank
MND01-01.1810005-012	0392	Acetone	U	Less than 10 times the trip blank
MND01-01.1810005-013	0601	Acetone	U	Less than 10 times the trip blank
MND01-01.1810005-014	0602	Acetone	U	Less than 10 times the trip blank
MND01-01.1810005-015	0605	Acetone	U	Less than 10 times the trip blank
MND01-01.1810005-016	0606	Acetone	U	Less than 10 times the trip blank
MND01-01.1810005-018	0379	Acetone	U	Less than 10 times the trip blank

Sample Shipping/Receiving

GEL Laboratories in Charleston, South Carolina, received 20 water samples on October 31, 2018, accompanied by a Chain of Custody (COC) form. The air waybill numbers were listed on the Sample Receipt and Review Form. The COC form was checked to confirm that all of the samples were listed with sample collection dates and times, and that signatures and dates were present indicating sample relinquishment and receipt. The COC forms were complete with no errors or omissions.

Preservation and Holding Times

The sample shipments were received intact with the temperatures inside the iced cooler between 1 °C and 2 °C, which complies with requirements. All samples were received in the correct container types and had been preserved correctly for the requested analyses. All samples were analyzed within the applicable holding times.

Detection and Quantitation Limits

The method detection limit (MDL) was reported for all organic analytes as required. The MDL, as defined in 40 CFR 136, is the minimum concentration of an analyte that can be measured and reported with 99 percent confidence that the analyte concentration is greater than zero. The practical quantitation limit (PQL) for these analytes is the lowest concentration that can be reliably measured, and is defined as 5 times the MDL. The reported MDLs demonstrate compliance with contractual requirements.

Laboratory Instrument Calibration

Method requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing acceptable qualitative and quantitative data for the analytes of interest. Initial calibration verification demonstrates that the instrument is capable of acceptable performance at the beginning of the analytical run. Continuing calibration verification demonstrates that the initial calibration is still valid by checking the performance of the instrument on a continuing basis. Initial and continuing calibration standards must be prepared from independent sources to ensure the validity of the calibration. All laboratory instrument

calibrations and calibration verifications were performed correctly in accordance with the cited methods.

Method SW-846 8260 LL Volatile Organics, VOA

Initial calibration of instrument VOA2 was performed on November 1, 2018 using nine calibration standards. Calibration curves are established using linear regression, quadratic regression, or the average response factor approach. Calibrations using average response factors had relative standard deviations of less than 15 percent. Linear or higher order regression calibrations had correlation coefficient values greater than 0.99 and intercepts less than 3 times the MDL. Initial and continuing calibration verification checks were made at the required frequency. Some target compounds had percent drift values greater than 20 percent but were not detected at concentrations greater than the MDL in the associated samples. The mass spectrometer calibration and resolution was checked at the beginning of each analytical run in accordance with the procedure.

Volatiles Internal Standards and Surrogates

The volatile internal standard recoveries and surrogate recoveries were within the acceptance ranges for all samples.

Method Blanks

Method blanks are analyzed to assess any contamination that may have occurred during sample preparation. All method blank results associated with the samples were below the PQL for all analytes. In cases where a blank concentration exceeds or equals the MDL, the associated sample results are qualified with a U flag (not detected) when the sample result is greater than the MDL but less than 5 times the blank concentration.

Matrix Spike Analysis

Matrix spikes are aliquots of environmental samples to which a known concentration of analyte has been added before analysis. Matrix spike and matrix-spike duplicate (MS/MSD) analysis is used to assess the performance of the method by measuring the effects of interferences caused by the sample matrix and reflects the bias of the method for the particular matrix in question. The MS/MSD data are not evaluated when the concentration of the unspiked sample is greater than 4 times the spike. The spikes met the recovery and precision criteria for all analytes evaluated.

Laboratory Replicate Analysis

Laboratory replicate analyses are used to determine laboratory precision for each sample matrix. The relative percent difference for non-radiochemical replicate results that are greater than 5 times the PQL should be less than 20 percent. For results that are less than 5 times the PQL, the range should be no greater than the PQL. The replicate results met these criteria.

Laboratory Control Sample

Laboratory control samples were analyzed at the correct frequency to provide information on the accuracy of the analytical method and the overall laboratory performance, including sample preparation. Several control sample results exceeded the acceptance criteria. The compounds were not detected at concentrations greater than the MDL in the associated samples and no qualification is needed.

Field Duplicate

Field duplicate samples are collected and analyzed as an indication of overall precision of the measurement process. The precision observed includes both field and laboratory precision and has more variability than laboratory duplicates, which measure only laboratory performance. The relative percent difference for duplicate results that are greater than 5 times the PQL should be less than 20 percent. For results that are less than 5 times the PQL, the range should be no greater than the PQL. A duplicate sample was collected from location 0379. The duplicate results met the criteria for all analytes, demonstrating acceptable overall precision.

<u>Trip Blank</u>

Trip blanks were prepared and analyzed to document contamination attributable to shipping and field handling procedures. This type of blank is useful in documenting contamination of volatile organic samples. Two trip blanks were submitted with these samples. Acetone and 2-butanone were detected in the trip blanks. All associated results greater than the MDL and less than ten times the trip blank concentrations were qualified with a U flag as not detected.

Completeness

Results were reported in the correct units for all analytes requested using contract-required laboratory qualifiers. The analytical report included the MDL and PQL for all analytes and all required supporting documentation.

Electronic Data Deliverable (EDD) File

A revised EDD file arrived on January 14, 2019. The EDD was examined to verify that the file was complete and in compliance with requirements. The contents of the file were compared to the requested analyses to ensure all and only the requested data are delivered. The contents of the EDD were manually examined to verify that the sample results accurately reflect the data contained in the sample data package.

Field Measurements

The minimum purge volume was met at all wells before sampling. A turbidity less than 50NTU could not be achieved at monitoring well 0315.

Potential Outliers

Potential outliers are results that lie outside the historical range, possibly due to transcription errors, data calculation errors, or measurement system problems. However, outliers can also represent true values outside the historical range. Potential outliers are identified by generating the Data Validation Outliers Report from data in the environmental database. The new data are compared to historical values and data that fall outside the historical data range are listed on the report along with the historical minimum and maximum values. The potential outliers are further reviewed and may be subject to statistical evaluation using the ProUCL application developed by the EPA (<u>https://www.epa.gov/land-research/proucl-software</u>). The review also includes an evaluation of any notable trends in the data that may indicate the outliers represent true extreme values.

Data were identified as potentially anomalous for five acetone results (see the Data Validation Outliers Report, below). These results were previously qualified with U flags (not detected) and review of the data did not indicate any laboratory errors.

Digitally signed by Samantha

Date: 2019.01.23 14:47:05

M. Tigar

-07'00'

Jamanthe Tigar

Report Prepared By:

Samantha Tigar Data Validator

Data Validation Outliers Report - No Field Parameters Report Date: 01/22/2019

Comparison to Historical Data Since: 1/1/2008 12:00:00 AM Fraction: Any

Task: MND01-01.1810005

Analyte	Location	Analysis Location	Units	Fraction	Result	Lab Qualifier(s)	Туре	HistMIN	HistMAX	HistSetSize	Potential Outlier?
Acetone	0138	LB	ug/L	Ν	4.30	J	> HistMAX	0.37	2.99	43	Yes
Acetone	0315	LB	ug/L	Ν	3.07	J	> HistMAX	0.37	2.84	46	Yes
Acetone	0392	LB	ug/L	Ν	3.16	J	> HistMAX	0.37	2.91	44	Yes
Acetone	0601	LB	ug/L	Ν	5.52		> HistMAX	0.37	2.93	53	Yes
cis-1,2-Dichloroethene	0602	LB	ug/L	Ν	1.95		< HistMIN	4.51	42.3	29	No
Trichloroethene	0602	LB	ug/L	Ν	0.460	J	< HistMIN	2.78	139	29	No
Acetone	0605	LB	ug/L	Ν	9.63		> HistMAX	0.37	9.59	44	Yes
Trichloroethene	0607	LB	ug/L	Ν	0.510	J	< HistMIN	0.85	11.5	45	No

FRACTION: D = Dissolved N = NA T = Total

sk Code: MND01-01.1810005 Lak	Code: GEN	Validator:	Samantha Tigar	Validation Date: 01-22-2
ject: LTS&M (Parcel 6-7-8)				# Samples: 20
Ilysis Type: 🔲 General Chemistr	y Metals	X Orga	nics 🔲 Radioche	emistry
ain of Custody		Sample		
mus og (50/50/50/				
Present: <u>OK</u> Signed: <u>OK</u> E	Dated: <u>OK</u>	Integrity	/: <u>OK</u> Preservation	OK Temperature: OK

Holding Times:	All analyses were completed within the applicable holding times.
Detection Limits:	The reported detection limits are equal to or below the contract required limits.
Field Blanks:	There were 2 field blanks associated with this task.
Field Duplicates:	There was 1 duplicate evaluated.

