

Rocky Flats Site, Colorado, Quarterly Report of Site Surveillance and Maintenance Activities, Third Quarter, Calendar Year 2025

January 2026

**U.S. DEPARTMENT OF
ENERGY**

Legacy
Management

Contents

Abbreviations	iii
Executive Summary	iv
1.0 Introduction	1
2.0 Site Operations and Maintenance	2
2.1 Landfills	2
2.1.1 Present Landfill	2
2.1.2 Original Landfill	2
2.1.2.1 Inspection Results	2
2.1.2.2 Settlement Monuments	3
2.2 COU Inspections	3
2.3 North Walnut Creek Slump	3
2.4 Site Roads Maintenance	4
2.5 Groundwater Treatment Systems	4
2.5.1 Mound Site Plume Collection System	4
2.5.2 East Trenches Plume Treatment System	5
2.5.3 Solar Ponds Plume Treatment System	5
2.5.4 Present Landfill Treatment System	6
2.6 Sign Inspection	7
2.7 Erosion Control and Revegetation	7
3.0 Environmental Monitoring	7
3.1 Water Monitoring	8
3.1.1 Water Monitoring Highlights	8
3.1.2 POC Monitoring	10
3.1.2.1 Monitoring Location WALPOC	10
3.1.2.2 Monitoring Location WOMPOC	13
3.1.3 POE Monitoring	16
3.1.3.1 Monitoring Location GS10	16
3.1.3.2 Monitoring Location SW027	18
3.1.3.3 Monitoring Location SW093	20
3.1.4 AOC Wells and Surface Water Support Location SW018	21
3.1.5 Sentinel Wells	21
3.1.6 Evaluation Wells	21
3.1.7 PLF Monitoring	21
3.1.8 OLF Monitoring	22
3.1.9 Groundwater Treatment System Monitoring	22
3.1.9.1 Mound Site Plume Collection System	22
3.1.9.2 East Trenches Plume Treatment System	22
3.1.9.3 Solar Ponds Plume Treatment System	22
3.1.9.4 Present Landfill Treatment System	22
3.1.10 Predischarge Monitoring	23
4.0 Adverse Biological Conditions	23
5.0 Ecological Monitoring	23
6.0 References	24

Figures

Figure 1. Rocky Flats Site Water Monitoring Locations and Precipitation Gages.....	9
Figure 2. Volume-Weighted 30-Day Average Pu and Am Activities at WALPOC: Year Ending Third Quarter 2025	10
Figure 3. Volume-Weighted 12-Month Rolling Average Pu and Am Activities at WALPOC: Year Ending Third Quarter 2025	11
Figure 4. Volume-Weighted 30-Day Average Uranium Concentrations at WALPOC: Year Ending Third Quarter 2025	11
Figure 5. Volume-Weighted 12-Month Rolling Average Uranium Concentrations at WALPOC: Year Ending Third Quarter 2025	12
Figure 6. Volume-Weighted 30-Day Average Nitrate + Nitrite as Nitrogen Concentrations at WALPOC: Year Ending Third Quarter 2025.....	12
Figure 7. Volume-Weighted 12-Month Rolling Average Nitrate + Nitrite as Nitrogen Concentrations at WALPOC: Year Ending Third Quarter 2025	13
Figure 8. Volume-Weighted 30-Day Average Pu and Am Activities at WOMPOC: Year Ending Third Quarter 2025	14
Figure 9. Volume-Weighted 12-Month Rolling Average Pu and Am Activities at WOMPOC: Year Ending Third Quarter 2025	14
Figure 10. Volume-Weighted 30-Day Average Uranium Concentrations at WOMPOC: Year Ending Third Quarter 2025	15
Figure 11. Volume-Weighted 12-Month Rolling Average Uranium Concentrations at WOMPOC: Year Ending Third Quarter 2025	15
Figure 12. Volume-Weighted 12-Month Rolling Average Pu and Am Activities at GS10: Year Ending Third Quarter 2025	16
Figure 13. Volume-Weighted 12-Month Rolling Average Uranium Concentrations at GS10: Year Ending Third Quarter 2025	17
Figure 14. Volume-Weighted 12-Month Rolling Average Pu and Am Activities at SW027: Year Ending Third Quarter 2025	19
Figure 15. Volume-Weighted 12-Month Rolling Average Uranium Concentrations at SW027: Year Ending Third Quarter 2025	19
Figure 16. Volume-Weighted 12-Month Rolling Average Pu and Am Activities at SW093: Year Ending Third Quarter 2025	20
Figure 17. Volume-Weighted 12-Month Rolling Average Uranium Concentrations at SW093: Year Ending Third Quarter 2025	21

Appendices

Appendix A Landfill Inspection Forms and Survey Data, Third Quarter 2025

Appendix B Analytical Results for Water Samples, Third Quarter 2025

Abbreviations

Am	americium
AOC	Area of Concern
BMP	best management practice
CAD/ROD	Corrective Action Decision/Record of Decision
COU	Central Operable Unit
CR	Contact Record
CY	calendar year
DOE	U.S. Department of Energy
ETPTS	East Trenches Plume Treatment System
IC	institutional control
ITSS	Interceptor Trench System Sump
LM	Office of Legacy Management
µg/L	micrograms per liter
M&M Plan	Monitoring and Maintenance Plan
MSPCS	Mound Site Plume Collection System
NWCS	North Walnut Creek Slump
OLF	Original Landfill
PLF	Present Landfill
PLFTS	Present Landfill Treatment System
POC	Point of Compliance
POE	Point of Evaluation
Pu	plutonium
RCRA	Resource Conservation and Recovery Act
RFLMA	<i>Rocky Flats Legacy Management Agreement</i>
RFSOG	Rocky Flats Site Operations Guide
SPPTS	Solar Ponds Plume Treatment System
UTC	uranium treatment component

Executive Summary

This report for the third quarter (July 1–September 30) of calendar year (CY) 2025 includes information about the remedy-related surveillance, monitoring, and maintenance activities conducted at the Rocky Flats Site, Colorado (Site), managed by the U.S. Department of Energy (DOE) Office of Legacy Management. This report summarizes the maintenance and inspection of the two closed landfills, the Central Operable Unit (COU) and former building areas, perimeter signs, and four groundwater collection or treatment systems; water and ecological monitoring activities; and erosion control and revegetation activities.

The quarterly Present Landfill inspection for the third quarter of CY 2025 was conducted on August 13, 2025. Weather-related inspections were conducted on August 26 and September 25, 2025, after the Site received approximately 1.08 and 1.17 inches of rain, respectively. No issues were identified during these inspections. Routine maintenance was performed at the Present Landfill Treatment System (PLFTS) throughout the quarter.

The Original Landfill monthly inspections^{ES-1} for the third quarter of CY 2025 were conducted on July 22, August 20, and September 30, 2025. No issues were identified during these inspections. Weather-related inspections were conducted on August 26 and September 25, 2025, after the Site received approximately 1.08 and 1.17 inches of rain, respectively. Minor repairs were made throughout the quarter to erosion controls in the West Perimeter Channel and the erosion control wattle placed on top of Berm 5 after a 2024 berm survey identified a few locations that were lower than required. The berms will be resurveyed in summer 2026.

The quarterly COU inspection for the third quarter of CY 2025 was conducted on July 10, 2025. Weather-related inspections were conducted on August 26 and September 25, 2025, after the Site received approximately 1.08 and 1.17 inches of rain, respectively. No new depressions or areas of slumping were identified in former building areas during any of these inspections, and all roads and grounds were in good condition.

The quarterly COU sign inspection for the third quarter of CY 2025 was conducted on July 8, 2025. Several signs were replaced following the inspection.

The North Walnut Creek Slump (NWCS) on the hillside east of the Solar Ponds Plume Treatment System (SPPTS) is monitored as a best management practice. The slump block moved 0.13 feet during the third quarter of CY 2025, as indicated by the results of monthly monitoring of 22 survey points in total on both sides of the current scarp face. Starting with the first quarter of 2026, the routine NWCS inspection survey frequency will be reduced from monthly to quarterly. There is no regulatory driver for the surveys.

Routine maintenance was performed at the Mound Site Plume Collection System, the East Trenches Plume Treatment System, the SPPTS, and the PLFTS during the third quarter of CY 2025. In addition, at the SPPTS the installation of the new uranium treatment component (UTC) was completed. The UTC was commissioned and system optimization is ongoing.

^{ES-1} Starting with the fourth quarter of 2025, the *Rocky Flats Legacy Management Agreement* Parties have agreed to reduce the routine OLF inspection frequency to quarterly. Details about the inspection frequency change are described in Contact Record 2025-03, which can be accessed on the Rocky Flats Site webpage.

Water monitoring met the targeted monitoring objectives required by the *Rocky Flats Legacy Management Agreement* (RFLMA). During the quarter, 3 flow-paced, composite surface water samples; 2 surface water grab samples; 14 treatment system grab samples; and 23 groundwater samples were collected, in accordance with RFLMA-required protocols, and were submitted for laboratory analysis.

All RFLMA analyte concentrations at Point of Evaluation locations GS10, SW027, and SW093 remained below reportable condition thresholds during the third quarter of CY 2025.

All RFLMA analyte concentrations at Points of Compliance WALPOC and WOMPOC also remained below reportable condition thresholds during the third quarter of CY 2025.

RFLMA-required groundwater monitoring during the third quarter of CY 2025 was conducted at the Resource Conservation and Recovery Act monitoring wells. Results obtained from groundwater monitoring in the third quarter of CY 2025 were generally consistent with previous data. Groundwater monitoring data presented in this quarterly report will be evaluated as part of the annual report for CY 2025.

No evidence of adverse biological conditions was observed during the third quarter of CY 2025.

Ecological monitoring consisted of Preble's meadow jumping mouse mitigation monitoring, wetland mitigation monitoring, and revegetation monitoring. Other ecological tasks conducted during the third quarter included weed mapping, wetland and vegetation mapping, prairie dog surveys, photopoint monitoring, and weed management.

1.0 Introduction

The U.S. Department of Energy (DOE) Office of Legacy Management (LM) is responsible for implementing the final response action at the Rocky Flats Site, Colorado (Site). The final response action was selected in the *Corrective Action Decision/Record of Decision for Rocky Flats Plant (USDOE) Peripheral Operable Unit and Central Operable Unit* (DOE et al. 2006), hereafter referred to as the Corrective Action Decision/Record of Decision (CAD/ROD), issued September 29, 2006, and amended September 21, 2011 (DOE et al. 2011). The Peripheral Operable Unit was transferred from DOE to the U.S. Department of the Interior in July 2007 to establish the Rocky Flats National Wildlife Refuge. DOE implements the monitoring and maintenance requirements of the CAD/ROD for the Central Operable Unit (COU) as described in the *Rocky Flats Legacy Management Agreement* (EPA et al. 2007) (RFLMA). The RFLMA was executed on March 14, 2007. Attachment 2 to the RFLMA has been revised since, most recently in 2018. Results of that 2018 revision were implemented beginning January 1, 2019.

RFLMA Attachment 2 specifies remedy performance standards; monitoring, inspection, and maintenance requirements; evaluation criteria for the results of monitoring and inspection; and COU remedy reporting. These requirements include environmental monitoring; maintenance of required erosion controls, access controls (signs), landfill covers, and groundwater collection and treatment systems; and operation of the groundwater collection and treatment systems. The RFLMA also requires that the institutional controls (ICs), in the form of use restrictions as established in the CAD/ROD, be maintained.

This report is required in accordance with Section 7.0, “Periodic Reporting Requirements,” of RFLMA Attachment 2. The purpose of this report is to inform the regulatory agencies and stakeholders of the remedy-related surveillance, monitoring, and maintenance activities conducted at the Site during the third quarter (July 1–September 30) of calendar year (CY) 2025. LM provides periodic communications through several means, including this report, web-based tools, and public meetings.

LM maintains the *Rocky Flats Site, Colorado, Site Operations Guide* (DOE 2025b), also called the Rocky Flats Site Operations Guide (RFSOG), as the primary document to guide the work performed to satisfy the requirements of the RFLMA and to implement best management practices (BMPs) at the Site. Several other Site-specific documents provide additional details regarding the requirements described in RFLMA Attachment 2, including data evaluation protocols and all aspects of surveillance, monitoring, and maintenance activities.

Monitoring data and summaries of the monitoring and maintenance activities for past quarters are available in the quarterly reports. Extensive discussions and evaluation of the surveillance, monitoring, and maintenance activities are presented each calendar year in the annual reports for Site surveillance and maintenance activities. This report summarizes the following activities:

- Maintenance and inspection of the Present Landfill (PLF) and the Original Landfill (OLF)
- Maintenance and inspection of the COU and associated infrastructure, such as signage and roads
- Maintenance and inspection of the groundwater collection and treatment systems
- Routine water monitoring (in accordance with the RFLMA)

- Erosion control and revegetation activities
- Ecological monitoring

2.0 Site Operations and Maintenance

2.1 Landfills

2.1.1 Present Landfill

The PLF is inspected quarterly and after major precipitation events in accordance with the requirements of the *Present Landfill Monitoring and Maintenance Plan and Post-Closure Plan, U.S. Department of Energy Rocky Flats, Colorado, Site* (DOE 2014) and Attachment 2 of the RFLMA (EPA et al. 2007).

The quarterly PLF inspection for the third quarter of CY 2025 was conducted on August 13, 2025. No issues were identified during this inspection. Weather-related inspections were conducted on August 26 and September 25, 2025, after the Site received approximately 1.08 and 1.17 inches of rain, respectively. No issues were identified during these inspections. Routine maintenance was performed at the Present Landfill Treatment System (PLFTS) throughout the quarter (e.g., mechanical pipe cleaning). Copies of the landfill inspection forms and reports are presented in Appendix A.

2.1.2 Original Landfill

During the third quarter, the OLF was inspected monthly and following major precipitation events in accordance with requirements in the *Rocky Flats Site Original Landfill Monitoring and Maintenance Plan* (DOE 2009), also called the OLF Monitoring and Maintenance Plan (M&M Plan), and Attachment 2 of the RFLMA (EPA et al. 2007). The design features installed as part of the OLF Slope Stabilization Project in 2019 and 2020 are expected to provide long-term stability to areas of the landfill that were prone to movement in the past; the OLF M&M Plan is in the process of being updated to include the stabilization features. Starting with the fourth quarter of 2025, the RFLMA Parties have agreed to reduce the routine OLF inspection frequency to quarterly. Details about the inspection frequency change are described in Contact Record (CR) 2025-03, which can be accessed on the Rocky Flats Site webpage. In addition to the RFLMA-required inspections, weekly observations are conducted at the OLF as a BMP.

2.1.2.1 Inspection Results

The OLF monthly inspections for the third quarter of CY 2025 were conducted on July 22, August 20, and September 30, 2025. No issues were identified during these inspections. Weather-related inspections were conducted on August 26 and September 25, 2025, after the Site received approximately 1.08 and 1.17 inches of rain, respectively. No issues were identified during these inspections. Minor repairs were made to erosion controls throughout the quarter. Copies of the landfill inspection forms and reports are presented in Appendix A.

An erosion control wattle was placed on top of Berm 5 after a 2024 berm survey identified a few sections with heights at or just below the minimum requirement. The purpose of adding the wattle instead of additional soil was to meet height requirements without impacting the vegetation in the surrounding area. A section of the wattle had to be repaired and restaked during the third quarter of CY 2025. The berms will be resurveyed in summer 2026.

Seeps at the OLF are observed during monthly and weather-related inspections. Historical seep locations 2/3, 5, 6, 7A, 8A, 8B, 8C, 9, 10, 10A, and 11 have been dry since the stabilization effort was completed in 2020. Seep locations 1, 4, 7, and 8 had flows or moisture generally consistent with that observed during previous third quarter inspections. Estimates for individual seep flow rates are included in the monthly OLF inspection reports (Appendix A).

2.1.2.2 Settlement Monuments

The settlement monuments at the OLF are surveyed quarterly in accordance with the OLF M&M Plan. The CY 2025 third quarter survey was performed on September 2, 2025. Survey data indicate that vertical settling at each monument is within the calculated settlements specified in Figure 3-1 of the OLF M&M Plan. The survey results are presented in Appendix A.

2.2 COU Inspections

In accordance with the RFLMA, the COU is inspected for significant erosion annually and following major precipitation events. Particular attention is paid to areas near remaining subsurface features (e.g., former buildings, ash pits, and trenches). Additional inspections are conducted quarterly as a BMP, focusing on the areas of former Buildings 371, 771, 881, and 991, as well as the Ash Pits and East Trenches.

The quarterly BMP COU inspection for the third quarter of CY 2025 was conducted on July 10, 2025. Weather-related inspections were conducted on August 26 and September 25, 2025, after the Site received approximately 1.08 and 1.17 inches of rain, respectively. There were no new depressions or areas of slumping identified in former building areas, and the roads and grounds were observed to be in good condition.

2.3 North Walnut Creek Slump

The hillside east of the Solar Ponds Plume Treatment System (SPPTS) is the site of a slump that is monitored as a BMP. This feature is referred to as the NWCS. The slump block moved approximately 0.13 feet during the third quarter of CY 2025, as indicated by the results of monthly monitoring of 22 total survey points on both sides of the current scarp face. Observations of the North Walnut Creek hillside show that movement of approximately 4 to 6.7 feet along the scarp has occurred since the hillside was regraded in 2017. Soils are also heaving along the toe of the slope because of the continued movement. Starting with the first quarter of 2026, the routine NWCS inspection frequency will be reduced to quarterly. There is no regulatory driver for the surveys.

In fall 2020, three inclinometers (location codes 74520, 74620, and 74720) were installed in the hillside. Since installation, inclinometer 74520, which is immediately adjacent to the eastern portion of the SPPTS groundwater collection trench, has shown movement of up to 0.5 inch

down to 10 feet below grade and movement of up to 0.3 inch down to 16 feet below grade. The inclinometer upgradient of the Interceptor Trench System Sump (ITSS), 74720, has shown movement up to 1.3 inches, 10 feet below grade, and movement of up to 0.4 inch down to 32 feet below grade. The third inclinometer, 74620, nearest the ITSS, has shown movement up to 1 inch, 10 feet below grade, and movement up to 0.5 inch down to 45 feet below grade. Inclinometer 74620 also shows variations of up to 0.3 inch in the upper 6 feet, likely caused by cycles of drying and wetting of the soils. These inclinometers continue to be monitored quarterly.

2.4 Site Roads Maintenance

No road maintenance was performed in the third quarter of CY 2025. Roads remained in good condition.

2.5 Groundwater Treatment Systems

Four groundwater collection systems and three associated treatment facilities are monitored, operated, and maintained in accordance with requirements defined in the RFLMA and the additional implementation detail in the RFSOG. Three of these systems (Mound Site Plume Collection System [MSPCS],¹ East Trenches Plume Treatment System [ETPTS], and SPPTS) include a groundwater collection trench, which is similar to a French drain but with an impermeable membrane on the downgradient side. The fourth system, the PLFTS, passively treats water collected from the northern and southern components of the PLF Groundwater Intercept System and the PLF seep.

2.5.1 Mound Site Plume Collection System

Routine maintenance performed at the MSPCS during the third quarter of CY 2025 included the following activities:

- Inspecting the wiring, batteries, and other power components; replaced faulty batteries
- Adjusting the heating and cooling components for the batteries based on seasonal conditions
- Clearing debris from the solar panels as necessary
- Checking flow rates and water levels at the collection trench and lift station
- Cleaning and calibrating water-level transducers and flow meters
- Exercising valves and cleaning piping
- Checking the operation of the lift station transfer pump
- Periodically transferring excess sample and purge water from the backup storage tanks to the lift station

Issues with replacement batteries in early July led to a short period when water transfer from the lift station to the ETPTS was impacted. During this period, collected groundwater was retained in the collection trench and storage tanks. The batteries were replaced later in July, the stored water was transferred to the ETPTS for treatment, and the system resumed routine operations.

¹ The MSPCS, formerly the Mound Site Plume Treatment System, no longer treats groundwater; it was reconfigured in 2016 to collect groundwater and route it to the ETPTS for treatment.

In addition, the solar/battery power facility was inspected by a qualified electrical contractor on September 4, 2025, and was confirmed to be operating properly.

Refer to Section 3.1.9.1 for information on water quality monitoring.

2.5.2 East Trenches Plume Treatment System

Routine maintenance at the ETPTS in the third quarter of CY 2025 included the following activities:

- Inspecting the wiring, batteries, and other power components
- Adjusting the heating and cooling components for the batteries and plumbing based on seasonal conditions
- Clearing debris from the solar panels as necessary
- Exercising valves
- Adjusting valves and controller settings to modify water-flow and airflow rates and maintaining air stripper operation
- Replacing the air stripper door and trays with clean units when appropriate due to hard-water scale accumulation
- Cleaning or replacing the demister pad as necessary
- Cleaning the influent and effluent pumps
- Inspecting and greasing the blower motor as necessary
- Recording water levels in the collection trench and influent and effluent tanks
- Cleaning and calibrating the water-level transducers and flow meters
- Maintaining and updating dataloggers
- Cleaning the airflow sensor and diffuser
- Inspecting and cleaning piping as needed
- Adjusting the air stripper timer control to accommodate solar charging availability

Due to continued effluent pump malfunctions, in mid-September discharge of the treated effluent was switched to gravity flow. In addition, the solar/battery power facility was inspected by a qualified electrical contractor on September 4, 2025, and was confirmed to be operating properly.

Refer to Section 3.1.9.2 for information on water quality monitoring.

2.5.3 Solar Ponds Plume Treatment System

Routine maintenance during the third quarter of CY 2025 at the SPPTS included the following activities:

- Inspecting the wiring, batteries, and other power components
- Adjusting the heating and cooling components for the batteries based on seasonal conditions
- Clearing debris from the solar panels as necessary
- Cleaning flow meters, air release valves, pumps, pipes, and other plumbing components

- Cleaning and adjusting or replacing water-level transducers
- Exercising valves
- Flushing piping to clear clogs and maintain flows
- Periodically transferring water from the storage tank used for excess sample and purge water to the nitrate treatment component
- Adjusting the water depth in the nitrate treatment component to maintain a suitable residence time
- Adjusting the nutrient dose rate as appropriate to accommodate seasonal temperature changes
- Ensuring that an adequate supply of the nutrient solution is on hand
- Pumping water out of the vaults as necessary

Installation of a new uranium treatment component (UTC) was completed in July and is performing as expected. The UTC was put online and began treating uranium in early August. Optimization of the UTC is still ongoing to simplify its operation and ensure uranium removal meets RFLMA requirements. Components of the optimization process include but are not limited to:

- Chemical dosing rates
- Flow rate tests
- Control settings
- Troubleshooting and maintenance of equipment
- Adjustments in response to environmental changes (e.g., temperature setting)

Adjustments will continue to be made to the operation of the UTC to further optimize its performance. Concurrently, the performance of the SPPTS as a whole, with its associated components (nitrate treatment component, groundwater collection components, and the infrastructure and data feeds), will also continue to be optimized to operate as a single system. The UTC project will be discussed further in the annual report for CY 2025.

In addition, the solar/battery power facility was inspected on September 4, 2025, by a qualified electrical contractor, and was confirmed to be operating properly.

Refer to Section 3.1.9.3 for information on water quality monitoring.

2.5.4 Present Landfill Treatment System

Routine maintenance during the third quarter of CY 2025 at the PLFTS included inspecting the system for potential problems, primarily by checking flow conditions. Influent piping was cleaned using a mechanical pipe cleaner. No issues were identified.

Refer to Section 3.1.9.4 for information on water quality monitoring.

2.6 Sign Inspection

The RFLMA requires that signs (“U.S. Department of Energy – No Trespassing”) be posted at intervals around the perimeter of the COU. In addition, signs listing the ICs and providing contact information must be posted at COU access points. The signs are required by the remedy as physical controls, are inspected quarterly, and are maintained through repair or replacement as needed. Physical controls protect the engineered components of the remedy, including landfill covers, groundwater collection and treatment systems, and water monitoring equipment, which are also inspected routinely during monitoring and maintenance activities.

The quarterly COU sign inspection for the third quarter of CY 2025 was conducted on July 8, 2025. Several signs were reaffixed to the fence.

2.7 Erosion Control and Revegetation

Monitoring and maintenance of the Site erosion control features were performed throughout the third quarter of CY 2025, including extra inspections following high-wind or precipitation events. Stakes securing the erosion wattles, matting, and GeoRidge erosion controls that were loosened or displaced by high winds, precipitation, or wildlife were routinely resecured. Sediment was removed from behind wattles and GeoRidges as needed and spread in vegetated areas upgradient of the erosion controls. As required by the RFLMA ICs, erosion controls were installed and maintained, according to the *Erosion Control Plan for Rocky Flats Property Central Operable Unit* (DOE 2007), for projects that disturbed soil during the third quarter of CY 2025.

3.0 Environmental Monitoring

This section summarizes the environmental monitoring conducted in accordance with RFLMA Attachment 2 (EPA et al. 2007). RFLMA Attachment 2, Table 1, “Surface Water Standards,” is used in conjunction with the evaluation flowcharts also found in the attachment to evaluate analytical data and determine reportable conditions. Reportable conditions, as defined in RFLMA Attachment 2, Section 6.0, “Action Determinations,” require consultation between the RFLMA Parties (DOE, the Colorado Department of Public Health and Environment, and the U.S. Environmental Protection Agency) to determine appropriate actions.

In this report, a condition described as “reportable” means that an analyte concentration at a surface water Point of Compliance (POC) or Point of Evaluation (POE) monitoring location has exceeded a RFLMA Table 1 water quality standard consistent with the evaluation flowcharts in Attachment 2 of the RFLMA. This term can also be applied to groundwater monitoring wells classified as Area of Concern (AOC) wells, also described in the flowcharts in Attachment 2 of the RFLMA. DOE is required to inform the RFLMA Parties and the public of a reportable condition within 15 days of receiving validated data. Within 30 days of receiving validated data, DOE is required to submit a plan and schedule to the regulatory agencies for an evaluation to address the occurrence.

In this report, plutonium (Pu) refers to isotopes plutonium-239, 240, or $^{239}\text{Pu} + ^{240}\text{Pu}$; americium (Am) refers to isotope americium-241 or ^{241}Am ; and nitrate refers to nitrate + nitrite as nitrogen.

In addition, the terms “activity” and “concentration” are used interchangeably for both Pu and Am to represent the amount of radioactivity or radioactive material per unit of water (e.g., picocuries per liter).

3.1 Water Monitoring

This section includes:

- A discussion of the routine analytical results for the POC, POE, PLF, and OLF surface water monitoring objectives and identification of any reportable conditions.
- Summaries of the routine groundwater monitoring at AOC wells, Sentinel wells, Evaluation wells, and Resource Conservation and Recovery Act (RCRA) wells; treatment system and associated performance monitoring; and Surface Water Support monitoring at the Site.

RFLMA Attachment 2 and the RFSOG document the monitoring locations, sampling criteria, and evaluation protocols for the water monitoring objectives discussed in the following sections. Appendix B of this report provides analytical water quality data for the third quarter of CY 2025. The annual report for CY 2025 will provide a more detailed interpretation and discussion of the water quality data.

3.1.1 Water Monitoring Highlights

During the third quarter of CY 2025, water monitoring met the targeted monitoring objectives required by the RFLMA. The routine RFLMA network consists of 8 automated gaging stations, 11 surface water grab sampling locations, 7 groundwater treatment system locations, and 88 groundwater monitoring locations. RFLMA protocols specify the frequency with which locations are to be sampled. Additional locations are occasionally sampled in support of investigations in response to reportable conditions or to satisfy other data needs. During the third quarter, 3 flow-paced, composite surface water samples; 2 surface water grab samples; 14 treatment system grab samples; and 10 groundwater monitoring locations had samples collected (in accordance with RFLMA protocols) and submitted for analysis.² Figure 1 shows the monitoring locations sampled during the third quarter of CY 2025. Due to normal seasonal variability, some surface water locations did not have samples collected during the third quarter of CY 2025 because of dry conditions. Only those wells classified as RCRA monitoring wells were scheduled for RFLMA sampling this quarter.

As previously reported in the second quarter report, a reportable condition at POE GS10 for the uranium 12-month rolling average was determined upon receipt of validated analytical results. Validated results were received on May 21, 2025, with formal notification to regulators and stakeholders made on June 4, 2025. The RFLMA Parties had a consultation regarding this reportable condition on July 10, 2025. CR 2025-01 documents the results of that consultation and describes the plan and path forward; CR 2025-01 is posted on the Rocky Flats Site webpage. As of May 31, 2025, the uranium concentration at POE GS10 no longer causes a reportable condition. See Section 3.1.3.1 for a detailed discussion.

² Composite samples consist of multiple aliquots (“grabs”) of identical volume. Each grab is delivered by the automatic sampler to the composite container at each predetermined flow volume or time interval. During the third quarter of CY 2025, the 3 flow-paced composites comprised 55 individual grabs.

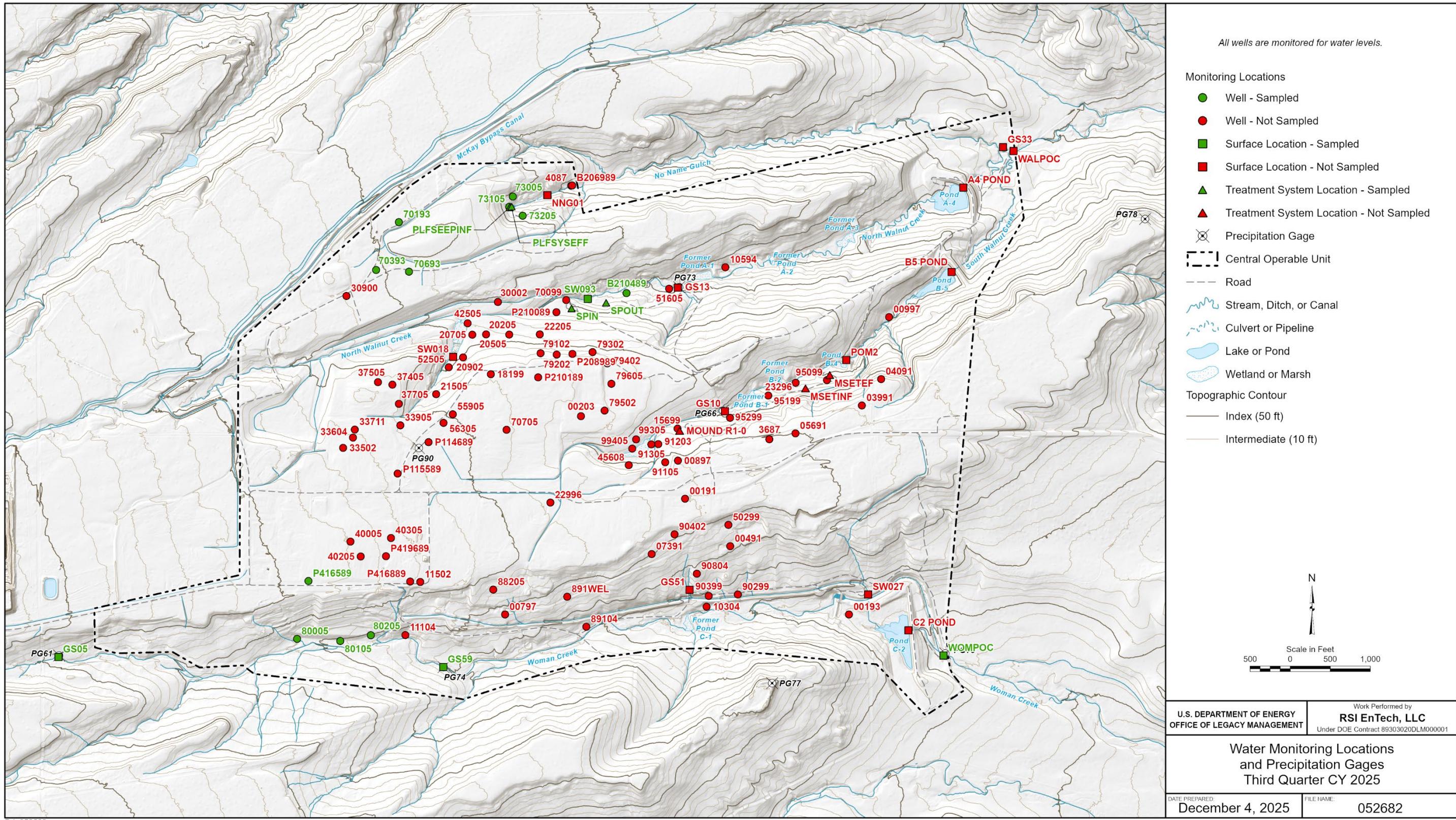
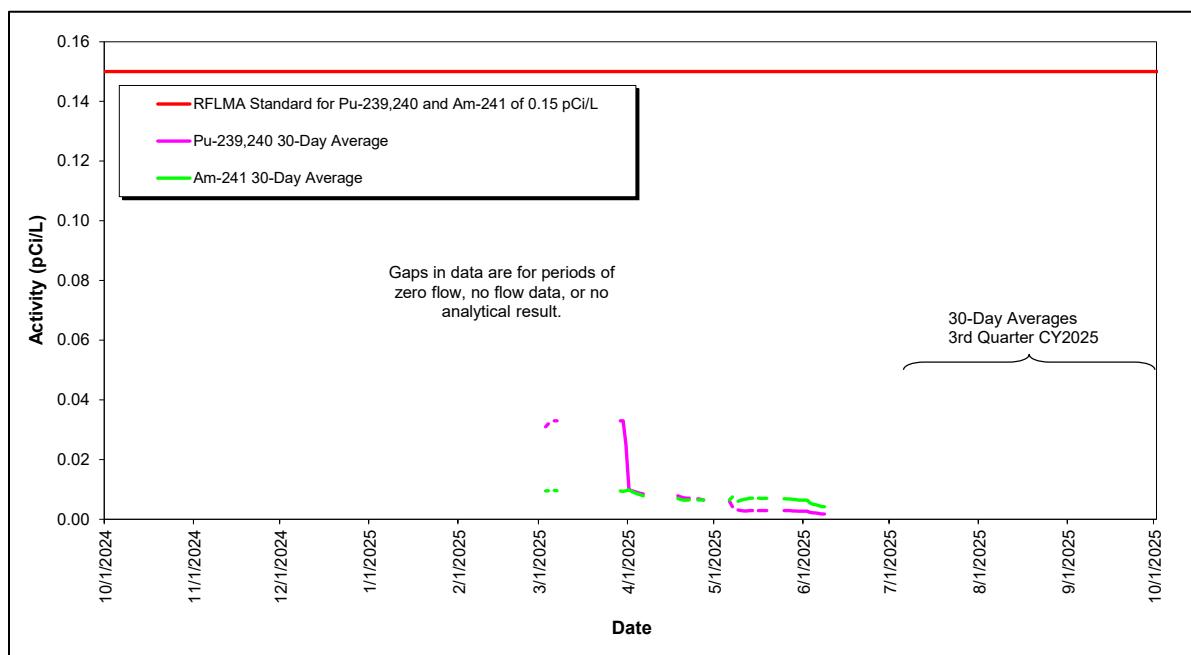


Figure 1. Rocky Flats Site Water Monitoring Locations and Precipitation Gages

All RFLMA analyte concentrations at POE locations GS10, SW027, and SW093 remained below reportable condition thresholds during the third quarter of CY 2025.

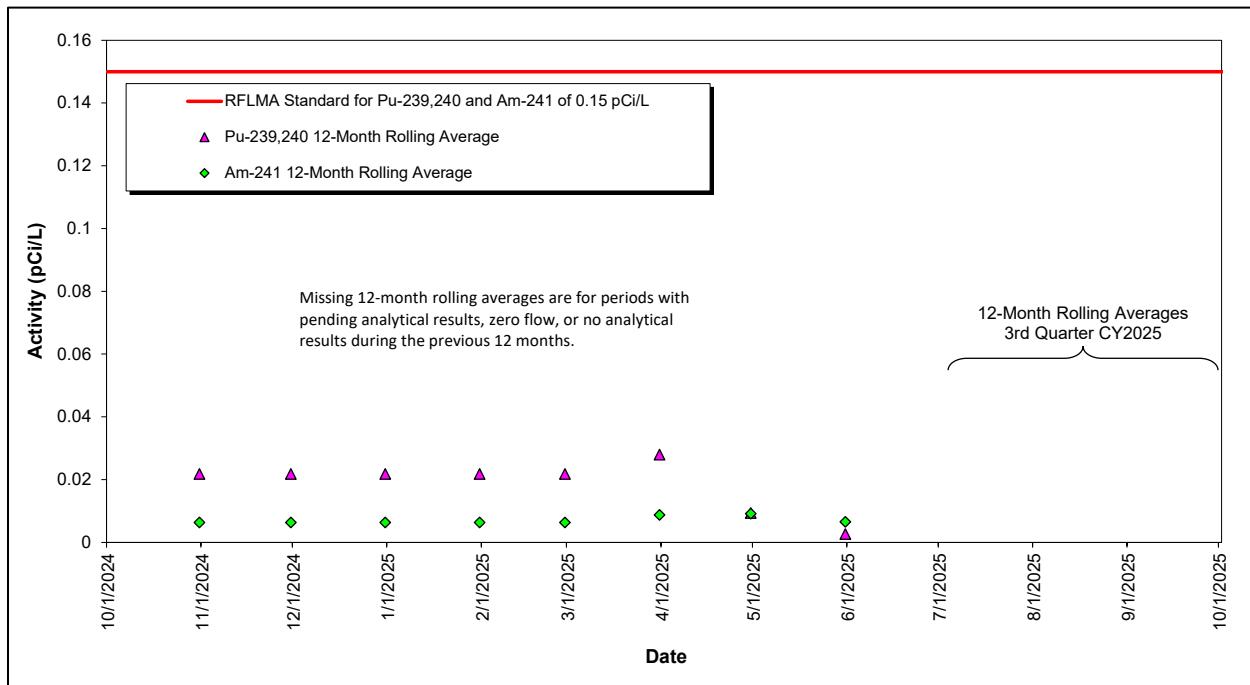

All RFLMA analyte concentrations at POC locations WALPOC and WOMPOC also remained below reportable condition thresholds during the third quarter of CY 2025.