Validation Report: Field Blanks

Page 1 of 4 22-Jan-2019

Project: LTS&M (Parcel 6-7-8)

Task Code: MND01-01.1810005

Lab Code: GEN

Sample Code Location Result Lab Qualifiers Blank Method Analyte Туре TB MND01-01.1810005-019 0999 SW-846 8260 2-Butanone 4.24 J Associated Samples: Dilution Lab Qualifiers Validation Qualifier Sample Code Location Result MND01-01.1810005-001 0118 0.500 U 1 MND01-01.1810005-005 u 0315 0.500 ą. MND01-01.1810005-006 0346 0.500 ц 1 0347 ú MND01-01.1810005-007 0.500 et i MND01-01.1810005-008 0379 0.500 U 1 u MND01-01.1810005-013 0601 0.500 ï j. u MND01-01,1810005-014 0602 3,64 1 MND01-01.1810005-015 0605 3.74 J U. U MND01-01.1810005-016 0606 0.500 U MND01-01.1810005-017 0607 0.500 ā. u MND01-01.1810005-018 0379 u. 0.500 à.

ect: LT	S&M (Parcel 6-7-8)	Validation Tas	Report: Fie	001-01.1810005	Lab Cod	e: GEN	Page 2 of 4 22-Jan-2019
TB	MND01-01.1810005-019	0999	SW	-846 8260	Aceton	e 8.12	
As	sociated Samples:		_				
- 11	Sample Code	Location	Result	Dilution	Lab Qualifiers	Validation Qualifier	
	MND01-01:1810005-001	0116	3.06	1	2	U	
	MND01-01.1810005-005	0315	3,07	4	4	U	
	MND01-01.1810005-006	0346	0.500	4	U		
	MND01-01.1810005-007	0347	0.500	4	U		
	MND01-01.1810005-008	0379	3.52	÷.	a.	U.	
	MND01-01.1810005-013	0601	5.52			U.	
	MND01-01-1810005-014	0602	6,08	4		u.	
	MND01-01.1810005-015	0605	9.63	1		U	
	MND01-01.1810005-016	0606	4,99	1	J.	U	
	MND01-01 1810005-017	0607	0,500	1	U		
. 11	MND01-01.1810005-018	0379	4.04	1	ũ	Ú.	

ct: LT	S&M (Parcel 6-7-8)	Validation Ta	Report: Fie	001-01.1810005	Lab Cod	e: GEN	Pa 22	ige 3 of 4 -Jan-2019
TB	MND01-01.1810005-020	0999	SW	-846 8260	2-Butanc	one	4.18	1
As	sociated Samples:						1	
	Sample Code	Location	Result	Dilution	Lab Qualifiers	Validation Q	ualifier	
	MND01-01.1810005-002	0124	0.500	1	u			
	MND01-01.1810005-003	0126	0.500	4	u.			
	MND01-01.1810005-004	0138	0.500	4	υ.			
	MND01-01.1810005-009	0386	0.500	ă.	- U			
	MND01-01.1810005-010	0387	0.500	1	u			
	MND01-01_1810005-011	0389	0.500	1	u			
	MNID01-01 1810005-012	0393	0.500		Ú.			

ct: LT	S&M (Parcel 6-7-8)	Validation Ta	Report: Fie	eld Blanks	Lab Cod	e: GEN		Page 4 of 4 22-Jan-2019
TB	MND01-01.1810005-020	0999	SW	-846 8260	Aceton	e	6.08	
As	sociated Samples:							1
	Sample Code	Location	Result	Dilution	Lab Qualifiers	Validation Q	ualifier	
	MND01-01.1810005-002	0124	2.86	1	2	U		
	MND01-01,1810005-003	0126	4.72	4	J	U.		
	MND01-01.1810005-004	0138	4,30	4	4	u		
	MND01-01.1810005-009	0386	0.500	4	ц			
	MND01-01.1810005-010	0387	0.500	- A	u			
	MND01-01.1810005-011	0389	0.500	1	u			
	100001-01-181000E-012	0392	2.46					

Validation Report: Field Duplicates Page 1 of 4

22-Jan-2019

Project: LTS&M (Parcel 6-7-8) Task Code: MND01-01 1810005 Lab Code: GEN

	Duplicate: MND01-01.1810005-018					ole: MND01 03	-01.18100 79	005-008			
Analyte	Result	Qualifiers	Uncert.	Dilution	Result	Qualifiers	Uncert.	Dilution	RPD	RER	Units
1,1,1,2-Tetrachloroethane	0.160	U	1.51	1	0,160	U	1.1	1		11.11	ug/L
1,1,1-Trichloroethane	0.160	U		1	0.160	U		1	1.00		ug/L
1,1,2,2-Tetrachloroethane	0,160	U		i tui	0,160	U	-	1	10	1	ug/L
1,1,2-Trichloro-1,2,2-trifluoroethane	1.50	U		1	1.50	U	12 21	1			ug/L
1,1,2-Trichloroethane	0.160	U		1	0,160	U	-	1	-		ug/L
1,1-Dichloroethane	0.160	U		1	0.160	U	100	1	1		ug/L
1,1-Dichloroethene	0.160	U		1	0.160	U		1	-		ug/L
1,1-Dichloropropene	0,160	U		1	0.160	U		1	2.77	12.11	ug/L
1,2,3-Trichlorobenzene	0.200	U		t	0.200	U		1			ug/L
1,2,3-Trichloropropane	0.160	U		t	0.160	U		1			ug/L
1,2,4-Trichlorobenzene	0.160	U	-	1	0.160	U	1	1 1 -	120		ug/L
1,2,4-Trimethylbenzene	0.160	U		1	0.160	U.		1			ug/L
1,2-Dibromo-3-chloropropane	0,160	U		1	0,160	U	1.1	1	1		ug/L
1,2-Dibromoethane	0.160	U		1	0.160	U	1	1		1	ug/L
1,2-Dichlorobenzene	0.160	U		1	0,160	U		1	_		ug/L
1,2-Dichloroethane	0.160	U		1	0.160	U		1 1 -	1.00		ug/L
1,2-Dichloropropane	0.160	U		1	0.160	U	1. 14	1		1	ug/L
1,3,5-Trimethylbenzene	0,160	0	1		0,160	U	1.0	1	1.77	10.11	ug/L

QC Checks: RPD. Relative Percent Difference RER: Relative Error Ratio

Page 2 of 4 22-Jan-2019

Project:	LTS&M	(Parcel	6-7-8)	
----------	-------	---------	--------	--

1

Task Code: MND01-01.1810005 Lab Code GEN

	Duplic	Samp	ole: MND01 03	005-008	1						
Analyte	Result	Qualifiers	Uncert.	Dilution	Result	Qualifiers	Uncert.	Dilution	RPD	RER	Units
1,3-Dichlorobenzene	0.160	U	2	1	0.160	U	2.11	1		1.1.11	ug/L
1,3-Dichloropropane	0.160	U		1	0.160	U		1			ug/L
1,4-Dichlorobenzene	0.160	- U		1	0.160	U	-	1	1221	1000	ug/L
2,2-Dichloropropane	0.160	U		1	0.160	U		1 - 1 -			ug/L
2-Butanone	0,500	0		1.1	0.500	U	1.1	1	1.71		ug/L
2-Chlorotoluene	0.160	U		1	0,160	U	1	1			ug/L
2-Hexanone	0,500	υ		1.1	0.500	U	1.11	1		1	ug/L
4-Chlorotoluene	0.160	U		1	0,160	U		1	1111	i con	ug/L
4-Methyl-2-Pentanone	0.500	U		1	0.500	U		1		-	ug/L
Acetone	4.04	- J -		1	3.52	U	-	1	13.8	1	ug/L
Benzene	0.160	U		1	0,160	U	12.11	1			ug/L
Bromobenzene	0.160	U	1	1	0.160	U	2.1	1		1	ug/L
Bromochloromethane	0.160	U		1	0,160	U		1		1	ug/L
Bromodichloromethane	0,160	U		1	0,160	U		1			ug/L
Bromoform	0.160	U		1	0.160	U	1000	1	1 - 1	1	ug/L
Bromomethane	0.160	U		1	0.160	U		1			ug/L
Carbon Disulfide	0.500	U		1	0.500	U	10.11	1		1.0.11	ug/L
Carbon tetrachloride	0.650	L		1	0.650	U		1	I.TI	1-11	ug/L
Chlorobenzene	0,160	U		-1+	0.160	U		1		-	ug/L
Chlorodibromomethane	0.160	U	1	1	0.160	U		1			ug/L

QC Checks; RPD: Relative Percent Difference RER: Relative Error Ratio

Page 3 of 4 22-Jan-2019

Project: LTS&M (Parcel 6-7-8)

Task Code: MND01-01 1810005 Lab Code GEN

	Duplicate: MND01-01.1810005-018					ole: MND01 03					
Analyte	Result	Qualifiers	Uncert.	Dilution	Result	Qualifiers	Uncert.	Dilution	RPD	RER	Units
Chloroethane	0.160	U		1	0.160	U	2.11	1		I.I.	ug/L
Chloroform	0.160	U		1	0.160	U		1			ug/L
Chloromethane	0.160	U		1	0.160	U	100	1		1000	ug/L
cis-1,2-Dichloroethene	0.160	U		1	0.160	U	1.11	1-1-		1.000	ug/L
cis-1,3-Dichloropropene	0.160	0		1.1.1.	0.160	U	10.11	1	1.75		ug/L
Dibromomethane	0.160	U		1	0.160	U	1	1	I	1	ug/L
Dichlorodifluoromethane	0.160	υ		1.17	0.160	U	1.11	1		1.11	ug/L
Ethylbenzene	0.160	U		1	0,160	U	12 11	1		1721	ug/L
Hexachlorobutadiene	0.160	U		-11	0.160	U		1		-	ug/L
Isopropylbenzene	0.160	U	1	1.1	0.160	U	-	1		1.0000	ug/L
Methylene chloride	0.160	U		1	0.160	U	1.1	1		8	ug/L
n-Butylbenzene	0.160	U	1271	1	0.160	U	1.11	1		h. H	ug/L
n-Propylbenzene	0.160	U		1	0,160	U		1		1	ug/L
Naphthalene	0,160	U		1	0,160	U	1.11	1			ug/L
p-Isopropyltoluene	0.160	U		1	0.160	U		1	1 - 1	1	ug/L
sec-Butylbenzene	0.160	U		1	0,160	U	111	1		11	ug/L
Styrene	0.160	υ		1	0.160	U	10.11	1		1.01	ug/L
tert-Butylbenzene	0.160	U		1	0,160	U		1	LTI		ug/L
Tetrachloroethene	0.430	L L		=1	0.400	U		1	-	-	ug/L
Toluene	0.160	U		1	0.160	U	1.11	1		11.11	ug/L

Page 4 of 4 22-Jan-2019

Project: LTS&M (Parcel 6-7-8) Task Code: MND01-01 1810005 Lab Code GEN

	Duplic	Samp	ole: MND01 03								
Analyte	Result	Qualifiers	Uncert.	Dilution	Result	Qualifiers	Uncert.	Dilution	RPD	RER	Units
Total Xylenes	0.160	U		1	0.160	U	2.11	1		11.11	ug/L
trans-1,2-Dichloroethene	0.160	U		1	0.160	U		1			ug/L
trans-1,3-dichloropropene	0.160	U		1	0.160	U	-	1		10.000	ug/L
Trichloroethene	1.30			1	1.34	11		1-1-	3.0		ug/L
Trichlorofluoromethane	0.160	0		1. 1.	0.160	U	1	1	1.71	11.211	ug/L
Vinyl chloride	0.160	U	27.11	1	0.160	U	12.44	1	1.1	1	ug/L