3.1.2 POC Monitoring

The following sections include summary tables and plots showing the applicable 30-day and 12-month rolling averages for the POC analytes.^{3,4}

3.1.2.1 Monitoring Location WALPOC

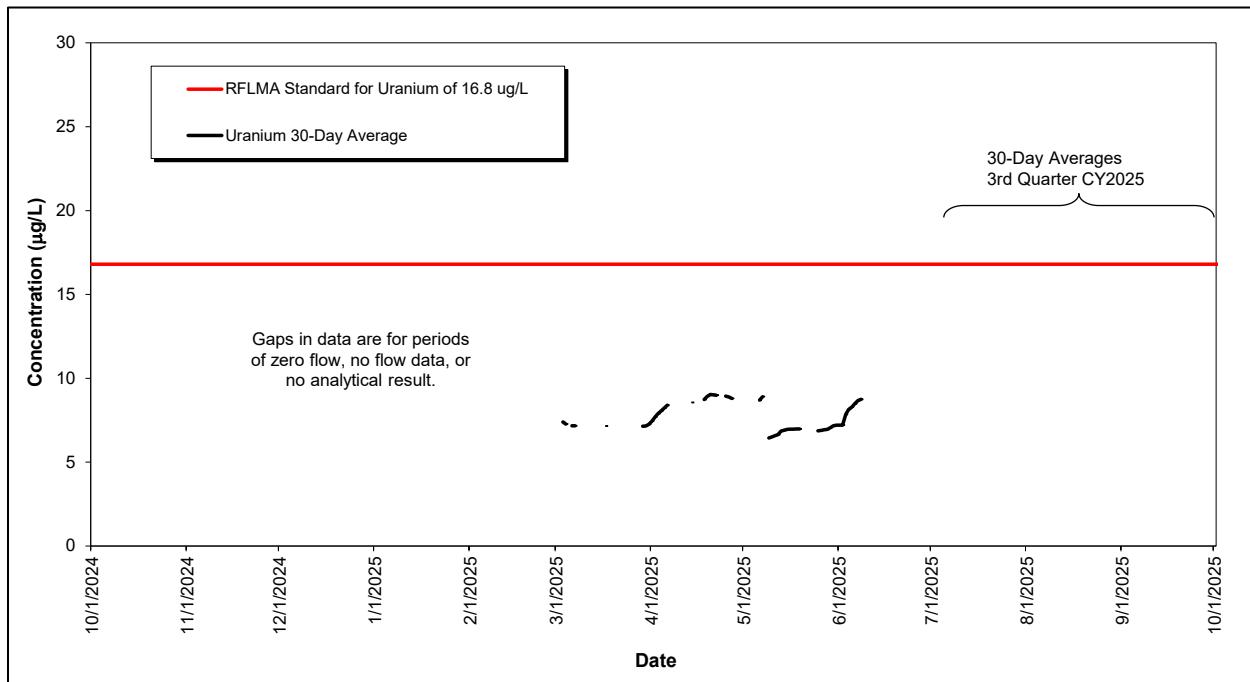
Monitoring location WALPOC is on Walnut Creek at the eastern COU boundary. Figure 2 through Figure 7 show no occurrence of a reportable condition for 30-day or 12-month rolling averages for Am, Pu, uranium, or nitrate through June 8, 2025. The composite sample started on June 9, 2025, is still in progress. The methods for calculating the 30-day and 12-month rolling averages are detailed in each annual report.


Note: The composite sample started on June 9, 2025, is still in progress as of November 26, 2025.

Abbreviation: pCi/L = picocuries per liter

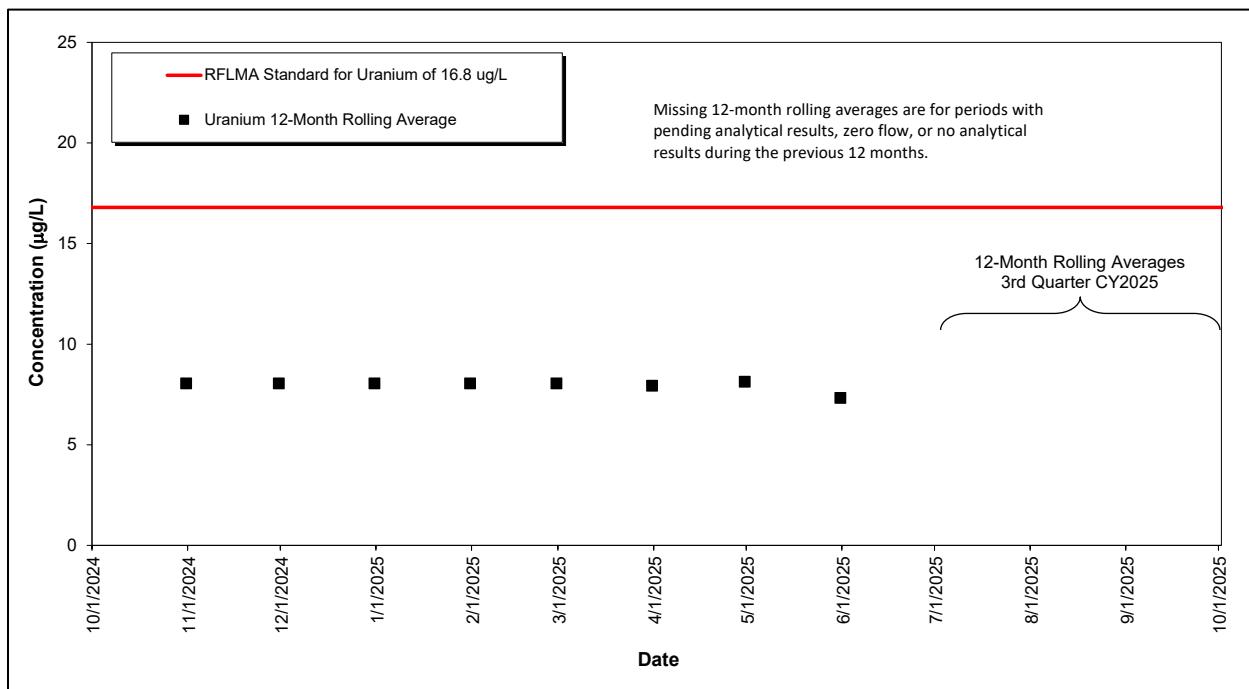
Figure 2. Volume-Weighted 30-Day Average Pu and Am Activities at WALPOC: Year Ending Third Quarter 2025

³ According to RFLMA protocols, 30-day averages are calculated only for days with greater than zero flow and include the previous 30 days of greater-than-zero flow (may be more than 30 calendar days). The 12-month rolling averages are calculated only for the last day of each month when complete flow and analytical data are available up to that day for the previous 12 calendar months.


⁴ Because of hold-time requirements, nitrate samples are collected as grab samples at the start of each composite sample, and the result is considered representative of the entire composite period for calculation purposes.

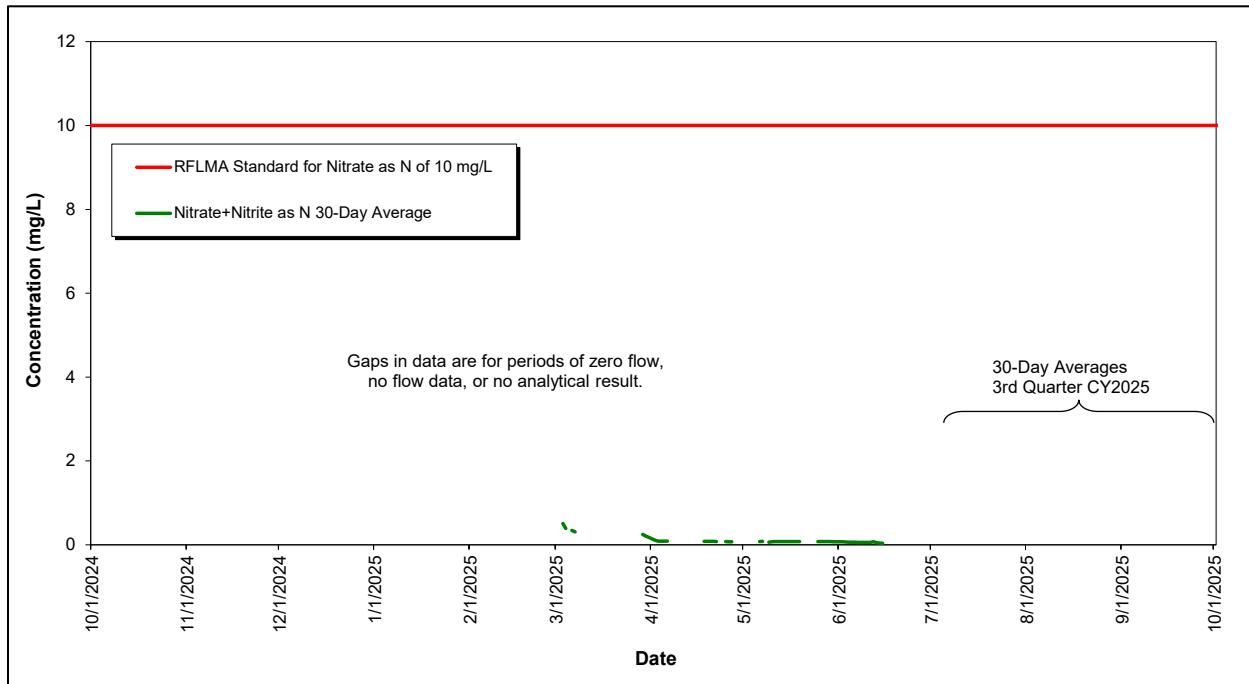
Note: The composite sample started on June 9, 2025, is still in progress as of November 26, 2025.

Abbreviation: pCi/L = picocuries per liter


Figure 3. Volume-Weighted 12-Month Rolling Average Pu and Am Activities at WALPOC: Year Ending Third Quarter 2025

Note: The composite sample started on June 9, 2025, is still in progress as of November 26, 2025.

Abbreviation: $\mu\text{g/L}$ = micrograms per liter


Figure 4. Volume-Weighted 30-Day Average Uranium Concentrations at WALPOC: Year Ending Third Quarter 2025

Note: The composite sample started on June 9, 2025, is still in progress as of November 26, 2025.

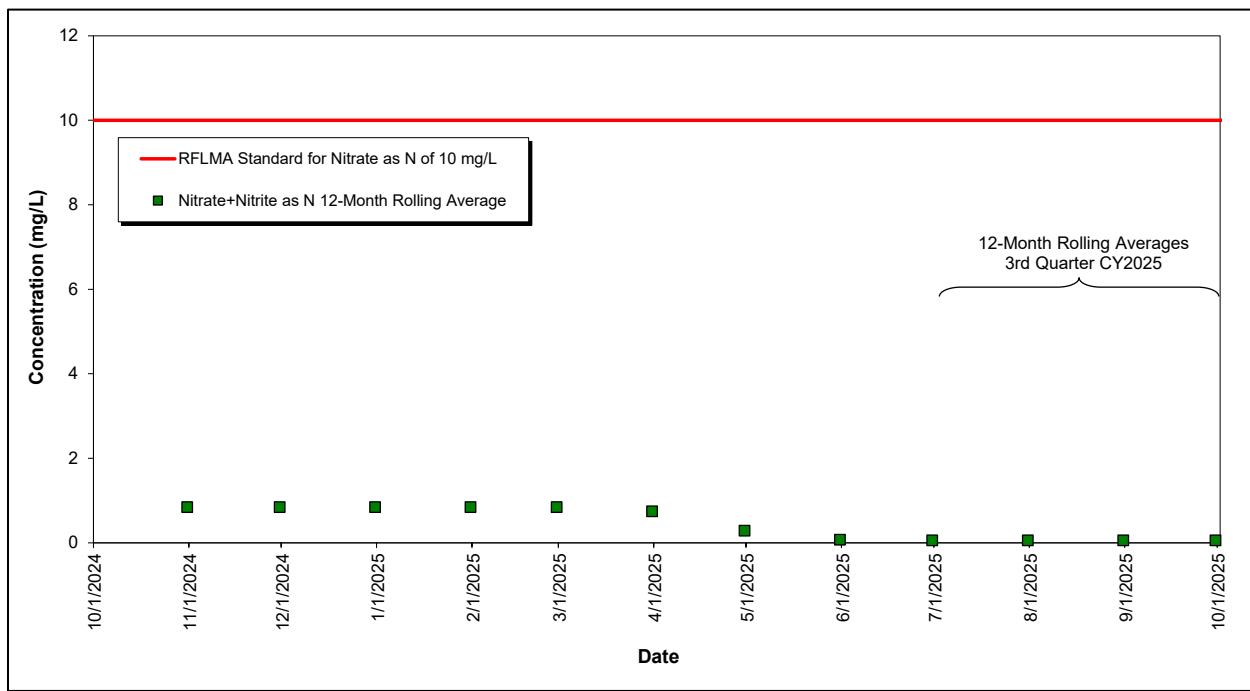
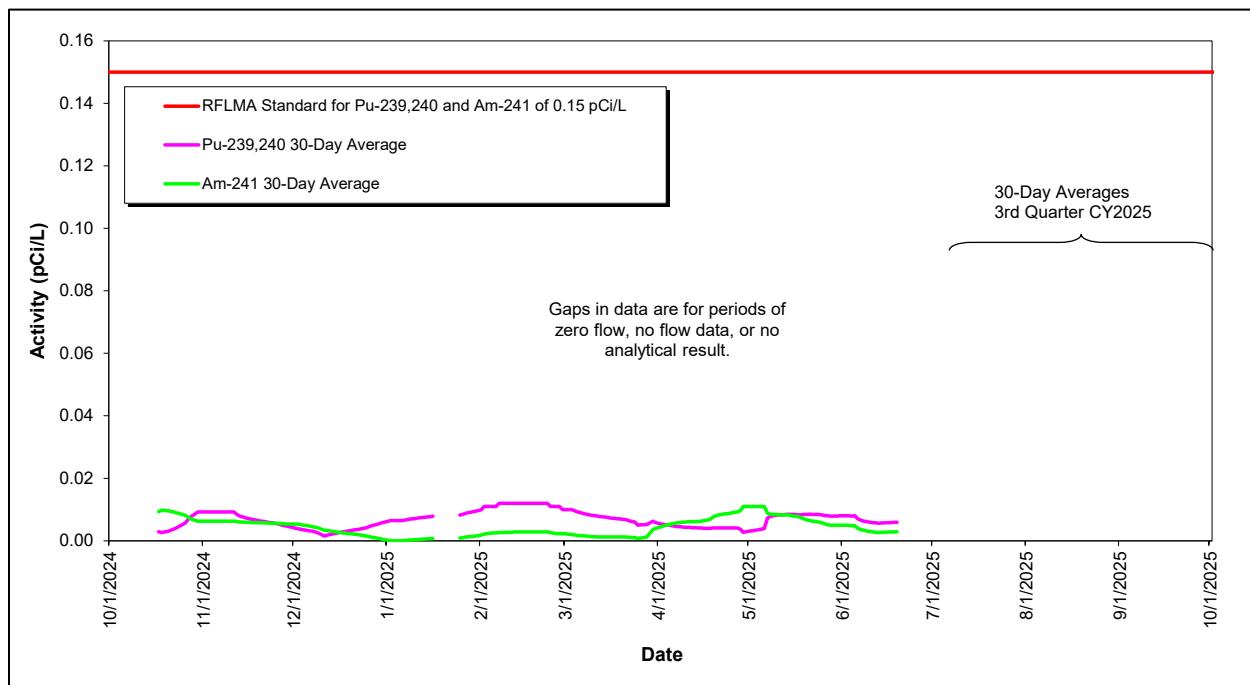

Abbreviation: $\mu\text{g/L}$ = micrograms per liter

Figure 5. Volume-Weighted 12-Month Rolling Average Uranium Concentrations at WALPOC: Year Ending Third Quarter 2025

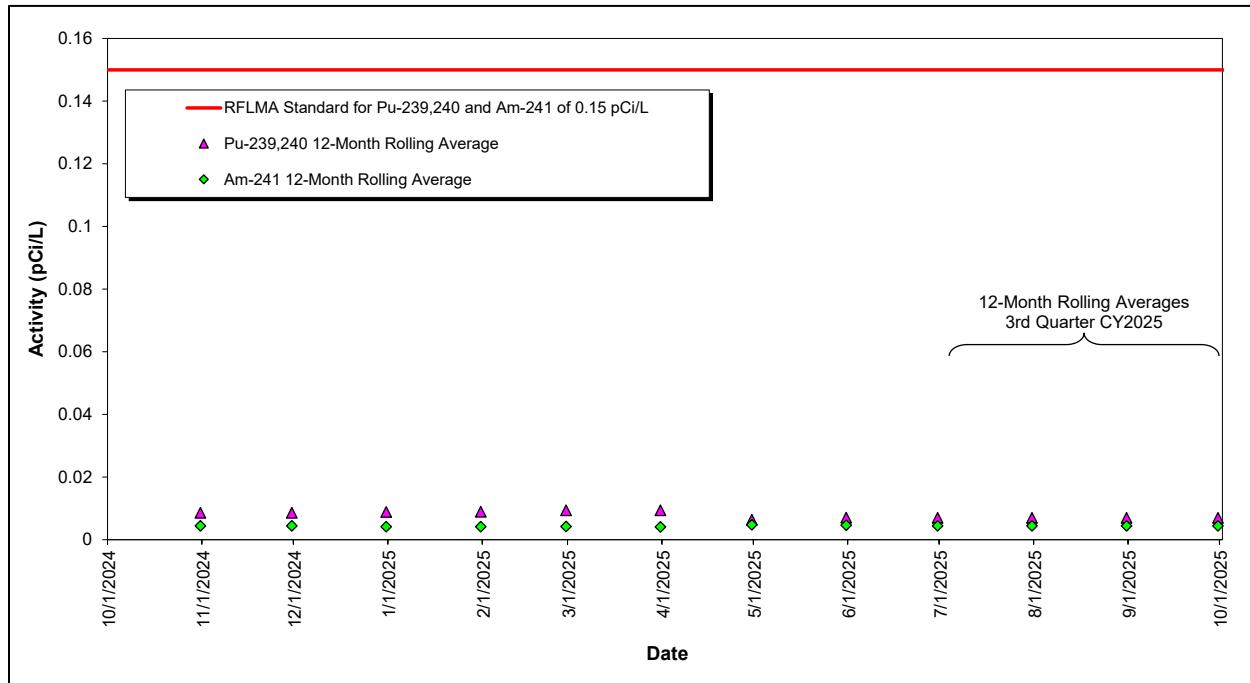
Abbreviations: mg/L = milligrams per liter, N = nitrogen

Figure 6. Volume-Weighted 30-Day Average Nitrate + Nitrite as Nitrogen Concentrations at WALPOC: Year Ending Third Quarter 2025



Abbreviations: mg/L = milligrams per liter, N = nitrogen

Figure 7. Volume-Weighted 12-Month Rolling Average Nitrate + Nitrite as Nitrogen Concentrations at WALPOC: Year Ending Third Quarter 2025


3.1.2.2 Monitoring Location WOMPOC

Monitoring location WOMPOC is on Woman Creek at the eastern COU boundary. Figure 8 through Figure 11 show no occurrence of a reportable condition for 30-day or 12-month rolling averages for Am, Pu, or uranium through the third quarter of 2025. The methods for calculating the 30-day and 12-month rolling averages are detailed in the annual report.

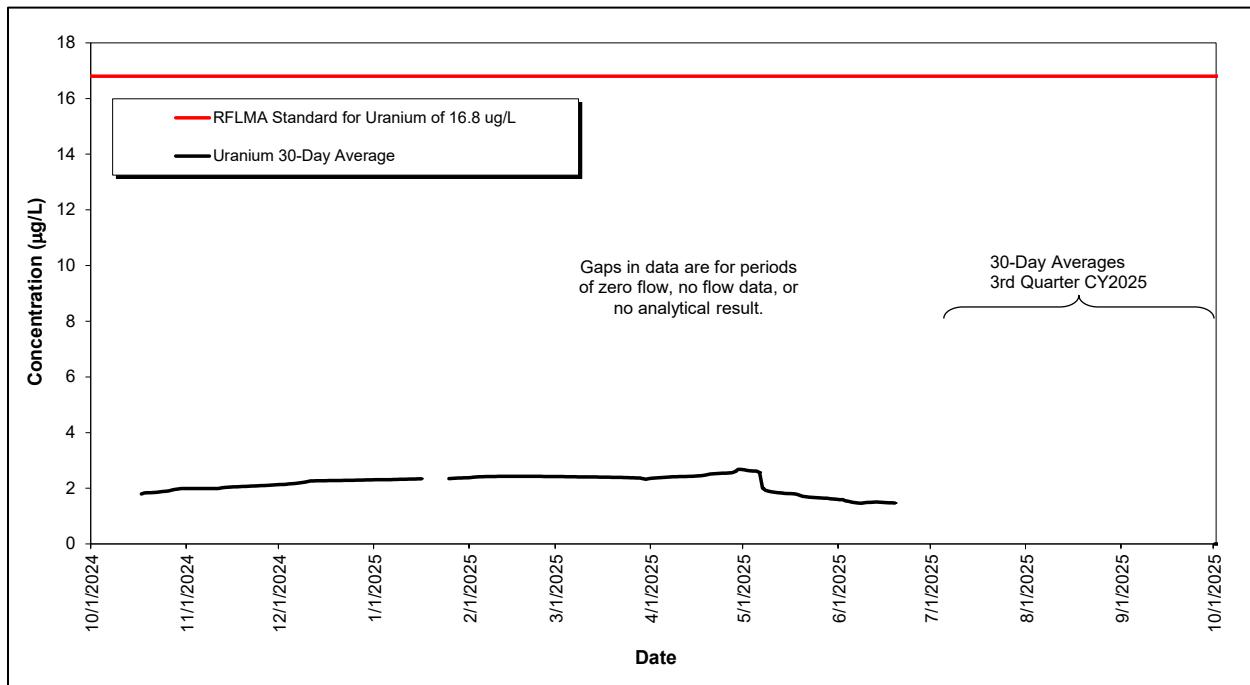

Abbreviation: pCi/L = picocuries per liter

Figure 8. Volume-Weighted 30-Day Average Pu and Am Activities at WOMPOC: Year Ending Third Quarter 2025

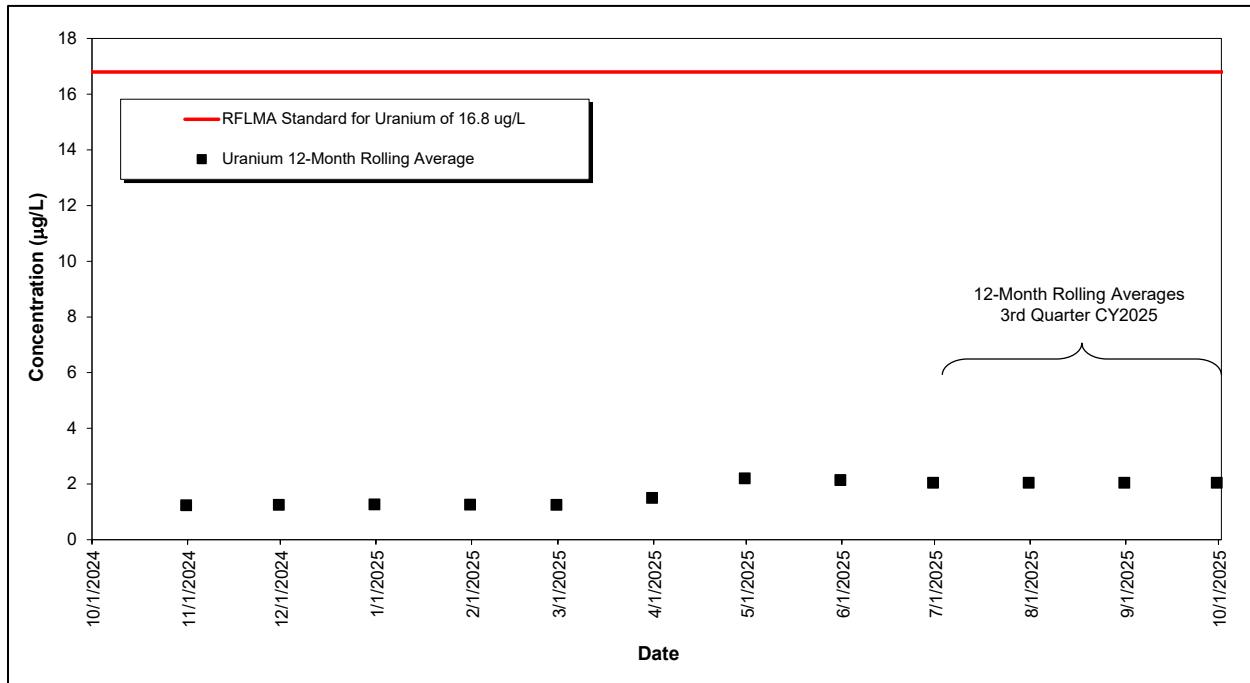
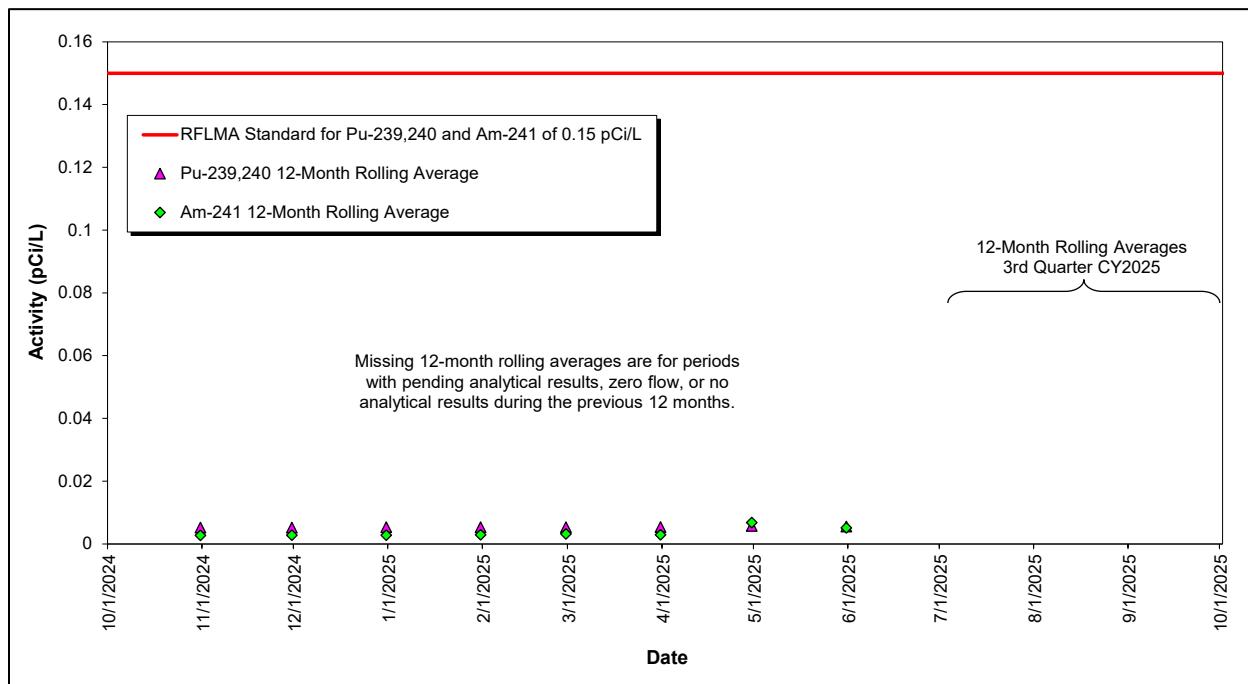

Abbreviation: pCi/L = picocuries per liter

Figure 9. Volume-Weighted 12-Month Rolling Average Pu and Am Activities at WOMPOC: Year Ending Third Quarter 2025

Abbreviation: $\mu\text{g/L}$ = micrograms per liter

Figure 10. Volume-Weighted 30-Day Average Uranium Concentrations at WOMPOC: Year Ending Third Quarter 2025

Abbreviation: $\mu\text{g/L}$ = micrograms per liter


Figure 11. Volume-Weighted 12-Month Rolling Average Uranium Concentrations at WOMPOC: Year Ending Third Quarter 2025

3.1.3 POE Monitoring

The following sections include summary plots showing the applicable 12-month rolling averages for the POE analytes.

3.1.3.1 Monitoring Location GS10

Monitoring location GS10 is on South Walnut Creek just upstream of the B-Series ponds. Figure 12 shows no occurrences of a reportable condition for Am or Pu through June 25, 2025. The composite sample started on June 26, 2025, is still in progress as of November 26, 2025. The method for calculating 12-month rolling averages is detailed in each annual report.

Note: The composite sample started on June 26, 2025, is still in progress as of November 26, 2025.

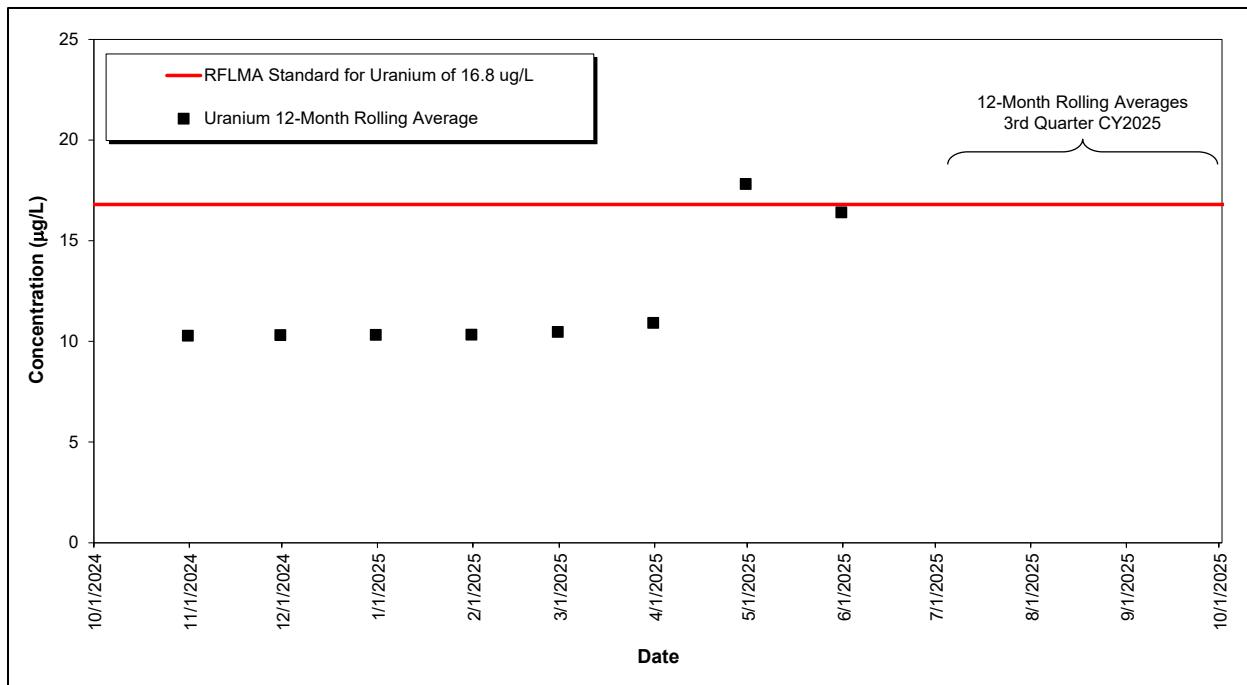

Abbreviation: pCi/L = picocuries per liter

Figure 12. Volume-Weighted 12-Month Rolling Average Pu and Am Activities at GS10: Year Ending Third Quarter 2025

Figure 13 shows a reportable condition at GS10 for the uranium 12-month rolling average starting on April 30, 2025. This reportable condition was determined upon receipt of validated analytical results for uranium from the composite sample collected during the period April 2, 2025, to April 30, 2025; the uranium concentration was 24.8 micrograms per liter ($\mu\text{g}/\text{L}$). Validated results were received on May 21, 2025. Formal notification to regulators and stakeholders was made on June 4, 2025.

The evaluation was performed in accordance with RFLMA Attachment 2, Figure 6, Points of Evaluation, which resulted in a calculated 12-month rolling average concentration for uranium on April 30, 2025, of 17.8 $\mu\text{g}/\text{L}$. This concentration exceeds the applicable RFLMA Attachment 2, Table 1, standard of 16.8 $\mu\text{g}/\text{L}$. This 12-month rolling average includes sample

results for the period of May 1, 2024, through April 30, 2025.⁵ As of May 31, 2025, the uranium concentration at GS10 no longer causes a reportable condition.

Note: The composite sample started on June 26, 2025, is still in progress as of November 26, 2025.

Abbreviation: µg/L = micrograms per liter

Figure 13. Volume-Weighted 12-Month Rolling Average Uranium Concentrations at GS10: Year Ending Third Quarter 2025

The RFLMA Parties held a consultation regarding this reportable condition on July 10, 2025. CR 2025-01 documents the results of that consultation and describe the plan and path forward; CR 2025-01 is posted on the Rocky Flats Site webpage.

The RFLMA Parties considered the following information in developing the path forward:

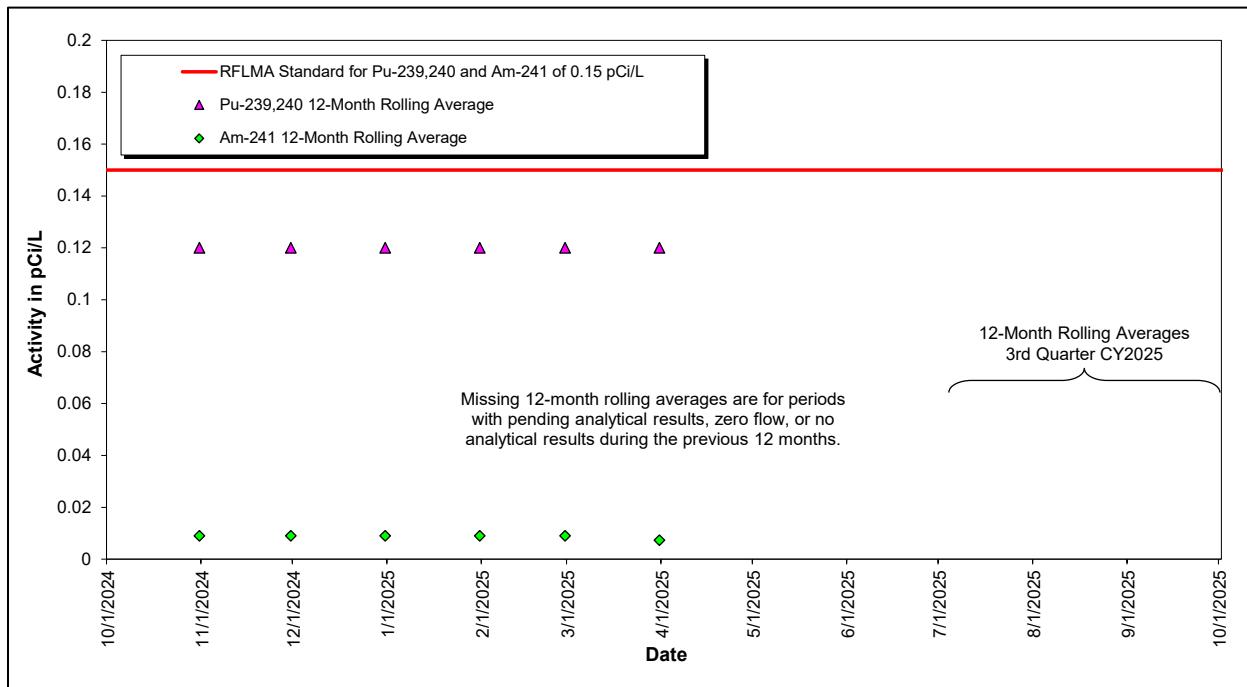
- Recent uranium results for composite samples collected at WALPOC, the Walnut Creek Point of Compliance, have remained below the 16.8 µg/L standard through June 8, 2025.⁶ As of May 31, 2025, the 12-month rolling average uranium concentration at WALPOC is 7.3 µg/L.
- The most recent uranium concentrations at GS10 are consistent with concentrations observed during the 19 years since closure.
- Uranium in groundwater in the GS10 area is variable, and some monitoring wells have higher concentrations of naturally occurring uranium. Since closure, DOE has sent numerous samples from GS10 to the Los Alamos National Laboratory or Lawrence Berkeley National Laboratory for isotopic analysis to determine the percentages of natural

⁵ The 12-month rolling average is calculated for the last day of each month. Twelve average values are calculated and evaluated each year.

⁶ The WALPOC composite sample started on June 9, 2025, is still in progress. Seasonal flow at WALPOC ceased on June 15, 2025.

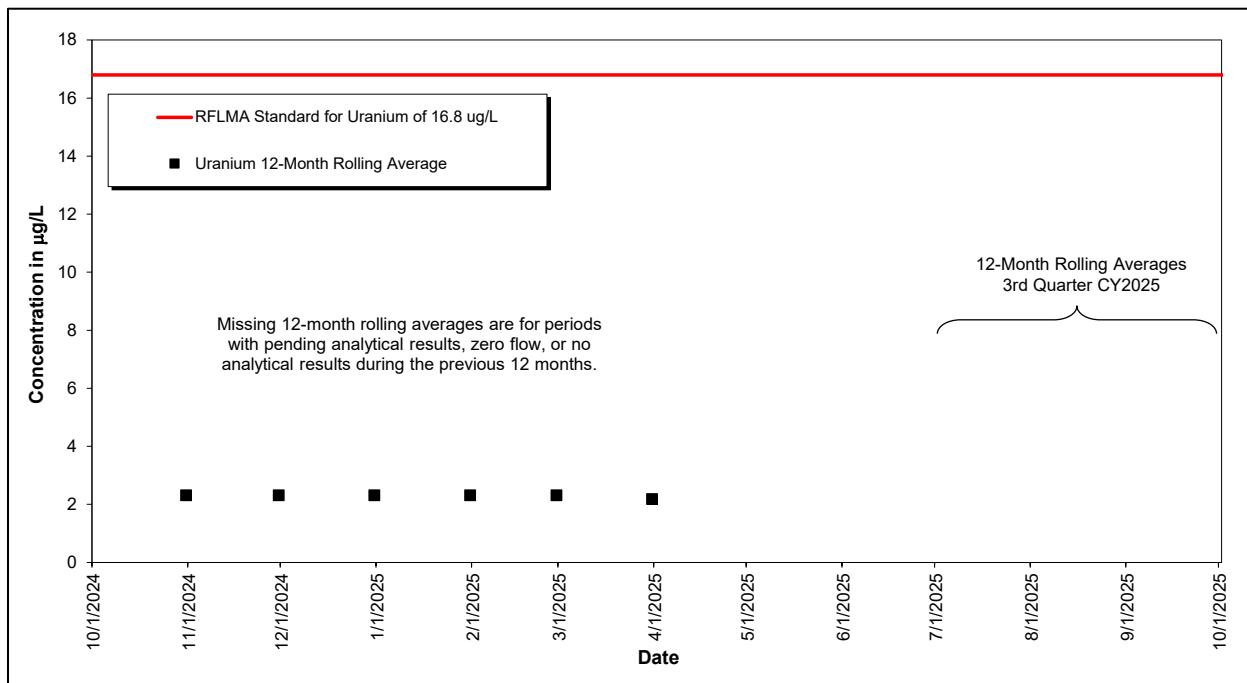
and anthropogenic uranium. Historically, naturally occurring uranium has made up a much greater proportion of the concentration at GS10, averaging about 70%.⁷

- The elevated uranium concentrations at GS10 observed since closure are primarily the result of proportionally increased groundwater contributions to surface water base flow due to reduced surface runoff resulting from the removal of impervious surfaces (e.g., pavement, buildings) that were present before closure.
- The RFLMA Parties expect uranium concentrations in surface water to fluctuate due to the natural variability in environmental conditions, such as precipitation runoff and groundwater recharge. Uranium concentrations at GS10 have periodically exceeded the RFLMA standard since Site closure. In more recent years, uranium concentrations have decreased.
- A study conducted by geochemistry experts details the variability of the uranium concentrations. The results of the study are published in the *Evaluation of Water Quality Variability for Uranium and Other Selected Parameters in Walnut Creek at the Rocky Flats Site* (DOE 2015). The authors have updated this report three times, most recently in 2024. The 2024 report (DOE 2024) is available at https://lmpublicsearch.lm.doe.gov/lmsites/rfs_evaluation_of_water_quality_variability_walnut_creek_oct_2024.pdf.


3.1.3.2 Monitoring Location SW027

Monitoring location SW027 is at the downstream end of the South Interceptor Ditch at the inlet to Pond C-2. From May 2, 2024, to the present, there has been no flow at SW027. Additionally, no samples have been collected since April 29, 2024.⁸ Therefore, 12-month rolling averages are not calculated for the third quarter of CY 2025 (Figure 14 and Figure 15). The method for calculating the 12-month rolling averages is detailed in the annual report.