QC Checks: RPD: Relative Percent Difference RER: Relative Error Ratio

Page E-68

Organics Data Validation Summary

Page 1 of 1

22-Jan-2019

Project: LTS&M (Parcel 6-7-8)

Task Code: MND01-01.1810005

Lab Code: GEN

Surrogate Recovery:	All surrogate recoveries were within the laboratory acceptance limits.
LCS/LCSD Performance:	There were 21 LCS/LCSD results outside the laboratory acceptance limits.
MS/MSD Performance:	All MS/MSD results were within the laboratory acceptance limits
Method Blank Performance:	All method blanks were below the MDL

Noncompliance Report: LCS/LCSD Performance

Page 1 of 1

22-Jan-2019

Project: LTS&M (Parcel 6-7-8)

Task Code: MND01-01.1810005

Lab Code: GEN

Sample ID	Date Analyzed	Method	Analyte	LCS Recovery	LCSD recovery	Lower Limit	Upper Limit	RPD	RPD Limit	Comment
	11-02-2018	SW-846 8260	1,1,1,2-Tetrachloroethane	121		79	120			
	11-02-2018	SW-846 8260	1,1,2,2-Tetrachloroethane	126		76	120			
	11-05-2018	SW-846 8260	1,1,2,2-Tetrachloroethane	122		76	120		177.7.	
	11-02-2018	SW-846 8260	1,2,3-Trichlorobenzene	124		72	120			
	11-02-2018	SW-846 8260	1,2,3-Trichloropropane	126		70	122			
	11-05-2018	SW-846 8260	1,2,3-Trichloropropane	123		70	122		1	T
	11-02-2018	SW-846 8260	1,2,4-Trichlorobenzene	128		71	121		1	1.1
	11-02-2018	SW-846 8260	1,2-Dibromo-3- chloropropane	122		60	121		[.]]	
	11-02-2018	SW-846 8260	1,2-Dichlorobenzene	122		72	120			
	11-02-2018	SW-846 8260	1,3,5-Trimethylbenzene	126		76	125			
	11-02-2018	SW-846 8260	1,3-Dichlorobenzene	125		72	120			
	11-02-2018	SW-846 8260	1,4-Dichlorobenzene	122		71	120			
	11-02-2018	SW-846 8260	2-Chlorotoluene	122		73	121			
	11-02-2018	SW-846 8260	4-Chlorotoluene	126		72	123			
	11-02-2018	SW-846 8260	Bromobenzene	122		74	120		1.0.11	
	11-02-2018	SW-846 8260	Naphthalene	128		69	125			
	11-02-2018	SW-846 8260	n-Propylbenzene	126		73	125			
	11-02-2018	SW-846 8260	p-Isopropyltoluene	130		74	127			
	11-02-2018	SW-846 8260	sec-Butylbenzene	127		74	126			
	11-02-2018	SW-846 8260	tert-Butylbenzene	127		74	126			
	11-02-2018	SW-846 8260	trans-1,3-dichloropropene	124		77	123			

Contractor to the U.S. Department of Energy Office of Legacy Management

Data Review and Validation Report

General Information

South Carolina

This validation was performed according to the "Standard Practice for Validation of Environmental Data" found in Appendix A of *Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites* (LMS/PRO/S04351, continually updated, <u>http://energy.gov/lm/downloads/sampling-and-analysis-plan-us-department-energy-office-legacy-management-sites</u>). The procedure was applied at Level 3, Data Validation.

This validation includes the evaluation of data quality indicators (DQIs) associated with the data. DQIs are the quantitative and qualitative descriptors that are used to interpret the degree of acceptability or utility of data. Indicators of data quality include the analysis of laboratory control samples to assess accuracy; duplicates and replicates to assess precision; and interference check samples to assess bias (see attached Data Validation Worksheets). The comparability, completeness, and sensitivity of the data are also evaluated in the sections to follow.

All analyses were successfully completed. The samples were prepared and analyzed using accepted procedures based on methods specified by line item code, which are listed in Table 1.

Table 1. Analytes and Methods

Analyte	Line Item Code	Prep Method	Analytical Method
Volatile Organics, VOA	VOA-A-007	SW-846 5030B	SW-846 8260 LL

Data Qualifier Summary

Analytical results were qualified as listed in Table 2. Refer to the attached validation worksheets and the sections below for an explanation of the data qualifiers applied.
Table 2. Data Qualifiers

Sample Number	Location	Analyte	Flag	Reason
MND01-02.1801001-012	P064	Hexachlorobutadiene	J	Matrix spike result
MND01-02.1801001-013	P064 Duplicate	Hexachlorobutadiene	J	Matrix spike result

Sample Shipping/Receiving

GEL Laboratories in Charleston, South Carolina, received 10 water samples on February 02, 2018, accompanied by a Chain of Custody (COC) form. The air waybill number was listed on the Sample Receipt and Review Form. The COC form was checked to confirm that all of the samples were listed with sample collection dates and times, and that signatures and dates were present indicating sample relinquishment and receipt. The COC forms were complete with no errors or omissions with the following exception:

• The original COC listed the wrong sample collection time for locations 0353, 0445 and 0999. The COC was hand corrected and re-submitted with all date times and signatures present and correct.

Preservation and Holding Times

The sample shipments were received intact with the temperature inside the iced cooler at 4 °C, which complies with requirements. All samples were analyzed within the applicable holding times. All samples were received in the correct container types and had been preserved correctly for the requested analyses with these exceptions:

• Headspace was noted in all containers for sample locations 0445 and P064.

Detection and Quantitation Limits

The method detection limit (MDL) was reported for all organic analytes as required. The MDL, as defined in 40 CFR 136, is the minimum concentration of an analyte that can be measured and reported with 99 percent confidence that the analyte concentration is greater than zero. The practical quantitation limit (PQL) for these analytes is the lowest concentration that can be reliably measured, and is defined as 5 times the MDL.

The reported MDLs demonstrate compliance with contractual requirements.

Laboratory Instrument Calibration

Method requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing acceptable qualitative and quantitative data for the analytes of interest. Initial calibration verification demonstrates that the instrument is capable of acceptable performance at the beginning of the analytical run. Continuing calibration verification demonstrates that the initial calibration is still valid by checking the performance of the instrument on a continuing basis. Initial and continuing calibration standards must be prepared from independent sources to ensure the validity of the calibration. All laboratory instrument

calibrations and calibration verifications were performed correctly in accordance with the cited methods.

Method SW-846 8260 LL Volatile Organics, VOA

Initial calibration of instrument VOA2 was performed on January 8, 2018 using eight calibration standards. Calibration curves are established using linear regression, quadratic regression, or the average response factor approach. Calibrations using average response factors had relative standard deviations of less than 15 percent. Linear or higher order regression calibrations had correlation coefficient values greater than 0.99 and intercepts less than 3 times the MDL. Initial and continuing calibration verification checks were made at the required frequency. Some target compounds had percent drift values greater than 20 percent but were not detected at concentrations greater than the MDL. The mass spectrometer calibration and resolution was checked at the beginning of each analytical run in accordance with the procedure.

Volatiles Internal Standards and Surrogates

The volatile internal standard recoveries and surrogate recoveries were within the acceptance ranges for all samples.

Method Blanks

Method blanks are analyzed to assess any contamination that may have occurred during sample preparation. All method blank results associated with the samples were below the PQL for all analytes. In cases where a blank concentration exceeds or equals the MDL, the associated sample results are qualified with a "U" flag (not detected) when the sample result is greater than the MDL but less than 5 times the blank concentration.

<u>Trip Blank</u>

Trip blanks were prepared and analyzed to document contamination attributable to shipping and field handling procedures. This type of blank is useful in documenting contamination of volatile organic samples. Two trip blanks were submitted with these samples. Acetone was detected in the trip blanks. There were no sample acetone results greater than the MDL.

Matrix Spike Analysis

Matrix spikes are aliquots of environmental samples to which a known concentration of analyte has been added before analysis. Matrix spike and matrix-spike duplicate (MS/MSD) analysis is used to assess the performance of the method by measuring the effects of interferences caused by the sample matrix and reflects the bias of the method for the particular matrix in question. The MS/MSD data are not evaluated when the concentration of the unspiked sample is greater than 4 times the spike. The spikes met the recovery and precision criteria for all analytes evaluated with the exception of hexachlorobutadiene. The associated sample hexachlorobutadiene result is qualified with a "J" flag as an estimated value.

Laboratory Replicate Analysis

Laboratory replicate analyses are used to determine laboratory precision for each sample matrix. The relative percent difference for results that are greater than 5 times the PQL should be less than 20 percent (or less than the laboratory-derived control limits for organics). For results that are less than 5 times the PQL, the range should be no greater than the PQL. The RPDs for five volatile organic compounds in the matrix spike samples exceeded the laboratory criteria; these compounds were not detected in any field sample, so no further qualification is necessary. All other replicate results met the criteria, demonstrating acceptable precision.

Laboratory Control Sample

Laboratory control samples were analyzed at the correct frequency to provide information on the accuracy of the analytical method and the overall laboratory performance, including sample preparation. All control sample results were acceptable.

Field Duplicate

Field duplicate samples are collected and analyzed as an indication of overall precision of the measurement process. The precision observed includes both field and laboratory precision and has more variability than laboratory duplicates, which measure only laboratory performance. A duplicate sample was collected from location P064. The relative percent difference for duplicate results that are greater than 5 times the PQL should be less than 20 percent. For results that are less than 5 times the PQL, the range should be no greater than the PQL. The duplicate results met the criteria.

Completeness

Results were reported in the correct units for all analytes requested using contract-required laboratory qualifiers. The analytical report included the MDL (MDC for radiochemistry) and PQL for all analytes and all required supporting documentation.

Electronic Data Deliverable (EDD) File

The EDD file arrived on March 22, 2018. The Sample Management System EDD validation module was used to verify that the EDD file was complete and in compliance with requirements. The module compares the contents of the file to the requested analyses to ensure all and only the requested data are delivered. The contents of the EDD were manually examined to verify that the sample results accurately reflect the data contained in the sample data package.

Potential Outliers

Potential outliers are results that lie outside the historical range, possibly due to transcription errors, data calculation errors, or measurement system problems. However, outliers can also represent true values outside the historical range. Potential outliers are identified by generating the Data Validation Outliers Report from data in the environmental database. The new data are

compared to historical values and data that fall outside the historical data range are listed on the report along with the historical minimum and maximum values. The potential outliers are further reviewed and may be subject to statistical evaluation using the ProUCL application developed by the EPA (<u>https://www.epa.gov/land-research/proucl-software</u>). The review also includes an evaluation of any notable trends in the data that may indicate the outliers represent true extreme values.