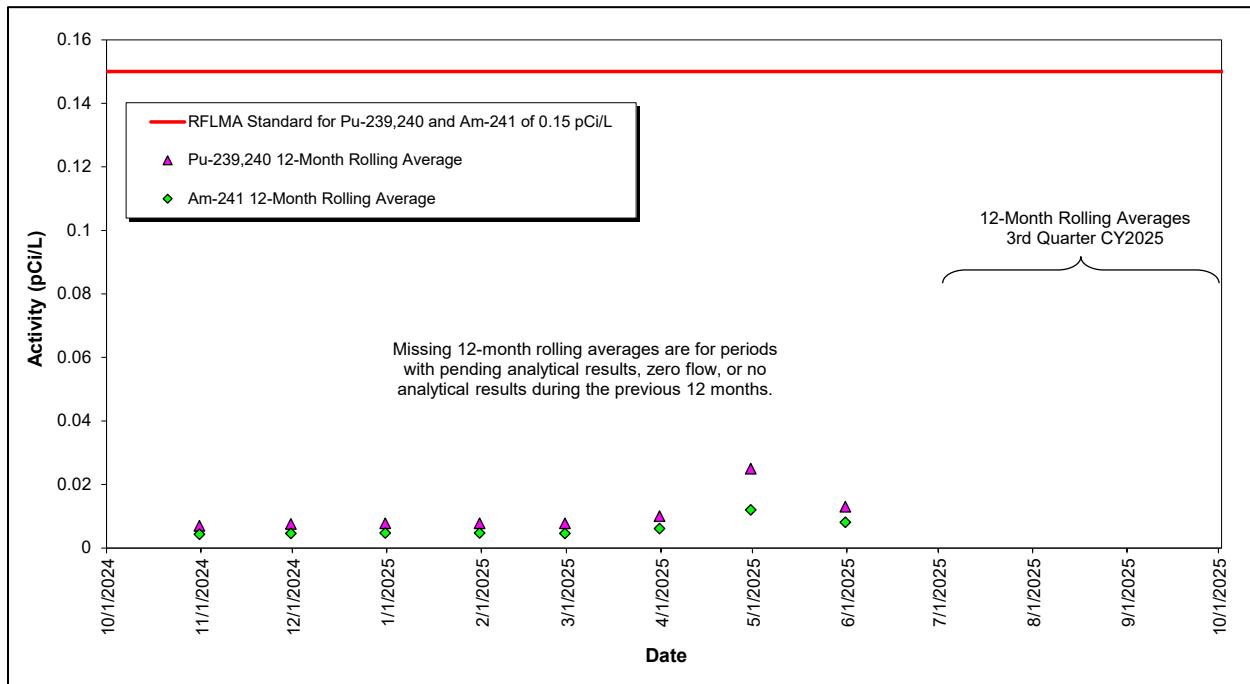
⁷ The Rocky Flats Site annual reports include Los Alamos National Laboratory and Lawrence Berkeley National Laboratory data as appendixes for the years when the laboratories have completed these isotopic analyses.


⁸ The composite sample started on April 29, 2024, was discarded on January 23, 2025, due to insufficient quantity for analysis.

Note: The composite sample started on April 29, 2024, was discarded on January 23, 2025, due to insufficient quantity for analysis. There has been no flow during 2025 through the third quarter.

Abbreviation: pCi/L = picocuries per liter

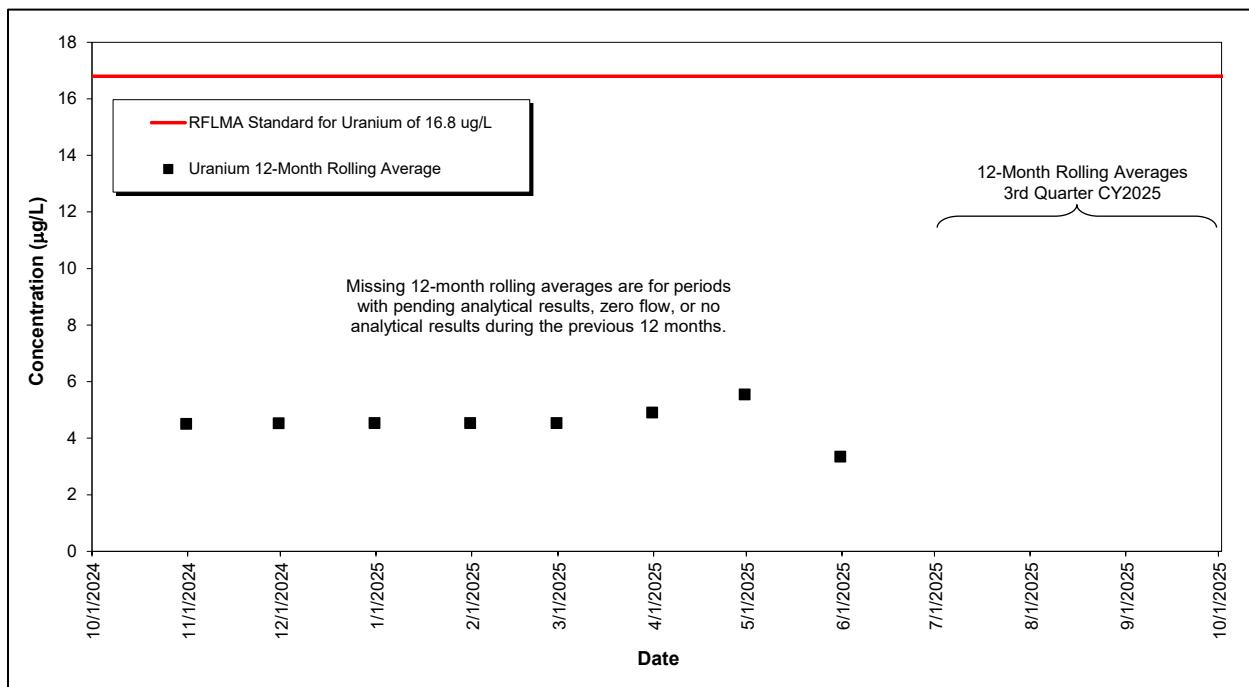
Figure 14. Volume-Weighted 12-Month Rolling Average Pu and Am Activities at SW027: Year Ending Third Quarter 2025


Note: The composite sample started on April 29, 2024, was discarded on January 23, 2025, due to insufficient quantity for analysis. There has been no flow during 2025 through the third quarter.

Abbreviation: µg/L = micrograms per liter

Figure 15. Volume-Weighted 12-Month Rolling Average Uranium Concentrations at SW027: Year Ending Third Quarter 2025

3.1.3.3 Monitoring Location SW093


Monitoring location SW093 is on North Walnut Creek, 1300 feet upstream of former Pond A-1. The composite sample started on June 9, 2025, is still in progress. Figure 16 and Figure 17 show no occurrence of a reportable condition for Am, Pu, or uranium through May 31, 2025. The method for calculating the 12-month rolling averages is detailed in the annual report.

Note: The composite sample started on June 9, 2025, is still in progress as of November 26, 2025.

Abbreviation: pCi/L = picocuries per liter

Figure 16. Volume-Weighted 12-Month Rolling Average Pu and Am Activities at SW093: Year Ending Third Quarter 2025

Note: The composite sample started on June 9, 2025, is still in progress as of November 26, 2025.

Abbreviation: $\mu\text{g/L}$ = micrograms per liter

Figure 17. Volume-Weighted 12-Month Rolling Average Uranium Concentrations at SW093: Year Ending Third Quarter 2025

3.1.4 AOC Wells and Surface Water Support Location SW018

Neither the AOC wells nor the Surface Water Support location SW018 were scheduled for RFLMA monitoring in the third quarter of CY 2025.

3.1.5 Sentinel Wells

None of the Sentinel wells were scheduled for RFLMA monitoring in the third quarter of CY 2025.

3.1.6 Evaluation Wells

None of the Evaluation wells were scheduled for RFLMA monitoring in the third quarter of CY 2025. However, Evaluation well B210489 was sampled to support consideration of its replacement due to encroachment of the NWCS. The annual report for CY 2025 will provide additional discussion of this topic.

3.1.7 PLF Monitoring

The six RCRA wells at the PLF were scheduled for RFLMA monitoring during the third quarter of CY 2025. Analytical results (Appendix B) were generally consistent with previous data. Additional discussion and statistical evaluation will be provided in the annual report for CY 2025. Section 3.1.9.4 discusses monitoring at the PLFTS.

3.1.8 OLF Monitoring

The four RCRA downgradient wells at the OLF were scheduled for RFLMA monitoring during the third quarter of CY 2025. Analytical results (Appendix B) for the downgradient wells were generally consistent with previous data. Additional discussion and statistical evaluation will be provided in the annual report for CY 2025.

During the third quarter of CY 2025, when routine surface water sampling was performed in Woman Creek downstream of the OLF (location GS59), the mean concentrations for all analytes were below the applicable surface water standards.

3.1.9 Groundwater Treatment System Monitoring

As described in Section 2.5, contaminated groundwater is intercepted and treated by the onsite groundwater treatment systems. The MSPCS,⁹ ETPTS, and SPPTS each include a groundwater intercept trench. The PLFTS treats groundwater from the northern and southern components of the Groundwater Intercept System and groundwater that discharges from the PLF seep.

3.1.9.1 Mound Site Plume Collection System

None of the MSPCS monitoring locations were scheduled for RFLMA monitoring in the third quarter of CY 2025.

3.1.9.2 East Trenches Plume Treatment System

None of the ETPTS monitoring locations were scheduled for RFLMA monitoring in the third quarter of CY 2025.

3.1.9.3 Solar Ponds Plume Treatment System

None of the SPPTS monitoring locations were scheduled for RFLMA monitoring in the third quarter of CY 2025. However, nonroutine samples were collected at the SPPTS during the third quarter of CY 2025 to support the *Surface Water Configuration Adaptive Management Plan for the Rocky Flats Site, Colorado* (DOE 2023), also called the Adaptive Management Plan. Further discussion will be provided in the 2025 Adaptive Management Plan annual report, and these data will be included in the annual report for 2025.

3.1.9.4 Present Landfill Treatment System

During the collection of the third quarter of CY 2025 samples from the PLFTS, the seep influent instantaneous flow rate was measured at 1.17 gallons per minute. The routine quarterly effluent samples were collected on July 10, 2025. Concentrations for all analytes in the effluent sample, except boron, were below the applicable RFLMA standards.

The PLFTS is not intended to treat metals, and the boron concentration at the system effluent regularly exceeds the RFLMA Table 1 standard. RFLMA Parties have agreed to present the issue to the CDPHE Water Quality Control Division and the Water Quality Control Commission to

⁹ The MSPCS is discussed in this section for consistency and convenience, even though treatment is no longer performed there.

request an appropriate change to the boron standard. Additional downstream boron data will also be collected. Details regarding the consultations and path forward can be found in CR 2025-02 and is posted on the Rocky Flats Site webpage.

3.1.10 Predischarge Monitoring

No predischarge samples were collected from Ponds A-4, B-5, or C-2 during the third quarter of CY 2025. All three ponds were continuously operated in a flow-through configuration.

4.0 Adverse Biological Conditions

No evidence of adverse biological conditions (e.g., unexpected mortality or morbidity) was observed during monitoring and maintenance activities in the third quarter of CY 2025.

5.0 Ecological Monitoring

During the third quarter of CY 2025, Preble's meadow jumping mouse (Preble's mouse, *Zapus hudsonius preblei*) mitigation monitoring, wetland mitigation monitoring, and revegetation monitoring were conducted. The Preble's mouse monitoring data have been summarized in the *2025 Annual Mitigation Monitoring Report for the Preble's Meadow Jumping Mouse at the Rocky Flats Site, Colorado* (DOE 2025a), and will be delivered to U.S. Fish and Wildlife Service (USFWS) in early 2026. The wetland mitigation monitoring was conducted to evaluate the status of selected mitigation wetlands. Revegetation monitoring was conducted at several monitoring locations throughout the COU to evaluate the status of the revegetation parcels. These data will be summarized in the annual report for CY 2025.

Other ecological monitoring conducted during the third quarter included weed mapping, photopoint monitoring, and prairie dog surveys. No active prairie dog towns were observed within the Site boundaries; however, there were a couple sightings of a lone black-tailed prairie dog (*Cynomys ludovicianus*) in the COU. The location of this individual was monitored, but no burrows were noted. Young prairie dogs frequently leave their home colonies to seek new areas, therefore this is not unusual behavior and sightings of lone prairie dogs within the COU have occurred in previous years. Outside the COU, prairie dog activity was noted both south and northeast of the Site boundaries. At least eight individual black-tailed prairie dogs were noted outside the COU, southwest of the C-2 Pond. Numerous black-tailed prairie dogs and burrows were noted to the northeast of the COU on the Rocky Flats National Wildlife Refuge where prairie dog relocations have taken place.

Land management activities included weed control focusing on the high priority noxious weeds hairy willowherb (*Epilobium hirsutum*) and common teasel (*Dipsacus fullonum*).

More details on ecological monitoring and land management activities will be provided in the annual report for CY 2025.

6.0 References

DOE (U.S. Department of Energy), 2007. *Erosion Control Plan for Rocky Flats Property Central Operable Unit*, DOE-LM/1497-2007, Office of Legacy Management, July.

DOE (U.S. Department of Energy), 2009. *Rocky Flats Site Original Landfill Monitoring and Maintenance Plan*, LMS/RFS/S05516-1.0, Office of Legacy Management, September.

DOE (U.S. Department of Energy), 2014. *Present Landfill Monitoring and Maintenance Plan and Post-Closure Plan, U.S. Department of Energy Rocky Flats, Colorado, Site*, LMS/RFS/S03965-1.0, Office of Legacy Management, December.

DOE (U.S. Department of Energy), 2015. *Evaluation of Water Quality Variability for Uranium and Other Selected Parameters in Walnut Creek at the Rocky Flats Site*, Revision 1, prepared by Wright Water Engineers, Inc., Office of Legacy Management, September.

DOE (U.S. Department of Energy), 2023. *Surface Water Configuration Adaptive Management Plan for the Rocky Flats Site, Colorado*, LMS/RFS/S07698, Rev. 6, Office of Legacy Management, September.

DOE (U.S. Department of Energy), 2024. *2024 Evaluation of Water Quality Variability for Uranium and Other Selected Parameters in Walnut Creek at the Rocky Flats Site*, prepared by Wright Water Engineers, Inc., Office of Legacy Management, December.

DOE (U.S. Department of Energy), 2025a. *2025 Annual Mitigation Monitoring Report for the Preble's Meadow Jumping Mouse at the Rocky Flats Site, Colorado*, LMS/RFS/52296, Office of Legacy Management, December.

DOE (U.S. Department of Energy), 2025b. *Rocky Flats Site, Colorado, Site Operations Guide*, LMS/RFS/S03037-9.0, Office of Legacy Management, October.

DOE (U.S. Department of Energy), EPA (U.S. Environmental Protection Agency), and CDPHE (Colorado Department of Public Health and Environment), 2006. *Corrective Action Decision/Record of Decision for Rocky Flats Plant (USDOE) Peripheral Operable Unit and Central Operable Unit*, EPA/541/R-06/197, September 29, amended September 21, 2011.

DOE (U.S. Department of Energy), EPA (U.S. Environmental Protection Agency), and CDPHE (Colorado Department of Public Health and Environment), 2011. *Corrective Action Decision/Record of Decision Amendment for Rocky Flats Plant (USDOE) Peripheral Operable Unit and Central Operable Unit*, September 21.

EPA (U.S. Environmental Protection Agency), CDPHE (Colorado Department of Public Health and Environment), and DOE (U.S. Department of Energy), 2007. *Rocky Flats Legacy Management Agreement*, executed on March 14, Attachment 2 updated December 2018.

Appendix A

Landfill Inspection Forms and Survey Data, Third Quarter 2025

PRESENT LANDFILL - MONITORING AND MAINTENANCE PROGRAM

INSPECTION FORM

3rd Quarter

INSPECTOR: Nathan KrohnDATE: 8/13/25TIME: 0830REVIEWED BY: JOSEPH
MUELLER
(Affiliate)TEMPERATURE: 77°FWEATHER CONDITIONS: Mostly ClearREVIEW DATE: METEOROLOGICAL STATION LOCATION: RFMET = 3.18 inches between inspections (5/22/25 - 8/13/25)

Digitally signed by JOSEPH
MUELLER (Affiliate)
Date: 2025.09.08 15:11:29
-06'00'

SUBSIDENCE/CONSOLIDATION

REGION	EVIDENCE OF CRACKS?	EVIDENCE OF DEPRESSIONS?	EVIDENCE OF SINK HOLES?	EVIDENCE OF PONDING?	OTHER (DESCRIBE BELOW)
TOP OF COVER - WEST	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No				
TOP OF COVER - EAST	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No				
COVER SIDESLOPE - NORTH	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No				
COVER SIDESLOPE - SOUTH	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No				
EAST FACE SLOPE - NORTH	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No				
EAST FACE SLOPE - SOUTH	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No				
EAST FACE SLOPE - CENTRAL	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No				
EAST FACE SLOPE - NORTH SEEP*	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No				

Settlement Plates and side-slope monitoring points to be inspected for integrity.
During Year 1, they will be surveyed quarterly, and annually thereafter

Integrity intact?
 Yes No

MAINTENANCE REQUIRED/COMMENTS/PHOTO LOG

No issues.

* AREA OF SEEP IS OUTSIDE OF LANDFILL COVER AND EAST OF THE COVER ANCHOR TRENCH

SLOPE STABILITY

REGION	EVIDENCE OF CRACKS?	EVIDENCE OF BLOCK OR CIRCULAR FAILURE?	EVIDENCE OF SEEPS?	OTHER (DESCRIBE BELOW)
COVER SIDESLOPE - NORTH	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	
COVER SIDESLOPE - SOUTH	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	
PERIMETER CHANNEL OUTER SLOPE - NORTH	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	
PERIMETER CHANNEL OUTER SLOPE - SOUTH	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	
EAST FACE SLOPE - NORTH	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	
EAST FACE SLOPE - SOUTH	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	
EAST FACE SLOPE - CENTRAL	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	
EAST FACE SLOPE - NORTH SEEP*	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	

MAINTENANCE REQUIRED/COMMENTS/PHOTO LOG

No issues.

* AREA OF SEEP IS OUTSIDE OF LANDFILL COVER AND EAST OF THE COVER ANCHOR TRENCH

SOIL COVER

REGION	EVIDENCE OF SOIL DEPOSITION OR EROSION?	EVIDENCE OF EROSION RILLS/GULLIES?	EVIDENCE OF BURROWING ANIMALS?	OTHER (DESCRIBE BELOW)
TOP OF COVER - WEST	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	
TOP OF COVER - EAST	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	
COVER SIDESLOPE - NORTH	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	
COVER SIDESLOPE - SOUTH	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	
EAST FACE SLOPE - NORTH	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	
EAST FACE SLOPE - SOUTH	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	
EAST FACE SLOPE - CENTRAL	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	
AREA WHERE EAST SLOPE CENTRAL MEETS EAST SLOPE NORTH	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	
AREA WHERE EAST SLOPE CENTRAL MEETS EAST SLOPE SOUTH	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	
	VENT CAPS IN PLACE & SECURE?	STANDPIPES IN GOOD CONDITION?	BIRDS OR INSECTS IN VENT CAPS?	
COVER - BAROMETRIC VENTS	<input checked="" type="checkbox"/> Yes <input type="checkbox"/> No	<input checked="" type="checkbox"/> Yes <input type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	

MAINTENANCE REQUIRED/COMMENTS/PHOTO LOG

No issues.

SEEP TREATMENT SYSTEM

REGION	EVIDENCE OF PLUGGING, OBSTRUCTIONS, OR EXCESS DEBRIS?		EVIDENCE OF CRACKS OR DETERIORATION?	OTHER (DESCRIBE BELOW)
	<input type="checkbox"/> Yes	<input checked="" type="checkbox"/> No		
GWIS INLET PIPES	<input type="checkbox"/> Yes	<input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes	<input checked="" type="checkbox"/> No
STRIP DRAIN INLET PIPE	<input type="checkbox"/> Yes	<input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes	<input checked="" type="checkbox"/> No
NORTH MANHOLE OUTLET PIPE	<input type="checkbox"/> Yes	<input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes	<input checked="" type="checkbox"/> No
SOUTH MANHOLE OUTLET PIPE	<input type="checkbox"/> Yes	<input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes	<input checked="" type="checkbox"/> No
TREATMENT UNIT	<input type="checkbox"/> Yes	<input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes	<input checked="" type="checkbox"/> No
TREATMENT UNIT OUTLET PIPE	<input type="checkbox"/> Yes	<input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes	<input checked="" type="checkbox"/> No
NORTH MANHOLE	<input type="checkbox"/> Yes	<input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes	<input checked="" type="checkbox"/> No
SOUTH MANHOLE	<input type="checkbox"/> Yes	<input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes	<input checked="" type="checkbox"/> No
TREATMENT UNIT GRATING	NA		<input type="checkbox"/> Yes	<input checked="" type="checkbox"/> No

MAINTENANCE REQUIRED/COMMENTS/PHOTO LOG

No issues. Small amounts of biogrowth removed from north and south manhole and treatment unit outlet pipes using a mechanical pipe cleaner as a preventative BMP.

STORMWATER MANAGEMENT STRUCTURES

CHANNELS/LINING

STRUCTURE	EVIDENCE OF EXCESSIVE EROSION, GULLYING, SCOUR, OR UNDERMINING?	EVIDENCE OF SETTLEMENT/ SUBSIDENCE OR DEPRESSIONS?	EVIDENCE OF BREACHING OR BANK FAILURE?	EVIDENCE OF BURROWING ANIMALS?	EVIDENCE OF SEDIMENT BUILD-UP OR OTHER BLOCKAGE?	EVIDENCE OF LINING DETERIORATION, HOLES, RIPS, OR SEPARATION?	EVIDENCE OF LINING DISPLACEMENT?
DIVERSION BERM	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No						
VEGETATION-LINED PERIMETER CHANNEL - NORTH	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No						
VEGETATION-LINED PERIMETER CHANNEL - SOUTH	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No						
RIPRAP-LINED PERIMETER CHANNEL	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No						
C350-LINED EAST FACE	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No						
EAST FACE RIPRAP CHANNEL - NORTH	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No						
EAST FACE RIPRAP CHANNEL - SOUTH	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No						

OTHER DEFICIENCIES?

No.

MAINTENANCE REQUIRED/COMMENTS/PHOTO LOG

No issues.

STORMWATER MANAGEMENT STRUCTURES (CONTINUED)

OUTFALLS

CHECK EACH STRUCTURE FOR EXCESSIVE EROSION AND SEDIMENT DEPTH. IF SEDIMENT DEPTH IS COMPROMISING THE DESIGN CHARACTERISTICS, REMOVE SEDIMENT.

STRUCTURE	CONDITION/SEDIMENT DEPTH
DIVERSION BERM OUTFALL – NORTH	OK
DIVERSION BERM OUTFALL – SOUTH	OK
CULVERT 1 OUTFALL	OK
CULVERT 2 OUTFALL	OK
SOUTHWEST CULVERT OUTFALL	OK

CULVERTS

CHECK EACH STRUCTURE FOR BLOCKAGE, SURROUNDING CONDITIONS, BREACHING, SEDIMENT BUILD-UP, AND INLET/OUTLET CONDITIONS.

STRUCTURE	CONDITION
CULVERT 1	OK
CULVERT 2	OK
SOUTHWEST CULVERT	OK

MAINTENANCE REQUIRED/PHOTO LOG

No issues.

“RUN-ON” EROSION CONTROL

AREA	ADVERSELY AFFECTING PLF?		
RUN-ON INTO PERIMETER CHANNEL – NORTH	<input type="checkbox"/> Yes	<input checked="" type="checkbox"/> No	COMMENT:
RUN-ON INTO PERIMETER CHANNEL – SOUTH	<input type="checkbox"/> Yes	<input checked="" type="checkbox"/> No	COMMENT:
NATURAL DRAINAGE FED BY CULVERT 1	<input type="checkbox"/> Yes	<input checked="" type="checkbox"/> No	COMMENT:
NATURAL DRAINAGE FED BY NORTHEAST PERIMETER CHANNEL	<input type="checkbox"/> Yes	<input checked="" type="checkbox"/> No	COMMENT:
NATURAL DRAINAGE FED BY RIPRAP	<input type="checkbox"/> Yes	<input checked="" type="checkbox"/> No	COMMENT:

MAINTENANCE REQUIRED/PHOTO LOG

No issues.

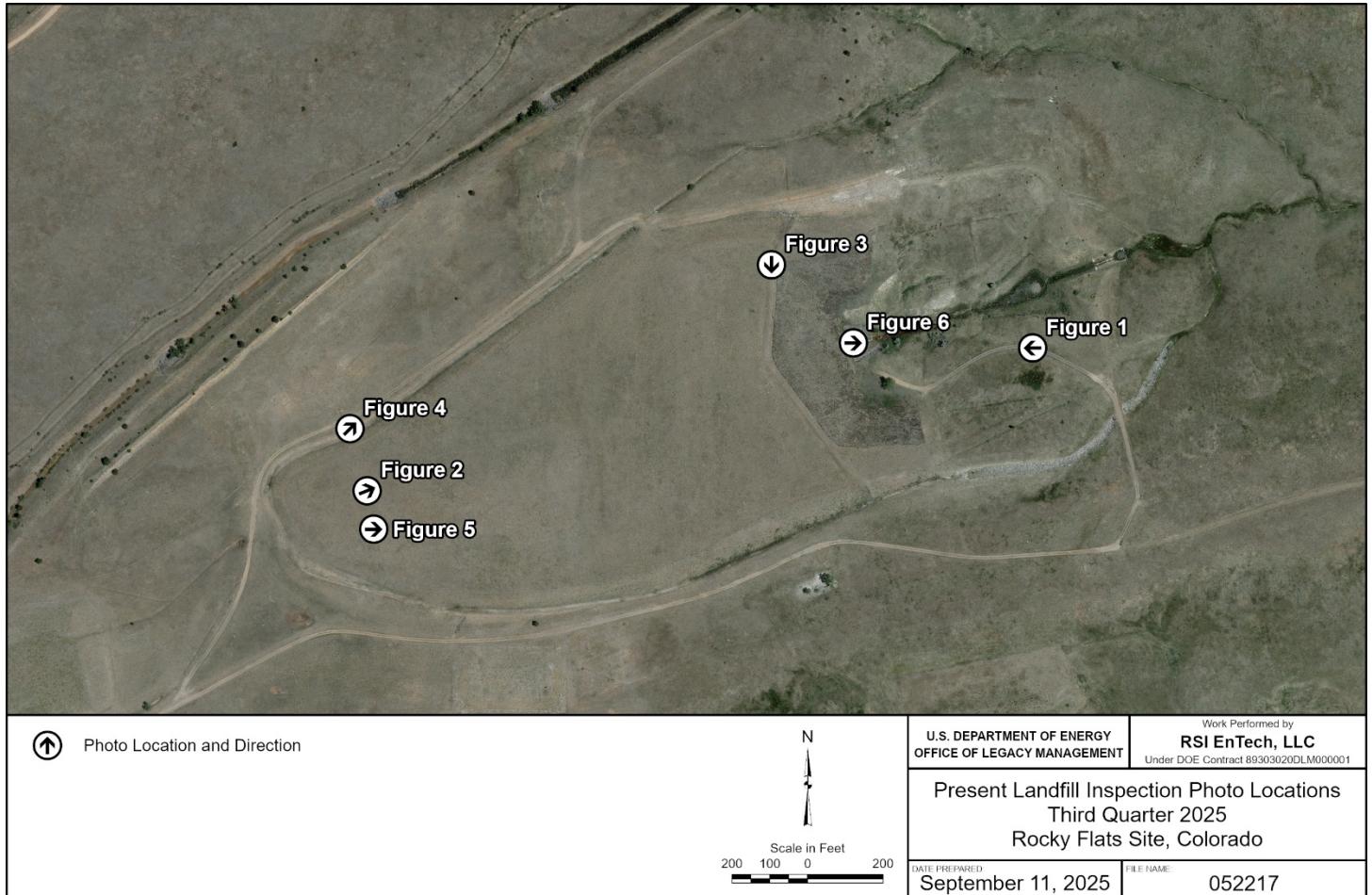
INSTITUTIONAL CONTROLS

ITEM

EVIDENCE OF EXCAVATION(S) OF COVER AND IMMEDIATE VICINITY OF COVER?	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	COMMENT:
EVIDENCE OF CONSTRUCTION OF ROADS OR TRAILS ON COVER OR BUILDINGS?	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	COMMENT:
EVIDENCE OF UNAUTHORIZED ENTRY?	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	COMMENT:
EVIDENCE OF DRILLING OF WELLS OR USE OF GROUNDWATER?	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	COMMENT:
DISRUPTION OR DAMAGE OF SEEP TREATMENT SYSTEM?	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	COMMENT:
DAMAGE OR REMOVAL OF ANY SIGNAGE OR GROUNDWATER MONITORING WELLS?	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	COMMENT:

OTHER DEFICIENCIES/PHOTO LOG

No issues.


ACTION ITEMS

NATHAN KROHN
(Affiliate) Digitally signed by NATHAN
KROHN (Affiliate)
Date: 2025.08.13 15:19:48 -06'00' DATE:

INSPECTOR SIGNATURE: _____ DATE: _____

REVIEWER SIGNATURE: JOSEPH MUELLER (Affiliate) (Affiliate) Date: 2025.09.08 15:10:51 -06'00' DATE:

3rd Quarter 2025 Present Landfill Inspection Photo Report
(Photos taken 08/13/2025)

Locations of Present Landfill Inspection Report Figure Photographs, Rocky Flats Site, Colorado

Figure 1. Looking West at the East Face Slope of the Present Landfill, Which Was in Good Condition.

Figure 2. Looking East-Northeast at the Present Landfill Cover, Which Was in Good Condition.

Figure 3. Looking South at a Diversion Berm that Runs Along the Eastern Pediment, Which Was in Good Condition.

Figure 4. Looking Northeast at the Northern Vegetation-lined Perimeter Channel, Which Was in Good Condition.

Figure 5. Looking East at Settlement Monuments and Barometric Gas Vents on the Present Landfill Cover, Which Were in Good Condition.

Figure 6. Looking East at the Present Landfill Treatment System, Which Was Functioning Properly. Small amounts of Bio-growth were removed from the North and South Manhole Outlet Pipes, treatment unit outlet pipe, and system outfall using a mechanical pipe cleaner as part of routine preventative maintenance.

PRESENT LANDFILL – MONITORING AND MAINTENANCE PROGRAM

INSPECTION FORM

INSPECTOR: Nathan Krohn

DATE: 8/26/25

TIME: 1320

REVIEWED BY:

JOSEPH
MUELLER
(Affiliate)

TEMPERATURE: 69°F

WEATHER CONDITIONS: Overcast and light rain

REVIEW DATE:

METEOROLOGICAL STATION LOCATION: 1.08 inches (Last 24 hours)

Digitally signed by JOSEPH
MUELLER (Affiliate)
Date: 2025.09.08 15:33:05
-06'00'

SUBSIDENCE/CONSOLIDATION

REGION	EVIDENCE OF CRACKS?	EVIDENCE OF DEPRESSIONS?	EVIDENCE OF SINK HOLES?	EVIDENCE OF PONDING?	OTHER (DESCRIBE BELOW)
TOP OF COVER – WEST	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No				
TOP OF COVER – EAST	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No				
COVER SIDESLOPE – NORTH	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No				
COVER SIDESLOPE – SOUTH	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No				
EAST FACE SLOPE – NORTH	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No				
EAST FACE SLOPE – SOUTH	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No				
EAST FACE SLOPE – CENTRAL	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No				
EAST FACE SLOPE – NORTH SEEP*	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No				

Settlement Plates and side-slope monitoring points to be inspected for integrity.
During Year 1, they will be surveyed quarterly, and annually thereafter

Integrity intact?
 Yes No

MAINTENANCE REQUIRED/COMMENTS/PHOTO LOG

No issues.

* AREA OF SEEP IS OUTSIDE OF LANDFILL COVER AND EAST OF THE COVER ANCHOR TRENCH

SLOPE STABILITY

REGION	EVIDENCE OF CRACKS?	EVIDENCE OF BLOCK OR CIRCULAR FAILURE?	EVIDENCE OF SEEPS?	OTHER (DESCRIBE BELOW)
COVER SIDESLOPE - NORTH	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	
COVER SIDESLOPE - SOUTH	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	
PERIMETER CHANNEL OUTER SLOPE - NORTH	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	
PERIMETER CHANNEL OUTER SLOPE - SOUTH	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	
EAST FACE SLOPE - NORTH	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	
EAST FACE SLOPE - SOUTH	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	
EAST FACE SLOPE - CENTRAL	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	
EAST FACE SLOPE - NORTH SEEP*	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	

MAINTENANCE REQUIRED/COMMENTS/PHOTO LOG

No issues.

* AREA OF SEEP IS OUTSIDE OF LANDFILL COVER AND EAST OF THE COVER ANCHOR TRENCH

SOIL COVER

REGION	EVIDENCE OF SOIL DEPOSITION OR EROSION?	EVIDENCE OF EROSION RILLS/GULLIES?	EVIDENCE OF BURROWING ANIMALS?	OTHER (DESCRIBE BELOW)
TOP OF COVER - WEST	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	
TOP OF COVER - EAST	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	
COVER SIDESLOPE - NORTH	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	
COVER SIDESLOPE - SOUTH	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	
EAST FACE SLOPE - NORTH	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	
EAST FACE SLOPE - SOUTH	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	
EAST FACE SLOPE - CENTRAL	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	
AREA WHERE EAST SLOPE CENTRAL MEETS EAST SLOPE NORTH	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	
AREA WHERE EAST SLOPE CENTRAL MEETS EAST SLOPE SOUTH	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	
	VENT CAPS IN PLACE & SECURE?	STANDPIPES IN GOOD CONDITION?	BIRDS OR INSECTS IN VENT CAPS?	
COVER - BAROMETRIC VENTS	<input checked="" type="checkbox"/> Yes <input type="checkbox"/> No	<input checked="" type="checkbox"/> Yes <input type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	

MAINTENANCE REQUIRED/COMMENTS/PHOTO LOG

No issues

SEEP TREATMENT SYSTEM

REGION	EVIDENCE OF PLUGGING, OBSTRUCTIONS, OR EXCESS DEBRIS?		EVIDENCE OF CRACKS OR DETERIORATION?	OTHER (DESCRIBE BELOW)
	<input type="checkbox"/> Yes	<input checked="" type="checkbox"/> No		
GWIS INLET PIPES	<input type="checkbox"/> Yes	<input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes	<input checked="" type="checkbox"/> No
STRIP DRAIN INLET PIPE	<input type="checkbox"/> Yes	<input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes	<input checked="" type="checkbox"/> No
NORTH MANHOLE OUTLET PIPE	<input type="checkbox"/> Yes	<input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes	<input checked="" type="checkbox"/> No
SOUTH MANHOLE OUTLET PIPE	<input type="checkbox"/> Yes	<input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes	<input checked="" type="checkbox"/> No
TREATMENT UNIT	<input type="checkbox"/> Yes	<input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes	<input checked="" type="checkbox"/> No
TREATMENT UNIT OUTLET PIPE	<input type="checkbox"/> Yes	<input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes	<input checked="" type="checkbox"/> No
NORTH MANHOLE	<input type="checkbox"/> Yes	<input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes	<input checked="" type="checkbox"/> No
SOUTH MANHOLE	<input type="checkbox"/> Yes	<input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes	<input checked="" type="checkbox"/> No
TREATMENT UNIT GRATING	NA		<input type="checkbox"/> Yes	<input checked="" type="checkbox"/> No

MAINTENANCE REQUIRED/COMMENTS/PHOTO LOG

No issues.

STORMWATER MANAGEMENT STRUCTURES

CHANNELS/LINING

STRUCTURE	EVIDENCE OF EXCESSIVE EROSION, GULLYING, SCOUR, OR UNDERMINING?	EVIDENCE OF SETTLEMENT/ SUBSIDENCE OR DEPRESSIONS?	EVIDENCE OF BREACHING OR BANK FAILURE?	EVIDENCE OF BURROWING ANIMALS?	EVIDENCE OF SEDIMENT BUILD-UP OR OTHER BLOCKAGE?	EVIDENCE OF LINING DETERIORATION, HOLES, RIPS, OR SEPARATION?	EVIDENCE OF LINING DISPLACEMENT?
DIVERSION BERM	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No						
VEGETATION-LINED PERIMETER CHANNEL - NORTH	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No						
VEGETATION-LINED PERIMETER CHANNEL - SOUTH	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No						
RIPRAP-LINED PERIMETER CHANNEL	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No						
C350-LINED EAST FACE	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No						
EAST FACE RIPRAP CHANNEL - NORTH	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No						
EAST FACE RIPRAP CHANNEL - SOUTH	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No						

OTHER DEFICIENCIES?

No:

MAINTENANCE REQUIRED/COMMENTS/PHOTO LOG

No issues.

STORMWATER MANAGEMENT STRUCTURES (CONTINUED)

OUTFALLS

CHECK EACH STRUCTURE FOR EXCESSIVE EROSION AND SEDIMENT DEPTH. IF SEDIMENT DEPTH IS COMPROMISING THE DESIGN CHARACTERISTICS, REMOVE SEDIMENT.

STRUCTURE	CONDITION/SEDIMENT DEPTH
DIVERSION BERM OUTFALL - NORTH	Good
DIVERSION BERM OUTFALL - SOUTH	Good
CULVERT 1 OUTFALL	Good
CULVERT 2 OUTFALL	Good
SOUTHWEST CULVERT OUTFALL	Good

CULVERTS

CHECK EACH STRUCTURE FOR BLOCKAGE, SURROUNDING CONDITIONS, BREACHING, SEDIMENT BUILD-UP, AND INLET/OUTLET CONDITIONS.

STRUCTURE	CONDITION
CULVERT 1	Good
CULVERT 2	Good
SOUTHWEST CULVERT	Good

MAINTENANCE REQUIRED/PHOTO LOG

No erosion or blockage noted at outfalls and culverts.

"RUN-ON" EROSION CONTROL

AREA	ADVERSELY AFFECTING PLF?		
RUN-ON INTO PERIMETER CHANNEL – NORTH	<input type="checkbox"/> Yes	<input checked="" type="checkbox"/> No	COMMENT:
RUN-ON INTO PERIMETER CHANNEL – SOUTH	<input type="checkbox"/> Yes	<input checked="" type="checkbox"/> No	COMMENT:
NATURAL DRAINAGE FED BY CULVERT 1	<input type="checkbox"/> Yes	<input checked="" type="checkbox"/> No	COMMENT:
NATURAL DRAINAGE FED BY NORTHEAST PERIMETER CHANNEL	<input type="checkbox"/> Yes	<input checked="" type="checkbox"/> No	COMMENT:
NATURAL DRAINAGE FED BY RIPRAP	<input type="checkbox"/> Yes	<input checked="" type="checkbox"/> No	COMMENT:

MAINTENANCE REQUIRED/PHOTO LOG

No issues.

INSTITUTIONAL CONTROLS

ITEM			COMMENT:
EVIDENCE OF EXCAVATION(S) OF COVER AND IMMEDIATE VICINITY OF COVER?	<input type="checkbox"/> Yes	<input checked="" type="checkbox"/> No	COMMENT:
EVIDENCE OF CONSTRUCTION OF ROADS OR TRAILS ON COVER OR BUILDINGS?	<input type="checkbox"/> Yes	<input checked="" type="checkbox"/> No	COMMENT:
EVIDENCE OF UNAUTHORIZED ENTRY?	<input type="checkbox"/> Yes	<input checked="" type="checkbox"/> No	COMMENT:
EVIDENCE OF DRILLING OF WELLS OR USE OF GROUNDWATER?	<input type="checkbox"/> Yes	<input checked="" type="checkbox"/> No	COMMENT:
DISRUPTION OR DAMAGE OF SEEP TREATMENT SYSTEM?	<input type="checkbox"/> Yes	<input checked="" type="checkbox"/> No	COMMENT:
DAMAGE OR REMOVAL OF ANY SIGNAGE OR GROUNDWATER MONITORING WELLS?	<input type="checkbox"/> Yes	<input checked="" type="checkbox"/> No	COMMENT:

OTHER DEFICIENCIES/PHOTO LOG

No violations of institutional controls.

ACTION ITEMS

INSPECTOR SIGNATURE: **NATHAN KROHN (Attimate)** Date: 2025.08.28 07:49:21 -06'00'
DATE: **2025.08.28**

INSPECTOR SIGNATURE: **NATHAN KROHN (Affiliate)** Date: 2025.08.28 07:49:21 -06'00'
DATE: **2025.08.28 07:49:21 -06'00'**

REVIEWER SIGNATURE: **JOSEPH MUELLER (Affiliate)** Digitally signed by JOSEPH MUELLER (Affiliate)
Date: 2024.09.15 23:56:00 '00'

REVIEWER SIGNATURE: **JOSEPH MUELLER (Affiliate)**
Digitally signed by JOSEPH MUELLER (Affiliate)
Date: 2024-09-15 15:35:33 -06'00'

UNCONTROLLED IF PRINTED

PRESENT LANDFILL – MONITORING AND MAINTENANCE PROGRAM

INSPECTION FORM

INSPECTOR: Brady Atkins DATE: 9/25/25 TIME: 1100 REVIEWED BY: Vail, Jon

Digitally signed by Vail, Jon
Date: 2025.10.23 10:19:42 -06'00'

TEMPERATURE: 65°F WEATHER CONDITIONS: Clear & Sunny REVIEW DATE: _____

METEOROLOGICAL STATION LOCATION: 1.17 inches on 9/23/25

SUBSIDENCE/CONSOLIDATION

REGION	EVIDENCE OF CRACKS?	EVIDENCE OF DEPRESSIONS?	EVIDENCE OF SINK HOLES?	EVIDENCE OF PONDING?	OTHER (DESCRIBE BELOW)
TOP OF COVER – WEST	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No				
TOP OF COVER – EAST	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No				
COVER SIDESLOPE – NORTH	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No				
COVER SIDESLOPE – SOUTH	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No				
EAST FACE SLOPE – NORTH	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No				
EAST FACE SLOPE – SOUTH	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No				
EAST FACE SLOPE – CENTRAL	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No				
EAST FACE SLOPE – NORTH SEEP*	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No				

Settlement Plates and side-slope monitoring points to be inspected for integrity.
During Year 1, they will be surveyed quarterly, and annually thereafter

Integrity intact?
 Yes No

MAINTENANCE REQUIRED/COMMENTS/PHOTO LOG

No issues.

* AREA OF SEEP IS OUTSIDE OF LANDFILL COVER AND EAST OF THE COVER ANCHOR TRENCH

UNCONTROLLED IF PRINTED

SLOPE STABILITY

REGION	EVIDENCE OF CRACKS?	EVIDENCE OF BLOCK OR CIRCULAR FAILURE?	EVIDENCE OF SEEPS?	OTHER (DESCRIBE BELOW)
COVER SIDESLOPE – NORTH	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	
COVER SIDESLOPE – SOUTH	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	
PERIMETER CHANNEL OUTER SLOPE – NORTH	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	
PERIMETER CHANNEL OUTER SLOPE – SOUTH	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	
EAST FACE SLOPE – NORTH	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	
EAST FACE SLOPE – SOUTH	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	
EAST FACE SLOPE – CENTRAL	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	
EAST FACE SLOPE – NORTH SEEP*	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	

MAINTENANCE REQUIRED/COMMENTS/PHOTO LOG

No issues.

* AREA OF SEEP IS OUTSIDE OF LANDFILL COVER AND EAST OF THE COVER ANCHOR TRENCH

UNCONTROLLED IF PRINTED

SOIL COVER

REGION	EVIDENCE OF SOIL DEPOSITION OR EROSION?	EVIDENCE OF EROSION RILLS/GULLIES?	EVIDENCE OF BURROWING ANIMALS?	OTHER (DESCRIBE BELOW)
TOP OF COVER – WEST	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	
TOP OF COVER – EAST	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	
COVER SIDESLOPE – NORTH	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	
COVER SIDESLOPE – SOUTH	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	
EAST FACE SLOPE – NORTH	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	
EAST FACE SLOPE – SOUTH	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	
EAST FACE SLOPE – CENTRAL	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	
AREA WHERE EAST SLOPE CENTRAL MEETS EAST SLOPE NORTH	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	
AREA WHERE EAST SLOPE CENTRAL MEETS EAST SLOPE SOUTH	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	
	VENT CAPS IN PLACE & SECURE?	STANDPIPES IN GOOD CONDITION?	BIRDS OR INSECTS IN VENT CAPS?	
COVER – BAROMETRIC VENTS	<input checked="" type="checkbox"/> Yes <input type="checkbox"/> No	<input checked="" type="checkbox"/> Yes <input type="checkbox"/> No	<input checked="" type="checkbox"/> Yes <input checked="" type="checkbox"/> No	

MAINTENANCE REQUIRED/COMMENTS/PHOTO LOG

No issues.

SEEP TREATMENT SYSTEM

REGION	EVIDENCE OF PLUGGING, OBSTRUCTIONS, OR EXCESS DEBRIS?	EVIDENCE OF CRACKS OR DETERIORATION?	OTHER (DESCRIBE BELOW)
GWIS INLET PIPES	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	
STRIP DRAIN INLET PIPE	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	
NORTH MANHOLE OUTLET PIPE	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	
SOUTH MANHOLE OUTLET PIPE	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	
TREATMENT UNIT	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	
TREATMENT UNIT OUTLET PIPE	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	
NORTH MANHOLE	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	
SOUTH MANHOLE	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	
TREATMENT UNIT GRATING	NA	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	

MAINTENANCE REQUIRED/COMMENTS/PHOTO LOG

No issues.

UNCONTROLLED IF PRINTED

STORMWATER MANAGEMENT STRUCTURES

CHANNELS/LINING

STRUCTURE	EVIDENCE OF EXCESSIVE EROSION, GULLYING, SCOUR, OR UNDERMINING?	EVIDENCE OF SETTLEMENT/ SUBSIDENCE OR DEPRESSIONS?	EVIDENCE OF BREACHING OR BANK FAILURE?	EVIDENCE OF BURROWING ANIMALS?	EVIDENCE OF SEDIMENT BUILD-UP OR OTHER BLOCKAGE?	EVIDENCE OF LINING DETERIORATION, HOLES, RIPS, OR SEPARATION?	EVIDENCE OF LINING DISPLACEMENT?
DIVERSION BERM	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No
VEGETATION-LINED PERIMETER CHANNEL – NORTH	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No						
VEGETATION-LINED PERIMETER CHANNEL – SOUTH	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No						
RIPRAP-LINED PERIMETER CHANNEL	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No						
C350-LINED EAST FACE	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No						
EAST FACE RIPRAP CHANNEL – NORTH	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No						
EAST FACE RIPRAP CHANNEL – SOUTH	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No						

OTHER DEFICIENCIES?

No.

MAINTENANCE REQUIRED/COMMENTS/PHOTO LOG

No issues.

UNCONTROLLED IF PRINTED

STORMWATER MANAGEMENT STRUCTURES (CONTINUED)

OUTFALLS

CHECK EACH STRUCTURE FOR EXCESSIVE EROSION AND SEDIMENT DEPTH. IF SEDIMENT DEPTH IS COMPROMISING THE DESIGN CHARACTERISTICS, REMOVE SEDIMENT.

STRUCTURE	CONDITION/SEDIMENT DEPTH
DIVERSION BERM OUTFALL – NORTH	Good
DIVERSION BERM OUTFALL – SOUTH	Good
CULVERT 1 OUTFALL	Good
CULVERT 2 OUTFALL	Good
SOUTHWEST CULVERT OUTFALL	Good

CULVERTS

CHECK EACH STRUCTURE FOR BLOCKAGE, SURROUNDING CONDITIONS, BREACHING, SEDIMENT BUILD-UP, AND INLET/OUTLET CONDITIONS.

STRUCTURE	CONDITION
CULVERT 1	Good
CULVERT 2	Good
SOUTHWEST CULVERT	Good

MAINTENANCE REQUIRED/PHOTO LOG

No

“RUN-ON” EROSION CONTROL

AREA	ADVERSELY AFFECTING PLF?		
RUN-ON INTO PERIMETER CHANNEL – NORTH	<input type="checkbox"/> Yes	<input checked="" type="checkbox"/> No	COMMENT:
RUN-ON INTO PERIMETER CHANNEL – SOUTH	<input type="checkbox"/> Yes	<input checked="" type="checkbox"/> No	COMMENT:
NATURAL DRAINAGE FED BY CULVERT 1	<input type="checkbox"/> Yes	<input checked="" type="checkbox"/> No	COMMENT:
NATURAL DRAINAGE FED BY NORTHEAST PERIMETER CHANNEL	<input type="checkbox"/> Yes	<input checked="" type="checkbox"/> No	COMMENT:
NATURAL DRAINAGE FED BY RIPRAP	<input type="checkbox"/> Yes	<input checked="" type="checkbox"/> No	COMMENT:

MAINTENANCE REQUIRED/PHOTO LOG

No issues.

UNCONTROLLED IF PRINTED

INSTITUTIONAL CONTROLS

ITEM			COMMENT:
EVIDENCE OF EXCAVATION(S) OF COVER AND IMMEDIATE VICINITY OF COVER?	<input type="checkbox"/> Yes	<input checked="" type="checkbox"/> No	
EVIDENCE OF CONSTRUCTION OF ROADS OR TRAILS ON COVER OR BUILDINGS?	<input type="checkbox"/> Yes	<input checked="" type="checkbox"/> No	
EVIDENCE OF UNAUTHORIZED ENTRY?	<input type="checkbox"/> Yes	<input checked="" type="checkbox"/> No	
EVIDENCE OF DRILLING OF WELLS OR USE OF GROUNDWATER?	<input type="checkbox"/> Yes	<input checked="" type="checkbox"/> No	
DISRUPTION OR DAMAGE OF SEEP TREATMENT SYSTEM?	<input type="checkbox"/> Yes	<input checked="" type="checkbox"/> No	
DAMAGE OR REMOVAL OF ANY SIGNAGE OR GROUNDWATER MONITORING WELLS?	<input type="checkbox"/> Yes	<input checked="" type="checkbox"/> No	

OTHER DEFICIENCIES/PHOTO LOG

No violations of institutional controls.

UNCONTROLLED IF PRINTED

ACTION ITEMS

ARMS, Brady *✓* -06'00' DATE:

Vail, Jon Digitally signed by Vail, Jon

REVIEWER SIGNATURE: Van, Jon Date: 2025.10.23 10:00:55 -06'00' DATE: _____

Digitally signed by Akins, Brady

Digitally signed by AKHILS;
Date: 2025.10.22 17:45:33

DATE: 2
-06'00'

DATE:

Digitally signed by Vail, Jon

Date: 2025.10.23 10:00:55 -06'00'

Original Landfill-Monitoring and Maintenance Plan Inspection Form

Abbreviations:

CDPHE Colorado Department of Public Health and Environment
 DOE U.S. Department of Energy
 EPA U.S. Environmental Protection Agency
 LMS Legacy Management Support

NA not applicable
 NREL National Renewable Energy Laboratory
 OLF Original Landfill
 RFLMA *Rocky Flats Legacy Management Agreement*

RFMET Rocky Flats Meteorological Evaluation Tower
 SID South Interceptor Ditch

Inspector: Nathan Krohn

Date: 7/22/25 Time: 800

Precipitation: RFMET*: 0.42 inch

NREL*: _____

Weather: Mostly Clear, 78°

Report type: Monthly Weather-related

Reviewed by: Joseph C. Mueller

Digitally signed by Joseph C. Mueller
Date: 2025.07.30 09:10:04 -06'00'

Review date: _____

*Since last report

Subsidence/Consolidation

Region	Visible Cracks	Visible Depressions	Visible Ponding	Within Waste Footprint	Other (describe below)
Berm 1 Basin: west	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input type="checkbox"/> No <input checked="" type="checkbox"/> NA	
Berm 1 Basin: east	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input type="checkbox"/> No <input checked="" type="checkbox"/> NA	
Berm 2 Basin	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input type="checkbox"/> No <input checked="" type="checkbox"/> NA	
Berm 3 Basin	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input type="checkbox"/> No <input checked="" type="checkbox"/> NA	
Berm 4 Basin	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input type="checkbox"/> No <input checked="" type="checkbox"/> NA	
Berm 5 Basin	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input type="checkbox"/> No <input checked="" type="checkbox"/> NA	
Berm 6 Basin	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input type="checkbox"/> No <input checked="" type="checkbox"/> NA	
Berm 7 Basin	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input type="checkbox"/> No <input checked="" type="checkbox"/> NA	
Buttress fill	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input type="checkbox"/> No <input checked="" type="checkbox"/> NA	

Settlement monuments; inspect integrity. Intact: Yes No

Maintenance Required/Comments

No issues.

Original Landfill—Monitoring and Maintenance Plan Inspection Form

Slope Stability

Region	Visible Cracks	Visible Seeps	Visible Block or Circular Failure	Other (describe below)
Cover: west	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input checked="" type="checkbox"/> Yes <input type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	Seep 7
Cover: east	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	
Buttress fill side slope	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	
West Perimeter Channel side slopes	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	
East Perimeter Channel side slopes	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	

Maintenance Required/Comments

No issues.

Soil Cover and Buttress

Region	Visible Erosion	Visible Gullies	Visible Animal Burrows	Other (describe below)
Cover: west	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	
Cover: east	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	
Buttress fill	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	
Buttress fill side slope	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	

Maintenance Required/Comments

No issues.

Original Landfill–Monitoring and Maintenance Plan Inspection Form

Notes:

* Indicates seep was observed during or shortly after OLF closure in 2005.

A seep is defined as an area where water percolates to the land surface *or* an area persistently moist whose source, as observed in multiple inspections, is confirmed to be groundwater and not surface water.

Maintenance Required/Comments

No issues

Original Landfill—Monitoring and Maintenance Plan Inspection Form

Water Management Structures						
Channels						
Structure	Visible Excessive Erosion, Gullying, or Undermining	Visible Settlement, Subsidence, or Depressions	Visible Breaching or Bank Failure	Visible Animal Burrows	Visible Sediment Buildup or Other Blockage	Comments
Diversion Berm 1	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No					
Diversion Berm 2	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No					
Diversion Berm 3	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No					
Diversion Berm 4	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No					
Diversion Berm 5	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No					
Diversion Berm 6	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No					
Diversion Berm 7	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No					
West Perimeter Channel	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No					
East Perimeter Channel	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No					

Drains/Outfalls				
Structure	Visible Excessive Erosion or Gullying	Visible Sediment Buildup or Other Blockage	Is Water Draining or Flowing from Structure?	Comments
East Subsurface Drain: solid pipe	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	
East Subsurface Drain: perforated pipe	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input checked="" type="checkbox"/> Yes <input type="checkbox"/> No	Flow rate < 1 gpm
French Drain (SID)	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input checked="" type="checkbox"/> Yes <input type="checkbox"/> No	1-2 gpm

Maintenance Required/Comments

No issues.

Original Landfill—Monitoring and Maintenance Plan Inspection Form

“Run-On” Control

Area	Adversely Affecting OLF	Comments
Run-on to the OLF (any direction)	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	

Maintenance Required/Comments

No issues.

Violations of Institutional Controls

Item	Comments
Evidence of unauthorized ¹ excavations of cover and immediate vicinity of cover?	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No
Evidence of unauthorized ¹ construction of roads, trails, or buildings on cover?	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No
Evidence of unauthorized ¹ drilling of wells or use of groundwater?	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No
Damage to groundwater monitoring wells at OLF (upgradient or downgradient)?	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No

Notes:

¹ Unauthorized means not approved by RFLMA parties (DOE, EPA, CDPHE) through the consultative process. Actions covered under an approved soil disturbance review plan are authorized actions.

If “Yes” is marked on any item in the “Violations of Institutional Controls” section, immediately notify your supervisor.

Other Observations, Maintenance Required/Comments

No issues.

Original Landfill–Monitoring and Maintenance Plan Inspection Form

Signatures

NATHAN KROHN

(Affiliate)

Digitally signed by NATHAN
KROHN (Affiliate)
Date: 2025.07.29 17:24:23
-06'00'

Inspector Name

Signature and Date

Joseph C. Mueller

Reviewer Name

Signature and Date

Digitally signed by Joseph C. Mueller
Date: 2025.07.30 09:10:51 -06'00'

July 2025 Monthly Report for the Original Landfill Inspection at the Rocky Flats Site, Colorado

The monthly inspection of the Original Landfill (OLF) at the Rocky Flats Site, Colorado, was completed on July 22, 2025. The weather was mostly clear with an ambient temperature of 78 °F during the inspection. The Rocky Flats Site meteorological tower recorded 0.42 inch of precipitation between this inspection and the previous monthly inspection performed on June 25, 2025.

Monthly inspection forms are completed to document current conditions at the OLF. Items previously indicated as deficient on inspection forms that have since been repaired are not marked again on the form unless further action is required.

Figure 1 provides an aerial view of the OLF hillside with the approximate locations of the report photographs. The photographs in **Figure 2** through **Figure 9** were taken on July 22, 2025.

No issues were noted with Berms 1–3 (**Figure 2**) or Berms 4–7 (**Figure 3**). The East Perimeter Channel (EPC) was in good condition (**Figure 4**). The West Perimeter Channel (WPC) was in good condition (**Figure 5**).

The Seep 1 location had light soil moisture. The Seep 7 location (**Figure 6**) had a flow rate of less than 1 gallon per minute (gpm). The Seep 8 location (**Figure 7**) had a flow rate of approximately 1 gpm. Historical seep locations 2/3, 4, 5, 6, 7a, 8a, 8b, 8c, 9, 10, and 11 were dry at the time of the inspection.

No issues were noted with the East Subsurface Drain (ESSD) (**Figure 8**), which had a flow rate of less than 1 gpm. No issues were noted with the South Interceptor Ditch (SID) (**Figure 9**), which receives groundwater from the ESSD outfall and an interceptor drain on the eastern hillside. The SID had a flow rate of approximately 1–2 gpm.

The revegetation of recently disturbed areas on the OLF is managed and monitored under the *Erosion Control Plan for Rocky Flats Property Central Operable Unit* (DOE 2007)¹ and under sitewide vegetation and revegetation plans, as appropriate. Established vegetation is visible across the hillside areas that were reseeded after the stabilization effort in 2019–2020.

Summary of July 2025 Inspection Findings

Berms 1–7 were in good condition. The EPC and WPC were in good condition. The Seep 1 location had light soil moisture. The Seep 7 location had a flow rate of less than 1 gpm. The Seep 8 location had a flow rate of approximately 1 gpm. No issues were noted with the ESSD, which had a flow rate of less than 1 gpm. No issues were noted with the SID, which had a flow rate of approximately 1–2 gpm.

¹ DOE (U.S. Department of Energy), 2007. *Erosion Control Plan for Rocky Flats Property Central Operable Unit*, DOE-LM/1497-2007, LMS/RFS/S03416, Office of Legacy Management, July.

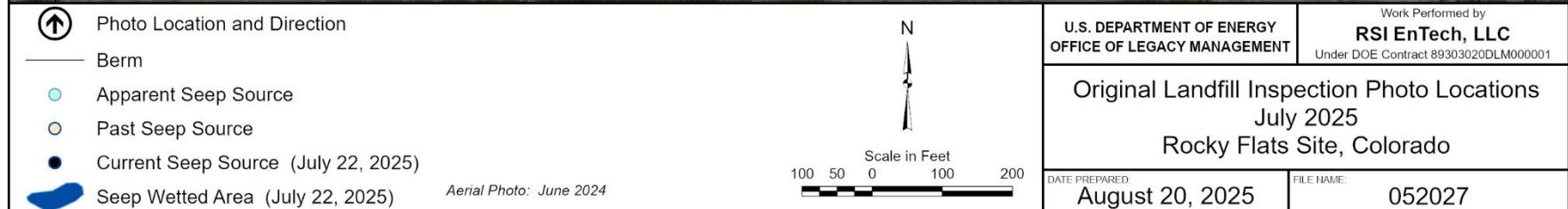


Figure 1. Locations of OLF Inspection Report Figure Photographs, Rocky Flats Site, Colorado (Aerial Photo Taken June 16, 2024)

Figure 2. View Looking East-Southeast at Berms 1–3, Which Were in Good Condition

Figure 3. View Looking East-Southeast at Berms 4–7, Which Were in Good Condition

Figure 4. View Looking Southwest at the EPC, Which Was in Good Condition

Figure 5. View Looking Northwest at the WPC, Which Was in Good Condition

Figure 6. View Looking Northwest at the Seep 7 Location, Which Had a Flow Rate of Less than 1 gpm

Figure 7. View Looking Southwest at the Seep 8 Location, Which Had a Flow Rate of Approximately 1 gpm

Figure 8. View Looking Northwest at the ESSD, Which Had a Flow Rate of Less than 1 gpm

Figure 9. View Looking East at the SID, Which Receives Groundwater from the ESSD Outfall and an Interceptor Drain on the Eastern Hillside and Had a Flow Rate of Approximately 1–2 gpm

Original Landfill-Monitoring and Maintenance Plan Inspection Form

Abbreviations:

CDPHE Colorado Department of Public Health and Environment
 DOE U.S. Department of Energy
 EPA U.S. Environmental Protection Agency
 LMS Legacy Management Support

NA not applicable
 NREL National Renewable Energy Laboratory
 OLF Original Landfill
 RFLMA *Rocky Flats Legacy Management Agreement*

RFMET Rocky Flats Meteorological Evaluation Tower
 SID South Interceptor Ditch

Inspector: Nathan Krohn Date: 8/20/25 Time: 810

Precipitation: RFMET*: 0.20 inch NREL*: _____ Weather: Clear 76°F Report type: Monthly Weather-related

Reviewed by: JOSEPH MUELLER (Affiliate) Digitally signed by JOSEPH MUELLER (Affiliate)
Date: 2025.08.27 07:59:51 -06'00'

Review date: _____

*Since last report

Subsidence/Consolidation

Region	Visible Cracks	Visible Depressions	Visible Ponding	Within Waste Footprint	Other (describe below)
Berm 1 Basin: west	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input type="checkbox"/> No <input checked="" type="checkbox"/> NA	
Berm 1 Basin: east	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input type="checkbox"/> No <input checked="" type="checkbox"/> NA	
Berm 2 Basin	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input type="checkbox"/> No <input checked="" type="checkbox"/> NA	
Berm 3 Basin	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input type="checkbox"/> No <input checked="" type="checkbox"/> NA	
Berm 4 Basin	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input type="checkbox"/> No <input checked="" type="checkbox"/> NA	
Berm 5 Basin	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input type="checkbox"/> No <input checked="" type="checkbox"/> NA	
Berm 6 Basin	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input type="checkbox"/> No <input checked="" type="checkbox"/> NA	
Berm 7 Basin	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input type="checkbox"/> No <input checked="" type="checkbox"/> NA	
Buttress fill	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input type="checkbox"/> No <input checked="" type="checkbox"/> NA	

Settlement monuments; inspect integrity. Intact: Yes No

Maintenance Required/Comments

No issues.

Original Landfill-Monitoring and Maintenance Plan Inspection Form

Slope Stability

Region	Visible Cracks	Visible Seeps	Visible Block or Circular Failure	Other (describe below)
Cover: west	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input checked="" type="checkbox"/> Yes <input type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	Seep 7
Cover: east	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	
Buttress fill side slope	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	
West Perimeter Channel side slopes	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	
East Perimeter Channel side slopes	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	

Maintenance Required/Comments

No issues.

Soil Cover and Buttress

Region	Visible Erosion	Visible Gullies	Visible Animal Burrows	Other (describe below)
Cover: west	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	
Cover: east	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	
Buttress fill	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	
Buttress fill side slope	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	

Maintenance Required/Comments

No issues.

Original Landfill–Monitoring and Maintenance Plan Inspection Form

Notes:

* Indicates seep was observed during or shortly after OLF closure in 2005.

A seep is defined as an area where water percolates to the land surface or an area persistently moist whose source, as observed in multiple inspections, is confirmed to be groundwater and not surface water.

Maintenance Required/Comments

No issues.

Original Landfill-Monitoring and Maintenance Plan Inspection Form

Water Management Structures

Channels

Structure	Visible Excessive Erosion, Gullying, or Undermining	Visible Settlement, Subsidence, or Depressions	Visible Breaching or Bank Failure	Visible Animal Burrows	Visible Sediment Buildup or Other Blockage	Comments
Diversion Berm 1	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No					
Diversion Berm 2	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No					
Diversion Berm 3	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No					
Diversion Berm 4	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No					
Diversion Berm 5	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No					
Diversion Berm 6	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No					
Diversion Berm 7	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No					
West Perimeter Channel	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No					
East Perimeter Channel	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No					

Drains/Outfalls

Structure	Visible Excessive Erosion or Gullying	Visible Sediment Buildup or Other Blockage	Is Water Draining or Flowing from Structure?	Comments
East Subsurface Drain: solid pipe	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	
East Subsurface Drain: perforated pipe	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input checked="" type="checkbox"/> Yes <input type="checkbox"/> No	Flow less than 1 gpm
French Drain (SID)	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input checked="" type="checkbox"/> Yes <input type="checkbox"/> No	Flow 1-2 gpm

Maintenance Required/Comments

No issues.

Original Landfill—Monitoring and Maintenance Plan Inspection Form

“Run-On” Control

Area	Adversely Affecting OLF	Comments
Run-on to the OLF (any direction)	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	

Maintenance Required/Comments

No issues.

Violations of Institutional Controls

Item	Comments
Evidence of unauthorized ¹ excavations of cover and immediate vicinity of cover?	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No
Evidence of unauthorized ¹ construction of roads, trails, or buildings on cover?	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No
Evidence of unauthorized ¹ drilling of wells or use of groundwater?	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No
Damage to groundwater monitoring wells at OLF (upgradient or downgradient)?	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No

Notes:

¹ Unauthorized means not approved by RFLMA parties (DOE, EPA, CDPHE) through the consultative process. Actions covered under an approved soil disturbance review plan are authorized actions.

If “Yes” is marked on any item in the “Violations of Institutional Controls” section, immediately notify your supervisor.

Other Observations, Maintenance Required/Comments

No issues.

Original Landfill–Monitoring and Maintenance Plan Inspection Form

Action Items			
Deficiency	Action	Date Completed	Comments
None	NA	NA	

Signatures

NATHAN KROHN (Affiliate)

Digitally signed by NATHAN KROHN (Affiliate)
Date: 2025.08.26 17:35:26 -06'00'

Inspector Name

Signature and Date

JOSEPH MUELLER (Affiliate)

Digitally signed by JOSEPH MUELLER (Affiliate)
Date: 2025.08.27 07:51:31 -06'00'

Reviewer Name

Signature and Date

August 2025 Monthly Report for the Original Landfill Inspection at the Rocky Flats Site, Colorado

The monthly inspection of the Original Landfill (OLF) at the Rocky Flats Site, Colorado, was completed on August 20, 2025. The weather was mostly clear with an ambient temperature of 76 °F during the inspection. The Rocky Flats Site meteorological tower recorded 0.20 inch of precipitation between this inspection and the previous monthly inspection performed on July 22, 2025.

Monthly inspection forms are completed to document current conditions at the OLF. Items previously indicated as deficient on inspection forms that have since been repaired are not marked again on the form unless further action is required.

Figure 1 provides an aerial view of the OLF hillside with the approximate locations of the report photographs. The photographs in **Figure 2** through **Figure 9** were taken on August 20, 2025.

No issues were noted with Berms 1–3 (**Figure 2**) or Berms 4–7 (**Figure 3**). The East Perimeter Channel (EPC) was in good condition (**Figure 4**). The West Perimeter Channel (WPC) was in good condition (**Figure 5**).

The Seep 7 location (**Figure 6**) had a flow rate of less than 1 gallon per minute (gpm). The Seep 8 location (**Figure 7**) had a flow rate of approximately 1–2 gpm. Historical seep locations 1, 2/3, 4, 5, 6, 7a, 8a, 8b, 8c, 9, 10, and 11 were dry at the time of the inspection.

No issues were noted with the East Subsurface Drain (ESSD) (**Figure 8**), which had a flow rate of less than 1 gpm. No issues were noted with the South Interceptor Ditch (SID) (**Figure 9**), which receives groundwater from the ESSD outfall and an interceptor drain on the eastern hillside. The SID had a flow rate of approximately 1–2 gpm.

The revegetation of disturbed areas on the OLF is managed and monitored under the *Erosion Control Plan for Rocky Flats Property Central Operable Unit* (DOE 2007)¹ and under sitewide vegetation and revegetation plans, as appropriate. Established vegetation is visible across the hillside areas that were reseeded after the stabilization effort in 2019–2020.

Summary of August 2025 Inspection Findings

Berms 1–7 were in good condition. The EPC and WPC were in good condition. The Seep 7 location had a flow rate of less than 1 gpm. The Seep 8 location had a flow rate of approximately 1–2 gpm. No issues were noted with the ESSD, which had a flow rate of less than 1 gpm. No issues were noted with the SID, which had a flow rate of approximately 1–2 gpm.

¹ DOE (U.S. Department of Energy), 2007. *Erosion Control Plan for Rocky Flats Property Central Operable Unit*, DOE-LM/1497-2007, LMS/RFS/S03416, Office of Legacy Management, July.

↑ Photo Location and Direction

— Berm

● Historical Seep Source

● Observed Seep Source (August 20, 2025)

● Observed Seep Wetted Area (August 20, 2025)

Aerial Photo: June 2024

N

100 50 0 100 200
Scale in Feet

U.S. DEPARTMENT OF ENERGY
OFFICE OF LEGACY MANAGEMENT

Work Performed by
RSI EnTech, LLC
Under DOE Contract 89303020DLM000001

Original Landfill Inspection Photo Locations
August 2025
Rocky Flats Site, Colorado

DATE PREPARED
September 4, 2025

FILE NAME:
052132

Figure 1. Locations of OLF Inspection Report Figure Photographs, Rocky Flats Site, Colorado (Aerial Photo Taken June 16, 2024)

Figure 2. View Looking East-Southeast at Berms 1–3, Which Were in Good Condition

Figure 3. View Looking East-Southeast at Berms 4–7, Which Were in Good Condition

Figure 4. View Looking Southwest at the EPC, Which Was in Good Condition

Figure 5. View Looking Southeast at the WPC, Which Was in Good Condition

Figure 6. View Looking Northwest at the Seep 7 Location, Which Had a Flow Rate of Less than 1 gpm

Figure 7. View Looking Southwest at the Seep 8 Location, Which Had a Flow Rate of Approximately 1–2 gpm

Figure 8. View Looking Northwest at the ESSD, Which Had a Flow Rate of Less than 1 gpm

Figure 9. View Looking East at the SID, Which Receives Groundwater from the ESSD Outfall and an Interceptor Drain on the Eastern Hillside and Had a Flow Rate of Approximately 1–2 gpm

Original Landfill–Monitoring and Maintenance Plan Inspection Form

Abbreviations:

CDPHE	Colorado Department of Public Health and Environment	NA	not applicable	RFMET	Rocky Flats Meteorological Evaluation Tower
DOE	U.S. Department of Energy	NREL	National Renewable Energy Laboratory	SID	South Interceptor Ditch
EPA	U.S. Environmental Protection Agency	OLF	Original Landfill		
LMS	Legacy Management Support	RFLMA	<i>Rocky Flats Legacy Management Agreement</i>		

Inspector: Nathan Krohn Date: 8/26/25 Time: 1150

Precipitation: RFMET*: 1.08 inches NREL*: Weather: Cloudy, 67°F Report type: Monthly Weather-related

Reviewed by: JOSEPH MUELLER (Affiliate) Digitally signed by JOSEPH MUELLER (Affiliate)
Date: 2025.08.28 13:06:18 -06'00'

Review date: _____

*Since last report Last 24 hours

Subsidence/Consolidation

Region	Visible Cracks	Visible Depressions	Visible Ponding	Within Waste Footprint	Other (describe below)
Berm 1 Basin: west	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input type="checkbox"/> No <input checked="" type="checkbox"/> NA	
Berm 1 Basin: east	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input type="checkbox"/> No <input checked="" type="checkbox"/> NA	
Berm 2 Basin	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input type="checkbox"/> No <input checked="" type="checkbox"/> NA	
Berm 3 Basin	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input type="checkbox"/> No <input checked="" type="checkbox"/> NA	
Berm 4 Basin	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input type="checkbox"/> No <input checked="" type="checkbox"/> NA	
Berm 5 Basin	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input type="checkbox"/> No <input checked="" type="checkbox"/> NA	
Berm 6 Basin	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input type="checkbox"/> No <input checked="" type="checkbox"/> NA	
Berm 7 Basin	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input type="checkbox"/> No <input checked="" type="checkbox"/> NA	
Buttress fill	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input type="checkbox"/> No <input checked="" type="checkbox"/> NA	

Settlement monuments; inspect integrity. Intact: Yes No

Maintenance Required/Comments

Inspection being performed after the site received 1.08 inches on 8/25/25.
No cracks, depressions, or ponding noted.

Original Landfill-Monitoring and Maintenance Plan Inspection Form

Slope Stability

Region	Visible Cracks	Visible Seeps	Visible Block or Circular Failure	Other (describe below)
Cover: west	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input checked="" type="checkbox"/> Yes <input type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	Seep 7
Cover: east	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	
Buttress fill side slope	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	
West Perimeter Channel side slopes	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	
East Perimeter Channel side slopes	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	

Maintenance Required/Comments

No cracks or block or circular failure noted.

Soil Cover and Buttress

Region	Visible Erosion	Visible Gullies	Visible Animal Burrows	Other (describe below)
Cover: west	<input checked="" type="checkbox"/> Yes <input type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	
Cover: east	<input checked="" type="checkbox"/> Yes <input type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	
Buttress fill	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	
Buttress fill side slope	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	

Maintenance Required/Comments

Soil deposition was observed along the Berm 2 and Berm 5 basins, uniformly spread with no rills or gullies formed.

Original Landfill–Monitoring and Maintenance Plan Inspection Form

Notes:

* Indicates seep was observed during or shortly after OLF closure in 2005.

A seep is defined as an area where water percolates to the land surface or an area persistently moist whose source, as observed in multiple inspections, is confirmed to be groundwater and not surface water.

Maintenance Required/Comments

All seeps showing moisture due to recent rainfall (seep locations)

Original Landfill–Monitoring and Maintenance Plan Inspection Form

Water Management Structures

Channels

Structure	Visible Excessive Erosion, Gullying, or Undermining	Visible Settlement, Subsidence, or Depressions	Visible Breaching or Bank Failure	Visible Animal Burrows	Visible Sediment Buildup or Other Blockage	Comments
Diversion Berm 1	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No					
Diversion Berm 2	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No					
Diversion Berm 3	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No					
Diversion Berm 4	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No					
Diversion Berm 5	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No					
Diversion Berm 6	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No					
Diversion Berm 7	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No					
West Perimeter Channel	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input checked="" type="checkbox"/> Yes <input type="checkbox"/> No	new sediment buildup on Georidges			
East Perimeter Channel	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No					

Drains/Outfalls

Structure	Visible Excessive Erosion or Gullying	Visible Sediment Buildup or Other Blockage	Is Water Draining or Flowing from Structure?	Comments
East Subsurface Drain: solid pipe	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	
East Subsurface Drain: perforated pipe	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input checked="" type="checkbox"/> Yes <input type="checkbox"/> No	flow < 1 gpm
French Drain (SID)	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input checked="" type="checkbox"/> Yes <input type="checkbox"/> No	1-2 gpm

Maintenance Required/Comments

A small amount of new sediment buildup was observed on the Georidges at the upper portion of the West Perimeter Channel. Does not appear to be blocking flow of surface water, but sediment accumulation on the Georidges, from the last year, will need to be moved with shovels to lower spots in the West Perimeter Channel and covered with wood strand mulch to stabilize.

Original Landfill–Monitoring and Maintenance Plan Inspection Form

“Run-On” Control

Area	Adversely Affecting OLF	Comments
Run-on to the OLF (any direction)	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	

Maintenance Required/Comments

No issues.

Violations of Institutional Controls

Item	Comments
Evidence of unauthorized ¹ excavations of cover and immediate vicinity of cover?	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No
Evidence of unauthorized ¹ construction of roads, trails, or buildings on cover?	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No
Evidence of unauthorized ¹ drilling of wells or use of groundwater?	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No
Damage to groundwater monitoring wells at OLF (upgradient or downgradient)?	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No

Notes:

¹Unauthorized means not approved by RFLMA parties (DOE, EPA, CDPHE) through the consultative process. Actions covered under an approved soil disturbance review plan are authorized actions.

If “Yes” is marked on any item in the “Violations of Institutional Controls” section, immediately notify your supervisor.

Other Observations, Maintenance Required/Comments

No violations of institutional controls.

Original Landfill–Monitoring and Maintenance Plan Inspection Form

Action Items			
Deficiency	Action	Date Completed	Comments
Sediment buildup on WPC Georidges	Move sediment to lower spots in the WPC using shovels & cover with wood strand mulch		

Signatures

NATHAN KROHN (Affiliate)

Digitally signed by NATHAN KROHN (Affiliate)
Date: 2025.08.28 07:43:44 -06'00'

Inspector Name

Signature and Date

JOSEPH MUELLER (Affiliate)

Digitally signed by JOSEPH MUELLER (Affiliate)
Date: 2025.08.28 12:57:21 -06'00'

Reviewer Name

Signature and Date

Original Landfill-Monitoring and Maintenance Plan Inspection Form

Abbreviations:

CDPHE	Colorado Department of Public Health and Environment	NA	not applicable	RFMET	Rocky Flats Meteorological Evaluation Tower
DOE	U.S. Department of Energy	NREL	National Renewable Energy Laboratory	SID	South Interceptor Ditch
EPA	U.S. Environmental Protection Agency	OLF	Original Landfill		
LMS	Legacy Management Support	RFLMA	Rocky Flats Legacy Management Agreement		

Inspector: Brady Atins

Date: 9/25/25

Time: 1000

Precipitation: RFMET: 1.17 inches NREL*: _____ Weather: Clear & Sunny Report type: Monthly Weather-related

Reviewed by: Vail, Jon

Digitally signed by Vail, Jon
Date:2025.10.23 10:21:40 -06'00'

Review date: 65°F

*Since last report

Subsidence/Consolidation

Region	Visible Cracks	Visible Depressions	Visible Ponding	Within Waste Footprint	Other (describe below)
Berm 1 Basin: west	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input type="checkbox"/> No <input checked="" type="checkbox"/> NA	
Berm 1 Basin: east	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input type="checkbox"/> No <input checked="" type="checkbox"/> NA	
Berm 2 Basin	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input type="checkbox"/> No <input checked="" type="checkbox"/> NA	
Berm 3 Basin	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input type="checkbox"/> No <input checked="" type="checkbox"/> NA	
Berm 4 Basin	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input type="checkbox"/> No <input checked="" type="checkbox"/> NA	
Berm 5 Basin	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input type="checkbox"/> No <input checked="" type="checkbox"/> NA	
Berm 6 Basin	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input type="checkbox"/> No <input checked="" type="checkbox"/> NA	
Berm 7 Basin	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input type="checkbox"/> No <input checked="" type="checkbox"/> NA	
Buttress fill	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input type="checkbox"/> No <input checked="" type="checkbox"/> NA	

Settlement monuments; inspect integrity. Intact: Yes No

Maintenance Required/Comments

Inspection being performed after site received 1.17 inches on 9/23/25.
No cracks, depressions, or ponding.