There were no outliers identified and the data for this Task are acceptable as qualified.

Leslie P. Steves 2018.07.23 14:32:26 -06'00' Report Prepared By: Peter Steves Data Validator

G	eneral Data	Validation Repo	Page 1 of 1
Task Code: MND01-02.1801001	Lab Code: GEN	Validator: Peter Steves	Validation Date: 04-24-2018
Project: LTS&M (Phase I)			# Samples: 10
Analysis Type: General Ch	nemistry Metals	X Organics Radioc	hemistry
Chain of Custody		Sample	
Present: <u>OK</u> Signed: <u>C</u>	DATE Dated: OK	Integrity: <u>OK</u> Preservatio	on <u>OK</u> Temperature: <u>OK</u>
Check		Summary	
Holding Times:	All analyses were con	npleted within the applicable he	olding times.
Detection Limits:	The reported detectio	n limits are equal to or below th	he contract required limits.
Field Blanks:	There were 2 field bla	anks associated with this task.	
Field Duplicates:	There was 1 duplicate	e evaluated.	

Blank	Sample Code	Location		Mothod	Apola	•	Popult	Lab
Туре	Sample Code	Location		metrioa	Anaryt	e	Result	Qualifiers
тв	MND01-02.1801001.010	0999	SM	/-846 8260	Aceton	e	4.07	J
As	sociated Samples:]
	Sample Code	Location	Result	Dilution	Lab Qualifiers	Validation	Qualifier	
	MND01-02.1801001-001	0353	0.500	1	U			
	MND01-02.1801001-007	0445	0.500	1	U			
	MND01-02.1801001-008	0617	0.500	1	U			
								-

			-					24-Apr-2018
: LT	S&M (Phase I)	Та	sk Code: MND	001-02.1801001	Lab Cod	e: GEN		24701 2010
В	MND01-02.1801001.011	0999	SW	-846 8260	Aceton	e	4.95	J
As	ssociated Samples:							7
	Sample Code	Location	Result	Dilution	Lab Qualifiers	Validation (Qualifier	
	MND01-02.1801001.013	P064	0.500	1	U	U		
	MND01-02.1801001-004	0411	0.500	1	U			
	MND01-02.1801001-005	0443	0.500	1	U			
	MND01-02.1801001-006	0444	0.500	1	U			
	MUD01 00 1001001 010	P064	0.500	1	u			

Page 1 of 4 24-Apr-2018

Project: LTS&M (Phase I)

el) Tas

Task Code: MND01-02.1801001 Lab Code: GEN

	Duplic	ate: MND0 ⁻	1-02.1801	001.013	Samp	le: MND01 P00	-02.18010 64	01-012			
Analyte	Result	Qualifiers	Uncert.	Dilution	Result	Qualifiers	Uncert.	Dilution	RPD	RER	Units
1,1,1,2-Tetrachloroethane	0.160	U		1	0.160	U		1			ug/L
1,1,1-Trichloroethane	0.160	U		1	0.160	U		1			ug/L
1,1,2,2-Tetrachloroethane	0.160	U		1	0.160	U		1			ug/L
1,1,2-Trichloro-1,2,2-trifluoroethane	1.50	U		1	1.50	U		1			ug/L
1,1,2-Trichloroethane	0.160	U		1	0.160	U		1			ug/L
1,1-Dichloroethane	0.160	U		1	0.160	U		1			ug/L
1,1-Dichloroethene	0.160	U		1	0.160	U		1			ug/L
1,1-Dichloropropene	0.160	U		1	0.160	U		1			ug/L
1,2,3-Trichlorobenzene	0.200	U		1	0.200	U		1			ug/L
1,2,3-Trichloropropane	0.160	U		1	0.160	U		1			ug/L
1,2,4-Trichlorobenzene	0.160	U		1	0.160	U		1			ug/L
1,2,4-Trimethylbenzene	0.160	U		1	0.160	U		1			ug/L
1,2-Dibromo-3-chloropropane	0.160	U		1	0.160	U		1			ug/L
1,2-Dibromoethane	0.160	U		1	0.160	U		1			ug/L
1,2-Dichlorobenzene	0.160	U		1	0.160	U		1			ug/L
1,2-Dichloroethane	0.160	U		1	0.160	U		1			ug/L
1,2-Dichloropropane	0.160	U		1	0.160	U		1			ug/L
1,3,5-Trimethylbenzene	0.160	U		1	0.160	U		1			ug/L

Page 2 of 4 24-Apr-2018

Project: LTS&M (Phase I)

e I) Task Code:

MND01-02.1801001 Lab Code: GEN

	Duplic	ate: MND0 ⁻	1-02.1801	001.013	Samp	le: MND01 P0	-02.18010 64	01-012			
Analyte	Result	Qualifiers	Uncert.	Dilution	Result	Qualifiers	Uncert.	Dilution	RPD	RER	Units
1,3-Dichlorobenzene	0.160	U		1	0.160	U		1			ug/L
1,3-Dichloropropane	0.160	U		1	0.160	U		1			ug/L
1,4-Dichlorobenzene	0.160	U		1	0.160	U		1			ug/L
2,2-Dichloropropane	0.160	U		1	0.160	U		1			ug/L
2-Butanone	0.500	U		1	0.500	U		1			ug/L
2-Chlorotoluene	0.160	U		1	0.160	U		1			ug/L
2-Hexanone	0.500	U		1	0.500	U		1			ug/L
4-Chlorotoluene	0.160	U		1	0.160	U		1			ug/L
4-Methyl-2-Pentanone	0.500	U		1	0.500	U		1			ug/L
Acetone	0.500	U		1	0.500	U		1			ug/L
Benzene	0.160	U		1	0.160	U		1			ug/L
Bromobenzene	0.160	U		1	0.160	U		1			ug/L
Bromochloromethane	0.160	U		1	0.160	U		1			ug/L
Bromodichloromethane	0.160	U		1	0.160	U		1			ug/L
Bromoform	0.160	U		1	0.160	U		1			ug/L
Bromomethane	0.160	U		1	0.160	U		1			ug/L
Carbon Disulfide	0.500	U		1	0.500	U		1			ug/L
Carbon tetrachloride	0.160	U		1	0.160	U		1			ug/L
Chlorobenzene	0.160	U		1	0.160	U		1			ug/L
Chlorodibromomethane	0.160	U		1	0.160	U		1			ug/L

Page 3 of 4 24-Apr-2018

Project: LTS&M (Phase I)

e I) Task Code:

MND01-02.1801001 Lab Code: GEN

	Duplic	ate: MND0	1-02.1801	001.013	Samp	le: MND01 P0	-02.18010 64	01-012			
Analyte	Result	Qualifiers	Uncert.	Dilution	Result	Qualifiers	Uncert.	Dilution	RPD	RER	Units
Chloroethane	0.160	U		1	0.160	U		1			ug/L
Chloroform	0.160	U		1	0.160	U		1			ug/L
Chloromethane	0.160	U		1	0.160	U		1			ug/L
cis-1,2-Dichloroethene	0.160	U		1	0.160	U		1			ug/L
cis-1,3-Dichloropropene	0.160	U		1	0.160	U		1			ug/L
Dibromomethane	0.160	U		1	0.160	U		1			ug/L
Dichlorodifluoromethane	0.160	U		1	0.160	U		1			ug/L
Ethylbenzene	0.160	U		1	0.160	U		1			ug/L
Hexachlorobutadiene	0.160	U		1	0.160	U		1			ug/L
Isopropylbenzene	0.160	U		1	0.160	U		1			ug/L
Methylene chloride	0.160	U		1	0.160	U		1			ug/L
n-Butylbenzene	0.160	U		1	0.160	U		1			ug/L
n-Propylbenzene	0.160	U		1	0.160	U		1			ug/L
Naphthalene	0.160	U		1	0.160	U		1			ug/L
p-IsopropyItoluene	0.160	U		1	0.160	U		1			ug/L
sec-Butylbenzene	0.160	U		1	0.160	U		1			ug/L
Styrene	0.160	U		1	0.160	U		1			ug/L
tert-Butylbenzene	0.160	U		1	0.160	U		1			ug/L
Tetrachloroethene	0.730	J		1	0.720	U		1			ug/L
Toluene	0.160	U		1	0.160	U		1			ug/L

Page 4 of 4 24-Apr-2018

Project:	LTS&M (Phase I)	Task Code:	MND01-02.1801001	Lab Code:	GEN	

	Duplic	ate: MND0 ⁻	1-02.1801	001.013	Samp	le: MND01 P0	-02.18010 54	01-012			
Analyte	Result	Qualifiers	Uncert.	Dilution	Result	Qualifiers	Uncert.	Dilution	RPD	RER	Units
Total Xylenes	0.160	U		1	0.160	U		1			ug/L
trans-1,2-Dichloroethene	0.160	U		1	0.160	U		1			ug/L
trans-1,3-dichloropropene	0.160	U		1	0.160	U		1			ug/L
Trichloroethene	1.12			1	1.14			1	1.8		ug/L
Trichlorofluoromethane	0.160	U		1	0.160	U		1			ug/L
Vinyl chloride	0.160	U		1	0.160	U		1			ug/L

Organics	Data Validation Summary	Page 1 of 1 24-Apr-2018
Project: LTS&M (Phase I)		
Task Code: MND01- 02.1801001		
Lab Code: GEN		
Surrogate Recovery:	All surrogate recoveries were within the laboratory acceptance limits.	
LCS/LCSD Performance:	All LCS/LCSD results were within the laboratory acceptance limits.	
MS/MSD Performance:	There were 6 MS/MSD results outside the laboratory acceptance limits.	
Method Blank Performance:	All method blanks were below the MDL.	

ject: LTS&M	(Phase I)		Task Code: MND01-02.1	801001	Lab	Code:	GEN	-		24-Apr-2018
ample ID	Date Analyzed	Method	Analyte	MS Recovery	MSD Recovery	Lower Limit	Upper Limit	RPD	RPD Limit	Comment
	02-06-2018	SW-846 8260	Hexachlorobutadiene		57	65	123	29	20	MS recovery out of
	02-06-2018	SW-846 8260	n-Butylbenzene		68	64	128	29	20	RPD > 20%
	02-06-2018	SW-846 8260	n-Propylbenzene		77	66	124	23	20	RPD > 20%
	02-06-2018	SW-846 8260	p-Isopropyltoluene		75	66	126	25	20	RPD > 20%
	02-06-2018	SW-846 8260	sec-Butylbenzene		78	67	126	24	20	RPD > 20%
	02-06-2018	SW-846 8260	tert-Butylbenzene		79	68	124	21	20	RPD > 20%

Data Review and Validation Report

General Information

Task ID:	MND01-02.1807002
Sample Event:	July 30 and 31, 2018
Site(s):	Mound LTS&M (Phase 1)
Laboratory:	GEL Laboratories, Charleston, South Carolina
Work Order No.:	455812
Analysis:	Organics
Validator:	Samantha Tigar
Review Date:	October 23, 2018

This validation was performed according to *Environmental Data Validation Procedure* (LMS/PRO/S15870), which is available at<u>http://sp.lm.doe.gov/Contractor/ControlledDocuments/Controlled%20Documents/S15870_Env_DV_Procedure.pdf</u>. The procedure was applied at Level 3, Data Validation.