Original Landfill–Monitoring and Maintenance Plan Inspection Form

Slope Stability

Region	Visible Cracks	Visible Seeps	Visible Block or Circular Failure	Other (describe below)
Cover: west	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	
Cover: east	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	
Buttress fill side slope	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	
West Perimeter Channel side slopes	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	
East Perimeter Channel side slopes	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	

Maintenance Required/Comments

No issues.

Soil Cover and Buttress

Region	Visible Erosion	Visible Gullies	Visible Animal Burrows	Other (describe below)
Cover: west	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	
Cover: east	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	
Buttress fill	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	
Buttress fill side slope	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	

Maintenance Required/Comments

No issues.

Original Landfill–Monitoring and Maintenance Plan Inspection Form

Seep Evaluation

Notes

* Indicates seep was observed during or shortly after OLF closure in 2005.

A seep is defined as an area where water percolates to the land surface or an area persistently moist whose source, as observed in multiple inspections, is confirmed to be groundwater and not surface water.

Maintenance Required/Comments

Seeps not observed or measured. ^{9/22/25} NK

Original Landfill–Monitoring and Maintenance Plan Inspection Form

Water Management Structures

Channels

Structure	Visible Excessive Erosion, Gullying, or Undermining	Visible Settlement, Subsidence, or Depressions	Visible Breaching or Bank Failure	Visible Animal Burrows	Visible Sediment Buildup or Other Blockage	Comments
Diversion Berm 1	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No					
Diversion Berm 2	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No					
Diversion Berm 3	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No					
Diversion Berm 4	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No					
Diversion Berm 5	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No					
Diversion Berm 6	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No					
Diversion Berm 7	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No					
West Perimeter Channel	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No					
East Perimeter Channel	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No					

Drains/Outfalls

Structure	Visible Excessive Erosion or Gullying	Visible Sediment Buildup or Other Blockage	Is Water Draining or Flowing from Structure?	Comments
East Subsurface Drain: solid pipe	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	
East Subsurface Drain: perforated pipe	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input checked="" type="checkbox"/> Yes <input checked="" type="checkbox"/> No <i>N/A</i> <i>1/25</i>	
French Drain (SID)	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input checked="" type="checkbox"/> Yes <input type="checkbox"/> No	

Maintenance Required/Comments

No issues.
Flow not measured.

Original Landfill–Monitoring and Maintenance Plan Inspection Form

“Run-On” Control

Area	Adversely Affecting OLF	Comments
Run-on to the OLF (any direction)	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	

Maintenance Required/Comments

No issues.

Violations of Institutional Controls

Item	Comments
Evidence of unauthorized ¹ excavations of cover and immediate vicinity of cover?	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No
Evidence of unauthorized ¹ construction of roads, trails, or buildings on cover?	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No
Evidence of unauthorized ¹ drilling of wells or use of groundwater?	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No
Damage to groundwater monitoring wells at OLF (upgradient or downgradient)?	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No

Notes:

¹Unauthorized means not approved by RFLMA parties (DOE, EPA, CDPHE) through the consultative process. Actions covered under an approved soil disturbance review plan are authorized actions.

If “Yes” is marked on any item in the “Violations of Institutional Controls” section, immediately notify your supervisor.

Other Observations, Maintenance Required/Comments

No violations of Institutional Controls.

Original Landfill–Monitoring and Maintenance Plan Inspection Form

Action Items

Deficiency	Action	Date Completed	Comments
None	N/A	N/A	

Signatures

Akins, Brady

Inspector Name

Digitally signed by Akins, Brady
Date: 2025.10.22 18:10:00 -06'00'

Signature and Date

Vail, Jon

Reviewer Name

Digitally signed by Vail, Jon
Date: 2025.10.21 17:58:52 -06'00'

Signature and Date

Original Landfill-Monitoring and Maintenance Plan Inspection Form

Abbreviations:

CDPHE Colorado Department of Public Health and Environment
 DOE U.S. Department of Energy
 EPA U.S. Environmental Protection Agency
 LMS Legacy Management Support

NA not applicable
 NREL National Renewable Energy Laboratory
 OLF Original Landfill
 RFLMA *Rocky Flats Legacy Management Agreement*

RFMET Rocky Flats Meteorological Evaluation Tower
 SID South Interceptor Ditch

Inspector: Nathan Krashn

Date: 9/30/25 Time: 1320

Precipitation: RFMET*: 3.52 inches NREL*: _____ Weather: Cloudy, 73°F Report type: Monthly Weather-related

Reviewed by: Vail, Jon

Review date: _____

*Since last report

Subsidence/Consolidation

Region	Visible Cracks	Visible Depressions	Visible Ponding	Within Waste Footprint	Other (describe below)
Berm 1 Basin: west	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input type="checkbox"/> No <input checked="" type="checkbox"/> NA	
Berm 1 Basin: east	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input type="checkbox"/> No <input checked="" type="checkbox"/> NA	
Berm 2 Basin	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input type="checkbox"/> No <input checked="" type="checkbox"/> NA	
Berm 3 Basin	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input type="checkbox"/> No <input checked="" type="checkbox"/> NA	
Berm 4 Basin	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input type="checkbox"/> No <input checked="" type="checkbox"/> NA	
Berm 5 Basin	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input type="checkbox"/> No <input checked="" type="checkbox"/> NA	
Berm 6 Basin	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input type="checkbox"/> No <input checked="" type="checkbox"/> NA	
Berm 7 Basin	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input type="checkbox"/> No <input checked="" type="checkbox"/> NA	
Buttress fill	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input type="checkbox"/> No <input checked="" type="checkbox"/> NA	

Settlement monuments; inspect integrity. Intact: Yes No

Maintenance Required/Comments

No issues.

Original Landfill-Monitoring and Maintenance Plan Inspection Form

Slope Stability

Region	Visible Cracks	Visible Seeps	Visible Block or Circular Failure	Other (describe below)
Cover: west	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input checked="" type="checkbox"/> Yes <input type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	Seep 7
Cover: east	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input checked="" type="checkbox"/> Yes <input type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	Seep 8B
Buttress fill side slope	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	
West Perimeter Channel side slopes	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	
East Perimeter Channel side slopes	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	

Maintenance Required/Comments

No issues.

Soil Cover and Buttress

Region	Visible Erosion	Visible Gullies	Visible Animal Burrows	Other (describe below)
Cover: west	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	
Cover: east	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	
Buttress fill	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	
Buttress fill side slope	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	

Maintenance Required/Comments

No issues.

Original Landfill–Monitoring and Maintenance Plan Inspection Form

Notes:

* Indicates seep was observed during or shortly after OLF closure in 2005.

A seep is defined as an area where water percolates to the land surface *or* an area persistently moist whose source, as observed in multiple inspections, is confirmed to be groundwater and not surface water.

Maintenance Required/Comments

No issues.

Original Landfill-Monitoring and Maintenance Plan Inspection Form

Water Management Structures						
Channels						
Structure	Visible Excessive Erosion, Gullying, or Undermining	Visible Settlement, Subsidence, or Depressions	Visible Breaching or Bank Failure	Visible Animal Burrows	Visible Sediment Buildup or Other Blockage	Comments
Diversion Berm 1	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No					
Diversion Berm 2	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No					
Diversion Berm 3	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No					
Diversion Berm 4	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No					
Diversion Berm 5	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No					
Diversion Berm 6	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No					
Diversion Berm 7	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No					
West Perimeter Channel	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No					
East Perimeter Channel	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No					

Drains/Outfalls				
Structure	Visible Excessive Erosion or Gullying	Visible Sediment Buildup or Other Blockage	Is Water Draining or Flowing from Structure?	Comments
East Subsurface Drain: solid pipe	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	
East Subsurface Drain: perforated pipe	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input checked="" type="checkbox"/> Yes <input type="checkbox"/> No	<i>< 1 gpm</i>
French Drain (SID)	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	<input checked="" type="checkbox"/> Yes <input type="checkbox"/> No	<i>1-2 gpm</i>

Maintenance Required/Comments

No issues.

Original Landfill–Monitoring and Maintenance Plan Inspection Form

"Run-On" Control		
Area	Adversely Affecting OLF	Comments
Run-on to the OLF (any direction)	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	

Maintenance Required/Comments

No issues.

Violations of Institutional Controls		
Item		Comments
Evidence of unauthorized ¹ excavations of cover and immediate vicinity of cover?	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	
Evidence of unauthorized ¹ construction of roads, trails, or buildings on cover?	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	
Evidence of unauthorized ¹ drilling of wells or use of groundwater?	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	
Damage to groundwater monitoring wells at OLF (upgradient or downgradient)?	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	

Notes:

¹ Unauthorized means not approved by RFLMA parties (DOE, EPA, CDPHE) through the consultative process. Actions covered under an approved soil disturbance review plan are authorized actions.

If "Yes" is marked on any item in the "Violations of Institutional Controls" section, immediately notify your supervisor.

Other Observations, Maintenance Required/Comments

No violations of institutional observed.

Original Landfill–Monitoring and Maintenance Plan Inspection Form

Action Items			
Deficiency	Action	Date Completed	Comments
None	NA	NA	

Signatures

NATHAN KROHN (Affiliate)

Digitally signed by NATHAN KROHN (Affiliate)
Date: 2025.10.14 11:03:06 -06'00'

Inspector Name

Signature and Date

Vail, Jon

Digitally signed by Vail, Jon
Date: 2025.10.21 17:47:16 -06'00'

Reviewer Name

Signature and Date

September 2025 Monthly Report for the Original Landfill Inspection at the Rocky Flats Site, Colorado

The monthly inspection of the Original Landfill (OLF) at the Rocky Flats Site, Colorado, was completed on September 30, 2025. The weather was cloudy with an ambient temperature of 73 °F during the inspection. The Rocky Flats Site meteorological tower recorded 3.52 inches of precipitation between this inspection and the previous monthly inspection performed on August 20, 2025.

A weather-related inspection was performed on September 25, 2025, following a storm event of 1.17 inches on September 23, 2025. No erosion or ponding was observed. Berms, channels, and drains appeared to be working properly.

Monthly inspection forms are completed to document current conditions at the OLF. Items previously indicated as deficient on inspection forms that have since been repaired are not marked again on the form unless further action is required.

Figure 1 provides an aerial view of the OLF hillside with the approximate locations of the report photographs. The photographs in **Figure 2** through **Figure 11** were taken on September 30, 2025.

No issues were noted with Berms 1–3 (**Figure 2**) or Berms 4–7 (**Figure 3**). The East Perimeter Channel (EPC) was in good condition (**Figure 4**). The West Perimeter Channel (WPC) was in good condition (**Figure 5**).

The Seep 1 location (**Figure 6**), Seep 4 location (**Figure 7**), and Seep 7 location (**Figure 8**) had flow rates of less than 1 gallon per minute (gpm). The Seep 8 location (**Figure 9**) had a flow rate of approximately 1–2 gpm. Historical Seep locations 2/3, 5, 6, 7a, 8a, 8b, 8c, 9, 10, 10a, and 11 were dry at the time of the inspection.

No issues were noted with the East Subsurface Drain (ESSD) (**Figure 10**), which had a flow rate of less than 1 gpm. No issues were noted with the South Interceptor Ditch (SID) (**Figure 11**), which receives groundwater from the ESSD outfall and an interceptor drain on the eastern hillside. The SID had a flow rate of approximately 1–2 gpm.

The revegetation of recently disturbed areas on the OLF is managed and monitored under the *Erosion Control Plan for Rocky Flats Property Central Operable Unit* (DOE 2007)¹ and under sitewide vegetation and revegetation plans, as appropriate. Established vegetation is visible across the hillside areas that were reseeded after the stabilization effort in 2019–2020.

Summary of September 2025 Inspection Findings

Berms 1–7 were in good condition. The EPC and WPC were in good condition. The Seep 1, Seep 4, and Seep 7 locations had flow rates of less than 1 gpm. The Seep 8 location had a flow rate of approximately

¹ DOE (U.S. Department of Energy), 2007. *Erosion Control Plan for Rocky Flats Property Central Operable Unit*, DOE-LM/1497-2007, LMS/RFS/S03416, Office of Legacy Management, July.

1–2 gpm. No issues were noted with the ESSD, which had a flow rate of less than 1 gpm. No issues were noted with the SID, which had a flow rate of approximately 1–2 gpm.

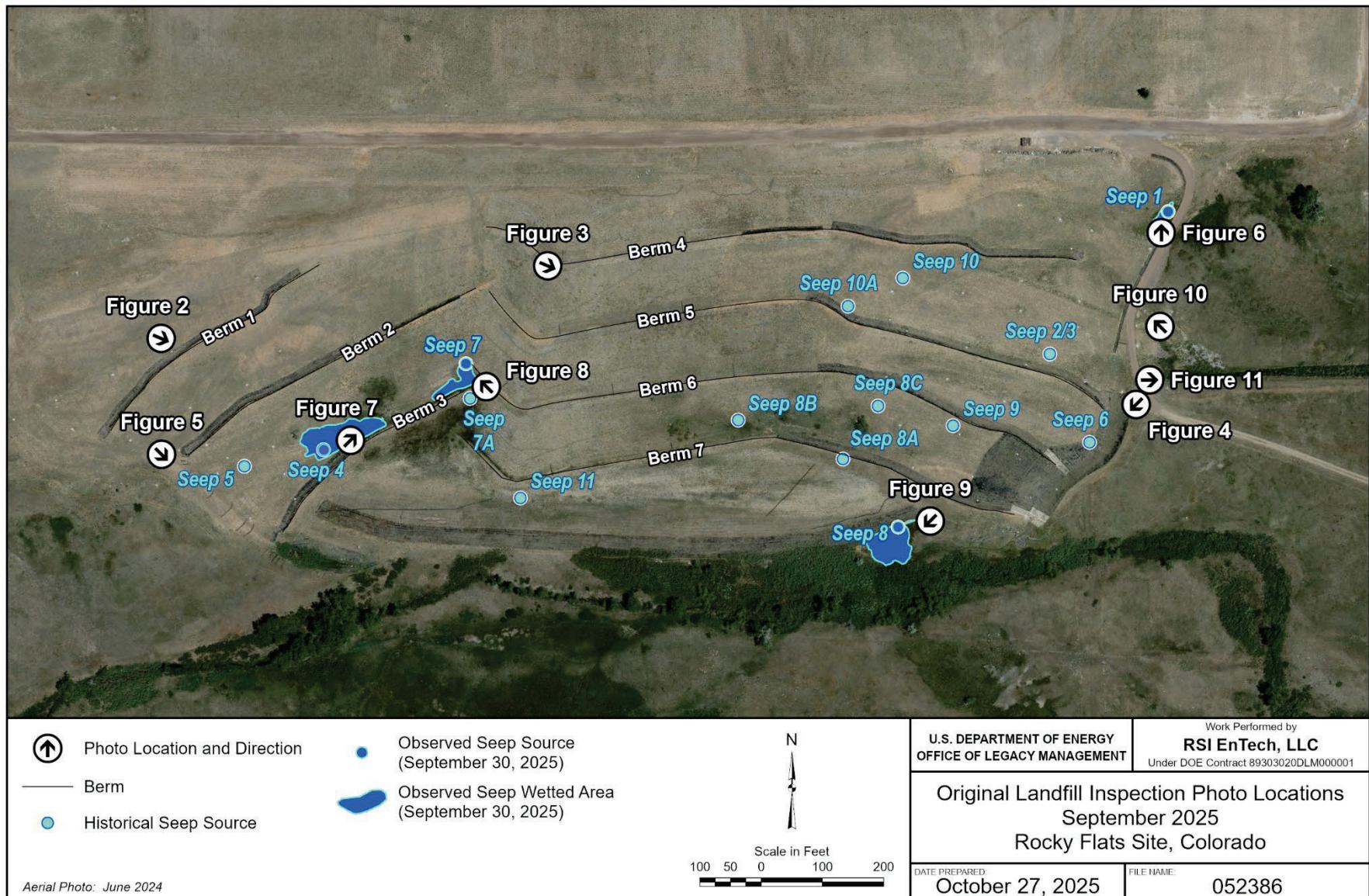


Figure 1. Locations of OLF Inspection Report Figure Photographs, Rocky Flats Site, Colorado (Aerial Photo Taken June 16, 2024)

Figure 2. View Looking East-Southeast at Berms 1–3, Which Were in Good Condition

Figure 3. View Looking East-Southeast at Berms 4–7, Which Were in Good Condition

Figure 4. View Looking Southwest at the EPC, Which Was in Good Condition

Figure 5. View Looking Southeast at the WPC, Which Was in Good Condition

Figure 6. View Looking North at the Seep 1 Location, Which Had a Flow Rate of Less Than 1 gpm

Figure 7. View Looking Northeast at the Seep 4 Location, Which Had a Flow Rate of Less Than 1 gpm

Figure 8. View Looking Northwest at the Seep 7 Location, Which Had a Flow Rate of Less Than 1 gpm

Figure 9. View Looking Southwest at the Seep 8 Location, Which Had a Flow Rate of Approximately 1–2 gpm

Figure 10. View Looking Northwest at the ESSD, Which Had a Flow Rate of Less than 1 gpm

Figure 11. View Looking East at the SID, Which Receives Groundwater from the ESSD Outfall and an Interceptor Drain on the Eastern Hillside and Had a Flow Rate of Approximately 1–2 gpm

Rocky Flats Site
Original Landfill - Settlement Plates Monitoring
Quarterly Survey September 2, 2025 Comparison to Previous June 3, 2025

09-02-2025 OBSERVATIONS				POINT NUMBER	NORTHING	EASTING	ELEVATION	DESCRIPTION	DELTA	DELTA	DELTA	06-03-2025 OBSERVATIONS			
									POINT NUMBER	NORTHING	EASTING	ELEVATION	DESCRIPTION		
70177	747913.24	2082234.20	6004.84 N RIM PIPE AA 090225		0.01	0.00	0.02		69977	747913.25	2082234.20	6004.87 N RIM PIPE AA 060325			
70178	747644.85	2081851.22	5975.26 N RIM PIPE BB 090225		0.01	0.01	0.03		69978	747644.86	2081851.23	5975.29 N RIM PIPE BB 060325			
70182	747883.14	2081665.95	6019.50 N RIM PIPE CC 090225		0.00	-0.01	0.00		69982	747883.13	2081665.94	6019.50 N RIM PIPE CC 060325			
70183	747803.24	2081642.33	6006.10 N RIM PIPE DD 090225		0.02	-0.01	-0.03		69983	747803.25	2081642.32	6006.07 N RIM PIPE DD 060325			
70184	747700.63	2081620.55	5988.56 N RIM PIPE EE 090225		0.02	-0.01	-0.03		69984	747700.64	2081620.54	5988.53 N RIM PIPE EE 060325			
70186	747703.23	2081407.70	5997.13 N RIM PIPE FF 090225		0.00	0.00	0.00		69986	747703.23	2081407.70	5997.13 N RIM PIPE FF 060325			
70185	747563.05	2081656.30	5974.13 N RIM PIPE GG 090225		0.01	0.01	-0.01		69985	747563.06	2081656.31	5974.12 N RIM PIPE GG 060325			
70187	747776.77	2081215.23	6021.90 N RIM PIPE HH 090225		0.01	0.01	-0.01		69987	747776.78	2081215.24	6021.89 N RIM PIPE HH 060325			

PIPE AA THE SOIL SURROUNDING PIPE AA WAS TEMPORARILY EXCAVATED OUT AND THEN BACKFILLED AND COVERED, THE SURROUNDING GROUND SURFACE IS HIGHER, PIPE AA WAS NEVER MOVED. BASELINE RE-SET AS BEST PRACTICE.

PIPE HH WAS REPLACED AND HAS A NEW LOCATION FIRST OBSERVED ON 08-31-2020

PIPE HH HAS BEEN REMOVED FOR 06-02-2020 COMPARISON AND NO LONGER EXISTS

DELTA'S ARE CALCULATED AS THE DIFFERENCE BETWEEN THE 09-02-2025 OBSERVATION AND THE 06-03-2025 OBSERVATION

POINTS ARE GRID BASED COLORADO STATE PLANE COORDINATE SYSTEM, CENTRAL ZONE, NAD 27, NGVD 29

POINTS ARE GRID BASED COLORADO STATE PLANE COORDINATE SYSTEM, CENTRAL ZONE, NAD 83, NAVD 88

09-02-2025 OBSERVATIONS				POINT NUMBER	NORTHING	EASTING	ELEVATION	DESCRIPTION	DELTA	DELTA	DELTA	06-03-2025 OBSERVATIONS			
									POINT NUMBER	NORTHING	EASTING	ELEVATION	DESCRIPTION		
70177	1747922.69	3082079.55	6008.38 N RIM PIPE AA 090225		0.01	0.00	0.02		69977	1747922.70	3082079.55	6008.41 N RIM PIPE AA 060325			
70178	1747654.30	3081696.57	5978.80 N RIM PIPE BB 090225		0.01	0.01	0.03		69978	1747654.31	3081696.58	5978.83 N RIM PIPE BB 060325			
70182	1747892.59	3081511.30	6023.04 N RIM PIPE CC 090225		0.00	-0.01	0.00		69982	1747892.59	3081511.29	6023.04 N RIM PIPE CC 060325			
70183	1747812.69	3081487.68	6009.64 N RIM PIPE DD 090225		0.01	-0.01	-0.03		69983	1747812.70	3081487.67	6009.61 N RIM PIPE DD 060325			
70184	1747710.08	3081465.90	5992.10 N RIM PIPE EE 090225		0.01	-0.01	-0.03		69984	1747710.09	3081465.89	5992.07 N RIM PIPE EE 060325			
70186	1747712.68	3081253.05	6000.67 N RIM PIPE FF 090225		0.00	0.00	0.00		69986	1747712.68	3081253.05	6000.67 N RIM PIPE FF 060325			
70185	1747572.51	3081501.65	5977.67 N RIM PIPE GG 090225		0.01	0.01	-0.01		69985	1747572.51	3081501.66	5977.66 N RIM PIPE GG 060325			
70187	1747786.22	3081060.58	6025.44 N RIM PIPE HH 090225		0.01	0.01	-0.01		69987	1747786.23	3081060.59	6025.43 N RIM PIPE HH 030325			

PIPE HH WAS REPLACED AND HAS A NEW LOCATION FIRST OBSERVED ON 08-31-2020

PIPE HH HAS BEEN REMOVED FOR 06-02-2020 COMPARISON AND NO LONGER EXISTS

DELTA'S ARE CALCULATED AS THE DIFFERENCE BETWEEN THE 09-02-2025 OBSERVATION AND THE 06-03-2025 OBSERVATION

POINTS ARE GRID BASED COLORADO STATE PLANE COORDINATE SYSTEM, CENTRAL ZONE, NAD 83, NAVD 88

Appendix B

**Analytical Results for Water Samples,
Third Quarter 2025**

List of Abbreviations, Notes, and Qualifiers for Data Tables

The following data tables for the Rocky Flats Site may include some or all of these abbreviations.

General

CLP = Contract Laboratory Program
CRDL = contract required detection limit
EPA = U.S. Environmental Protection Agency
GC-MS = gas chromatograph-mass spectrometer
GFAA = graphite furnace atomic absorption
IDL = instrument detection limit
MSA = method of standard addition
%REC = percent recovery
Pu/Am = plutonium and americium
TIC = tentatively identified compound
TSS = total suspended solids
U = uranium
VOC = volatile organic compound

Location Type

SL = surface location
TS = treatment system
WL = well

Unit

C = Celsius
mg/L = milligrams per liter
ug/L = micrograms per liter
umhos/cm = micromhos per centimeter
uS/cm = microsiemens per centimeter
mS/cm = millisiemens per centimeter
NTU = nephelometric turbidity units
pCi/L = picocuries per liter
ppm = parts per million
s.u. = standard unit

Sample Type

D = duplicate
F = field sample

Collection Method

C = composite
G = grab

Laboratory Qualifier

* Replicate analysis not within control limits
+ Correlation coefficient for MSA <0.995
> Result above upper detection limit
A TIC is a suspected aldol-condensation product
B Inorganic: Result is between the IDL and CRDL;
Organic and Radiochemistry: Analyte also found in method blank
C Pesticide result confirmed by GC-MS
D Analyte determined in diluted sample
E Inorganic: Estimate value because of interference, see case narrative;
Organic: Analyte exceeded calibration range of the GC-MS
H Holding time expired, value suspect
I Increased detection limit due to required dilution
J Estimated
M GFAA duplicate injection precision not met
N Inorganic or radiochemical: Spike sample recovery not within control limits;
Organic: TIC
P >25% difference in detected pesticide or Arochlor concentrations between
two columns
S Result determined by MSA
U Analytical result below detection limit
W Postdigestion spike outside control limits while sample absorbance <50% of
analytical spike absorbance
X Laboratory-defined (EPA CLP organic) qualifier, see case narrative
Y Laboratory-defined (EPA CLP organic) qualifier, see case narrative
X Laboratory-defined (EPA CLP organic) qualifier, see case narrative
<blank> No qualifiers needed for result

Filtration Status

N Sample was not filtered
Y Sample was filtered

Data Validation Qualifier

999 Validation not complete
F Low-flow sampling method used
G Possible grout contamination, pH > 9
J Estimated
L Less than 3 bore volumes purged before sampling
<NULL> No qualifiers
Q Qualitative result due to sampling technique
R Unusable result
U Parameter analyzed but not detected
Location undefined

Laboratory Code

GEN Gel Laboratories LLC
STD Eurofins Test America

Appendix B
Analytical Results for Water Samples—Third Quarter CY 2025
RFLMA Data

Location Code	Location Type	Date Sampled	Sample Code	CAS	Analyte	Filtration Status	Result	Unit	Lab Qualifier	Sample Type	Detection Limit	Uncertainty	Data Validation Qualifier	Collection Method	Lab Code
70193	WL	7/15/2025	RFS01-10.2507078-036	7440-38-2	Arsenic	Y	0.5	ug/L	U	F	0.5		FQ	G	STD
70193	WL	7/15/2025	RFS01-10.2507078-036	7440-41-7	Beryllium	Y	0.25	ug/L	U	F	0.25		FQ	G	STD
70193	WL	7/15/2025	RFS01-10.2507078-036	7440-42-8	Boron	Y	15	ug/L	U	F	15		FQ	G	STD
70193	WL	7/15/2025	RFS01-10.2507078-036	7440-43-9	Cadmium	Y	0.25	ug/L	U	F	0.25		FQ	G	STD
70193	WL	7/15/2025	RFS01-10.2507078-036	7440-47-3	Chromium	Y	1	ug/L	U	F	1		FQ	G	STD
70193	WL	7/15/2025	RFS01-10.2507078-036	7440-50-8	Copper	Y	1	ug/L	U	F	1		FQ	G	STD
70193	WL	7/15/2025	RFS01-10.2507078-036	7439-92-1	Lead	Y	0.5	ug/L	U	F	0.5		FQ	G	STD
70193	WL	7/15/2025	RFS01-10.2507078-036	7439-97-6	Mercury	Y	0.06	ug/L	U	F	0.06		FQ	G	STD
70193	WL	7/15/2025	RFS01-10.2507078-036	7440-02-0	Nickel	Y	1	ug/L	U	F	1		FQ	G	STD
70193	WL	7/15/2025	RFS01-10.2507078-036	7782-49-2	Selenium	Y	4.4	ug/L	U	F	0.5		FQ	G	STD
70193	WL	7/15/2025	RFS01-10.2507078-036	7440-22-4	Silver	Y	0.25	ug/L	U	F	0.25		FQ	G	STD
70193	WL	7/15/2025	RFS01-10.2507078-036	7440-22-4	Silver	Y	0.25	ug/L	U	F	0.25		FQ	G	STD
70193	WL	7/15/2025	RFS01-10.2507078-036	7440-61-1	Uranium	Y	0.25	ug/L	U	D	0.25		FQ	G	STD
70193	WL	7/15/2025	RFS01-10.2507078-037	7440-61-1	Uranium	Y	0.25	ug/L	U	F	0.25		FQ	G	STD
70193	WL	8/6/2025	RFS01-10.2507080-036	71-55-6	Zinc	Y	5	ug/L	U	F	5		FQ	G	STD
70193	WL	8/6/2025	RFS01-10.2507080-036	71-55-6	1,1,1-Trichloroethane	N	0.25	ug/L	U	F	0.25		G	STD	
70193	WL	8/6/2025	RFS01-10.2507080-036	79-34-5	1,1,2,2-Tetrachloroethane	N	0.25	ug/L	U	F	0.25		G	STD	
70193	WL	8/6/2025	RFS01-10.2507080-036	79-00-5	1,1,2-Trichloroethane	N	0.25	ug/L	U	F	0.25		G	STD	
70193	WL	8/6/2025	RFS01-10.2507080-036	75-35-4	1,1-Dichloroethene	N	0.25	ug/L	U	F	0.25		G	STD	
70193	WL	8/6/2025	RFS01-10.2507080-036	120-82-1	1,2,4-Trichlorobenzene	N	0.5	ug/L	U	F	0.5		G	STD	
70193	WL	8/6/2025	RFS01-10.2507080-036	95-50-1	1,2-Dichlorobenzene	N	0.25	ug/L	U	F	0.25		G	STD	
70193	WL	8/6/2025	RFS01-10.2507080-036	107-06-2	1,2-Dichloroethane	N	0.25	ug/L	U	F	0.25		G	STD	
70193	WL	8/6/2025	RFS01-10.2507080-036	78-87-5	1,2-Dichloropropane	N	0.25	ug/L	U	F	0.25		G	STD	
70193	WL	8/6/2025	RFS01-10.2507080-036	541-73-1	1,3-Dichlorobenzene	N	0.25	ug/L	U	F	0.25		G	STD	
70193	WL	8/6/2025	RFS01-10.2507080-036	106-46-7	1,4-Dichlorobenzene	N	0.25	ug/L	U	F	0.25		G	STD	
70193	WL	8/6/2025	RFS01-10.2507080-036	71-43-2	Benzene	N	0.25	ug/L	U	F	0.25		G	STD	
70193	WL	8/6/2025	RFS01-10.2507080-036	75-25-2	Bromoform	N	0.5	ug/L	U	F	0.5		G	STD	
70193	WL	8/6/2025	RFS01-10.2507080-036	56-23-5	Carbon tetrachloride	N	0.25	ug/L	U	F	0.25		G	STD	
70193	WL	8/6/2025	RFS01-10.2507080-036	108-90-7	Chlorobenzene	N	0.25	ug/L	U	F	0.25		G	STD	
70193	WL	8/6/2025	RFS01-10.2507080-036	67-66-3	Chloroform	N	0.25	ug/L	U	F	0.25		G	STD	
70193	WL	8/6/2025	RFS01-10.2507080-036	74-87-3	Chloromethane	N	0.5	ug/L	U	F	0.5		G	STD	
70193	WL	8/6/2025	RFS01-10.2507080-036	156-59-2	cis-1,2-Dichloroethene	N	0.25	ug/L	U	F	0.25		G	STD	
70193	WL	8/6/2025	RFS01-10.2507080-036	100-41-4	Ethylbenzene	N	0.25	ug/L	U	F	0.25		G	STD	
70193	WL	8/6/2025	RFS01-10.2507080-036	87-68-3	Hexachlorobutadiene	N	0.5	ug/L	U	F	0.5		G	STD	
70193	WL	8/6/2025	RFS01-10.2507080-036	75-09-2	Methylene chloride	N	1	ug/L	U	F	1		G	STD	
70193	WL	8/6/2025	RFS01-10.2507080-036	91-20-3	Naphthalene	N	1	ug/L	U	F	1		G	STD	
70193	WL	8/6/2025	RFS01-10.2507080-036	100-42-5	Styrene	N	0.25	ug/L	U	F	0.25		G	STD	
70193	WL	8/6/2025	RFS01-10.2507080-036	127-18-4	Tetrachloroethene	N	0.25	ug/L	U	F	0.25		G	STD	
70193	WL	8/6/2025	RFS01-10.2507080-036	108-88-3	Toluene	N	0.25	ug/L	U	F	0.25		G	STD	
70193	WL	8/6/2025	RFS01-10.2507080-036	1330-20-7	Total Xylenes	N	0.25	ug/L	U	F	0.25		G	STD	
70193	WL	8/6/2025	RFS01-10.2507080-036	156-60-5	trans-1,2-Dichloroethene	N	0.25	ug/L	U	F	0.25		G	STD	
70193	WL	8/6/2025	RFS01-10.2507080-036	79-01-6	Trichloroethene	N	0.25	ug/L	U	F	0.25		G	STD	
70193	WL	8/6/2025	RFS01-10.2507080-036	75-01-4	Vinyl chloride	N	0.25	ug/L	U	F	0.25		G	STD	
70393	WL	7/15/2025	RFS01-10.250708-021	7440-38-2	Arsenic	Y	0.5	ug/L	U	D	0.5		FQ	G	STD
70393	WL	7/15/2025	RFS01-10.250708-037	7440-38-2	Arsenic	Y	0.5	ug/L	U	F	0.5		FQ	G	STD
70393	WL	7/15/2025	RFS01-10.250708-021	7440-41-7	Beryllium	Y	0.49	ug/L	J	D	0.25		FQ	G	STD
70393	WL	7/15/2025	RFS01-10.250708-037	7440-41-7	Beryllium	Y	0.25	ug/L	U	F	0.25		FQ	G	STD
70393	WL	7/15/2025	RFS01-10.250708-021	7440-42-8	Boron	Y	15	ug/L	U	D	15		FQ	G	STD
70393	WL	7/15/2025	RFS01-10.250708-037	7440-42-8	Boron	Y	15	ug/L	U	F	15		FQ	G	STD
70393	WL	7/15/2025	RFS01-10.250708-021	7440-43-9	Cadmium	Y	0.25	ug/L	U	D	0.25		FQ	G	STD
70393	WL	7/15/2025	RFS01-10.250708-037	7440-43-9	Cadmium	Y	0.25	ug/L	U	F	0.25		FQ	G	STD
70393	WL	7/15/2025	RFS01-10.250708-021	7440-47-3	Chromium	Y	1	ug/L	U	D	1		FQ	G	STD
70393	WL	7/15/2025	RFS01-10.250708-037	7440-47-3	Chromium	Y	1	ug/L	U	F	1		FQ	G	STD
70393	WL	7/15/2025	RFS01-10.250708-021	7440-50-8	Copper	Y	1	ug/L	U	D	1		FQ	G	STD
70393	WL	7/15/2025	RFS01-10.250708-037	7440-50-8	Copper	Y	1	ug/L	U	F	1		FQ	G	STD
70393	WL	7/15/2025	RFS01-10.250708-021	7439-92-1	Lead	Y	0.5	ug/L	U	D	0.5		FQ	G	STD
70393	WL	7/15/2025	RFS01-10.250708-037	7439-92-1	Lead	Y	0.5	ug/L	U	F	0.5		FQ	G	STD
70393	WL	7/15/2025	RFS01-10.250708-021	7439-97-6	Mercury	Y	0.06	ug/L	U	D	0.06		FQ	G	STD
70393	WL	7/15/2025	RFS01-10.250708-037	7439-97-6	Mercury	Y	0.06	ug/L	U	F	0.06		FQ	G	STD
70393	WL	7/15/2025	RFS01-10.2507078-021	7440-02-0	Nickel	Y	1	ug/L	U	D	1		FQ	G	STD
70393	WL	7/15/2025	RFS01-10.2507078-037	7440-02-0	Nickel	Y	1	ug/L	U	F	1		FQ	G	STD
70393	WL	7/15/2025	RFS01-10.2507078-021	7782-49-2	Selenium	Y	1.4	ug/L	J	D	0.5		FQ	G	STD
70393	WL	7/15/2025	RFS01-10.2507078-037	7782-49-2	Selenium	Y	1	ug/L	J	F	0.5		FQ	G	STD
70393	WL	7/15/2025	RFS01-10.2507078-021	7440-22-4	Silver	Y	0.25	ug/L	U	D	0.25		FQ	G	STD
70393	WL	7/15/2025	RFS01-10.2507078-037	7440-22-4	Silver	Y	0.25	ug/L	U	F	0.25		FQ	G	STD
70393	WL	7/15/2025	RFS01-10.2507078-021	7440-61-1	Uranium	Y	0.25	ug/L	U	D	0.25		FQ	G	STD
70393	WL	7/15/2025	RFS01-10.2507078-037	7440-61-1	Uranium	Y	0.25	ug/L	U	F	0.25		FQ	G	STD
70393	WL	7/15/2025	RFS01-10.2507078-021	7440-66-6	Zinc	Y	5	ug/L	U	D	5		FQ	G	STD
70393	WL	7/15/2025	RFS01-10.2507078-037	7440-66-6	Zinc	Y	5	ug/L	U	F	5		FQ	G	STD
70393	WL	8/6/2025	RFS01-10.2507080-017	71-55-6	1,1,1-Trichloroethane	N	0.25	ug/L	U	D	0.25		G	STD	
70393	WL	8/6/2025	RFS01-10.2507080-037	71-55-6	1,1,1-Trichloroethane	N	0.25	ug/L	U	F	0.25		G	STD	

Appendix B
 Analytical Results for Water Samples—Third Quarter CY 2025
 RFLMA Data

Location Code	Location Type	Date Sampled	Sample Code	CAS	Analyte	Filtration Status	Result	Unit	Lab Qualifier	Sample Type	Detection Limit	Uncertainty	Data Validation Qualifier	Collection Method	Lab Code	
70393	WL	8/6/2025	RFS01-10.2507080-017	79-34-5	1,1,2,2-Tetrachloroethane	N	0.25	ug/L	U	D	0.25			G	STD	
70393	WL	8/6/2025	RFS01-10.2507080-037	79-34-5	1,1,2,2-Tetrachloroethane	N	0.25	ug/L	U	F	0.25			G	STD	
70393	WL	8/6/2025	RFS01-10.2507080-017	79-00-5	1,1,2-Trichloroethane	N	0.25	ug/L	U	D	0.25			G	STD	
70393	WL	8/6/2025	RFS01-10.2507080-037	79-00-5	1,1,2-Trichloroethane	N	0.25	ug/L	U	F	0.25			G	STD	
70393	WL	8/6/2025	RFS01-10.2507080-017	75-35-4	1,1-Dichloroethene	N	0.74	ug/L	J	D	0.25			G	STD	
70393	WL	8/6/2025	RFS01-10.2507080-037	75-35-4	1,1-Dichloroethene	N	0.77	ug/L	J	F	0.25			G	STD	
70393	WL	8/6/2025	RFS01-10.2507080-017	120-82-1	1,2,4-Trichlorobenzene	N	0.5	ug/L	U	D	0.5			G	STD	
70393	WL	8/6/2025	RFS01-10.2507080-037	120-82-1	1,2,4-Trichlorobenzene	N	0.5	ug/L	U	F	0.5			G	STD	
70393	WL	8/6/2025	RFS01-10.2507080-017	95-50-1	1,2-Dichlorobenzene	N	0.25	ug/L	U	D	0.25			G	STD	
70393	WL	8/6/2025	RFS01-10.2507080-037	95-50-1	1,2-Dichlorobenzene	N	0.25	ug/L	U	F	0.25			G	STD	
70393	WL	8/6/2025	RFS01-10.2507080-017	107-06-2	1,2-Dichloroethane	N	0.25	ug/L	U	D	0.25			G	STD	
70393	WL	8/6/2025	RFS01-10.2507080-037	107-06-2	1,2-Dichloroethane	N	0.25	ug/L	U	F	0.25			G	STD	
70393	WL	8/6/2025	RFS01-10.2507080-017	78-87-5	1,2-Dichloropropane	N	0.25	ug/L	U	D	0.25			G	STD	
70393	WL	8/6/2025	RFS01-10.2507080-037	78-87-5	1,2-Dichloropropane	N	0.25	ug/L	U	F	0.25			G	STD	
70393	WL	8/6/2025	RFS01-10.2507080-017	541-73-1	1,3-Dichlorobenzene	N	0.25	ug/L	U	D	0.25			G	STD	
70393	WL	8/6/2025	RFS01-10.2507080-037	541-73-1	1,3-Dichlorobenzene	N	0.25	ug/L	U	F	0.25			G	STD	
70393	WL	8/6/2025	RFS01-10.2507080-017	106-46-7	1,4-Dichlorobenzene	N	0.25	ug/L	U	D	0.25			G	STD	
70393	WL	8/6/2025	RFS01-10.2507080-037	106-46-7	1,4-Dichlorobenzene	N	0.25	ug/L	U	F	0.25			G	STD	
70393	WL	8/6/2025	RFS01-10.2507080-017	71-43-2	Benzene	N	0.25	ug/L	U	D	0.25			G	STD	
70393	WL	8/6/2025	RFS01-10.2507080-037	71-43-2	Benzene	N	0.25	ug/L	U	F	0.25			G	STD	
70393	WL	8/6/2025	RFS01-10.2507080-017	75-25-2	Bromoform	N	0.5	ug/L	U	D	0.5			G	STD	
70393	WL	8/6/2025	RFS01-10.2507080-037	75-25-2	Bromoform	N	0.5	ug/L	U	F	0.5			G	STD	
70393	WL	8/6/2025	RFS01-10.2507080-017	56-23-5	Carbon tetrachloride	N	0.25	ug/L	U	D	0.25			G	STD	
70393	WL	8/6/2025	RFS01-10.2507080-037	56-23-5	Carbon tetrachloride	N	0.25	ug/L	U	F	0.25			G	STD	
70393	WL	8/6/2025	RFS01-10.2507080-017	108-90-7	Chlorobenzene	N	0.25	ug/L	U	D	0.25			G	STD	
70393	WL	8/6/2025	RFS01-10.2507080-037	108-90-7	Chlorobenzene	N	0.25	ug/L	U	F	0.25			G	STD	
70393	WL	8/6/2025	RFS01-10.2507080-017	67-66-3	Chloroform	N	0.25	ug/L	U	D	0.25			G	STD	
70393	WL	8/6/2025	RFS01-10.2507080-037	67-66-3	Chloroform	N	0.25	ug/L	U	F	0.25			G	STD	
70393	WL	8/6/2025	RFS01-10.2507080-017	74-87-3	Chloromethane	N	0.5	ug/L	U	D	0.5			G	STD	
70393	WL	8/6/2025	RFS01-10.2507080-037	74-87-3	Chloromethane	N	0.5	ug/L	U	F	0.5			G	STD	
70393	WL	8/6/2025	RFS01-10.2507080-017	156-59-2	cis-1,2-Dichloroethene	N	0.25	ug/L	U	D	0.25			G	STD	
70393	WL	8/6/2025	RFS01-10.2507080-037	156-59-2	cis-1,2-Dichloroethene	N	0.25	ug/L	U	F	0.25			G	STD	
70393	WL	8/6/2025	RFS01-10.2507080-017	100-41-4	Ethylbenzene	N	0.25	ug/L	U	D	0.25			G	STD	
70393	WL	8/6/2025	RFS01-10.2507080-037	100-41-4	Ethylbenzene	N	0.25	ug/L	U	F	0.25			G	STD	
70393	WL	8/6/2025	RFS01-10.2507080-017	87-68-3	Hexachlorobutadiene	N	0.5	ug/L	U	D	0.5			G	STD	
70393	WL	8/6/2025	RFS01-10.2507080-037	87-68-3	Hexachlorobutadiene	N	0.5	ug/L	U	F	0.5			G	STD	
70393	WL	8/6/2025	RFS01-10.2507080-017	75-09-2	Methylene chloride	N	1	ug/L	U	D	1			G	STD	
70393	WL	8/6/2025	RFS01-10.2507080-037	75-09-2	Methylene chloride	N	1	ug/L	U	F	1			G	STD	
70393	WL	8/6/2025	RFS01-10.2507080-017	91-20-3	Naphthalene	N	1	ug/L	U	D	1			G	STD	
70393	WL	8/6/2025	RFS01-10.2507080-037	91-20-3	Naphthalene	N	1	ug/L	U	F	1			G	STD	
70393	WL	8/6/2025	RFS01-10.2507080-017	100-42-5	Styrene	N	0.25	ug/L	U	D	0.25			G	STD	
70393	WL	8/6/2025	RFS01-10.2507080-037	100-42-5	Styrene	N	0.25	ug/L	U	F	0.25			G	STD	
70393	WL	8/6/2025	RFS01-10.2507080-017	127-18-4	Tetrachloroethene	N	0.25	ug/L	U	D	0.25			G	STD	
70393	WL	8/6/2025	RFS01-10.2507080-037	127-18-4	Tetrachloroethene	N	0.25	ug/L	U	F	0.25			G	STD	
70393	WL	8/6/2025	RFS01-10.2507080-017	108-88-3	Toluene	N	0.25	ug/L	U	D	0.25			G	STD	
70393	WL	8/6/2025	RFS01-10.2507080-037	108-88-3	Toluene	N	0.25	ug/L	U	F	0.25			G	STD	
70393	WL	8/6/2025	RFS01-10.2507080-017	1330-20-7	Total Xylenes	N	0.25	ug/L	U	D	0.25			G	STD	
70393	WL	8/6/2025	RFS01-10.2507080-037	1330-20-7	Total Xylenes	N	0.25	ug/L	U	F	0.25			G	STD	
70393	WL	8/6/2025	RFS01-10.2507080-017	156-60-5	trans-1,2-Dichloroethene	N	0.25	ug/L	U	D	0.25			G	STD	
70393	WL	8/6/2025	RFS01-10.2507080-037	156-60-5	trans-1,2-Dichloroethene	N	0.25	ug/L	U	F	0.25			G	STD	
70393	WL	8/6/2025	RFS01-10.2507080-017	79-01-6	Trichloroethene	N	3.1	ug/L	U	D	0.25			G	STD	
70393	WL	8/6/2025	RFS01-10.2507080-037	79-01-6	Trichloroethene	N	3.5	ug/L	U	F	0.25			G	STD	
70393	WL	8/6/2025	RFS01-10.2507080-017	75-01-4	Vinyl chloride	N	0.25	ug/L	U	D	0.25			G	STD	
70393	WL	8/6/2025	RFS01-10.2507080-037	75-01-4	Vinyl chloride	N	0.25	ug/L	U	F	0.25			G	STD	
70693	WL	7/15/2025	RFS01-10.2507078-038	7440-38-2	Arsenic	Y	0.5	ug/L	U	F	0.5			F	G	STD
70693	WL	7/15/2025	RFS01-10.2507078-038	7440-41-7	Beryllium	Y	0.25	ug/L	U	F	0.25			F	G	STD
70693	WL	7/15/2025	RFS01-10.2507078-038	7440-42-8	Boron	Y	22	ug/L	J	F	15			F	G	STD
70693	WL	7/15/2025	RFS01-10.2507078-038	7440-43-9	Cadmium	Y	0.25	ug/L	U	F	0.25			F	G	STD
70693	WL	7/15/2025	RFS01-10.2507078-038	7440-47-3	Chromium	Y	1	ug/L	U	F	1			F	G	STD
70693	WL	7/15/2025	RFS01-10.2507078-038	7440-50-8	Copper	Y	1	ug/L	U	F	1			F	G	STD
70693	WL	7/15/2025	RFS01-10.2507078-038	7439-92-1	Lead	Y	0.5	ug/L	U	F	0.5			F	G	STD
70693	WL	7/15/2025	RFS01-10.2507078-038	7439-97-6	Mercury	Y	0.06	ug/L	U	F	0.06			F	G	STD
70693	WL	7/15/2025	RFS01-10.2507078-038	7440-02-0	Nickel	Y	1	ug/L	U	F	1			F	G	STD
70693	WL	7/15/2025	RFS01-10.2507078-038	7782-49-2	Selenium	Y	1.2	ug/L	J	F	0.5			F	G	STD
70693	WL	7/15/2025	RFS01-10.2507078-038	7440-22-4	Silver	Y	0.25	ug/L	U	F	0.25			F	G	STD
70693	WL	7/15/2025	RFS01-10.2507078-038	7440-61-1	Uranium	Y	0.25	ug/L	U	F	0.25			F	G	STD
70693	WL	7/15/2025	RFS01-10.2507078-038	7440-66-6	Zinc	Y	5	ug/L	J	F	5			F	G	STD
70693	WL	8/6/2025	RFS01-10.2507080-038	71-55-6	1,1,1-Trichloroethane	N	0.25	ug/L	U	F	0.25			G	STD	
70693	WL	8/6/2025	RFS01-10.2507080-038	79-34-5	1,1,2-Tetrachloroethane	N	0.25	ug/L	U	F	0.25			G	STD	

Appendix B
Analytical Results for Water Samples—Third Quarter CY 2025
RFLMA Data

Location Code	Location Type	Date Sampled	Sample Code	CAS	Analyte	Filtration Status	Result	Unit	Lab Qualifier	Sample Type	Detection Limit	Uncertainty	Data Validation Qualifier	Collection Method	Lab Code	
70693	WL	8/6/2025	RFS01-10.2507080-038	79-00-5	1,1,2-Trichloroethane	N	0.25	ug/L	U	F	0.25			G	STD	
70693	WL	8/6/2025	RFS01-10.2507080-038	75-35-4	1,1-Dichloroethene	N	0.25	ug/L	U	F	0.25			G	STD	
70693	WL	8/6/2025	RFS01-10.2507080-038	120-82-1	1,2,4-Trichlorobenzene	N	0.5	ug/L	U	F	0.5			G	STD	
70693	WL	8/6/2025	RFS01-10.2507080-038	95-50-1	1,2-Dichlorobenzene	N	0.25	ug/L	U	F	0.25			G	STD	
70693	WL	8/6/2025	RFS01-10.2507080-038	107-06-2	1,2-Dichloroethane	N	0.25	ug/L	U	F	0.25			G	STD	
70693	WL	8/6/2025	RFS01-10.2507080-038	78-87-5	1,2-Dichloropropane	N	0.25	ug/L	U	F	0.25			G	STD	
70693	WL	8/6/2025	RFS01-10.2507080-038	541-73-1	1,3-Dichlorobenzene	N	0.25	ug/L	U	F	0.25			G	STD	
70693	WL	8/6/2025	RFS01-10.2507080-038	106-46-7	1,4-Dichlorobenzene	N	0.25	ug/L	U	F	0.25			G	STD	
70693	WL	8/6/2025	RFS01-10.2507080-038	71-43-2	Benzene	N	0.25	ug/L	U	F	0.25			G	STD	
70693	WL	8/6/2025	RFS01-10.2507080-038	75-25-2	Bromoform	N	0.5	ug/L	U	F	0.5			G	STD	
70693	WL	8/6/2025	RFS01-10.2507080-038	56-23-5	Carbon tetrachloride	N	0.25	ug/L	U	F	0.25			G	STD	
70693	WL	8/6/2025	RFS01-10.2507080-038	108-90-7	Chlorobenzene	N	0.25	ug/L	U	F	0.25			G	STD	
70693	WL	8/6/2025	RFS01-10.2507080-038	67-66-3	Chloroform	N	0.25	ug/L	U	F	0.25			G	STD	
70693	WL	8/6/2025	RFS01-10.2507080-038	74-87-3	Chloromethane	N	0.5	ug/L	U	F	0.5			G	STD	
70693	WL	8/6/2025	RFS01-10.2507080-038	156-59-2	cis-1,2-Dichloroethene	N	0.25	ug/L	U	F	0.25			G	STD	
70693	WL	8/6/2025	RFS01-10.2507080-038	100-41-4	Ethylbenzene	N	0.25	ug/L	U	F	0.25			G	STD	
70693	WL	8/6/2025	RFS01-10.2507080-038	87-68-3	Hexachlorobutadiene	N	0.5	ug/L	U	F	0.5			G	STD	
70693	WL	8/6/2025	RFS01-10.2507080-038	75-09-2	Methylene chloride	N	1	ug/L	U	F	1			G	STD	
70693	WL	8/6/2025	RFS01-10.2507080-038	91-20-3	Naphthalene	N	1	ug/L	U	F	1			G	STD	
70693	WL	8/6/2025	RFS01-10.2507080-038	100-42-5	Styrene	N	0.25	ug/L	U	F	0.25			G	STD	
70693	WL	8/6/2025	RFS01-10.2507080-038	127-18-4	Tetrachloroethene	N	0.25	ug/L	U	F	0.25			G	STD	
70693	WL	8/6/2025	RFS01-10.2507080-038	108-88-3	Toluene	N	0.25	ug/L	U	F	0.25			G	STD	
70693	WL	8/6/2025	RFS01-10.2507080-038	1330-20-7	Total Xylenes	N	0.25	ug/L	U	F	0.25			G	STD	
70693	WL	8/6/2025	RFS01-10.2507080-038	156-60-5	trans-1,2-Dichloroethene	N	0.25	ug/L	U	F	0.25			G	STD	
70693	WL	8/6/2025	RFS01-10.2507080-038	79-01-6	Trichloroethene	N	0.85	ug/L	J	F	0.25			G	STD	
70693	WL	8/6/2025	RFS01-10.2507080-038	75-01-4	Vinyl chloride	N	0.25	ug/L	U	F	0.25			G	STD	
73005	WL	7/15/2025	RFS01-10.2507078-039	7440-38-2	Arsenic	Y	0.5	ug/L	U	F	0.5			FQ	G	STD
73005	WL	7/15/2025	RFS01-10.2507078-039	7440-41-7	Beryllium	Y	0.25	ug/L	U	F	0.25			FQ	G	STD
73005	WL	7/15/2025	RFS01-10.2507078-039	7440-42-8	Boron	Y	38	ug/L	J	F	15			FQ	G	STD
73005	WL	7/15/2025	RFS01-10.2507078-039	7440-43-9	Cadmium	Y	0.25	ug/L	U	F	0.25			FQ	G	STD
73005	WL	7/15/2025	RFS01-10.2507078-039	7440-47-3	Chromium	Y	1	ug/L	U	F	1			FQ	G	STD
73005	WL	7/15/2025	RFS01-10.2507078-039	7440-50-8	Copper	Y	1	ug/L	U	F	1			FQ	G	STD
73005	WL	7/15/2025	RFS01-10.2507078-039	7439-92-1	Lead	Y	0.5	ug/L	U	F	0.5			FQ	G	STD
73005	WL	7/15/2025	RFS01-10.2507078-039	7439-97-6	Mercury	Y	0.06	ug/L	U	F	0.06			FQ	G	STD
73005	WL	7/15/2025	RFS01-10.2507078-039	7440-02-0	Nickel	Y	1.7	ug/L	J	F	1			FQ	G	STD
73005	WL	7/15/2025	RFS01-10.2507078-039	7782-49-2	Selenium	Y	3.1	ug/L	U	F	0.5			FQ	G	STD
73005	WL	7/15/2025	RFS01-10.2507078-039	7440-22-4	Silver	Y	0.25	ug/L	U	F	0.25			FQ	G	STD
73005	WL	7/15/2025	RFS01-10.2507078-039	7440-61-1	Uranium	Y	31	ug/L	U	F	0.25			FQ	G	STD
73005	WL	7/15/2025	RFS01-10.2507078-039	7440-66-6	Zinc	Y	11	ug/L	U	F	5			FQ	G	STD
73005	WL	8/6/2025	RFS01-10.2507080-039	71-55-6	1,1,1-Trichloroethane	N	0.25	ug/L	U	F	0.25				G	STD
73005	WL	8/6/2025	RFS01-10.2507080-039	79-34-5	1,1,2,2-Tetrachloroethane	N	0.25	ug/L	U	F	0.25				G	STD
73005	WL	8/6/2025	RFS01-10.2507080-039	79-00-5	1,1,2-Trichloroethane	N	0.25	ug/L	U	F	0.25				G	STD
73005	WL	8/6/2025	RFS01-10.2507080-039	75-35-4	1,1-Dichloroethene	N	0.25	ug/L	U	F	0.25				G	STD
73005	WL	8/6/2025	RFS01-10.2507080-039	120-82-1	1,2,4-Trichlorobenzene	N	0.5	ug/L	U	F	0.5				G	STD
73005	WL	8/6/2025	RFS01-10.2507080-039	95-50-1	1,2-Dichlorobenzene	N	0.25	ug/L	U	F	0.25				G	STD
73005	WL	8/6/2025	RFS01-10.2507080-039	107-06-2	1,2-Dichloroethane	N	0.25	ug/L	U	F	0.25				G	STD
73005	WL	8/6/2025	RFS01-10.2507080-039	78-87-5	1,2-Dichloropropane	N	0.25	ug/L	U	F	0.25				G	STD
73005	WL	8/6/2025	RFS01-10.2507080-039	541-73-1	1,3-Dichlorobenzene	N	0.25	ug/L	U	F	0.25				G	STD
73005	WL	8/6/2025	RFS01-10.2507080-039	106-46-7	1,4-Dichlorobenzene	N	0.25	ug/L	U	F	0.25				G	STD
73005	WL	8/6/2025	RFS01-10.2507080-039	71-43-2	Benzene	N	0.25	ug/L	U	F	0.25				G	STD
73005	WL	8/6/2025	RFS01-10.2507080-039	75-25-2	Bromoform	N	0.5	ug/L	U	F	0.5				G	STD
73005	WL	8/6/2025	RFS01-10.2507080-039	56-23-5	Carbon tetrachloride	N	0.25	ug/L	U	F	0.25				G	STD
73005	WL	8/6/2025	RFS01-10.2507080-039	108-90-7	Chlorobenzene	N	0.25	ug/L	U	F	0.25				G	STD
73005	WL	8/6/2025	RFS01-10.2507080-039	67-66-3	Chloroform	N	0.25	ug/L	U	F	0.25				G	STD
73005	WL	8/6/2025	RFS01-10.2507080-039	74-87-3	Chloromethane	N	0.5	ug/L	U	F	0.5				G	STD
73005	WL	8/6/2025	RFS01-10.2507080-039	156-59-2	cis-1,2-Dichloroethene	N	0.25	ug/L	U	F	0.25				G	STD
73005	WL	8/6/2025	RFS01-10.2507080-039	100-41-4	Ethylbenzene	N	0.25	ug/L	U	F	0.25				G	STD
73005	WL	8/6/2025	RFS01-10.2507080-039	87-68-3	Hexachlorobutadiene	N	0.5	ug/L	U	F	0.5				G	STD
73005	WL	8/6/2025	RFS01-10.2507080-039	75-09-2	Methylene chloride	N	1	ug/L	U	F	1				G	STD
73005	WL	8/6/2025	RFS01-10.2507080-039	91-20-3	Naphthalene	N	1	ug/L	U	F	1				G	STD
73005	WL	8/6/2025	RFS01-10.2507080-039	100-42-5	Styrene	N	0.25	ug/L	U	F	0.25				G	STD
73005	WL	8/6/2025	RFS01-10.2507080-039	127-18-4	Tetrachloroethene	N	0.25	ug/L	U	F	0.25				G	STD
73005	WL	8/6/2025	RFS01-10.2507080-039	108-88-3	Toluene	N	0.25	ug/L	U	F	0.25				G	STD
73005	WL	8/6/2025	RFS01-10.2507080-039	1330-20-7	Total Xylenes	N	0.25	ug/L	U	F	0.25				G	STD
73005	WL	8/6/2025	RFS01-10.2507080-039	156-60-5	trans-1,2-Dichloroethene	N	0.25	ug/L	U	F	0.25				G	STD
73005	WL	8/6/2025	RFS01-10.2507080-039	79-01-6	Trichloroethene	N	0.25	ug/L	U	F	0.25				G	STD
73005	WL	8/6/2025	RFS01-10.2507080-039	75-01-4	Vinyl chloride	N	0.25	ug/L	U	F	0.25				G	STD
73105	WL	7/15/2025	RFS01-10.2507078-040	7440-38-2	Arsenic	Y	0.5	ug/L	U	F	0.5			FQ	G	STD
73105	WL	7/15/2025	RFS01-10.2507078-040	7440-41-7	Beryllium	Y	0.25	ug/L	U	F	0.25			FQ	G	STD

Appendix B
Analytical Results for Water Samples—Third Quarter CY 2025
RFLMA Data

Location Code	Location Type	Date Sampled	Sample Code	CAS	Analyte	Filtration Status	Result	Unit	Lab Qualifier	Sample Type	Detection Limit	Uncertainty	Data Validation Qualifier	Collection Method	Lab Code
73105	WL	7/15/2025	RFS01-10.2507078-040	7440-42-8	Boron	Y	110	ug/L	F		15		FQ	G	STD
73105	WL	7/15/2025	RFS01-10.2507078-040	7440-43-9	Cadmium	Y	0.25	ug/L	U	F	0.25		FQ	G	STD
73105	WL	7/15/2025	RFS01-10.2507078-040	7440-47-3	Chromium	Y	1	ug/L	U	F	1		FQ	G	STD
73105	WL	7/15/2025	RFS01-10.2507078-040	7440-50-8	Copper	Y	1	ug/L	U	F	1		FQ	G	STD
73105	WL	7/15/2025	RFS01-10.2507078-040	7439-92-1	Lead	Y	0.5	ug/L	U	F	0.5		FQ	G	STD
73105	WL	7/15/2025	RFS01-10.2507078-040	7439-97-6	Mercury	Y	0.06	ug/L	U	F	0.06		FQ	G	STD
73105	WL	7/15/2025	RFS01-10.2507078-040	7440-02-0	Nickel	Y	3.5	ug/L	F		1		FQ	G	STD
73105	WL	7/15/2025	RFS01-10.2507078-040	7782-49-2	Selenium	Y	0.5	ug/L	U	F	0.5		FQ	G	STD
73105	WL	7/15/2025	RFS01-10.2507078-040	7440-22-4	Silver	Y	0.25	ug/L	U	F	0.25		FQ	G	STD
73105	WL	7/15/2025	RFS01-10.2507078-040	7440-61-1	Uranium	Y	18	ug/L	F		0.25		FQ	G	STD
73105	WL	7/15/2025	RFS01-10.2507078-040	7440-66-6	Zinc	Y	5	ug/L	U	F	5		FQ	G	STD
73105	WL	8/6/2025	RFS01-10.2507080-040	71-55-6	1,1,1-Trichloroethane	N	0.25	ug/L	U	F	0.25			G	STD
73105	WL	8/6/2025	RFS01-10.2507080-040	79-34-5	1,1,2,2-Tetrachloroethane	N	0.25	ug/L	U	F	0.25			G	STD
73105	WL	8/6/2025	RFS01-10.2507080-040	79-00-5	1,1,2-Trichloroethane	N	0.25	ug/L	U	F	0.25			G	STD
73105	WL	8/6/2025	RFS01-10.2507080-040	75-35-4	1,1-Dichloroethene	N	0.25	ug/L	U	F	0.25			G	STD
73105	WL	8/6/2025	RFS01-10.2507080-040	120-82-1	1,2,4-Trichlorobenzene	N	0.5	ug/L	U	F	0.5			G	STD
73105	WL	8/6/2025	RFS01-10.2507080-040	95-50-1	1,2-Dichlorobenzene	N	0.25	ug/L	U	F	0.25			G	STD
73105	WL	8/6/2025	RFS01-10.2507080-040	107-06-2	1,2-Dichloroethane	N	0.25	ug/L	U	F	0.25			G	STD
73105	WL	8/6/2025	RFS01-10.2507080-040	78-87-5	1,2-Dichloropropane	N	0.25	ug/L	U	F	0.25			G	STD
73105	WL	8/6/2025	RFS01-10.2507080-040	541-73-1	1,3-Dichlorobenzene	N	0.25	ug/L	U	F	0.25			G	STD
73105	WL	8/6/2025	RFS01-10.2507080-040	106-46-7	1,4-Dichlorobenzene	N	0.25	ug/L	U	F	0.25			G	STD
73105	WL	8/6/2025	RFS01-10.2507080-040	71-43-2	Benzene	N	0.25	ug/L	U	F	0.25			G	STD
73105	WL	8/6/2025	RFS01-10.2507080-040	75-25-2	Bromoform	N	0.5	ug/L	U	F	0.5			G	STD
73105	WL	8/6/2025	RFS01-10.2507080-040	56-23-5	Carbon tetrachloride	N	0.25	ug/L	U	F	0.25			G	STD
73105	WL	8/6/2025	RFS01-10.2507080-040	108-90-7	Chlorobenzene	N	0.25	ug/L	U	F	0.25			G	STD
73105	WL	8/6/2025	RFS01-10.2507080-040	67-66-3	Chloroform	N	0.25	ug/L	U	F	0.25			G	STD
73105	WL	8/6/2025	RFS01-10.2507080-040	74-87-3	Chloromethane	N	0.5	ug/L	U	F	0.5			G	STD
73105	WL	8/6/2025	RFS01-10.2507080-040	156-59-2	cis-1,2-Dichloroethene	N	0.25	ug/L	U	F	0.25			G	STD
73105	WL	8/6/2025	RFS01-10.2507080-040	100-41-4	Ethylbenzene	N	0.25	ug/L	U	F	0.25			G	STD
73105	WL	8/6/2025	RFS01-10.2507080-040	87-68-3	Hexachlorobutadiene	N	0.5	ug/L	U	F	0.5			G	STD
73105	WL	8/6/2025	RFS01-10.2507080-040	75-09-2	Methylene chloride	N	1	ug/L	U	F	1			G	STD
73105	WL	8/6/2025	RFS01-10.2507080-040	91-20-3	Naphthalene	N	1	ug/L	U	F	1			G	STD
73105	WL	8/6/2025	RFS01-10.2507080-040	100-42-5	Styrene	N	0.25	ug/L	U	F	0.25			G	STD
73105	WL	8/6/2025	RFS01-10.2507080-040	127-18-4	Tetrachloroethene	N	0.25	ug/L	U	F	0.25			G	STD
73105	WL	8/6/2025	RFS01-10.2507080-040	108-88-3	Toluene	N	0.25	ug/L	U	F	0.25			G	STD
73105	WL	8/6/2025	RFS01-10.2507080-040	1330-20-7	Total Xylenes	N	0.25	ug/L	U	F	0.25			G	STD
73105	WL	8/6/2025	RFS01-10.2507080-040	156-60-5	trans-1,2-Dichloroethene	N	0.25	ug/L	U	F	0.25			G	STD
73105	WL	8/6/2025	RFS01-10.2507080-040	79-01-6	Trichloroethene	N	0.25	ug/L	U	F	0.25			G	STD
73105	WL	8/6/2025	RFS01-10.2507080-040	75-01-4	Vinyl chloride	N	0.25	ug/L	U	F	0.25			G	STD
73205	WL	7/15/2025	RFS01-10.2507078-041	7440-38-2	Arsenic	Y	0.58	ug/L	J	F	0.5		FQ	G	STD
73205	WL	7/15/2025	RFS01-10.2507078-041	7440-41-7	Beryllium	Y	0.25	ug/L	U	F	0.25		FQ	G	STD
73205	WL	7/15/2025	RFS01-10.2507078-041	7440-42-8	Boron	Y	65	ug/L	F		15		FQ	G	STD
73205	WL	7/15/2025	RFS01-10.2507078-041	7440-43-9	Cadmium	Y	0.25	ug/L	U	F	0.25		FQ	G	STD
73205	WL	7/15/2025	RFS01-10.2507078-041	7440-47-3	Chromium	Y	1	ug/L	U	F	1		FQ	G	STD
73205	WL	7/15/2025	RFS01-10.2507078-041	7440-50-8	Copper	Y	1.7	ug/L	J	F	1		FQ	G	STD
73205	WL	7/15/2025	RFS01-10.2507078-041	7439-92-1	Lead	Y	0.5	ug/L	U	F	0.5		FQ	G	STD
73205	WL	7/15/2025	RFS01-10.2507078-041	7439-97-6	Mercury	Y	0.06	ug/L	U	F	0.06		FQ	G	STD
73205	WL	7/15/2025	RFS01-10.2507078-041	7440-02-0	Nickel	Y	1.8	ug/L	J	F	1		FQ	G	STD
73205	WL	7/15/2025	RFS01-10.2507078-041	7782-49-2	Selenium	Y	250	ug/L	F		0.5		FQ	G	STD
73205	WL	7/15/2025	RFS01-10.2507078-041	7440-22-4	Silver	Y	0.25	ug/L	U	F	0.25		FQ	G	STD
73205	WL	7/15/2025	RFS01-10.2507078-041	7440-61-1	Uranium	Y	110	ug/L	F		0.25		FQ	G	STD
73205	WL	7/15/2025	RFS01-10.2507078-041	7440-66-6	Zinc	Y	5	ug/L	U	F	5		FQ	G	STD
73205	WL	8/6/2025	RFS01-10.2507080-041	71-55-6	1,1,1-Trichloroethane	N	0.25	ug/L	U	F	0.25			G	STD
73205	WL	8/6/2025	RFS01-10.2507080-041	79-34-5	1,1,2,2-Tetrachloroethane	N	0.25	ug/L	U	F	0.25			G	STD
73205	WL	8/6/2025	RFS01-10.2507080-041	79-00-5	1,1,2-Trichloroethane	N	0.25	ug/L	U	F	0.25			G	STD
73205	WL	8/6/2025	RFS01-10.2507080-041	75-35-4	1,1-Dichloroethene	N	0.25	ug/L	U	F	0.25			G	STD
73205	WL	8/6/2025	RFS01-10.2507080-041	120-82-1	1,2,4-Trichlorobenzene	N	0.5	ug/L	U	F	0.5			G	STD
73205	WL	8/6/2025	RFS01-10.2507080-041	95-50-1	1,2-Dichlorobenzene	N	0.25	ug/L	U	F	0.25			G	STD
73205	WL	8/6/2025	RFS01-10.2507080-041	107-06-2	1,2-Dichloroethane	N	0.25	ug/L	U	F	0.25			G	STD
73205	WL	8/6/2025	RFS01-10.2507080-041	78-87-5	1,2-Dichloropropane	N	0.25	ug/L	U	F	0.25			G	STD
73205	WL	8/6/2025	RFS01-10.2507080-041	541-73-1	1,3-Dichlorobenzene	N	0.25	ug/L	U	F	0.25			G	STD
73205	WL	8/6/2025	RFS01-10.2507080-041	106-46-7	1,4-Dichlorobenzene	N	0.25	ug/L	U	F	0.25			G	STD
73205	WL	8/6/2025	RFS01-10.2507080-041	71-43-2	Benzene	N	0.25	ug/L	U	F	0.25			G	STD
73205	WL	8/6/2025	RFS01-10.2507080-041	75-25-2	Bromoform	N	0.5	ug/L	U	F	0.5			G	STD
73205	WL	8/6/2025	RFS01-10.2507080-041	56-23-5	Carbon tetrachloride	N	0.25	ug/L	U	F	0.25			G	STD
73205	WL	8/6/2025	RFS01-10.2507080-041	108-90-7	Chlorobenzene	N	0.25	ug/L	U	F	0.25			G	STD
73205	WL	8/6/2025	RFS01-10.2507080-041	67-66-3	Chloroform	N	0.25	ug/L	U	F	0.25			G	STD
73205	WL	8/6/2025	RFS01-10.2507080-041	74-87-3	Chloromethane	N	0.5	ug/L	U	F	0.5			G	STD
73205	WL	8/6/2025	RFS01-10.2507080-041	156-59-2	cis-1,2-Dichloroethene	N	0.25	ug/L	U	F	0.25			G	STD

Appendix B
Analytical Results for Water Samples—Third Quarter CY 2025
RFLMA Data

Location Code	Location Type	Date Sampled	Sample Code	CAS	Analyte	Filtration Status	Result	Unit	Lab Qualifier	Sample Type	Detection Limit	Uncertainty	Data Validation Qualifier	Collection Method	Lab Code
73205	WL	8/6/2025	RFS01-10.2507080-041	100-41-4	Ethylbenzene	N	0.25	ug/L	U	F	0.25			G	STD
73205	WL	8/6/2025	RFS01-10.2507080-041	87-68-3	Hexachlorobutadiene	N	0.5	ug/L	U	F	0.5			G	STD
73205	WL	8/6/2025	RFS01-10.2507080-041	75-09-2	Methylene chloride	N	1	ug/L	U	F	1			G	STD
73205	WL	8/6/2025	RFS01-10.2507080-041	91-20-3	Naphthalene	N	1	ug/L	U	F	1			G	STD
73205	WL	8/6/2025	RFS01-10.2507080-041	100-42-5	Styrene	N	0.25	ug/L	U	F	0.25			G	STD
73205	WL	8/6/2025	RFS01-10.2507080-041	127-18-4	Tetrachloroethene	N	0.25	ug/L	U	F	0.25			G	STD
73205	WL	8/6/2025	RFS01-10.2507080-041	108-88-3	Toluene	N	0.25	ug/L	U	F	0.25			G	STD
73205	WL	8/6/2025	RFS01-10.2507080-041	1330-20-7	Total Xylenes	N	0.25	ug/L	U	F	0.25			G	STD
73205	WL	8/6/2025	RFS01-10.2507080-041	156-60-5	trans-1,2-Dichloroethene	N	0.25	ug/L	U	F	0.25			G	STD
73205	WL	8/6/2025	RFS01-10.2507080-041	79-01-6	Trichloroethene	N	0.25	ug/L	U	F	0.25			G	STD
73205	WL	8/6/2025	RFS01-10.2507080-041	75-01-4	Vinyl chloride	N	0.25	ug/L	U	F	0.25			G	STD
80005	WL	7/16/2025	RFS01-10.2507078-042	7440-38-2	Arsenic	Y	0.5	ug/L	U	F	0.5		FQ	G	STD
80005	WL	7/16/2025	RFS01-10.2507078-042	7440-41-7	Beryllium	Y	0.25	ug/L	U	F	0.25		FQ	G	STD
80005	WL	7/16/2025	RFS01-10.2507078-042	7440-42-8	Boron	Y	46	ug/L	J	F	15		FQ	G	STD
80005	WL	7/16/2025	RFS01-10.2507078-042	7440-43-9	Cadmium	Y	0.25	ug/L	U	F	0.25		FQ	G	STD
80005	WL	7/16/2025	RFS01-10.2507078-042	7440-47-3	Chromium	Y	1	ug/L	U	F	1		FQ	G	STD
80005	WL	7/16/2025	RFS01-10.2507078-042	7440-50-8	Copper	Y	1	ug/L	U	F	1		FQ	G	STD
80005	WL	7/16/2025	RFS01-10.2507078-042	7439-92-1	Lead	Y	0.5	ug/L	U	F	0.5		FQ	G	STD
80005	WL	7/16/2025	RFS01-10.2507078-042	7439-97-6	Mercury	Y	0.06	ug/L	U	F	0.06		FQ	G	STD
80005	WL	7/16/2025	RFS01-10.2507078-042	7440-02-0	Nickel	Y	1	ug/L	U	F	1		FQ	G	STD
80005	WL	7/16/2025	RFS01-10.2507078-042	7782-49-2	Selenium	Y	0.5	ug/L	U	F	0.5		FQ	G	STD
80005	WL	7/16/2025	RFS01-10.2507078-042	7440-22-4	Silver	Y	0.25	ug/L	U	F	0.25		FQ	G	STD
80005	WL	7/16/2025	RFS01-10.2507078-042	7440-61-1	Uranium	Y	3.4	ug/L		F	0.25		FQ	G	STD
80005	WL	7/16/2025	RFS01-10.2507078-042	7440-66-6	Zinc	Y	5	ug/L	U	F	5		FQ	G	STD
80005	WL	8/5/2025	RFS01-10.2507079-042	71-55-6	1,1,1-Trichloroethane	N	0.25	ug/L	U	F	0.25			G	STD
80005	WL	8/5/2025	RFS01-10.2507079-042	79-34-5	1,1,2,2-Tetrachloroethane	N	0.25	ug/L	U	F	0.25			G	STD
80005	WL	8/5/2025	RFS01-10.2507079-042	79-00-5	1,1,2-Trichloroethane	N	0.25	ug/L	U	F	0.25			G	STD
80005	WL	8/5/2025	RFS01-10.2507079-042	75-35-4	1,1-Dichloroethene	N	0.25	ug/L	U	F	0.25			G	STD
80005	WL	8/5/2025	RFS01-10.2507079-042	120-82-1	1,2,4-Trichlorobenzene	N	0.5	ug/L	U	F	0.5			G	STD
80005	WL	8/5/2025	RFS01-10.2507079-042	95-50-1	1,2-Dichlorobenzene	N	0.25	ug/L	U	F	0.25			G	STD
80005	WL	8/5/2025	RFS01-10.2507079-042	107-06-2	1,2-Dichloroethane	N	0.25	ug/L	U	F	0.25			G	STD
80005	WL	8/5/2025	RFS01-10.2507079-042	78-87-5	1,2-Dichloropropane	N	0.25	ug/L	U	F	0.25			G	STD
80005	WL	8/5/2025	RFS01-10.2507079-042	541-73-1	1,3-Dichlorobenzene	N	0.25	ug/L	U	F	0.25			G	STD
80005	WL	8/5/2025	RFS01-10.2507079-042	106-46-7	1,4-Dichlorobenzene	N	0.25	ug/L	U	F	0.25			G	STD
80005	WL	8/5/2025	RFS01-10.2507079-042	91-58-7	2-Chloronaphthalene	N	1	ug/L	U	F	1			G	STD
80005	WL	8/5/2025	RFS01-10.2507079-043	83-32-9	Acenaphthene	N	0.04	ug/L	U	F	0.04			G	STD
80005	WL	8/5/2025	RFS01-10.2507079-043	120-12-7	Anthracene	N	0.04	ug/L	U	F	0.04			G	STD
80005	WL	8/5/2025	RFS01-10.2507079-042	71-43-2	Benzene	N	0.25	ug/L	U	F	0.25			G	STD
80005	WL	8/5/2025	RFS01-10.2507079-043	50-32-8	Benz(a)pyrene	N	0.04	ug/L	U	F	0.04			G	STD
80005	WL	8/5/2025	RFS01-10.2507079-043	191-24-2	Benz(g,h,i)Perylene	N	0.04	ug/L	U	F	0.04			G	STD
80005	WL	8/5/2025	RFS01-10.2507079-042	108-60-1	Bis(2-chloroisopropyl) ether	N	4	ug/L	U	F	4			G	STD
80005	WL	8/5/2025	RFS01-10.2507079-042	117-81-7	Bis(2-ethylhexyl) phthalate	N	5	ug/L	U	F	5			G	STD
80005	WL	8/5/2025	RFS01-10.2507079-042	75-25-2	Bromoform	N	0.5	ug/L	U	F	0.5			G	STD
80005	WL	8/5/2025	RFS01-10.2507079-042	56-23-5	Carbon tetrachloride	N	0.25	ug/L	U	F	0.25			G	STD
80005	WL	8/5/2025	RFS01-10.2507079-042	108-90-7	Chlorobenzene	N	0.25	ug/L	U	F	0.25			G	STD
80005	WL	8/5/2025	RFS01-10.2507079-042	67-66-3	Chloroform	N	0.25	ug/L	U	F	0.25			G	STD
80005	WL	8/5/2025	RFS01-10.2507079-042	74-87-3	Chloromethane	N	0.5	ug/L	U	F	0.5			G	STD
80005	WL	8/5/2025	RFS01-10.2507079-043	218-01-9	Chrysene	N	0.04	ug/L	U	F	0.04			G	STD
80005	WL	8/5/2025	RFS01-10.2507079-042	156-59-2	cis-1,2-Dichloroethene	N	0.25	ug/L	U	F	0.25			G	STD
80005	WL	8/5/2025	RFS01-10.2507079-043	53-70-3	Dibenz(a,h)anthracene	N	0.04	ug/L	U	F	0.04			G	STD
80005	WL	8/5/2025	RFS01-10.2507079-042	84-66-2	Diethyl phthalate	N	2	ug/L	U	F	2			G	STD
80005	WL	8/5/2025	RFS01-10.2507079-042	131-11-3	Dimethyl phthalate	N	1	ug/L	U	F	1			G	STD
80005	WL	8/5/2025	RFS01-10.2507079-042	84-74-2	Di-n-butyl phthalate	N	4	ug/L	U	F	4			G	STD
80005	WL	8/5/2025	RFS01-10.2507079-042	100-41-4	Ethylbenzene	N	0.25	ug/L	U	F	0.25			G	STD
80005	WL	8/5/2025	RFS01-10.2507079-043	206-44-0	Fluoranthene	N	0.04	ug/L	U	F	0.04			G	STD
80005	WL	8/5/2025	RFS01-10.2507079-043	86-73-7	Fluorene	N	0.04	ug/L	U	F	0.04			G	STD
80005	WL	8/5/2025	RFS01-10.2507079-042	87-68-3	Hexachlorobutadiene	N	0.5	ug/L	U	F	0.5			G	STD
80005	WL	8/5/2025	RFS01-10.2507079-042	67-72-1	Hexachloroethane	N	4	ug/L	U	F	4			G	STD
80005	WL	8/5/2025	RFS01-10.2507079-042	78-59-1	Isophorone	N	4	ug/L	U	F	4			G	STD
80005	WL	8/5/2025	RFS01-10.2507079-042	75-09-2	Methylene chloride	N	1	ug/L	U	F	1			G	STD
80005	WL	8/5/2025	RFS01-10.2507079-043	91-20-3	Naphthalene	N	0.05	ug/L	U	F	0.05			G	STD
80005	WL	8/5/2025	RFS01-10.2507079-043	129-00-0	Pyrene	N	0.04	ug/L	U	F	0.04			G	STD
80005	WL	8/5/2025	RFS01-10.2507079-042	100-42-5	Styrene	N	0.25	ug/L	U	F	0.25			G	STD
80005	WL	8/5/2025	RFS01-10.2507079-042	127-18-4	Tetrachloroethene	N	0.25	ug/L	U	F	0.25			G	STD
80005	WL	8/5/2025	RFS01-10.2507079-042	108-88-3	Toluene	N	0.25	ug/L	U	F	0.25			G	STD
80005	WL	8/5/2025	RFS01-10.2507079-042	1330-20-7	Total Xylenes	N	0.25	ug/L	U	F	0.25			G	STD
80005	WL	8/5/2025	RFS01-10.2507079-042	156-60-5	trans-1,2-Dichloroethene	N	0.25	ug/L	U	F	0.25			G	STD
80005	WL	8/5/2025	RFS01-10.2507079-042	79-01-6	Trichloroethene	N	0.25	ug/L	U	F	0.25			G	STD
80005	WL	8/5/2025	RFS01-10.2507079-042	75-01-4	Vinyl chloride	N	0.25	ug/L	U	F	0.25			G	STD