All analyses were successfully completed. The samples were prepared and analyzed using accepted procedures based on methods specified by line item code, which are listed in Table 1.

Analyte	Line Item Code	Prep Method	Analytical Method
Volatile Organics, VOA	VOA-A-007	SW-846 5030B	SW-846 8260 LL

Table 1. Analytes and Methods

Data Qualifier Summary

None of the analytical results required qualification.

Sample Shipping/Receiving

GEL Laboratories in Charleston, South Carolina, received 9 water samples on July 31 and August 1, 2018, accompanied by a Chain of Custody (COC) form. The air waybill number was listed on the Sample Receipt and Review Form. The COC form was checked to confirm that all of the samples were listed with sample collection dates and times, and that signatures and dates were present indicating sample relinquishment and receipt. The COC forms were complete with no errors or omissions.

Preservation and Holding Times

The sample shipments were received intact with the temperature inside the iced coolers at 2 $^{\circ}$ C and 3 $^{\circ}$ C, which complies with requirements. All samples were received in the correct container types and had been preserved correctly for the requested analyses. All samples were analyzed within the applicable holding times.

Detection and Quantitation Limits

The method detection limit (MDL) was reported for all organic analytes as required. The MDL, as defined in 40 CFR 136, is the minimum concentration of an analyte that can be measured and reported with 99 percent confidence that the analyte concentration is greater than zero. The practical quantitation limit (PQL) for these analytes is the lowest concentration that can be reliably measured, and is defined as 5 times the MDL. The reported MDLs demonstrate compliance with contractual requirements.

Laboratory Instrument Calibration

Method requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing acceptable qualitative and quantitative data for the analytes of interest. Initial calibration verification demonstrates that the instrument is capable of acceptable performance at the beginning of the analytical run. Continuing calibration verification demonstrates that the initial calibration is still valid by checking the performance of the instrument on a continuing basis. Initial and continuing calibration standards must be prepared from independent sources to ensure the validity of the calibration. All laboratory instrument calibration verifications were performed correctly in accordance with the cited methods.

Method SW-846 8260 LL, Volatile Organics

Initial calibration of instrument VOA2 was performed on July 17, 2018 using nine calibration standards. Calibration curves are established using linear regression, quadratic regression, or the average response factor approach. Calibrations using average response factors had relative standard deviations of less than 15 percent. Linear or higher order regression calibrations had correlation coefficient values greater than 0.99 and intercepts less than 3 times the MDL. Initial and continuing calibration verification checks were made at the required frequency. All target compounds had percent drift values less than 20 percent. The mass spectrometer calibration and resolution was checked at the beginning of each analytical run in accordance with the procedure.

Volatiles Internal Standards and Surrogates

The volatile internal standard recoveries and surrogate recoveries were within the acceptance ranges for all samples.

Method Blanks

Method blanks are analyzed to assess any contamination that may have occurred during sample preparation. All method blank results associated with the samples were below the PQL for all analytes. In cases where a blank concentration exceeds or equals the MDL, the associated sample results are qualified with a U flag (not detected) when the sample result is greater than the MDL but less than 5 times the blank concentration.

Trip Blank

Trip blanks were prepared and analyzed to document contamination attributable to shipping and field handling procedures. This type of blank is useful in documenting contamination of volatile organic samples. Two trip blanks were submitted with these samples. Acetone was detected in the trip blanks but was not detected at concentrations greater than the MDL in the associated samples.

Matrix Spike Analysis

Matrix spikes are aliquots of environmental samples to which a known concentration of analyte has been added before analysis. Matrix spike and matrix-spike duplicate (MS/MSD) analysis is used to assess the performance of the method by measuring the effects of interferences caused by the sample matrix and reflects the bias of the method for the particular matrix in question. The MS/MSD data are not evaluated when the concentration of the unspiked sample is greater than 4 times the spike. Several spike recoveries did not meet the acceptance criteria. These compounds were not detected at concentrations greater than the MDL in the associated samples and no qualification was required.

Laboratory Replicate Analysis

Laboratory replicate analyses are used to determine laboratory precision for each sample matrix. The relative percent difference for results that are greater than 5 times the PQL should be less than 20 percent (or less than the laboratory-derived control limits for organics). For results that are less than 5 times the PQL, the range should be no greater than the PQL. Several compounds exceeded the acceptance criteria but were not detected at concentrations greater than the MDL in the associated samples.

Laboratory Control Sample

Laboratory control samples were analyzed at the correct frequency to provide information on the accuracy of the analytical method and the overall laboratory performance, including sample preparation. All control sample results were acceptable.

Field Duplicate

Field duplicate samples are collected and analyzed as an indication of overall precision of the measurement process. The precision observed includes both field and laboratory precision and

has more variability than laboratory duplicates, which measure only laboratory performance. The relative percent difference for duplicate results that are greater than 5 times the PQL should be less than 20 percent. For results that are less than 5 times the PQL, the range should be no greater than the PQL. A duplicate sample was collected from location P064. The duplicate results met the criteria for all analytes, demonstrating acceptable overall precision.

Completeness

Results were reported in the correct units for all analytes requested using contract-required laboratory qualifiers. The analytical report included the MDL and PQL for all analytes and all required supporting documentation.

Electronic Data Deliverable (EDD) File

A revised EDD file arrived on October 26, 2018. The EDD was examined to verify that the file was complete and in compliance with requirements. The contents of the file were compared to the requested analyses to ensure all and only the requested data are delivered. The contents of the EDD were manually examined to verify that the sample results accurately reflect the data contained in the sample data package.

Field Measurements

The pre-sampling purge criteria were met for all wells.

Potential Outliers

Potential outliers are results that lie outside the historical range, possibly due to transcription errors, data calculation errors, or measurement system problems. However, outliers can also represent true values outside the historical range. Potential outliers are identified by generating the Data Validation Outliers Report from data in the environmental database. The new data are compared to historical values and data that fall outside the historical data range are listed on the report along with the historical minimum and maximum values. The potential outliers are further reviewed and may be subject to statistical evaluation using the ProUCL application developed by the EPA (<u>https://www.epa.gov/land-research/proucl-software</u>). The review also includes an evaluation of any notable trends in the data that may indicate the outliers represent true extreme values. There were no outliers identified and the data for this task are acceptable as qualified.

Jamantha Tigar

Report Prepared By: _

Digitally signed by SAMANTHA TIGAR (Affiliate) Date: 2018.10.30 15:04:13 -06'00'

Samantha Tigar Data Validator

Data Validation Outliers Report - No Field Parameters Report Date: 10/30/2018

Comparison to Historical Data Since: 10/30/2007 12:00:00 AM Fraction: Any

Task: MND01-02.1807002

Analyte	Location	Analysis Location	Units	Fraction	Result	Lab Qualifier(s)	Туре	HistMIN	HistMAX	HistSetSize	Potential Outlier?
Tetrachloroet hene	P064	LB	ug/L	Ν	0.800	J	> HistMAX	0.67	0.75	5	No
Tetrachloroet hene	P064	LB	ug/L	Ν	0.670	J	< HistMIN	0.71	0.8	5	No
Trichloroethe ne	P064	LB	ug/L	N	1.10		< HistMIN	1.12	1.54	5	No

FRACTION: D = Dissolved N = NA T = Total

lysis Type: General C	# Samples: 9 hemistry Metals X Organics Radiochemistry Sample
Present: OK Signed: C	DK Dated: OK Integrity: OK Preservation OK Temperature: OK
Check	Summary
Holding Times	All analyses were completed within the applicable holding times.
Detection Limits	The reported detection limits are equal to or below the contract required limits.
Field Blanks	There were 2 held blanks associated with this task.

Sample Code Location Method Analyte Result Qualifiers TB MND01-021807002-010 0999 SW-846.8260 Acetone 24.1 Associated Samples:	ect: LT	S&M (Phase I)	Та	Task Code: MND01-02.1807002 Lab Code: GEN					
TB MND01-02-1807002-010 0999 SW-846 8260 Acetone 24.1 Associated Samples: Sample Code Location Result Dilution Lab Qualifiers Validation Qualifier MMD01-02 1807002-001 0353 0.500 1 U	Blank Type	Sample Code	Location	1,	Method	Analyt	e	Result	Lab Qualifiers
Sample Code Location Result Dilution Lab Qualifiers Validation Qualifier. MND01-02.1807002-001 0353 0.500 1 U MND01-02.1807002-005 0443 0.500 1 U MND01-02.1807002-005 0444 0.500 1 U MND01-02.1807002-005 0445 0.500 7 U MND01-02.1807002-007 0445 0.500 7 U MND01-02.1807002-008 0617 0.500 1 U	TB	MND01-02.1807002-010	0999	SW	-846 8260	Aceton	e	24.1	
Sample Code Location Result Dilution Lab Qualifiers Validation Qualifier MND01-021807002-001 0355 0.400 1 U MND01-021807002-005 0443 0.500 1 U MND01-021807002-005 0443 0.500 1 U MND01-021807002-005 0444 0.500 1 U MND01-021807002-007 0445 0.500 7 U MND01-021807002-008 0817 0.500 1 U	As	sociated Samples:						-	
MMD01-021807002-005 0443 0.500 1 U MND01-021807002-005 0443 0.500 1 U MND01-021807002-005 0444 0.500 1 U MND01-021807002-007 0445 0.500 1 U MND01-021807002-008 0617 0.500 1 U		Sample Code	Location	Result	Dilution	Lab Qualifiers	Validation Qu	alifier	
MND01-02,1607002-005 0443 0.500 1 U MND01-02,18077002-005 0444 0.500 1 U MND01-02,18077002-007 0445 0.500 7 U MND01-02,18077002-008 0617 0.500 1 U		MND01-02.1807002-001	0353	0.500	a.	u			
MND01-021807002-007 0444 0.500 1 U MND01-021807002-007 0445 0.500 7 U MND01-021807002-008 0617 0.500 1 U		MND01-02.1607002-005	0443	0.500	a	ų.			
MND01-02.1807002-008 0617 0.500 1 U		MND01-02.1807002-006	0444	0,500	Ŧ	U.			
MND01-02.1807002-008 0617 0.500 1 L		MND01-02-1807002-007	0445	0.500	7	u.			
		MND01-02 1807002-008	0617	0.500	à	Ū.			

TB MND01-02 1807002-011 0999 SW-846 8260 Acetone 13.8 Associated Samples: Sample Code Location Result Dilution Lab Qualifiers Validation Qualifier MND01-02 1807002-012 P064 0.500 1 U U U MND01-02 1807002-015 P064 0.500 1 U U	TB MND01-021807002-011 0999 SW-846 8290 Acetone 13.8 Associated Samples: Sample Code Location Result Dilution Lab Qualifiers Validation Qualifier MND01-021807002-015 P064 0.500 1 U U	ject: L1	TS&M (Phase I)	Tasi	k Code: MNE	001-02.1807002	Lab Cod	le: GEN		30-0cl-2018
Associated Samples: Sample Code Location Result Dilution Lab Qualifiers Validation Qualifier MND01-021807002-012 F064 0.500 1 U U MND01-021607002-015 F064 0.500 1 U U	Sample Code Location Result Dilution Lab Qualifiers Validation Qualifier MND01-021807002-015 P064 0.500 Y U U	TB	MND01-02 1807002-011	0999	SW	-846 8260	Aceton	ie	13.8	
Sample CodeLocationResultDilutionLab QualifiersValidation QualifierMND01-02:1807002-015P0640.5001UU	Sample Code Location Result Dilution Lab Qualifier Validation Qualifier MND01-021807002-012 P064 0.500 1 U U	A	ssociated Samples:		1		-		_	T
MND01-02.1807002-015 P064 0.500 1 L L	MND01-02.1807002-015 P064 0.500 Y LI LI		Sample Code MND01-02 1807002-012	Location P064	Result 0.500	Dilution	Lab Qualifiers Li	Validation Q	ualifier	
			MND01-02.1807002-015	P064	0.500	i i i	L	u		
		_							_	

Page 1 of 4 30-Oct-2018

Project: LTS&M (Phase I)

Task Code: MND01-02.1807002 Lab Code: GEN

	Duplic	ate: MND0	1-02.1807	002-015	Samp	ple: MND01 P0	-02.18070 54	02-012			
Analyte	Result	Qualifiers	Uncert	Dilution	Result	Qualifiers	Uncert.	Dilution	RPD	RER	Units
1,1,1,2-Tetrachloroethane	0.160	U	1.4	1	0,160	U	1	1			ug/L
1,1,1-Trichloroethane	0.160	Ņ		1	0 160	U		1			ug/L
1,1,2,2-Tetrachloroethane	0 160	U		1	0,160	U		1			ug/L
1,1,2-Trichloro-1,2,2-trifluoroethane	1.50	U	1	1	1.50	U		1	-	· · · · ·	ug/L
1,1,2-Trichloroethane	0.160	U		1	0,160	U		1		100	ug/L
1,1-Dichloroethane	0.160	U	1000	1	0,160	U	-			_	ug/L
1,1-Dichloroethene	0.160	U		1	0.160	U		1			ug/L
1.1-Dichloropropene	0.160	U		1	0 160	U		1			ug/L
1 2,3-Trichlorobenzene	0.200	U		1	0.200	U.		1	1000		ug/L
1,2,3-Trichloropropane	0.160	U	1000	1	0,160	U	-	1			ug/L
1,2,4-Trichlorobenzene	0.160	U	1	1	0.160	U		1	in and	1	ug/L
1,2,4-Trimethylbenzene	0.160	U		1	0,160	U		1			ug/L
1,2-Dibromo-3-chloropropane	0.160	U		1	0.160	U		1			ug/L
1,2-Dibromoethane	D 160	U		d.c. i.	0.160	U		1	1.4	1	ug/L
1,2-Dichlorobenzene	0.160	U	10.00	1	0,160	U	1	1	1.000		ug/L
1,2-Dichloroethane	0 160	U		1	0,160	U		1			ug/L
1,2-Dichloropropane	0.160	U	2.21	1	0.160	U		1		1	ug/L
1.3,5-Trimethylbenzene	0.160	U	1	1	0.160	U		1		1.1	ug/L

	Duplic	Duplicate: MND01-02.1807002-015					Sample: MND01-02.1807002-012 P064				
Analyte	Result	Qualifiers	Uncert	Dilution	Result	Qualifiers	Uncert.	Dilution	RPD	RER	Units
1,3-Dichlorobenzene	0.160	U		1	0,160	U		1			ug/L
1,3-Dichloropropane	0.160	U		1	0.160	U		1	1 1	1.00	ug/L
1,4-Dichlorobenzene	0 160	U	1 mar 1	1	0 160	U	1	1	1.1	1	ug/L
2,2-Dichloropropane	0 160	Ų	1000	5-01 1 2-14	0,160	U		1	1.0.0	i	ug/L
2-Butanone	0.500	U	1.000	1	0,500	U	-	1.1	1	-	ug/L
2-Chlorotoluene	0.160	U		1	0,160	U		1		1	ug/L
2-Hexanone	0 500	U	1000	1	0.500	U		1			ug/L
4-Chlorotoluene	0.160	U	ic pi	1	0 160	υ		1	den f		ug/L
4-Methyl-2-Pentanone	0.500	U		1	0.500	U		1			ug/L
Acetone	0.500	U	1	1	0.500	-u		1		1	ug/L
Benzene	0.160	U	1000	1	0.160	U	-	1	1000	1	ug/L
Bromobenzene	0,160	U	1	1	0.160	U		1		1	ug/L
Bromochloromethane	0.160	U		1	0,160	U		1			ug/L
Bromodichloromethane	0.160	U	1	1	0.160	Ų		1		T	ug/L
Bromotorm	0.160	U	1	1	0.160	U		1			ug/L
Bromomethane	D.160	U		1	0.160	U		1	1.00		ug/L
Carbon Disulfide	0.500	U		1	0,500	U		1.1	1		ug/L
Carbon tetrachloride	0.160	U	1	1	0.160	υ	1	1		·	ug/L
Chlorobenzene	0.160	U		1	0,160	U		1	li nu li		ug/L
Chlorodibromomethane	0.160	U	1.000	2401	0.160	0	1	1	1	1	ua/L

Page 2 of 4

Page E-94

Validation Rep	ort: Field	Duplicates
----------------	------------	------------

Project: LTS&M (Phase I)

Task Code: MND01-02.1807002

807002 Lab Code: GEN

Sample: MND01-02.1807002-012 Duplicate: MND01-02.1807002-015 P064 Result Qualifiers Uncert Dilution Result Qualifiers Uncert. Dilution RPD RER Analyte Units Chloroethane 0.160 0.160 U U 1 1 ug/L Chloroform 0.160 1 0 160 U 1 U ug/L Chloromethane 0 160 U 1 0 160 U 1 ug/L cis-1,2-Dichloroethene 0.360 0.360 U J 1 1 ug/L cis-1,3-Dichloropropene 0.160 0,160 U U 1 1 ug/L Dibromomethane 0.160 U 1 0,160 U. 1 ug/L Dichlorodifluoromethane 0.160 U 1 0.160 U 1 ug/L Ethylbenzene 0.160 U 1 0.160 U 1 ug/L Hexachlorobutadiene 0.160 1 0.160 1 ug/L Isopropylbenzene 0 160 U 1 0.160 U 1 ug/L Methylene chloride 0.160 U 0.160 U ug/L 1 1 0,160 0.160 n-Butylbenzene U U 1 ug/L 1 n-Propylberizene 0.160 U 1 0,160 U 1 ug/L Naphthalene 0.160 U 1 0.160 U 1 ug/L U 0.160 1 p-isopropyitoluene 0.160 1 U ug/L sec-Butylbenzene 0.160 U 1 0,160 U 1 ug/L Styrene 0 160 U 1 0:160 U 1 ug/L tert-Butylbenzene 0.160 U 0.160 U 1 ug/L 1 Tetrachloroethene 0.670 0.800 1 1 1 1 ug/L Toluene 0 160 U 1 0.160 U 1 ug/L

QC Checks: RPD: Relative Percent Difference RER. Relative Error Ratio

Page 3 of 4 30-Oct-2018

00-000-2010

Project: LTS&M (Phase I)

Task Code: MND01-02.1807002 Lab Code: GEN

	Duplic	ate: MNDO	1-02.1807	002-015	Samp	le: MND01 P0	-02.18070 64	002-012			
Analyte	Result	Qualifiers	Uncert	Dilution	Result	Qualifiers	Uncert.	Dilution	RPD	RER	Units
Total Xylenes	0,160	U		1	0.160	U	1	1			ug/L
trans-1,2-Dichloroethene	0.160	U	1.11	1	0.160	U		1	1	1	ug/L
trans-1,3-dichloropropene	0 160	U	a. 14	1	0 160	U	1	1	1.1	5.00	ug/L
Trichloroethene	1,10		2.44	1	1.12	to the date of the		11	18	$\tilde{h}_{ij} = \{i,j\}$	ug/L
Trichlorofluoromethane	0.160	U	1000	1	0,160	U		1		1.000	ug/L
Vinyl chloride	0.160	U		1	0,160	U		1			ug/L

QC Checks: RPD: Relative Percent Difference RER Relative Error Ratio Page 4 of 4 30-Oct-2018

Organics	Data Validation Summary	Page 1 of 1 23-Oct-2018
roject: LTS&M (Phase I)		
ask Code: MND01- 02.1807002		
ab Code: GEN		
Surrogate Recovery:	All surrogate recoveries were within the laboratory acceptance limits.	
LCS/LCSD Performance:	All LCS/LCSD results were within the laboratory acceptance limits.	
MS/MSD Performance:	There were 23 MS/MSD results outside the laboratory acceptance limits	
Method Blank Performance:	All method blanks were below the MDL	