Appendix B
Analytical Results for Water Samples—Third Quarter CY 2025
RFLMA Data

Location Code	Location Type	Date Sampled	Sample Code	CAS	Analyte	Filtration Status	Result	Unit	Lab Qualifier	Sample Type	Detection Limit	Uncertainty	Data Validation Qualifier	Collection Method	Lab Code
80105	WL	7/16/2025	RFS01-10.2507078-044	7440-38-2	Arsenic	Y	0.5	ug/L	U	F	0.5		FQ	G	STD
80105	WL	7/16/2025	RFS01-10.2507078-044	7440-41-7	Beryllium	Y	0.25	ug/L	U	F	0.25		FQ	G	STD
80105	WL	7/16/2025	RFS01-10.2507078-044	7440-42-8	Boron	Y	130	ug/L		F	15		FQ	G	STD
80105	WL	7/16/2025	RFS01-10.2507078-044	7440-43-9	Cadmium	Y	0.25	ug/L	U	F	0.25		FQ	G	STD
80105	WL	7/16/2025	RFS01-10.2507078-044	7440-47-3	Chromium	Y	1	ug/L	U	F	1		FQ	G	STD
80105	WL	7/16/2025	RFS01-10.2507078-044	7440-50-8	Copper	Y	1	ug/L	U	F	1		FQ	G	STD
80105	WL	7/16/2025	RFS01-10.2507078-044	7439-92-1	Lead	Y	0.5	ug/L	U	F	0.5		FQ	G	STD
80105	WL	7/16/2025	RFS01-10.2507078-044	7439-97-6	Mercury	Y	0.06	ug/L	U	F	0.06		FQ	G	STD
80105	WL	7/16/2025	RFS01-10.2507078-044	7440-02-0	Nickel	Y	1	ug/L	U	F	1		FQ	G	STD
80105	WL	7/16/2025	RFS01-10.2507078-044	7782-49-2	Selenium	Y	0.5	ug/L	U	F	0.5		FQ	G	STD
80105	WL	7/16/2025	RFS01-10.2507078-044	7440-22-4	Silver	Y	0.25	ug/L	U	F	0.25		FQ	G	STD
80105	WL	7/16/2025	RFS01-10.2507078-044	7440-61-1	Uranium	Y	7.3	ug/L		F	0.25		FQ	G	STD
80105	WL	7/16/2025	RFS01-10.2507078-044	7440-66-6	Zinc	Y	5	ug/L	U	F	5		FQ	G	STD
80105	WL	8/5/2025	RFS01-10.2507079-044	71-55-6	1,1,1-Trichloroethane	N	0.25	ug/L	U	F	0.25		G	STD	
80105	WL	8/5/2025	RFS01-10.2507079-044	79-34-5	1,1,2,2-Tetrachloroethane	N	0.25	ug/L	U	F	0.25		G	STD	
80105	WL	8/5/2025	RFS01-10.2507079-044	79-00-5	1,1,2-Trichloroethane	N	0.25	ug/L	U	F	0.25		G	STD	
80105	WL	8/5/2025	RFS01-10.2507079-044	75-35-4	1,1-Dichloroethene	N	0.25	ug/L	U	F	0.25		G	STD	
80105	WL	8/5/2025	RFS01-10.2507079-044	120-82-1	1,2,4-Trichlorobenzene	N	0.5	ug/L	U	F	0.5		G	STD	
80105	WL	8/5/2025	RFS01-10.2507079-044	95-50-1	1,2-Dichlorobenzene	N	0.25	ug/L	U	F	0.25		G	STD	
80105	WL	8/5/2025	RFS01-10.2507079-044	107-06-2	1,2-Dichloroethane	N	0.25	ug/L	U	F	0.25		G	STD	
80105	WL	8/5/2025	RFS01-10.2507079-044	78-87-5	1,2-Dichloropropane	N	0.25	ug/L	U	F	0.25		G	STD	
80105	WL	8/5/2025	RFS01-10.2507079-044	541-73-1	1,3-Dichlorobenzene	N	0.25	ug/L	U	F	0.25		G	STD	
80105	WL	8/5/2025	RFS01-10.2507079-044	106-46-7	1,4-Dichlorobenzene	N	0.25	ug/L	U	F	0.25		G	STD	
80105	WL	8/5/2025	RFS01-10.2507079-044	91-58-7	2-Chloronaphthalene	N	1	ug/L	U	F	1		G	STD	
80105	WL	8/5/2025	RFS01-10.2507079-045	83-32-9	Acenaphthene	N	0.04	ug/L	U	F	0.04		G	STD	
80105	WL	8/5/2025	RFS01-10.2507079-045	120-12-7	Anthracene	N	0.04	ug/L	U	F	0.04		G	STD	
80105	WL	8/5/2025	RFS01-10.2507079-044	71-43-2	Benzene	N	0.64	ug/L	J	F	0.25		G	STD	
80105	WL	8/5/2025	RFS01-10.2507079-045	50-32-8	Benz(a)pyrene	N	0.04	ug/L	U	F	0.04		G	STD	
80105	WL	8/5/2025	RFS01-10.2507079-045	191-24-2	Benz(g,h,i)Perylene	N	0.04	ug/L	U	F	0.04		G	STD	
80105	WL	8/5/2025	RFS01-10.2507079-044	108-60-1	Bis(2-chloroisopropyl) ether	N	4	ug/L	U	F	4		G	STD	
80105	WL	8/5/2025	RFS01-10.2507079-044	117-81-7	Bis(2-ethylhexyl) phthalate	N	5	ug/L	U	F	5		G	STD	
80105	WL	8/5/2025	RFS01-10.2507079-044	75-25-2	Bromoform	N	0.5	ug/L	U	F	0.5		G	STD	
80105	WL	8/5/2025	RFS01-10.2507079-044	56-23-5	Carbon tetrachloride	N	0.25	ug/L	U	F	0.25		G	STD	
80105	WL	8/5/2025	RFS01-10.2507079-044	108-90-7	Chlorobenzene	N	0.25	ug/L	U	F	0.25		G	STD	
80105	WL	8/5/2025	RFS01-10.2507079-044	67-66-3	Chloroform	N	0.25	ug/L	U	F	0.25		G	STD	
80105	WL	8/5/2025	RFS01-10.2507079-044	74-87-3	Chloromethane	N	0.5	ug/L	U	F	0.5		G	STD	
80105	WL	8/5/2025	RFS01-10.2507079-045	218-01-9	Chrysene	N	0.04	ug/L	U	F	0.04		G	STD	
80105	WL	8/5/2025	RFS01-10.2507079-044	156-59-2	cis-1,2-Dichloroethene	N	0.25	ug/L	U	F	0.25		G	STD	
80105	WL	8/5/2025	RFS01-10.2507079-045	53-70-3	Dibenz(a,h)anthracene	N	0.04	ug/L	U	F	0.04		G	STD	
80105	WL	8/5/2025	RFS01-10.2507079-044	84-66-2	Diethyl phthalate	N	2	ug/L	U	F	2		G	STD	
80105	WL	8/5/2025	RFS01-10.2507079-044	131-11-3	Dimethyl phthalate	N	1	ug/L	U	F	1		G	STD	
80105	WL	8/5/2025	RFS01-10.2507079-044	84-74-2	Di-n-butyl phthalate	N	4	ug/L	U	F	4		G	STD	
80105	WL	8/5/2025	RFS01-10.2507079-044	100-41-4	Ethylbenzene	N	0.25	ug/L	U	F	0.25		G	STD	
80105	WL	8/5/2025	RFS01-10.2507079-045	206-44-0	Fluoranthene	N	0.04	ug/L	U	F	0.04		G	STD	
80105	WL	8/5/2025	RFS01-10.2507079-045	86-73-7	Fluorene	N	0.04	ug/L	U	F	0.04		G	STD	
80105	WL	8/5/2025	RFS01-10.2507079-044	87-68-3	Hexachlorobutadiene	N	0.5	ug/L	U	F	0.5		G	STD	
80105	WL	8/5/2025	RFS01-10.2507079-044	67-72-1	Hexachloroethane	N	4	ug/L	U	F	4		G	STD	
80105	WL	8/5/2025	RFS01-10.2507079-044	78-59-1	Isophorone	N	4	ug/L	U	F	4		G	STD	
80105	WL	8/5/2025	RFS01-10.2507079-044	75-09-2	Methylene chloride	N	1	ug/L	U	F	1		G	STD	
80105	WL	8/5/2025	RFS01-10.2507079-045	91-20-3	Naphthalene	N	0.05	ug/L	U	F	0.05		G	STD	
80105	WL	8/5/2025	RFS01-10.2507079-045	129-00-0	Pyrene	N	0.04	ug/L	U	F	0.04		G	STD	
80105	WL	8/5/2025	RFS01-10.2507079-044	100-42-5	Styrene	N	0.25	ug/L	U	F	0.25		G	STD	
80105	WL	8/5/2025	RFS01-10.2507079-044	127-18-4	Tetrachloroethene	N	0.25	ug/L	U	F	0.25		G	STD	
80105	WL	8/5/2025	RFS01-10.2507079-044	108-88-3	Toluene	N	0.25	ug/L	U	F	0.25		G	STD	
80105	WL	8/5/2025	RFS01-10.2507079-044	1330-20-7	Total Xylenes	N	0.25	ug/L	U	F	0.25		G	STD	
80105	WL	8/5/2025	RFS01-10.2507079-044	156-60-5	trans-1,2-Dichloroethene	N	0.25	ug/L	U	F	0.25		G	STD	
80105	WL	8/5/2025	RFS01-10.2507079-044	79-01-6	Trichloroethene	N	0.25	ug/L	U	F	0.25		G	STD	
80105	WL	8/5/2025	RFS01-10.2507079-044	75-01-4	Vinyl chloride	N	0.25	ug/L	U	F	0.25		G	STD	
80205	WL	7/16/2025	RFS01-10.2507078-017	7440-38-2	Arsenic	Y	0.5	ug/L	U	D	0.5		FQ	G	STD
80205	WL	7/16/2025	RFS01-10.2507078-046	7440-38-2	Arsenic	Y	0.5	ug/L	U	F	0.5		FQ	G	STD
80205	WL	7/16/2025	RFS01-10.2507078-017	7440-41-7	Beryllium	Y	0.25	ug/L	U	D	0.25		FQ	G	STD
80205	WL	7/16/2025	RFS01-10.2507078-017	7440-41-7	Beryllium	Y	0.25	ug/L	U	F	0.25		FQ	G	STD
80205	WL	7/16/2025	RFS01-10.2507078-017	7440-42-8	Boron	Y	52	ug/L	D		15		FQ	G	STD
80205	WL	7/16/2025	RFS01-10.2507078-046	7440-42-8	Boron	Y	40	ug/L	J	F	15		FQ	G	STD
80205	WL	7/16/2025	RFS01-10.2507078-017	7440-43-9	Cadmium	Y	0.25	ug/L	U	D	0.25		FQ	G	STD
80205	WL	7/16/2025	RFS01-10.2507078-046	7440-43-9	Cadmium	Y	0.25	ug/L	U	F	0.25		FQ	G	STD
80205	WL	7/16/2025	RFS01-10.2507078-017	7440-47-3	Chromium	Y	1	ug/L	U	D	1		FQ	G	STD
80205	WL	7/16/2025	RFS01-10.2507078-046	7440-47-3	Chromium	Y	1	ug/L	U	F	1		FQ	G	STD
80205	WL	7/16/2025	RFS01-10.2507078-017	7440-50-8	Copper	Y	1	ug/L	J	D	1		FQ	G	STD

Appendix B
 Analytical Results for Water Samples—Third Quarter CY 2025
 RFLMA Data

Location Code	Location Type	Date Sampled	Sample Code	CAS	Analyte	Filtration Status	Result	Unit	Lab Qualifier	Sample Type	Detection Limit	Uncertainty	Data Validation Qualifier	Collection Method	Lab Code
80205	WL	7/16/2025	RFS01-10.2507078-046	7440-50-8	Copper	Y	1.7	ug/L	J	F	1		FQ	G	STD
80205	WL	7/16/2025	RFS01-10.2507078-017	7439-92-1	Lead	Y	0.5	ug/L	U	D	0.5		FQ	G	STD
80205	WL	7/16/2025	RFS01-10.2507078-046	7439-92-1	Lead	Y	0.5	ug/L	U	F	0.5		FQ	G	STD
80205	WL	7/16/2025	RFS01-10.2507078-017	7439-97-6	Mercury	Y	0.06	ug/L	U	D	0.06		FQ	G	STD
80205	WL	7/16/2025	RFS01-10.2507078-046	7439-97-6	Mercury	Y	0.06	ug/L	U	F	0.06		FQ	G	STD
80205	WL	7/16/2025	RFS01-10.2507078-017	7440-02-0	Nickel	Y	1	ug/L	U	D	1		FQ	G	STD
80205	WL	7/16/2025	RFS01-10.2507078-046	7440-02-0	Nickel	Y	1	ug/L	U	F	1		FQ	G	STD
80205	WL	7/16/2025	RFS01-10.2507078-017	7782-49-2	Selenium	Y	0.71	ug/L	J	D	0.5		FQ	G	STD
80205	WL	7/16/2025	RFS01-10.2507078-046	7782-49-2	Selenium	Y	0.68	ug/L	J	F	0.5		FQ	G	STD
80205	WL	7/16/2025	RFS01-10.2507078-017	7440-22-4	Silver	Y	0.25	ug/L	U	D	0.25		FQ	G	STD
80205	WL	7/16/2025	RFS01-10.2507078-046	7440-22-4	Silver	Y	0.25	ug/L	U	F	0.25		FQ	G	STD
80205	WL	7/16/2025	RFS01-10.2507078-017	7440-61-1	Uranium	Y	19	ug/L		D	0.25		FQ	G	STD
80205	WL	7/16/2025	RFS01-10.2507078-046	7440-61-1	Uranium	Y	19	ug/L		F	0.25		FQ	G	STD
80205	WL	7/16/2025	RFS01-10.2507078-017	7440-66-6	Zinc	Y	5	ug/L	U	D	5		FQ	G	STD
80205	WL	7/16/2025	RFS01-10.2507078-046	7440-66-6	Zinc	Y	5	ug/L	U	F	5		FQ	G	STD
80205	WL	8/5/2025	RFS01-10.2507079-017	71-55-6	1,1,1-Trichloroethane	N	0.25	ug/L	U	D	0.25			G	STD
80205	WL	8/5/2025	RFS01-10.2507079-046	71-55-6	1,1,1-Trichloroethane	N	0.25	ug/L	U	F	0.25			G	STD
80205	WL	8/5/2025	RFS01-10.2507079-017	79-34-5	1,1,2,2-Tetrachloroethane	N	0.25	ug/L	U	D	0.25			G	STD
80205	WL	8/5/2025	RFS01-10.2507079-046	79-34-5	1,1,2,2-Tetrachloroethane	N	0.25	ug/L	U	F	0.25			G	STD
80205	WL	8/5/2025	RFS01-10.2507079-017	79-00-5	1,1,2-Trichloroethane	N	0.25	ug/L	U	D	0.25			G	STD
80205	WL	8/5/2025	RFS01-10.2507079-046	79-00-5	1,1,2-Trichloroethane	N	0.25	ug/L	U	F	0.25			G	STD
80205	WL	8/5/2025	RFS01-10.2507079-017	75-35-4	1,1-Dichloroethene	N	0.25	ug/L	U	D	0.25			G	STD
80205	WL	8/5/2025	RFS01-10.2507079-046	75-35-4	1,1-Dichloroethene	N	0.25	ug/L	U	F	0.25			G	STD
80205	WL	8/5/2025	RFS01-10.2507079-017	120-82-1	1,2,4-Trichlorobenzene	N	0.5	ug/L	U	D	0.5			G	STD
80205	WL	8/5/2025	RFS01-10.2507079-046	120-82-1	1,2,4-Trichlorobenzene	N	0.5	ug/L	U	F	0.5			G	STD
80205	WL	8/5/2025	RFS01-10.2507079-017	95-50-1	1,2-Dichlorobenzene	N	0.25	ug/L	U	D	0.25			G	STD
80205	WL	8/5/2025	RFS01-10.2507079-046	95-50-1	1,2-Dichlorobenzene	N	0.25	ug/L	U	F	0.25			G	STD
80205	WL	8/5/2025	RFS01-10.2507079-017	107-06-2	1,2-Dichloroethane	N	0.25	ug/L	U	D	0.25			G	STD
80205	WL	8/5/2025	RFS01-10.2507079-046	107-06-2	1,2-Dichloroethane	N	0.25	ug/L	U	F	0.25			G	STD
80205	WL	8/5/2025	RFS01-10.2507079-017	78-87-5	1,2-Dichloropropane	N	0.25	ug/L	U	D	0.25			G	STD
80205	WL	8/5/2025	RFS01-10.2507079-046	78-87-5	1,2-Dichloropropane	N	0.25	ug/L	U	F	0.25			G	STD
80205	WL	8/5/2025	RFS01-10.2507079-017	541-73-1	1,3-Dichlorobenzene	N	0.25	ug/L	U	D	0.25			G	STD
80205	WL	8/5/2025	RFS01-10.2507079-046	541-73-1	1,3-Dichlorobenzene	N	0.25	ug/L	U	F	0.25			G	STD
80205	WL	8/5/2025	RFS01-10.2507079-017	106-46-7	1,4-Dichlorobenzene	N	0.25	ug/L	U	D	0.25			G	STD
80205	WL	8/5/2025	RFS01-10.2507079-046	106-46-7	1,4-Dichlorobenzene	N	0.25	ug/L	U	F	0.25			G	STD
80205	WL	8/5/2025	RFS01-10.2507079-017	91-58-7	2-Chloronaphthalene	N	1	ug/L	U	D	1			G	STD
80205	WL	8/5/2025	RFS01-10.2507079-046	91-58-7	2-Chloronaphthalene	N	1	ug/L	U	F	1			G	STD
80205	WL	8/5/2025	RFS01-10.2507079-017	71-43-2	Benzene	N	0.25	ug/L	U	D	0.25			G	STD
80205	WL	8/5/2025	RFS01-10.2507079-046	71-43-2	Benzene	N	0.25	ug/L	U	F	0.25			G	STD
80205	WL	8/5/2025	RFS01-10.2507079-017	108-60-1	Bis(2-chloroisopropyl) ether	N	4	ug/L	U	D	4			G	STD
80205	WL	8/5/2025	RFS01-10.2507079-046	108-60-1	Bis(2-chloroisopropyl) ether	N	4	ug/L	U	F	4			G	STD
80205	WL	8/5/2025	RFS01-10.2507079-017	117-81-7	Bis(2-ethylhexyl) phthalate	N	5	ug/L	U	D	5			G	STD
80205	WL	8/5/2025	RFS01-10.2507079-046	117-81-7	Bis(2-ethylhexyl) phthalate	N	5	ug/L	U	F	5			G	STD
80205	WL	8/5/2025	RFS01-10.2507079-017	75-25-2	Bromoform	N	0.5	ug/L	U	D	0.5			G	STD
80205	WL	8/5/2025	RFS01-10.2507079-046	75-25-2	Bromoform	N	0.5	ug/L	U	F	0.5			G	STD
80205	WL	8/5/2025	RFS01-10.2507079-017	56-23-5	Carbon tetrachloride	N	0.25	ug/L	U	D	0.25			G	STD
80205	WL	8/5/2025	RFS01-10.2507079-046	56-23-5	Carbon tetrachloride	N	0.25	ug/L	U	F	0.25			G	STD
80205	WL	8/5/2025	RFS01-10.2507079-017	108-90-7	Chlorobenzene	N	0.25	ug/L	U	D	0.25			G	STD
80205	WL	8/5/2025	RFS01-10.2507079-046	108-90-7	Chlorobenzene	N	0.25	ug/L	U	F	0.25			G	STD
80205	WL	8/5/2025	RFS01-10.2507079-017	67-66-3	Chloroform	N	0.25	ug/L	U	D	0.25			G	STD
80205	WL	8/5/2025	RFS01-10.2507079-046	67-66-3	Chloroform	N	0.25	ug/L	U	F	0.25			G	STD
80205	WL	8/5/2025	RFS01-10.2507079-017	74-87-3	Chloromethane	N	0.5	ug/L	U	D	0.5			G	STD
80205	WL	8/5/2025	RFS01-10.2507079-046	74-87-3	Chloromethane	N	0.5	ug/L	U	F	0.5			G	STD
80205	WL	8/5/2025	RFS01-10.2507079-017	156-59-2	cis-1,2-Dichloroethene	N	0.25	ug/L	U	D	0.25			G	STD
80205	WL	8/5/2025	RFS01-10.2507079-046	156-59-2	cis-1,2-Dichloroethene	N	0.25	ug/L	U	F	0.25			G	STD
80205	WL	8/5/2025	RFS01-10.2507079-017	84-66-2	Diethyl phthalate	N	2	ug/L	U	D	2			G	STD
80205	WL	8/5/2025	RFS01-10.2507079-046	84-66-2	Diethyl phthalate	N	2	ug/L	U	F	2			G	STD
80205	WL	8/5/2025	RFS01-10.2507079-017	131-11-3	Dimethyl phthalate	N	1	ug/L	U	D	1			G	STD
80205	WL	8/5/2025	RFS01-10.2507079-046	131-11-3	Dimethyl phthalate	N	1	ug/L	U	F	1			G	STD
80205	WL	8/5/2025	RFS01-10.2507079-017	84-74-2	Di-n-butyl phthalate	N	4	ug/L	U	D	4			G	STD
80205	WL	8/5/2025	RFS01-10.2507079-046	84-74-2	Di-n-butyl phthalate	N	4	ug/L	U	F	4			G	STD
80205	WL	8/5/2025	RFS01-10.2507079-017	100-41-4	Ethylbenzene	N	0.25	ug/L	U	D	0.25			G	STD
80205	WL	8/5/2025	RFS01-10.2507079-046	100-41-4	Ethylbenzene	N	0.25	ug/L	U	F	0.25			G	STD
80205	WL	8/5/2025	RFS01-10.2507079-017	87-68-3	Hexachlorobutadiene	N	0.5	ug/L	U	D	0.5			G	STD
80205	WL	8/5/2025	RFS01-10.2507079-046	87-68-3	Hexachlorobutadiene	N	0.5	ug/L	U	F	0.5			G	STD
80205	WL	8/5/2025	RFS01-10.2507079-017	67-72-1	Hexachloroethane	N	4	ug/L	U	D	4			G	STD
80205	WL	8/5/2025	RFS01-10.2507079-046	67-72-1	Hexachloroethane	N	4	ug/L	U	F	4			G	STD
80205	WL	8/5/2025	RFS01-10.2507079-017	78-59-1	Isophorone	N	4	ug/L	U	D	4			G	STD
80205	WL	8/5/2025	RFS01-10.2507079-046	78-59-1	Isophorone	N	4	ug/L	U	F	4			G	STD

Appendix B
Analytical Results for Water Samples—Third Quarter CY 2025
RFLMA Data

Location Code	Location Type	Date Sampled	Sample Code	CAS	Analyte	Filtration Status	Result	Unit	Lab Qualifier	Sample Type	Detection Limit	Uncertainty	Data Validation Qualifier	Collection Method	Lab Code	
80205	WL	8/5/2025	RFS01-10.2507079-017	75-09-2	Methylene chloride	N	1	ug/L	U	D	1			G	STD	
80205	WL	8/5/2025	RFS01-10.2507079-046	75-09-2	Methylene chloride	N	1	ug/L	U	F	1			G	STD	
80205	WL	8/5/2025	RFS01-10.2507079-017	100-42-5	Styrene	N	0.25	ug/L	U	D	0.25			G	STD	
80205	WL	8/5/2025	RFS01-10.2507079-046	100-42-5	Styrene	N	0.25	ug/L	U	F	0.25			G	STD	
80205	WL	8/5/2025	RFS01-10.2507079-017	127-18-4	Tetrachloroethene	N	0.25	ug/L	U	D	0.25			G	STD	
80205	WL	8/5/2025	RFS01-10.2507079-046	127-18-4	Tetrachloroethene	N	0.25	ug/L	U	F	0.25			G	STD	
80205	WL	8/5/2025	RFS01-10.2507079-017	108-88-3	Toluene	N	0.25	ug/L	U	D	0.25			G	STD	
80205	WL	8/5/2025	RFS01-10.2507079-046	108-88-3	Toluene	N	0.25	ug/L	U	F	0.25			G	STD	
80205	WL	8/5/2025	RFS01-10.2507079-017	1330-20-7	Total Xylenes	N	0.25	ug/L	U	D	0.25			G	STD	
80205	WL	8/5/2025	RFS01-10.2507079-046	1330-20-7	Total Xylenes	N	0.25	ug/L	U	F	0.25			G	STD	
80205	WL	8/5/2025	RFS01-10.2507079-017	156-60-5	trans-1,2-Dichloroethene	N	0.25	ug/L	U	D	0.25			G	STD	
80205	WL	8/5/2025	RFS01-10.2507079-046	156-60-5	trans-1,2-Dichloroethene	N	0.25	ug/L	U	F	0.25			G	STD	
80205	WL	8/5/2025	RFS01-10.2507079-017	79-01-6	Trichloroethene	N	0.25	ug/L	U	D	0.25			G	STD	
80205	WL	8/5/2025	RFS01-10.2507079-046	79-01-6	Trichloroethene	N	0.25	ug/L	U	F	0.25			G	STD	
80205	WL	8/5/2025	RFS01-10.2507079-017	75-01-4	Vinyl chloride	N	0.25	ug/L	U	D	0.25			G	STD	
80205	WL	8/5/2025	RFS01-10.2507079-046	75-01-4	Vinyl chloride	N	0.25	ug/L	U	F	0.25			G	STD	
80205	WL	8/6/2025	RFS01-10.2507079-018	83-32-9	Acenaphthene	N	0.04	ug/L	U	D	0.04			G	STD	
80205	WL	8/6/2025	RFS01-10.2507079-047	83-32-9	Acenaphthene	N	0.04	ug/L	U	F	0.04			G	STD	
80205	WL	8/6/2025	RFS01-10.2507079-018	120-12-7	Anthracene	N	0.04	ug/L	U	D	0.04			G	STD	
80205	WL	8/6/2025	RFS01-10.2507079-047	120-12-7	Anthracene	N	0.04	ug/L	U	F	0.04			G	STD	
80205	WL	8/6/2025	RFS01-10.2507079-018	50-32-8	Benz(a)pyrene	N	0.04	ug/L	U	D	0.04			G	STD	
80205	WL	8/6/2025	RFS01-10.2507079-047	50-32-8	Benz(a)pyrene	N	0.04	ug/L	U	F	0.04			G	STD	
80205	WL	8/6/2025	RFS01-10.2507079-018	191-24-2	Benz(g,h,i)Perylene	N	0.04	ug/L	U	D	0.04			G	STD	
80205	WL	8/6/2025	RFS01-10.2507079-047	191-24-2	Benz(g,h,i)Perylene	N	0.04	ug/L	U	F	0.04			G	STD	
80205	WL	8/6/2025	RFS01-10.2507079-018	218-01-9	Chrysene	N	0.04	ug/L	U	D	0.04			G	STD	
80205	WL	8/6/2025	RFS01-10.2507079-047	218-01-9	Chrysene	N	0.04	ug/L	U	F	0.04			G	STD	
80205	WL	8/6/2025	RFS01-10.2507079-018	53-70-3	Dibenz(a,h)anthracene	N	0.04	ug/L	U	D	0.04			G	STD	
80205	WL	8/6/2025	RFS01-10.2507079-047	53-70-3	Dibenz(a,h)anthracene	N	0.04	ug/L	U	F	0.04			G	STD	
80205	WL	8/6/2025	RFS01-10.2507079-018	206-44-0	Fluoranthene	N	0.04	ug/L	U	D	0.04			G	STD	
80205	WL	8/6/2025	RFS01-10.2507079-047	206-44-0	Fluoranthene	N	0.04	ug/L	U	F	0.04			G	STD	
80205	WL	8/6/2025	RFS01-10.2507079-018	86-73-7	Fluorene	N	0.04	ug/L	U	D	0.04			G	STD	
80205	WL	8/6/2025	RFS01-10.2507079-047	86-73-7	Fluorene	N	0.04	ug/L	U	F	0.04			G	STD	
80205	WL	8/6/2025	RFS01-10.2507079-018	91-20-3	Naphthalene	N	0.05	ug/L	U	D	0.05			G	STD	
80205	WL	8/6/2025	RFS01-10.2507079-047	91-20-3	Naphthalene	N	0.05	ug/L	U	F	0.05			G	STD	
80205	WL	8/6/2025	RFS01-10.2507079-018	129-00-0	Pyrene	N	0.04	ug/L	U	D	0.04			G	STD	
80205	WL	8/6/2025	RFS01-10.2507079-047	129-00-0	Pyrene	N	0.04	ug/L	U	F	0.04			G	STD	
B210489	WL	7/15/2025	RFS01-10.2507079-071	7440-61-1	Uranium	Y	90	ug/L	U	F	0.25			F	G	STD
B210489	WL	8/5/2025	RFS01-10.2507079-063	NO3+N2O2 AS N	Nitrate + Nitrite as Nitrogen	N	330	mg/L	F	12				G	STD	
GS05	SL	7/1/2025	RFS01-02.2506075-004	71-55-6	1,1,1-Trichloroethane	N	0.25	ug/L	U	F	0.25			G	STD	
GS05	SL	7/1/2025	RFS01-02.2506075-004	79-34-5	1,1,2,2-Tetrachloroethane	N	0.25	ug/L	U	F	0.25			G	STD	
GS05	SL	7/1/2025	RFS01-02.2506075-004	79-00-5	1,1,2-Trichloroethane	N	0.25	ug/L	U	F	0.25			G	STD	
GS05	SL	7/1/2025	RFS01-02.2506075-004	75-35-4	1,1-Dichloroethene	N	0.25	ug/L	U	F	0.25			G	STD	
GS05	SL	7/1/2025	RFS01-02.2506075-004	120-82-1	1,2,4-Trichlorobenzene	N	0.5	ug/L	U	F	0.5			G	STD	
GS05	SL	7/1/2025	RFS01-02.2506075-004	95-50-1	1,2-Dichlorobenzene	N	0.25	ug/L	U	F	0.25			G	STD	
GS05	SL	7/1/2025	RFS01-02.2506075-004	107-06-2	1,2-Dichloroethane	N	0.25	ug/L	U	F	0.25			G	STD	
GS05	SL	7/1/2025	RFS01-02.2506075-004	78-87-5	1,2-Dichloropropane	N	0.25	ug/L	U	F	0.25			G	STD	
GS05	SL	7/1/2025	RFS01-02.2506075-004	541-73-1	1,3-Dichlorobenzene	N	0.25	ug/L	U	F	0.25			G	STD	
GS05	SL	7/1/2025	RFS01-02.2506075-004	106-46-7	1,4-Dichlorobenzene	N	0.25	ug/L	U	F	0.25			G	STD	
GS05	SL	7/1/2025	RFS01-02.2506075-004	71-43-2	Benzene	N	0.25	ug/L	U	F	0.25			G	STD	
GS05	SL	7/1/2025	RFS01-02.2506075-004	75-25-2	Bromoform	N	0.5	ug/L	U	F	0.5			G	STD	
GS05	SL	7/1/2025	RFS01-02.2506075-004	56-23-5	Carbon tetrachloride	N	0.25	ug/L	U	F	0.25			G	STD	
GS05	SL	7/1/2025	RFS01-02.2506075-004	108-90-7	Chlorobenzene	N	0.25	ug/L	U	F	0.25			G	STD	
GS05	SL	7/1/2025	RFS01-02.2506075-004	67-66-3	Chloroform	N	0.25	ug/L	U	F	0.25			G	STD	
GS05	SL	7/1/2025	RFS01-02.2506075-004	74-87-3	Chloromethane	N	0.5	ug/L	U	F	0.5			G	STD	
GS05	SL	7/1/2025	RFS01-02.2506075-004	156-59-2	cis-1,2-Dichloroethene	N	0.25	ug/L	U	F	0.25			G	STD	
GS05	SL	7/1/2025	RFS01-02.2506075-004	100-41-4	Ethylbenzene	N	0.25	ug/L	U	F	0.25			G	STD	
GS05	SL	7/1/2025	RFS01-02.2506075-004	87-68-3	Hexachlorobutadiene	N	0.5	ug/L	U	F	0.5			G	STD	
GS05	SL	7/1/2025	RFS01-02.2506075-004	7439-97-6	Mercury	N	0.06	ug/L	U	F	0.06			G	STD	
GS05	SL	7/1/2025	RFS01-02.2506075-004	75-09-2	Methylene chloride	N	1	ug/L	U	F	1			G	STD	
GS05	SL	7/1/2025	RFS01-02.2506075-004	91-20-3	Naphthalene	N	1	ug/L	U	F	1			G	STD	
GS05	SL	7/1/2025	RFS01-02.2506075-004	100-42-5	Styrene	N	0.25	ug/L	U	F	0.25			G	STD	
GS05	SL	7/1/2025	RFS01-02.2506075-004	127-18-4	Tetrachloroethene	N	0.25	ug/L	U	F	0.25			G	STD	
GS05	SL	7/1/2025	RFS01-02.2506075-004	108-88-3	Toluene	N	0.25	ug/L	U	F	0.25			G	STD	
GS05	SL	7/1/2025	RFS01-02.2506075-004	1330-20-7	Total Xylenes	N	0.25	ug/L	U	F	0.25			G	STD	
GS05	SL	7/1/2025	RFS01-02.2506075-004	156-60-5	trans-1,2-Dichloroethene	N	0.25	ug/L	U	F	0.25			G	STD	
GS05	SL	7/1/2025	RFS01-02.2506075-004	79-01-6	Trichloroethene	N	0.25	ug/L	U	F	0.25			G	STD	
GS05	SL	7/1/2025	RFS01-02.2506075-004	75-01-4	Vinyl chloride	N	0.25	ug/L	U	F	0.25			G	STD	
GS05	SL	7/17/2025	RFS01-02.2510079-004	7440-38-2	Arsenic	N	0.55	ug/L	JW	F	0.5			C	STD	
GS05	SL	7/17/2025	RFS01-02.2510079-004	7440-41-7	Beryllium	N	0.25	ug/L	U	F	0.25			C	STD	