Noncompliance Report: MS/MSD Performance

Page 1 of 1 23-Oct-2018

Project: LTS&M (Phase I)

Task Code: MND01-02,1807002

07002 Lab Code: GEN

Sample ID	Date Analyzed	Method	Analyte	MS Recovery	MSD Recovery	Lower	Upper	RPD	RPD Limit	Comment
	08-03-2018	SW-846 8260	1,2,3-Trichlorobenzene		63	70	120	13	20	
	08-03-2018	SW-846 8260	1,2,4-Trichlorobenzene		58	66	120	14	20	
	08-03-2018	SW-846 8260	1,2,4-Trimethylbenzene		59	66	122	20	20	
	08-03-2018	SW-846 8260	1,2-Dichlorobenzene	1.000	64	70	120	18	20	
	08-03-2018	SW-846 8260	1,3,5-Trimethylbenzene		60	71	122	20	20	
	08-03-2018	SW-846 8260	1,3-Dichlorobenzene		60	68	120	19	20	
	08-03-2018	SW-846 8260	1,4-Dichlorobenzene		57	67	120	18	20	
	08-03-2018	SW-846 8260	2-Chlorotoluene		59	68	120	20	20	
	08-03-2018	SW-846 8260	4-Chlorotoluene		58	68	120	20	20	
	08-03-2018	SW-846 8260	Bromobenzene		70	72	120	14	20	
	08-03-2018	SW-846 8260	Chlorobenzene		71	73	120	13	20	
	08-03-2018	SW-846 8260	Ethylbenzene		70	72	122	15	20	
	08-03-2018	SW-846 8260	Hexachlorobutadiene	45		65	123			
	08-03-2018	SW-846 8260	Hexachlorobutadiene		38	65	123	18	20	
	08-03-2018	SW-846 8260	Isopropylbenzene		64	67	124	19	20	
	08-03-2018	SW-846 8260	n-Butylbenzene	58		64	128			
	08-03-2018	SW-846 8260	n-Butylbenzene		45	64	128	24	20	
	08-03-2018	SW-846 8260	n-Propylbenzene		56	66	124	22	20	
	08-03-2018	SW-846 8260	p-Isopropyltoluene	64		66	126			
	08-03-2018	SW-846 8260	p-IsopropyItoluene		51	66	126	23	20	
	08-03-2018	SW-846 8260	sec-Butylbenzene		53	67	126	23	20	
	08-03-2018	SW-846 8260	Styrene		68	75	125	15	20	
	08-03-2018	SW-846 8260	tert-Butylbenzene		57	68	124	22	20	

Data Review and Validation Report

General Information

Task ID:	MND01-02.1808003
Sample Event:	August 9, 2018
Site(s):	Mound LTS&M (Phase 1)
Laboratory:	GEL Laboratories, Charleston, South Carolina
Work Order No.:	456932
Analysis:	Organics
Validator:	Samantha Tigar
Review Date:	October 23, 2018

This validation was performed according to *Environmental Data Validation Procedure* (LMS/PRO/S15870), which is available at<u>http://sp.lm.doe.gov/Contractor/ControlledDocuments/Controlled%20Documents/S15870_Env_DV_Procedure.pdf</u>. The procedure was applied at Level 3, Data Validation.

All analyses were successfully completed. The samples were prepared and analyzed using accepted procedures based on methods specified by line item code, which are listed in Table 1.

Analyte	Line Item Code	Prep Method	Analytical Method
Volatile Organics, VOA	VOA-A-007	SW-846 5030B	SW-846 8260 LL

Table 1. Analytes and Methods

Data Qualifier Summary

None of the analytical results required qualification.

Sample Shipping/Receiving

GEL Laboratories in Charleston, South Carolina, received 3 water samples on August 10, 2018, accompanied by a Chain of Custody (COC) form. The air waybill number was listed on the Sample Receipt and Review Form. The COC form was checked to confirm that all of the samples were listed with sample collection dates and times, and that signatures and dates were present indicating sample relinquishment and receipt. The COC forms were complete with no errors or omissions.

Preservation and Holding Times

The sample shipments were received intact with the temperature inside the iced cooler at 3 °C, which complies with requirements. All samples were received in the correct container types and had been preserved correctly for the requested analyses. All samples were analyzed within the applicable holding times.

Detection and Quantitation Limits

The method detection limit (MDL) was reported for all organic analytes as required. The MDL, as defined in 40 CFR 136, is the minimum concentration of an analyte that can be measured and reported with 99 percent confidence that the analyte concentration is greater than zero. The practical quantitation limit (PQL) for these analytes is the lowest concentration that can be reliably measured, and is defined as 5 times the MDL. The reported MDLs demonstrate compliance with contractual requirements.

Laboratory Instrument Calibration

Method requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing acceptable qualitative and quantitative data for the analytes of interest. Initial calibration verification demonstrates that the instrument is capable of acceptable performance at the beginning of the analytical run. Continuing calibration verification demonstrates that the initial calibration is still valid by checking the performance of the instrument on a continuing basis. Initial and continuing calibration standards must be prepared from independent sources to ensure the validity of the calibration. All laboratory instrument calibration verifications were performed correctly in accordance with the cited methods.

Method SW-846 8260 LL, Volatile Organics

Initial calibration of instrument VOA2 was performed on August 13, 2018 using nine calibration standards. Calibration curves are established using linear regression, quadratic regression, or the average response factor approach. Calibrations using average response factors had relative standard deviations of less than 15 percent. Linear or higher order regression calibrations had correlation coefficient values greater than 0.99 and intercepts less than 3 times the MDL. Initial and continuing calibration verification checks were made at the required frequency. Some target compounds had percent drift values less than 20 percent but were not detected at concentrations greater than the MDL. The mass spectrometer calibration and resolution was checked at the beginning of each analytical run in accordance with the procedure.

Volatiles Internal Standards and Surrogates

The volatile internal standard recoveries and surrogate recoveries were within the acceptance ranges for all samples.

Method Blanks

Method blanks are analyzed to assess any contamination that may have occurred during sample preparation. All method blank results associated with the samples were below the PQL for all analytes. In cases where a blank concentration exceeds or equals the MDL, the associated sample results are qualified with a "U" flag (not detected) when the sample result is greater than the MDL but less than 5 times the blank concentration.

<u>Trip Blank</u>

Trip blanks were prepared and analyzed to document contamination attributable to shipping and field handling procedures. This type of blank is useful in documenting contamination of volatile organic samples. One trip blank was submitted with these samples. Acetone was detected in the trip blank but was not detected at concentrations greater than the MDL in the associated samples.

Matrix Spike Analysis

Matrix spikes are aliquots of environmental samples to which a known concentration of analyte has been added before analysis. Matrix spike and matrix-spike duplicate (MS/MSD) analysis is used to assess the performance of the method by measuring the effects of interferences caused by the sample matrix and reflects the bias of the method for the particular matrix in question. The MS/MSD data are not evaluated when the concentration of the unspiked sample is greater than 4 times the spike. The spike recoveries met the acceptance criteria for all analytes evaluated.

Laboratory Replicate Analysis

Laboratory replicate analyses are used to determine laboratory precision for each sample matrix. The relative percent difference for results that are greater than 5 times the PQL should be less than 20 percent (or less than the laboratory-derived control limits for organics). For results that are less than 5 times the PQL, the range should be no greater than the PQL. The replicate results met these criteria.

Laboratory Control Sample

Laboratory control samples were analyzed at the correct frequency to provide information on the accuracy of the analytical method and the overall laboratory performance, including sample preparation. All control sample results were acceptable.

Field Duplicate

Field duplicate samples are collected and analyzed as an indication of overall precision of the measurement process. The precision observed includes both field and laboratory precision and has more variability than laboratory duplicates, which measure only laboratory performance. The relative percent difference for duplicate results that are greater than 5 times the PQL should be less than 20 percent. For results that are less than 5 times the PQL, the range should be no greater

than the PQL. A duplicate sample was collected from location 0411. The duplicate results met the criteria.

Completeness

Results were reported in the correct units for all analytes requested using contract-required laboratory qualifiers. The analytical report included the MDL and PQL for all analytes and all required supporting documentation.

Electronic Data Deliverable (EDD) File

A revised EDD file arrived on October 26, 2018. The EDD was examined to verify that the file was complete and in compliance with requirements. The contents of the file were compared to the requested analyses to ensure all and only the requested data are delivered. The contents of the EDD were manually examined to verify that the sample results accurately reflect the data contained in the sample data package.

Field Measurements

The pre-sampling purge criteria were met for all wells.

Potential Outliers

Potential outliers are results that lie outside the historical range, possibly due to transcription errors, data calculation errors, or measurement system problems. However, outliers can also represent true values outside the historical range. Potential outliers are identified by generating the Data Validation Outliers Report from data in the environmental database. The new data are compared to historical values and data that fall outside the historical data range are listed on the report along with the historical minimum and maximum values. The potential outliers are further reviewed and may be subject to statistical evaluation using the ProUCL application developed by the EPA (https://www.epa.gov/land-research/proucl-software). The review also includes an evaluation of any notable trends in the data that may indicate the outliers represent true extreme values. There were no outliers identified and the data for this task are acceptable as qualified.

famanthe Tigar

Digitally signed by SAMANTHA TIGAR (Affiliate) Date: 2018.10.30 15:34:26 -06'00'

Report Prepared By: _

Samantha Tigar Data Validator

Data Validation Outliers Report - No Field Parameters Report Date: 10/23/2018

Comparison to Historical Data Since: 10/23/2007 12:00:00 AM Fraction: Any

Task: MND01-02.1808003

Analyte	Location	Analysis Location	Units	Fraction	Result	Lab Qualifier(s)	Туре	HistMIN	HistMAX	HistSetSize	Potential Outlier?
Trichloroethene	0411	LB	ug/L	Ν	8.87		< HistMIN	9.01	14.1	28	No

FRACTION: D = Dissolved N = NA T = Total

ject: LTS&M (Phase I) lysis Type: General C ain of Custody	# Samples: 3 emistry Metals X Organics Radiochemistry Sample
Present: OK Signed: C	K Dated: OK Integrity: OK Preservation OK Temperature: OK
Check	Summery
Holding Times	All analyses were completed within the applicable holding times.
Detection Limits	The reported detection limits are equal to or below the contract required limits.
Field Blanks	There was 1 field blank associated with this task.
A TANZA MALA	
Field Duplicates	There was 1 duplicate evaluated.
Field Duplicates	There was 1 duplicate evaluated.
Field Duplicates	There was 1 duplicate evaluated.

Sample Code Location Method Analyte Result Qu B MND01-02.1808003-01.4 0999 SW-846 8260 Acetone 3.79 Acetone Acetone 3.79 Acetone Acetone <th>Blank Type Sample Code Location Method Analyte Result Lab Qualifier TB MIND01-02-1808003-014 0999 SW-846 8260 Acetone 3.79 J Associated Samples: Sample Code Location Result Dilution Lab Qualifiers Validation Qualifier</th> <th>n Method Analyte Result Qualifiers SW-846 6260 Acetone 3.79 J Result Dilution Lab Qualifiers Validation Qualifier</th> <th></th> <th></th> <th>7</th> <th>т <i>жен</i> т</th> <th></th> <th>1</th> <th></th>	Blank Type Sample Code Location Method Analyte Result Lab Qualifier TB MIND01-02-1808003-014 0999 SW-846 8260 Acetone 3.79 J Associated Samples: Sample Code Location Result Dilution Lab Qualifiers Validation Qualifier	n Method Analyte Result Qualifiers SW-846 6260 Acetone 3.79 J Result Dilution Lab Qualifiers Validation Qualifier			7	т <i>жен</i> т		1	
B MND01-02.1808003-014 D999 SW-846 8260 Acetone 3.79 Associated Samples:	TB MND01-02:1808003-01:4 D999 SW-846 8260 Acetone 3.79 J	SW-846 8260 Acetone 3.79 J Result Dilution Lab Qualifiers Validation Qualifier.	Blank Type	Sample Code	Location	Method	Analyte	Result	Lab Qualifiers
Associated Samples: Sample Code Location Result Dilution Lab Qualifiers Validation Qualifier	Associated Samples: Sample Code Location Result Dilution Lab Qualifiers Validation Qualifier	Result Dilution Lab Qualifiers Validation Qualifier	TB	MND01-02.1808003-014	0999	SW-846 8260	Acetone	3,79	1
Sample Code Location Result Dilution Lab Qualifiers Validation Qualifier	Sample Code Location Result Dilution Lab Qualifiers Validation Qualifier	Result Dilution Lab Qualifiers Validation Qualifier	As	sociated Samples:				-	1
				Sample Code	Location	Result Dilution	Lab Qualifiers Validatio	on Qualifier	
								-	

Page 1 of 4 30-Oct-2018

Project: LTS&M (Phase I)

hase I) Task Cod

Task Code: MND01-02.1808003 Lab Code: GEN

	Duplicate: MND01-02.1808003-013				Sample: MND01-02.1808003-004 0411						
Analyte	Result	Qualifiers	Uncert	Dilution	Result	Qualifiers	Uncert.	Dilution	RPD	RER	Units
1,1,1,2-Tetrachloroethane	0.160	U		1	0,160	U	1	1			ug/L
1,1,1-Trichloroethane	0.160	Ņ		1	0 160	U		1			ug/L
1,1,2,2-Tetrachloroethane	0 160	U		1	0 160	U		1			ug/L
1,1,2-Trichloro-1,2,2-trifluoroethane	1.50	U		1	1.50	U		1		· · · · ·	ug/L
1,1,2-Trichloroethane	0.160	U		1	0,160	U		1			ug/L
1,1-Dichloroethane	0.160	U		1	0,160	U		1.1		_	ug/L
1,1-Dichloroethene	0.160	U		1	0.160	U		1			ug/L
1.1-Dichlarapropene	0.160	U		9	0 160	U	in the second	1			ug/L
1.2,3-Trichlorobenzene	0.200	U		1	0.200	U		1	ice i		ug/L
1.2,3-Trichloropropane	0.160	U	100	1	0.160	U		1	1		ug/L
1,2,4-Trichlorobenzene	0.160	U	10	1	0.160	0	-	1	10.000 (ug/L
1,2,4-Trimethylbenzene	0.160	U	10.00	1	0:160	U		1		1.1	ug/L
1,2-Dibromo-3-chloropropane	0.160	U		1	0.160	U		1	1.1.1.1		ug/L
1,2-Dibromoethane	D 160	U		1	0.160	U		1	1.1.1	1	ug/L
1,2-Dichlorobenzene	0.160	U	10.00	1	0.160	υ		1	1		ug/L
1,2-Dichloroethane	0 160	U		1	0,160	υ	1	1	1		ug/L
1,2-Dichloropropane	0 160	U	12.21	1	0.160	U		1212			ug/L
1.3,5-Trimethylbenzene	0.160	U	1	1	0.160	U		+		1.00	ug/L

	Duplic	Dupircate: MIND01-02.1808003-013				Sample: MND01-02.1808003-004 0411					
Analyte	Result	Qualifiers	Uncert.	Dilution	Result	Qualifiers	Uncert.	Dilution	RPD	RER	Units
1,3-Dichlorobenzene	0.160	U		1	0.160	U	1	1			ug/L
1,3-Dichloropropane	0.160	U		1	0.160	U		1		1.00	ug/L
1,4-Dichlorobenzene	0 160	U	1 an	1	0 160	U	1	1	1.1.41	1	ug/L
2,2-Dichloropropane	0 160	Ų	11111	1.11	0,160	U	1.	19	1.000	i	ug/L
2-Butanone	0.500	U	1000	1	0,500	U	-	- D-1	-	-	ug/L
2-Chlorotoluene	0.160	U	10.00	1	0,160	U	1	1			ug/L
2-Hexanone	0.500	U	1000	1	0.500	U		1			ug/L
4-Chlorotoluene	D.160	U	10.01	1	0 160	U		1			ug/L
4-Methyl-2-Pentanone	0.500	U		1	0.500	U		1			ug/L
Acetone	0.500	U	1	1	0.500	U		1			ug/L
Benzene	0.160	U	1000	1	0.160	U		1	1000	1	ug/L
Bromobenzene	0,160	U	1	1	0.160	U	1	1			ug/L
Bromochloromethane	0.160	U	1	1	0,160	U	1	1			ug/L
Bromodichloromethane	0.160	U	1	1	0.160	Ų	1	1		T	ug/L
Bromotorm	0.160	U		1	0.160	U		1			ug/L
Bromomethane	D.160	U		1	0.160	U	1	1			ug/L
Carbon Disulfide	0.500	U		1	0,500	U		1.1			ug/L
Carbon tetrachloride	D 160	U	1	1	0.160	υ	1	1		·	ug/L
Chlorobenzene	D 160	U		1	0.160	U		1	li mi li	1	ug/L
Chlorodibromomethane	0.160	U	in the second se	224011	0.160	U	11000	1	1	100	ug/L

Page 2 of 4 30-Oct-2018
Validation Report: Field Duplicates

Project: LTS&M (Phase I)

Task Code: MND01-02.1808003

Lab Code: GEN

Sample: MND01-02.1808003-004 Duplicate: MND01-02.1808003-013 0411 Result Qualifiers Uncert Dilution Result Qualifiers Uncert. Dilution RPD RER Units Analyte Chloroethane 0.160 0.160 U U ug/L 1 1 Chloroform 0.160 U 0.160 1 1 U ug/L Chloromethane 0 160 U 1 0,160 U 1 ug/L cis-1,2-Dichloroethene 211 2.08 1 1 14 ug/L cis-1,3-Dichloropropene 0,160 0.160 U 1 U 1 ug/L Dibromomethane 0.160 U 1 0,160 U. 1 ug/L Dichlorodifluoromethane 0.160 U 1 0,160 U 1 ug/L Ethylbenzene 0.160 U 1 0.160 U 1 ug/L Hexachlorobutadiene 0.160 1 0.160 1 ug/L Isopropylbenzene 0 160 U 1 0.160 U 1 ug/L Methylene chloride 0.160 0.160 U U ug/L 1 1 n-Butylbenzene 0,160 0.160 U U 1 ug/L 1 n-Propylbenzene 0.160 U 1 0,160 U 1 ug/L Naphthalene 0.160 U 1 0.160 Ų 1 ug/L U 0.160 1 p-isopropyitoluene 0.160 1 U ug/L sec-Butylbenzene 0.160 0.160 U 1 U 1 ug/L Styrene 0 160 U 1 0.160 U 1 ug/L tert-Butylbenzene 0.160 U 0.160 U 1 ug/L 1 Tetrachloroethene 0.160 0 160 U 1 U 1 ug/L Toluene 0 160 U 1 0.160 U 1 ug/L

QC Checks: RPD Relative Percent Difference RER Relative Error Ratio

Page 3 of 4

30-Oct-2018

Validation Report: Field Duplicates

Project: LTS&M (Phase I)

Task Code: MND01-02.1808003 Lab Code: GEN

	Duplic	ate: MND0	1-02.1808	3003-013	Samp	ole: MND01 04	-02.18080 11	003-004			
Analyte	Result	Qualifiers	Uncert	Dilution	Result	Qualifiers	Uncert.	Dilution	RPD	RER	Units
Total Xylenes	0,160	U		1	0.160	U		1			ug/L
trans-1,2-Dichloroethene	D 160	U		1	0.160	U		1	1.0		ug/L
trans-1,3-dichloropropene	0 160	U	10.14	1	0,160	U	1	1	10.00	100	ug/L
Trichloroethene	8.87	-	1000	1	9.01	a training of		- 11	16	1.00	ug/L
Trichlorofluoromethane	0.160	U	1000	1	0,160	U		1	1.	1000	ug/L
Vinyl chloride	0.160	U	1	1	0,160	U		1			ug/L

QC Checks: RPD: Relative Percent Difference RER Relative Error Ratio Page 4 of 4

30-Oct-2018

Cherry waters in the second second	23-Oct-2018
Project: LTS&M (Phase I)	
ask Code: MND01- 02.1808003	
ab Code: GEN	
Surrogate Recovery:	All surrogate recoveries were within the laboratory acceptance limits.
LCS/LCSD Performance:	All LCS/LCSD results were within the laboratory acceptance limits
MS/MSD Performance:	All MS/MSD results were within the laboratory acceptance limits
Method Blank Performance:	All method blanks were below the MDL