Appendix B
Analytical Results for Water Samples—Third Quarter CY 2025
RFLMA Data

Location Code	Location Type	Date Sampled	Sample Code	CAS	Analyte	Filtration Status	Result	Unit	Lab Qualifier	Sample Type	Detection Limit	Uncertainty	Data Validation Qualifier	Collection Method	Lab Code	
GS05	SL	7/17/2025	RFS01-02.2510079-004	7440-42-8	Boron	N	15	ug/L	U	F	15			C	STD	
GS05	SL	7/17/2025	RFS01-02.2510079-004	7440-43-9	Cadmium	Y	0.25	ug/L	U	F	0.25			C	STD	
GS05	SL	7/17/2025	RFS01-02.2510079-004	7440-47-3	Chromium	N	1	ug/L	U W	F	1			C	STD	
GS05	SL	7/17/2025	RFS01-02.2510079-004	7440-50-8	Copper	Y	1	ug/L	U	F	1			C	STD	
GS05	SL	7/17/2025	RFS01-02.2510079-004	7439-92-1	Lead	Y	0.5	ug/L	U	F	0.5			C	STD	
GS05	SL	7/17/2025	RFS01-02.2510079-004	7440-02-0	Nickel	Y	1	ug/L	U	F	1			C	STD	
GS05	SL	7/17/2025	RFS01-02.2510079-004	7782-49-2	Selenium	N	0.5	ug/L	U W	F	0.5			C	STD	
GS05	SL	7/17/2025	RFS01-02.2510079-004	7440-22-4	Silver	Y	0.25	ug/L	U	F	0.25			C	STD	
GS05	SL	7/17/2025	RFS01-02.2510079-004	7440-61-1	Uranium	N	0.39	ug/L	J W	F	0.25			C	STD	
GS05	SL	7/17/2025	RFS01-02.2510079-004	7440-66-6	Zinc	Y	5	ug/L	U	F	5			C	STD	
GS59	SL	7/1/2025	RFS01-02.2506075-007	71-55-6	1,1,1-Trichloroethane	N	0.25	ug/L	U	F	0.25			G	STD	
GS59	SL	7/1/2025	RFS01-02.2506075-007	79-34-5	1,1,2,2-Tetrachloroethane	N	0.25	ug/L	U	F	0.25			G	STD	
GS59	SL	7/1/2025	RFS01-02.2506075-007	79-00-5	1,1,2-Trichloroethane	N	0.25	ug/L	U	F	0.25			G	STD	
GS59	SL	7/1/2025	RFS01-02.2506075-007	75-35-4	1,1-Dichloroethene	N	0.25	ug/L	U	F	0.25			G	STD	
GS59	SL	7/1/2025	RFS01-02.2506075-007	120-82-1	1,2,4-Trichlorobenzene	N	0.5	ug/L	U	F	0.5			G	STD	
GS59	SL	7/1/2025	RFS01-02.2506075-007	95-50-1	1,2-Dichlorobenzene	N	0.25	ug/L	U	F	0.25			G	STD	
GS59	SL	7/1/2025	RFS01-02.2506075-007	107-06-2	1,2-Dichloroethane	N	0.25	ug/L	U	F	0.25			G	STD	
GS59	SL	7/1/2025	RFS01-02.2506075-007	78-87-5	1,2-Dichloropropane	N	0.25	ug/L	U	F	0.25			G	STD	
GS59	SL	7/1/2025	RFS01-02.2506075-007	541-73-1	1,3-Dichlorobenzene	N	0.25	ug/L	U	F	0.25			G	STD	
GS59	SL	7/1/2025	RFS01-02.2506075-007	106-46-7	1,4-Dichlorobenzene	N	0.25	ug/L	U	F	0.25			G	STD	
GS59	SL	7/1/2025	RFS01-02.2506075-007	71-43-2	Benzene	N	0.25	ug/L	U	F	0.25			G	STD	
GS59	SL	7/1/2025	RFS01-02.2506075-007	75-25-2	Bromoform	N	0.5	ug/L	U	F	0.5			G	STD	
GS59	SL	7/1/2025	RFS01-02.2506075-007	56-23-5	Carbon tetrachloride	N	0.25	ug/L	U	F	0.25			G	STD	
GS59	SL	7/1/2025	RFS01-02.2506075-007	108-90-7	Chlorobenzene	N	0.25	ug/L	U	F	0.25			G	STD	
GS59	SL	7/1/2025	RFS01-02.2506075-007	67-66-3	Chloroform	N	0.25	ug/L	U	F	0.25			G	STD	
GS59	SL	7/1/2025	RFS01-02.2506075-007	74-87-3	Chloromethane	N	0.5	ug/L	U	F	0.5			G	STD	
GS59	SL	7/1/2025	RFS01-02.2506075-007	156-59-2	cis-1,2-Dichloroethene	N	0.25	ug/L	U	F	0.25			G	STD	
GS59	SL	7/1/2025	RFS01-02.2506075-007	100-41-4	Ethylbenzene	N	0.25	ug/L	U	F	0.25			G	STD	
GS59	SL	7/1/2025	RFS01-02.2506075-007	87-68-3	Hexachlorobutadiene	N	0.5	ug/L	U	F	0.5			G	STD	
GS59	SL	7/1/2025	RFS01-02.2506075-007	7439-97-6	Mercury	N	0.06	ug/L	U	F	0.06			G	STD	
GS59	SL	7/1/2025	RFS01-02.2506075-007	75-09-2	Methylene chloride	N	1	ug/L	U	F	1			G	STD	
GS59	SL	7/1/2025	RFS01-02.2506075-007	91-20-3	Naphthalene	N	1	ug/L	U	F	1			G	STD	
GS59	SL	7/1/2025	RFS01-02.2506075-007	100-42-5	Styrene	N	0.25	ug/L	U	F	0.25			G	STD	
GS59	SL	7/1/2025	RFS01-02.2506075-007	127-18-4	Tetrachloroethene	N	0.25	ug/L	U	F	0.25			G	STD	
GS59	SL	7/1/2025	RFS01-02.2506075-007	108-88-3	Toluene	N	0.25	ug/L	U	F	0.25			G	STD	
GS59	SL	7/1/2025	RFS01-02.2506075-007	1330-20-7	Total Xylenes	N	0.25	ug/L	U	F	0.25			G	STD	
GS59	SL	7/1/2025	RFS01-02.2506075-007	156-60-5	trans-1,2-Dichloroethene	N	0.25	ug/L	U	F	0.25			G	STD	
GS59	SL	7/1/2025	RFS01-02.2506075-007	79-01-6	Trichloroethene	N	0.25	ug/L	U	F	0.25			G	STD	
GS59	SL	7/1/2025	RFS01-02.2506075-007	75-01-4	Vinyl chloride	N	0.25	ug/L	U	F	0.25			G	STD	
GS59	SL	7/17/2025	RFS01-02.2510079-007	7440-38-2	Arsenic	N	1.7	ug/L	J	F	0.5			C	STD	
GS59	SL	7/17/2025	RFS01-02.2510079-007	7440-41-7	Beryllium	N	0.25	ug/L	U	F	0.25			C	STD	
GS59	SL	7/17/2025	RFS01-02.2510079-007	7440-42-8	Boron	N	22	ug/L	J	F	15			C	STD	
GS59	SL	7/17/2025	RFS01-02.2510079-007	7440-43-9	Cadmium	Y	0.25	ug/L	U	F	0.25			C	STD	
GS59	SL	7/17/2025	RFS01-02.2510079-007	7440-47-3	Chromium	N	8.4	ug/L	F	1			C	STD		
GS59	SL	7/17/2025	RFS01-02.2510079-007	7440-50-8	Copper	Y	1	ug/L	U	F	1			C	STD	
GS59	SL	7/17/2025	RFS01-02.2510079-007	7439-92-1	Lead	Y	0.5	ug/L	U	F	0.5			C	STD	
GS59	SL	7/17/2025	RFS01-02.2510079-007	7440-02-0	Nickel	Y	1.5	ug/L	J	F	1			C	STD	
GS59	SL	7/17/2025	RFS01-02.2510079-007	7782-49-2	Selenium	N	0.5	ug/L	U	F	0.5			C	STD	
GS59	SL	7/17/2025	RFS01-02.2510079-007	7440-22-4	Silver	Y	0.25	ug/L	U	F	0.25			C	STD	
GS59	SL	7/17/2025	RFS01-02.2510079-007	7440-61-1	Uranium	N	1.9	ug/L	F	0.25			C	STD		
GS59	SL	7/17/2025	RFS01-02.2510079-007	7440-66-6	Zinc	Y	11	ug/L	F	5			C	STD		
P416589	WL	7/16/2025	RFS01-10.2507078-069	7440-38-2	Arsenic	Y	0.5	ug/L	U	F	0.5			FQ	G	STD
P416589	WL	7/16/2025	RFS01-10.2507078-069	7440-41-7	Beryllium	Y	0.25	ug/L	U	F	0.25			FQ	G	STD
P416589	WL	7/16/2025	RFS01-10.2507078-069	7440-42-8	Boron	Y	15	ug/L	U	F	15			FQ	G	STD
P416589	WL	7/16/2025	RFS01-10.2507078-069	7440-43-9	Cadmium	Y	0.25	ug/L	U	F	0.25			FQ	G	STD
P416589	WL	7/16/2025	RFS01-10.2507078-069	7440-47-3	Chromium	Y	1.9	ug/L	J	F	1			FQ	G	STD
P416589	WL	7/16/2025	RFS01-10.2507078-069	7440-50-8	Copper	Y	3.1	ug/L	F	1			FQ	G	STD	
P416589	WL	7/16/2025	RFS01-10.2507078-069	7439-92-1	Lead	Y	0.5	ug/L	U	F	0.5			FQ	G	STD
P416589	WL	7/16/2025	RFS01-10.2507078-069	7439-97-6	Mercury	Y	0.06	ug/L	U	F	0.06			FQ	G	STD
P416589	WL	7/16/2025	RFS01-10.2507078-069	7440-02-0	Nickel	Y	53	ug/L	F	1			FQ	G	STD	
P416589	WL	7/16/2025	RFS01-10.2507078-069	7782-49-2	Selenium	Y	0.5	ug/L	U	F	0.5			FQ	G	STD
P416589	WL	7/16/2025	RFS01-10.2507078-069	7440-22-4	Silver	Y	0.25	ug/L	U	F	0.25			FQ	G	STD
P416589	WL	7/16/2025	RFS01-10.2507078-069	7440-61-1	Uranium	Y	2.6	ug/L	F	0.25			FQ	G	STD	
P416589	WL	7/16/2025	RFS01-10.2507078-069	7440-66-6	Zinc	Y	5	ug/L	U	F	5			FQ	G	STD
P416589	WL	8/5/2025	RFS01-10.2507079-069	71-55-6	1,1,1-Trichloroethane	N	0.25	ug/L	U	F	0.25			G	STD	
P416589	WL	8/5/2025	RFS01-10.2507079-069	79-34-5	1,1,2,2-Tetrachloroethane	N	0.25	ug/L	U	F	0.25			G	STD	
P416589	WL	8/5/2025	RFS01-10.2507079-069	79-00-5	1,1,2-Trichloroethane	N	0.25	ug/L	U	F	0.25			G	STD	
P416589	WL	8/5/2025	RFS01-10.2507079-069	75-35-4	1,1-Dichloroethene	N	0.25	ug/L	U	F	0.25			G	STD	
P416589	WL	8/5/2025	RFS01-10.2507079-069	120-82-1	1,2,4-Trichlorobenzene	N	0.5	ug/L	U	F	0.5			G	STD	

Location Code	Location Type	Date Sampled	Sample Code	CAS	Analyte	Filtration Status	Result	Unit	Lab Qualifier	Sample Type	Detection Limit	Uncertainty	Data Validation Qualifier	Collection Method	Lab Code
P416589	WL	8/5/2025	RFS01-10.2507079-069	95-50-1	1,2-Dichlorobenzene	N	0.25	ug/L	U	F	0.25			G	STD
P416589	WL	8/5/2025	RFS01-10.2507079-069	107-06-2	1,2-Dichloroethane	N	0.25	ug/L	U	F	0.25			G	STD
P416589	WL	8/5/2025	RFS01-10.2507079-069	78-87-5	1,2-Dichloropropane	N	0.25	ug/L	U	F	0.25			G	STD
P416589	WL	8/5/2025	RFS01-10.2507079-069	541-73-1	1,3-Dichlorobenzene	N	0.25	ug/L	U	F	0.25			G	STD
P416589	WL	8/5/2025	RFS01-10.2507079-069	106-46-7	1,4-Dichlorobenzene	N	0.25	ug/L	U	F	0.25			G	STD
P416589	WL	8/5/2025	RFS01-10.2507079-069	91-58-7	2-Chloronaphthalene	N	1	ug/L	U	F	1			G	STD
P416589	WL	8/5/2025	RFS01-10.2507079-070	83-32-9	Acenaphthene	N	0.04	ug/L	U	F	0.04			G	STD
P416589	WL	8/5/2025	RFS01-10.2507079-070	120-12-7	Anthracene	N	0.04	ug/L	U	F	0.04			G	STD
P416589	WL	8/5/2025	RFS01-10.2507079-069	71-43-2	Benzene	N	0.25	ug/L	U	F	0.25			G	STD
P416589	WL	8/5/2025	RFS01-10.2507079-070	50-32-8	Benz(a)pyrene	N	0.04	ug/L	U	F	0.04			G	STD
P416589	WL	8/5/2025	RFS01-10.2507079-070	191-24-2	Benz(g,h,i)Perylene	N	0.04	ug/L	U	F	0.04			G	STD
P416589	WL	8/5/2025	RFS01-10.2507079-069	108-60-1	Bis(2-chloroisopropyl) ether	N	4	ug/L	U	F	4			G	STD
P416589	WL	8/5/2025	RFS01-10.2507079-069	117-81-7	Bis(2-ethylhexyl) phthalate	N	5	ug/L	U	F	5			G	STD
P416589	WL	8/5/2025	RFS01-10.2507079-069	75-25-2	Bromoform	N	0.5	ug/L	U	F	0.5			G	STD
P416589	WL	8/5/2025	RFS01-10.2507079-069	56-23-5	Carbon tetrachloride	N	0.25	ug/L	U	F	0.25			G	STD
P416589	WL	8/5/2025	RFS01-10.2507079-069	108-90-7	Chlorobenzene	N	0.25	ug/L	U	F	0.25			G	STD
P416589	WL	8/5/2025	RFS01-10.2507079-069	67-66-3	Chloroform	N	0.25	ug/L	U	F	0.25			G	STD
P416589	WL	8/5/2025	RFS01-10.2507079-069	74-87-3	Chloromethane	N	0.5	ug/L	U	F	0.5			G	STD
P416589	WL	8/5/2025	RFS01-10.2507079-070	218-01-9	Chrysene	N	0.04	ug/L	U	F	0.04			G	STD
P416589	WL	8/5/2025	RFS01-10.2507079-069	156-59-2	cis-1,2-Dichloroethene	N	0.25	ug/L	U	F	0.25			G	STD
P416589	WL	8/5/2025	RFS01-10.2507079-070	53-70-3	Dibenz(a,h)anthracene	N	0.04	ug/L	U	F	0.04			G	STD
P416589	WL	8/5/2025	RFS01-10.2507079-069	84-66-2	Diethyl phthalate	N	2	ug/L	U	F	2			G	STD
P416589	WL	8/5/2025	RFS01-10.2507079-069	131-11-3	Dimethyl phthalate	N	1	ug/L	U	F	1			G	STD
P416589	WL	8/5/2025	RFS01-10.2507079-069	84-74-2	Di-n-butyl phthalate	N	4	ug/L	U	F	4			G	STD
P416589	WL	8/5/2025	RFS01-10.2507079-069	100-41-4	Ethylbenzene	N	0.25	ug/L	U	F	0.25			G	STD
P416589	WL	8/5/2025	RFS01-10.2507079-070	206-44-0	Fluoranthene	N	0.04	ug/L	U	F	0.04			G	STD
P416589	WL	8/5/2025	RFS01-10.2507079-070	86-73-7	Fluorene	N	0.04	ug/L	U	F	0.04			G	STD
P416589	WL	8/5/2025	RFS01-10.2507079-069	87-68-3	Hexachlorobutadiene	N	0.5	ug/L	U	F	0.5			G	STD
P416589	WL	8/5/2025	RFS01-10.2507079-069	67-72-1	Hexachloroethane	N	4	ug/L	U	F	4			G	STD
P416589	WL	8/5/2025	RFS01-10.2507079-069	78-59-1	Isophorone	N	4	ug/L	U	F	4			G	STD
P416589	WL	8/5/2025	RFS01-10.2507079-069	75-09-2	Methylene chloride	N	1	ug/L	U	F	1			G	STD
P416589	WL	8/5/2025	RFS01-10.2507079-070	91-20-3	Naphthalene	N	0.05	ug/L	U	F	0.05			G	STD
P416589	WL	8/5/2025	RFS01-10.2507079-070	129-00-0	Pyrene	N	0.04	ug/L	U	F	0.04			G	STD
P416589	WL	8/5/2025	RFS01-10.2507079-069	100-42-5	Styrene	N	0.25	ug/L	U	F	0.25			G	STD
P416589	WL	8/5/2025	RFS01-10.2507079-069	127-18-4	Tetrachloroethene	N	0.25	ug/L	U	F	0.25			G	STD
P416589	WL	8/5/2025	RFS01-10.2507079-069	108-88-3	Toluene	N	0.25	ug/L	U	F	0.25			G	STD
P416589	WL	8/5/2025	RFS01-10.2507079-069	1330-20-7	Total Xylenes	N	0.25	ug/L	U	F	0.25			G	STD
P416589	WL	8/5/2025	RFS01-10.2507079-069	156-60-5	trans-1,2-Dichloroethene	N	0.25	ug/L	U	F	0.25			G	STD
P416589	WL	8/5/2025	RFS01-10.2507079-069	79-01-6	Trichloroethene	N	0.25	ug/L	U	F	0.25			G	STD
P416589	WL	8/5/2025	RFS01-10.2507079-069	75-01-4	Vinyl chloride	N	0.25	ug/L	U	F	0.25			G	STD
PLFSEEPINF	TS	7/10/2025	RFS01-02.2507076-010	71-55-6	1,1,1-Trichloroethane	N	0.25	ug/L	U	F	0.25			G	STD
PLFSEEPINF	TS	7/10/2025	RFS01-02.2507076-010	79-34-5	1,1,2,2-Tetrachloroethane	N	0.25	ug/L	U	F	0.25			G	STD
PLFSEEPINF	TS	7/10/2025	RFS01-02.2507076-010	79-00-5	1,1,2-Trichloroethane	N	0.25	ug/L	U	F	0.25			G	STD
PLFSEEPINF	TS	7/10/2025	RFS01-02.2507076-010	75-35-4	1,1-Dichloroethene	N	0.25	ug/L	U	F	0.25			G	STD
PLFSEEPINF	TS	7/10/2025	RFS01-02.2507076-010	120-82-1	1,2,4-Trichlorobenzene	N	0.5	ug/L	U	F	0.5			G	STD
PLFSEEPINF	TS	7/10/2025	RFS01-02.2507076-010	95-50-1	1,2-Dichlorobenzene	N	0.3	ug/L	J	F	0.25			G	STD
PLFSEEPINF	TS	7/10/2025	RFS01-02.2507076-010	107-06-2	1,2-Dichloroethane	N	0.25	ug/L	U	F	0.25			G	STD
PLFSEEPINF	TS	7/10/2025	RFS01-02.2507076-010	78-87-5	1,2-Dichloropropane	N	0.25	ug/L	U	F	0.25			G	STD
PLFSEEPINF	TS	7/10/2025	RFS01-02.2507076-010	541-73-1	1,3-Dichlorobenzene	N	0.25	ug/L	U	F	0.25			G	STD
PLFSEEPINF	TS	7/10/2025	RFS01-02.2507076-010	106-46-7	1,4-Dichlorobenzene	N	0.38	ug/L	J	F	0.25			G	STD
PLFSEEPINF	TS	7/10/2025	RFS01-02.2507076-011	7440-38-2	Arsenic	N	7.3	ug/L		F	0.5			G	STD
PLFSEEPINF	TS	7/10/2025	RFS01-02.2507076-010	71-43-2	Benzene	N	2.2	ug/L		F	0.25			G	STD
PLFSEEPINF	TS	7/10/2025	RFS01-02.2507076-011	7440-41-7	Beryllium	N	0.25	ug/L	U	F	0.25			G	STD
PLFSEEPINF	TS	7/10/2025	RFS01-02.2507076-011	7440-42-8	Boron	N	1800	ug/L		F	15			G	STD
PLFSEEPINF	TS	7/10/2025	RFS01-02.2507076-010	75-25-2	Bromoform	N	0.5	ug/L	U	F	0.5			G	STD
PLFSEEPINF	TS	7/10/2025	RFS01-02.2507076-010	7440-43-9	Cadmium	Y	0.25	ug/L	U	F	0.25			G	STD
PLFSEEPINF	TS	7/10/2025	RFS01-02.2507076-010	56-23-5	Carbon tetrachloride	N	0.25	ug/L	U	F	0.25			G	STD
PLFSEEPINF	TS	7/10/2025	RFS01-02.2507076-010	108-90-7	Chlorobenzene	N	0.72	ug/L	J	F	0.25			G	STD
PLFSEEPINF	TS	7/10/2025	RFS01-02.2507076-010	67-66-3	Chloroform	N	0.25	ug/L	U	F	0.25			G	STD
PLFSEEPINF	TS	7/10/2025	RFS01-02.2507076-010	74-87-3	Chloromethane	N	0.5	ug/L	U	F	0.5			G	STD
PLFSEEPINF	TS	7/10/2025	RFS01-02.2507076-011	7440-47-3	Chromium	N	1	ug/L	U	F	1			G	STD
PLFSEEPINF	TS	7/10/2025	RFS01-02.2507076-010	156-59-2	cis-1,2-Dichloroethene	N	0.25	ug/L	U	F	0.25			G	STD
PLFSEEPINF	TS	7/10/2025	RFS01-02.2507076-010	7440-50-8	Copper	Y	1	ug/L	U	F	1			G	STD
PLFSEEPINF	TS	7/10/2025	RFS01-02.2507076-010	100-41-4	Ethylbenzene	N	0.25	ug/L	U	F	0.25			G	STD
PLFSEEPINF	TS	7/10/2025	RFS01-02.2507076-010	87-68-3	Hexachlorobutadiene	N	0.5	ug/L	U	F	0.5			G	STD
PLFSEEPINF	TS	7/10/2025	RFS01-02.2507076-010	7439-92-1	Lead	Y	0.5	ug/L	U	F	0.5			G	STD
PLFSEEPINF	TS	7/10/2025	RFS01-02.2507076-011	7439-97-6	Mercury	N	0.06	ug/L	U	F	0.06			G	STD
PLFSEEPINF	TS	7/10/2025	RFS01-02.2507076-010	75-09-2	Methylene chloride	N	1	ug/L	U	F	1			G	STD
PLFSEEPINF	TS	7/10/2025	RFS01-02.2507076-010	91-20-3	Naphthalene	N	26	ug/L		F	1			G	STD

Appendix B
 Analytical Results for Water Samples—Third Quarter CY 2025
 RFLMA Data

Location Code	Location Type	Date Sampled	Sample Code	CAS	Analyte	Filtration Status	Result	Unit	Lab Qualifier	Sample Type	Detection Limit	Uncertainty	Data Validation Qualifier	Collection Method	Lab Code
PLFSEEPINF	TS	7/10/2025	RFS01-02.2507076-010	7440-02-0	Nickel	Y	5.2	ug/L	F	1				G	STD
PLFSEEPINF	TS	7/10/2025	RFS01-02.2507076-011	7782-49-2	Selenium	N	0.5	ug/L	U	F	0.5			G	STD
PLFSEEPINF	TS	7/10/2025	RFS01-02.2507076-010	7440-22-4	Silver	Y	0.25	ug/L	U	F	0.25			G	STD
PLFSEEPINF	TS	7/10/2025	RFS01-02.2507076-010	100-42-5	Styrene	N	0.25	ug/L	U	F	0.25			G	STD
PLFSEEPINF	TS	7/10/2025	RFS01-02.2507076-010	127-18-4	Tetrachloroethene	N	0.25	ug/L	U	F	0.25			G	STD
PLFSEEPINF	TS	7/10/2025	RFS01-02.2507076-010	108-88-3	Toluene	N	0.25	ug/L	U	F	0.25			G	STD
PLFSEEPINF	TS	7/10/2025	RFS01-02.2507076-010	1330-20-7	Total Xylenes	N	1.3	ug/L	F		0.25			G	STD
PLFSEEPINF	TS	7/10/2025	RFS01-02.2507076-010	156-60-5	trans-1,2-Dichloroethene	N	0.25	ug/L	U	F	0.25			G	STD
PLFSEEPINF	TS	7/10/2025	RFS01-02.2507076-010	79-01-6	Trichloroethene	N	0.25	ug/L	U	F	0.25			G	STD
PLFSEEPINF	TS	7/10/2025	RFS01-02.2507076-011	7440-61-1	Uranium	N	0.25	ug/L	U	F	0.25			G	STD
PLFSEEPINF	TS	7/10/2025	RFS01-02.2507076-010	75-01-4	Vinyl chloride	N	0.25	ug/L	U	F	0.25			G	STD
PLFSEEPINF	TS	7/10/2025	RFS01-02.2507076-010	7440-66-6	Zinc	Y	68	ug/L	F		5			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-002	71-55-6	1,1,1-Trichloroethane	N	0.25	ug/L	U	D	0.25			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-012	71-55-6	1,1,1-Trichloroethane	N	0.25	ug/L	U	F	0.25			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-002	79-34-5	1,1,2,2-Tetrachloroethane	N	0.25	ug/L	U	D	0.25			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-012	79-34-5	1,1,2,2-Tetrachloroethane	N	0.25	ug/L	U	F	0.25			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-002	79-00-5	1,1,2-Trichloroethane	N	0.25	ug/L	U	D	0.25			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-012	79-00-5	1,1,2-Trichloroethane	N	0.25	ug/L	U	F	0.25			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-002	75-35-4	1,1-Dichloroethene	N	0.25	ug/L	U	D	0.25			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-012	75-35-4	1,1-Dichloroethene	N	0.25	ug/L	U	F	0.25			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-002	120-82-1	1,2,4-Trichlorobenzene	N	0.5	ug/L	U	D	0.5			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-012	120-82-1	1,2,4-Trichlorobenzene	N	0.5	ug/L	U	F	0.5			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-002	95-50-1	1,2-Dichlorobenzene	N	0.25	ug/L	U	D	0.25			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-012	95-50-1	1,2-Dichlorobenzene	N	0.25	ug/L	U	F	0.25			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-002	107-06-2	1,2-Dichloroethane	N	0.25	ug/L	U	D	0.25			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-012	107-06-2	1,2-Dichloroethane	N	0.25	ug/L	U	F	0.25			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-002	78-87-5	1,2-Dichloropropane	N	0.25	ug/L	U	D	0.25			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-012	78-87-5	1,2-Dichloropropane	N	0.25	ug/L	U	F	0.25			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-002	541-73-1	1,3-Dichlorobenzene	N	0.25	ug/L	U	D	0.25			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-012	541-73-1	1,3-Dichlorobenzene	N	0.25	ug/L	U	F	0.25			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-002	106-46-7	1,4-Dichlorobenzene	N	0.25	ug/L	U	D	0.25			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-012	106-46-7	1,4-Dichlorobenzene	N	0.25	ug/L	U	F	0.25			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-002	91-58-7	2-Chloronaphthalene	N	10	ug/L	U	D	10		J	G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-012	91-58-7	2-Chloronaphthalene	N	10	ug/L	U	F	10		J	G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-001	83-32-9	Acenaphthene	N	1.3	ug/L	D		0.2		J	G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-014	83-32-9	Acenaphthene	N	1.4	ug/L	F		0.2		J	G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-001	120-12-7	Anthracene	N	0.26	ug/L	J	D	0.2			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-014	120-12-7	Anthracene	N	0.27	ug/L	J	F	0.2			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-001	7440-38-2	Arsenic	N	8.6	ug/L	D		0.5			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-013	7440-38-2	Arsenic	N	8.2	ug/L	F		0.5			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-002	71-43-2	Benzene	N	0.62	ug/L	J	D	0.25			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-012	71-43-2	Benzene	N	0.63	ug/L	J	F	0.25			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-001	50-32-8	Benz(a)pyrene	N	0.2	ug/L	U	D	0.2			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-014	50-32-8	Benz(a)pyrene	N	0.2	ug/L	U	F	0.2			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-001	191-24-2	Benz(g,h,i)Perylene	N	0.2	ug/L	U	D	0.2			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-014	191-24-2	Benz(g,h,i)Perylene	N	0.2	ug/L	U	F	0.2			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-001	7440-41-7	Beryllium	N	0.25	ug/L	U	D	0.25			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-013	7440-41-7	Beryllium	N	0.25	ug/L	U	F	0.25			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-002	108-60-1	Bis(2-chloroisopropyl) ether	N	40	ug/L	U	D	40			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-012	108-60-1	Bis(2-chloroisopropyl) ether	N	40	ug/L	U	F	40			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-002	117-81-7	Bis(2-ethylhexyl) phthalate	N	50	ug/L	U	D	50			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-012	117-81-7	Bis(2-ethylhexyl) phthalate	N	50	ug/L	U	F	50			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-001	7440-42-8	Boron	N	1200	ug/L	D		15			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-013	7440-42-8	Boron	N	1200	ug/L	F		15			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-002	75-25-2	Bromoform	N	0.5	ug/L	U	D	0.5			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-012	75-25-2	Bromoform	N	0.5	ug/L	U	F	0.5			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-002	7440-43-9	Cadmium	Y	0.25	ug/L	U	D	0.25			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-012	7440-43-9	Cadmium	Y	0.25	ug/L	U	F	0.25			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-002	56-23-5	Carbon tetrachloride	N	0.25	ug/L	U	D	0.25			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-012	56-23-5	Carbon tetrachloride	N	0.25	ug/L	U	F	0.25			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-002	108-90-7	Chlorobenzene	N	0.25	ug/L	U	D	0.25			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-012	108-90-7	Chlorobenzene	N	0.25	ug/L	U	F	0.25			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-002	67-66-3	Chloroform	N	0.25	ug/L	U	D	0.25			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-012	67-66-3	Chloroform	N	0.25	ug/L	U	F	0.25			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-002	74-87-3	Chloromethane	N	0.5	ug/L	U	D	0.5			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-012	74-87-3	Chloromethane	N	0.5	ug/L	U	F	0.5			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-001	7440-47-3	Chromium	N	1	ug/L	U	D	1			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-013	7440-47-3	Chromium	N	1	ug/L	U	F	1			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-001	218-01-9	Chrysene	N	0.2	ug/L	U	D	0.2			G	STD

Location Code	Location Type	Date Sampled	Sample Code	CAS	Analyte	Filtration Status	Result	Unit	Lab Qualifier	Sample Type	Detection Limit	Uncertainty	Data Validation Qualifier	Collection Method	Lab Code
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-014	218-01-9	Chrysene	N	0.2	ug/L	U	F	0.2			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-002	156-59-2	cis-1,2-Dichloroethene	N	0.25	ug/L	U	D	0.25			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-012	156-59-2	cis-1,2-Dichloroethene	N	0.25	ug/L	U	F	0.25			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-002	7440-50-8	Copper	Y	1	ug/L	U	D	1			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-012	7440-50-8	Copper	Y	1	ug/L	U	F	1			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-001	53-70-3	Dibenz(a,h)anthracene	N	0.2	ug/L	U	D	0.2			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-014	53-70-3	Dibenz(a,h)anthracene	N	0.2	ug/L	U	F	0.2			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-002	84-66-2	Diethyl phthalate	N	20	ug/L	U	D	20			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-012	84-66-2	Diethyl phthalate	N	20	ug/L	U	F	20			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-002	131-11-3	Dimethyl phthalate	N	10	ug/L	U	D	10			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-012	131-11-3	Dimethyl phthalate	N	10	ug/L	U	F	10			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-002	84-74-2	Di-n-butyl phthalate	N	40	ug/L	U	D	40			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-012	84-74-2	Di-n-butyl phthalate	N	40	ug/L	U	F	40			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-002	100-41-4	Ethylbenzene	N	0.25	ug/L	U	D	0.25			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-012	100-41-4	Ethylbenzene	N	0.25	ug/L	U	F	0.25			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-001	206-44-0	Fluoranthene	N	0.4	ug/L	J	D	0.2			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-014	206-44-0	Fluoranthene	N	0.35	ug/L	J	F	0.2			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-001	86-73-7	Fluorene	N	1.1	ug/L		D	0.2			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-014	86-73-7	Fluorene	N	1.2	ug/L		F	0.2			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-002	87-68-3	Hexachlorobutadiene	N	0.5	ug/L	U	D	0.5			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-012	87-68-3	Hexachlorobutadiene	N	0.5	ug/L	U	F	0.5			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-002	67-72-1	Hexachloroethane	N	40	ug/L	U	D	40			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-012	67-72-1	Hexachloroethane	N	40	ug/L	U	F	40			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-002	78-59-1	Isophorone	N	40	ug/L	U	D	40			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-012	78-59-1	Isophorone	N	40	ug/L	U	F	40			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-002	7439-92-1	Lead	Y	0.5	ug/L	U	D	0.5			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-012	7439-92-1	Lead	Y	0.5	ug/L	U	F	0.5			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-001	7439-97-6	Mercury	N	0.06	ug/L	U	D	0.06			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-013	7439-97-6	Mercury	N	0.06	ug/L	U	F	0.06			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-002	75-09-2	Methylene chloride	N	1	ug/L	U	D	1			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-012	75-09-2	Methylene chloride	N	1	ug/L	U	F	1			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-001	91-20-3	Naphthalene	N	2.4	ug/L		D	0.25			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-014	91-20-3	Naphthalene	N	2.3	ug/L		F	0.25			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-002	7440-02-0	Nickel	Y	4.5	ug/L		D	1			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-012	7440-02-0	Nickel	Y	4.5	ug/L		F	1			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-001	129-00-0	Pyrene	N	0.28	ug/L	J	D	0.2			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-014	129-00-0	Pyrene	N	0.26	ug/L	J	F	0.2			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-001	7782-49-2	Selenium	N	0.5	ug/L	U	D	0.5			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-013	7782-49-2	Selenium	N	0.5	ug/L	U	F	0.5			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-002	7440-22-4	Silver	Y	0.25	ug/L	U	D	0.25			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-012	7440-22-4	Silver	Y	0.25	ug/L	U	F	0.25			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-002	100-42-5	Styrene	N	0.25	ug/L	U	D	0.25			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-012	100-42-5	Styrene	N	0.25	ug/L	U	F	0.25			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-002	127-18-4	Tetrachloroethene	N	0.25	ug/L	U	D	0.25			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-012	127-18-4	Tetrachloroethene	N	0.25	ug/L	U	F	0.25			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-002	108-88-3	Toluene	N	0.25	ug/L	U	D	0.25			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-012	108-88-3	Toluene	N	0.25	ug/L	U	F	0.25			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-002	1330-20-7	Total Xylenes	N	0.25	ug/L	U	D	0.25			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-012	1330-20-7	Total Xylenes	N	0.25	ug/L	U	F	0.25			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-002	156-60-5	trans-1,2-Dichloroethene	N	0.25	ug/L	U	D	0.25			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-012	156-60-5	trans-1,2-Dichloroethene	N	0.25	ug/L	U	F	0.25			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-002	79-01-6	Trichloroethene	N	0.25	ug/L	U	D	0.25			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-012	79-01-6	Trichloroethene	N	0.25	ug/L	U	F	0.25			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-001	7440-61-1	Uranium	N	0.41	ug/L	J	D	0.25			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-013	7440-61-1	Uranium	N	0.42	ug/L	J	F	0.25			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-002	75-01-4	Vinyl chloride	N	0.25	ug/L	U	D	0.25			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-012	75-01-4	Vinyl chloride	N	0.25	ug/L	U	F	0.25			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-002	7440-66-6	Zinc	Y	21	ug/L		D	5			G	STD
PLFSYSEFF	TS	7/10/2025	RFS01-02.2507076-012	7440-66-6	Zinc	Y	22	ug/L		F	5			G	STD
SPIN	TS	7/14/2025	RFS01-04.2507159-005	NO3-NO2 AS N	Nitrate + Nitrite as Nitrogen	N	720	mg/L	F		12			G	STD
SPIN	TS	7/28/2025	RFS01-04.2508160-004	NO3-NO2 AS N	Nitrate + Nitrite as Nitrogen	N	400	mg/L	F		30			G	STD
SPIN	TS	7/28/2025	RFS01-04.2508160-004	Uranium	Uranium	N	79	ug/L	F		0.25			G	STD
SPIN	TS	8/14/2025	RFS01-04.2508162-004	NO3-NO2 AS N	Nitrate + Nitrite as Nitrogen	N	570	mg/L	F		12			G	STD
SPIN	TS	9/4/2025	RFS01-04.2509163-005	NO3-NO2 AS N	Nitrate + Nitrite as Nitrogen	N	490	mg/L	F		12			G	STD
SPIN	TS	9/4/2025	RFS01-04.2509163-005	Uranium	Uranium	N	71	ug/L	F		0.25			G	STD
SPIN	TS	9/18/2025	RFS01-04.2509164-005	NO3-NO2 AS N	Nitrate + Nitrite as Nitrogen	N	540	mg/L	F		12			G	STD
SPIN	TS	9/30/2025	RFS01-04.2509165-005	NO3-NO2 AS N	Nitrate + Nitrite as Nitrogen	N	480	mg/L	F		12			G	STD
SPIN	TS	9/30/2025	RFS01-04.2509165-005	Uranium	Uranium	N	87	ug/L	F		0.25			G	STD
SPOUT	TS	7/14/2025	RFS01-04.2507159-001	NO3-NO2 AS N	Nitrate + Nitrite as Nitrogen	N	0.06	mg/L	U		0.06			G	STD

Appendix B
Analytical Results for Water Samples—Third Quarter CY 2025
RFLMA Data

Location Code	Location Type	Date Sampled	Sample Code	CAS	Analyte	Filtration Status	Result	Unit	Lab Qualifier	Sample Type	Detection Limit	Uncertainty	Data Validation Qualifier	Collection Method	Lab Code
SPOUT	TS	7/28/2025	RFS01-04.2508160-001	NO3+NO2 AS N	Nitrate + Nitrite as Nitrogen	N	0.06	mg/L	U	F	0.06			G	STD
SPOUT	TS	7/28/2025	RFS01-04.2508160-001	7440-61-1	Uranium	N	85	ug/L		F	0.25			G	STD
SPOUT	TS	8/14/2025	RFS01-04.2508162-001	NO3+NO2 AS N	Nitrate + Nitrite as Nitrogen	N	0.06	mg/L	U	F	0.06			G	STD
SPOUT	TS	9/4/2025	RFS01-04.2509163-001	NO3+NO2 AS N	Nitrate + Nitrite as Nitrogen	N	0.06	mg/L	U	F	0.06			G	STD
SPOUT	TS	9/4/2025	RFS01-04.2509163-002	NO3+NO2 AS N	Nitrate + Nitrite as Nitrogen	N	0.06	mg/L	U	D	0.06			G	STD
SPOUT	TS	9/4/2025	RFS01-04.2509163-001	7440-61-1	Uranium	N	22	ug/L		F	0.25	J	G	STD	
SPOUT	TS	9/4/2025	RFS01-04.2509163-002	7440-61-1	Uranium	N	17	ug/L		D	0.25	J	G	STD	
SPOUT	TS	9/18/2025	RFS01-04.2509164-001	NO3+NO2 AS N	Nitrate + Nitrite as Nitrogen	N	0.06	mg/L	U	F	0.06			G	STD
SPOUT	TS	9/30/2025	RFS01-04.2509165-001	NO3+NO2 AS N	Nitrate + Nitrite as Nitrogen	N	0.06	mg/L	U	F	0.06			G	STD
SPOUT	TS	9/30/2025	RFS01-04.2509165-001	7440-61-1	Uranium	N	13	ug/L		F	0.25	J	G	STD	
WOMP OC	SL	6/9/2025	RFS01-13.2511140-018	14596-10-2	Americium-241	N	0	pCi/L	U	F		0.00554		C	GEN
WOMP OC	SL	6/9/2025	RFS01-13.2511140-018	Pu-239,240	Plutonium-239, 240	N	0.00365	pCi/L	U	F		0.0124		C	GEN
WOMP OC	SL	6/9/2025	RFS01-13.2511140-018	7440-61-1	Uranium	N	2.24	ug/L		F	0.067			C	GEN

Abbreviations:

See the standard abbreviation list preceding the data tables.

Appendix B
Analytical Results for Water Samples—Third Quarter CY 2025
Information for RFLMA Composite Samples with Unavailable Data

Location	Sample Dates*	Status
WALPOC	6/9/2025 11:56 -->	In progress
GS10	6/26/2025 11:59 -->	In progress
GS13	6/9/2025 10:29 -->	In progress
GS33	5/12/2025 12:16 -->	In progress
GS51	1/6/2025 14:40 -->	In progress
SW027	1/23/2025 11:52 -->	In progress
SW093	6/9/2025 10:07 -->	In progress

Notes:

* Analytical results are reported with the start date of the composite sampling period.

--> Composite sample end date to be determined.

Abbreviation:

NSQ = non-sufficient quantity for analysis.